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SUPERSINGULAR j-INVARIANTS
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1. Introduction and Statement of Results.

A point Q on a compact Riemann surface M of genus g is a Weierstrass point if there is a
holomorphic differential ω (not identically zero) with a zero of order ≥ g at Q. If Q ∈ M and
ω1, ω2, . . . , ωg form a basis for the holomorphic differentials on M with the property that

0 = ordQ(ω1) < ordQ(ω2) < · · · < ordQ(ωg),

then the Weierstrass weight of Q is the non-negative integer

wt(Q) :=
g∑

j=1

(ordQ(ωj)− j + 1). (1.1)

The weight is independent of the particular basis; moreover, we have wt(Q) > 0 if and only if
Q is a Weierstrass point. It is known that

∑
Q∈M wt(Q) = g3 − g; therefore Weierstrass points

exist on every Riemann surface of genus g ≥ 2 (for these and other basic facts, see [F-K]).
In this paper we study such points on modular curves; these are a class of Riemann surfaces

which play an important role in Number Theory. As usual, we denote by H the complex upper
half-plane and by Γ0(N) the congruence subgroup

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

We consider the modular curves X0(N) which are obtained by compactifying the quotient
Y0(N) := Γ0(N)\H. These curves play a distinguished role in arithmetic; each X0(N) is the
moduli space of elliptic curves with a prescribed cyclic subgroup of order N .

Works by Atkin [A], Lehner and Newman [L-N], Ogg [O1, O2] and Rohrlich [R1, R2] address a
variety of questions regarding Weierstrass points on modular curves. For example, these works
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determine some conditions under which the cusp at infinity is a Weierstrass point, and also
illustrate the important role which Weierstrass points play in determining the finite list of N
for which X0(N) is hyperelliptic. Apart from these works, little appears to be known. Here we
consider the arithmetic of the Weierstrass points on X0(p) when p is prime. If p ≥ 5, then the
genus of X0(p) is

gp :=


(p− 13)/12 if p ≡ 1 (mod 12),
(p− 5)/12 if p ≡ 5 (mod 12),
(p− 7)/12 if p ≡ 7 (mod 12),
(p + 1)/12 if p ≡ 11 (mod 12).

(1.2)

These formulas imply that X0(p) has Weierstrass points if and only if p ≥ 23.
Ogg [O2] studied Weierstrass points on curves X0(N) using the Igusa-Deligne-Rapoport

model for the reduction of X0(N) modulo primes p. For the curves X0(p), he proved that if Q

is a Q-rational Weierstrass point, then Q̃, the reduction of Q modulo p, is supersingular (i.e.
the underlying elliptic curve is supersingular). In light of this, it is natural to seek a precise
description of the relationship between the supersingular j-invariants and the set of j(Q) for
Weierstrass points Q ∈ X0(p). Do all supersingular j-invariants arise from Weierstrass points?
If so, what is the multiplicity of such a correspondence?

To answer these questions, we investigate the degree g3
p − gp polynomials

Fp(x) :=
∏

Q∈X0(p)

(x− j(Q))wt(Q), (1.3)

where j(z) = q−1 + 744 + 196884q + · · · denotes the usual elliptic modular function on SL2(Z)
(q := e2πiz throughout). Here we adopt the convention that if Q ∈ Y0(p), then j(Q) is taken
to mean j(τ), where τ ∈ H is any point which corresponds to Q under the usual identification.
We note that the product in (1.3) is well defined since it is known by work of Atkin and Ogg
(see [O2]) that the cusps of X0(p) are not Weierstrass points.

We compare the reduction of Fp(x) modulo p to the polynomial

Sp(x) :=
∏

E/Fp

supersingular

(x− j(E)) ∈ Fp[x] (1.4)

(the product is taken over Fp-isomorphism classes of elliptic curves). It is well known that the
degree of Sp(x) is gp + 1. We obtain the following result.

Theorem 1. If p is prime, then Fp(x) has p-integral rational coefficients and satisfies

Fp(x) ≡ Sp(x)gp(gp−1) (mod p).

Since every supersingular j-invariant lies in Fp2 , it follows that the irreducible factors of Fp(x)
in Fp[x] are linear or quadratic. Theorem 1 and this phenomenon are illustrated by the following
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example (which is discussed at greater length in the last section).

F37(x) = x6 + 4413440825818343120655186904x5 − 11708131433416357804111150282868x4

+ 8227313090499295114362093811016384x3 − 16261934011084142326646181531500240x2

+ 5831198927249541212473378689357603456x + 26629192205697265626049513958147870272

≡ (x + 29)2(x2 + 31x + 31)2 (mod 37)

= S37(x)2.

Theorem 1 is in part a consequence of a general phenomenon concerning modular forms
modulo p. Let Mk (respectively Sk) denote the complex vector space of holomorphic modular
forms (respectively cusp forms) of weight k for SL2(Z). If f ∈ Mkf

has p-integral coefficients,
then let ωp(f) denote the usual filtration

ωp(f) := min{k : g ≡ f (mod p) for some g ∈ Mk}.

For each such f we construct an explicit polynomial F (f, x) whose roots are the values j(τ) for
those τ ∈ H with ordf (τ) > 0. If kf is large compared to ωp(f), then we show that

F (f, x) ≡ R(f, x)Sp(x)αf (mod p),

where R(f, x) is a rational function of small degree, and αf is a large positive integer. The
precise formulation of this result is stated in Section 2 (see Theorem 2.3). In Section 3 we
use this result, a theorem of Rohrlich [R1] and the ‘norm’ from Γ0(p) to SL2(Z) of a certain
Wronskian in order to prove Theorem 1. In Section 4 we consider the example of X0(37)
(including the exact calculation of F37(x)) in detail.

Acknowledgments

The authors thank Matthew Baker, Matthew Papanikolas, Joel Robbin, and David Rohrlich
for their helpful comments.

2. Preliminaries

In what follows we will write Γ := SL2(Z) for convenience. If f ∈ Mk, then using the classical
valence formula

k

12
=

1
2
ordi(f) +

1
3
ordρ(f) + ord∞(f) +

∑
τ∈Γ\H−{i,ρ}

ordτ (f)

(throughout ρ := e2πi/3), it is easy to see that

ordi(f) ≥
{

1 if k ≡ 2 (mod 4),
0 if k ≡ 0 (mod 4),

(2.1)
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and

ordρ(f) ≥


2 if k ≡ 2 (mod 6),
1 if k ≡ 4 (mod 6),
0 if k ≡ 0 (mod 6).

(2.2)

Because of these trivial zeros (and the fact that j(i) = 1728 and j(ρ) = 0), we find it convenient
to define polynomials hk(x) by

hk(x) :=



1 if k ≡ 0 (mod 12),
x2(x− 1728) if k ≡ 2 (mod 12),
x if k ≡ 4 (mod 12),
x− 1728 if k ≡ 6 (mod 12),
x2 if k ≡ 8 (mod 12),
x(x− 1728) if k ≡ 10 (mod 12).

(2.3)

For even integers k ≥ 2, let Ek denote the usual Eisenstein series

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn;

here σk−1(n) =
∑

d|n dk−1 and Bk is the kth Bernoulli number. As usual, let ∆(z) be the
unique normalized weight 12 cusp form on Γ; we have

∆(z) =
E4(z)3 − E6(z)2

1728
= q − 24q2 + 252q3 − 1472q4 + . . . . (2.4)

If k ≥ 4 is even, then define Ẽk(z) by

Ẽk(z) :=



1 if k ≡ 0 (mod 12),
E4(z)2E6(z) if k ≡ 2 (mod 12),
E4(z) if k ≡ 4 (mod 12),
E6(z) if k ≡ 6 (mod 12),
E4(z)2 if k ≡ 8 (mod 12),
E4(z)E6(z) if k ≡ 10 (mod 12).

(2.5)

From the valence formula we see that the divisor of E4(z) (respectively E6(z)) is supported on
a simple zero at τ = ρ (respectively τ = i). Therefore, the definitions of the polynomials hk(x)
mirror the divisors of the corresponding Ẽk(z).

Lemma 2.1. Define m(k) by

m(k) :=
{ bk/12c if k 6≡ 2 (mod 12),
bk/12c − 1 if k ≡ 2 (mod 12),
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and suppose that f ∈ Mk has leading coefficient 1. Let F̃ (f, x) be the unique rational function
in x for which

f(z) = ∆(z)m(k)Ẽk(z)F̃ (f, j(z)).

Then F̃ (f, x) is a polynomial.

Proof. Notice that m(k) is defined so that the weight of Ẽk(z) equals k − 12m(k). Since ∆(z)
does not vanish on H, (2.1), (2.2) and (2.5) imply that

F̃ (f, j(z)) =
f(z)

∆(z)m(k)Ẽk(z)

is a modular function for Γ which is holomorphic on H. Therefore it is a polynomial in j(z). �

If f(z) ∈ Mk then, after Lemma 2.1, we define the polynomial F (f, x) by

F (f, x) := hk(x)F̃ (f, x). (2.6)

(Note, for example, that if f vanishes to order N0+3N at ρ, with N0 ∈ {0, 1, 2}, then the power
of x appearing in F (f, x) is N0 + N .) Observe that F (f, x) has p-integral rational coefficients
when f(z) has p-integral rational coefficients.

It is a well known result of Deligne (see, for example, [S]) that if p ≥ 5 is prime, then

Sp(x) ≡ F (Ep−1, x) (mod p). (2.7)

Before turning to the proof of Theorem 1, we develop some machinery for studying the poly-
nomials F (f, x) and F̃ (f, x).

Lemma 2.2. If s = 1, 5, 7 or 11 and p ≡ s (mod 12) is prime, then

1
∆(z)(p−s)/12

≡


F̃ (Ep−1, j(z)) (mod p) if s = 1,

E4(z)F̃ (Ep−1, j(z)) (mod p) if s = 5,

E6(z)F̃ (Ep−1, j(z)) (mod p) if s = 7,

E4(z)E6(z)F̃ (Ep−1, j(z)) (mod p) if s = 11.

Proof. Since Ep−1(z) ≡ 1 (mod p), Lemma 2.1 implies that

1 ≡ Ep−1(z) ≡ ∆(z)(p−s)/12Ẽp−1(z)F̃ (Ep−1, j(z)) (mod p).

The congruences follow by solving for ∆(z)(p−s)/12 (mod p). �

To prove Theorem 1, we shall require the following theorem.
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Theorem 2.3. If p ≥ 5 is prime and f ∈ Mk has p-integral coefficients, then

F̃ (fEp−1, x) ≡ F̃ (Ep−1, x) · F̃ (f, x) · Cp(k;x) (mod p),

where

Cp(k;x) :=


x if (k, p) ≡ (2, 5), (8, 5), (8, 11) (mod 12),
x− 1728 if (k, p) ≡ (2, 7), (6, 7), (10, 7), (6, 11), (10, 11) (mod 12),
x(x− 1728) if (k, p) ≡ (2, 11) (mod 12),
1 otherwise.

Proof. Since f(z) ≡ f(z)Ep−1(z) (mod p), it follows from Lemma 2.1 that

∆(z)m(k+p−1)Ẽk+p−1(z)F̃ (fEp−1, j(z)) ≡ ∆(z)m(k)Ẽk(z)F̃ (f, j(z)) (mod p).

Therefore, we have

F̃ (fEp−1, j(z)) ≡ 1
∆(z)m(k+p−1)−m(k)

· Ẽk(z)

Ẽk+p−1(z)
F̃ (f, j(z)) (mod p). (2.8)

The theorem follows from a case by case analysis. For example, if (k, p) ≡ (2, 11) (mod 12),
then

F̃ (fEp−1, j(z)) ≡ 1
∆(z)(p+13)/12

· E4(z)2E6(z)F̃ (f, j(z)) (mod p)

≡ 1
∆(z)(p−11)/12

· E4(z)2E6(z)
∆(z)2

· F̃ (f, j(z)) (mod p).

By Lemma 2.2, this becomes

F̃ (fEp−1, j(z)) ≡ E4(z)3

∆(z)
· E6(z)2

∆(z)
· F̃ (Ep−1, j(z))F̃ (f, j(z)) (mod p)

≡ j(z)(j(z)− 1728)F̃ (Ep−1, j(z))F̃ (f, j(z)) (mod p);

here we use the identities

j(z) =
E4(z)3

∆(z)
and j(z)− 1728 =

E6(z)2

∆(z)
.

The other cases follow in a similar fashion; we omit the details for brevity. �
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3. Proof of Theorem 1

In general, the Weierstrass weight of a point Q is determined by the order of vanishing of a cer-
tain Wronskian at Q (see [F-K]). In the current context, let {f1(z), f2(z), . . . , fgp

(z)} be any ba-
sis for the space of cusp forms S2(Γ0(p)). Following Rohrlich [R1], we define Wp(f1, . . . , fgp)(z)
by

Wp(f1, . . . , fgp)(z) :=

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fgp

f ′1 f ′2 · · · f ′gp

...
...

...
...

f
(gp−1)
1 f

(gp−1)
2 · · · f

(gp−1)
gp

∣∣∣∣∣∣∣∣∣ . (3.1)

Then Wp(f1, . . . , fgp)(z) is a cusp form of weight gp(gp +1) on Γ0(p) (the fact that this modular
form vanishes at the cusp 0 can be deduced, for example, using Lemma 3.2 below). We denote
by Wp(z) that scalar multiple of Wp(f1, . . . , fgp

)(z) whose leading coefficient equals 1. Thus
Wp is independent of the particular choice of basis. The importance of Wp arises from the fact
[R1] that the Weierstrass weight of a point Q ∈ X0(p) is given by the order of vanishing at Q
of the differential Wp(z)(dz)gp(gp+1)/2. Rohrlich [R1] proved the following congruence for these
forms.

Theorem 3.1. If p ≥ 23 is prime, then Wp(z) ∈ Sgp(gp+1)(Γ0(p)) has p-integral coefficients
and satisfies

Wp(z) ≡ ∆(z)gp(gp+1)/2Ẽp+1(z)gpE14(z)gp(gp−1)/2 (mod p).

If f is a function of the upper half plane, γ =
(

a b

c d

)
is a real matrix with positive determinant,

and k is a positive integer, then as usual we define

f(z)
∣∣
k
γ := det(γ)k/2(cz + d)−kf

(
az+b
cz+d

)
.

We recall that the spaces Sk(Γ0(p)) admit the usual Fricke involution f 7→ f
∣∣
k
wp, where

wp :=
(

0 −1

p 0

)
.

We begin by proving the following lemma; for the duration of the paper we will write g = gp

for simplicity.

Lemma 3.2. We have
Wp(z)|g(g+1)wp = ±Wp(z). (3.2)

Proof.
We fix a basis {f1, f2, . . . , fg} of newforms for the space S2(Γ0(p)), and we write

Wp(z) = Wp(f1, . . . , fg)(z). (3.3)

It clearly suffices to establish (3.2) with Wp(z) replaced by Wp(z). By [A-L, Th. 3] we have,
for 1 ≤ i ≤ g,

fi

∣∣
2
wp = λifi, with λi ∈ {±1}. (3.4)
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For each i, (3.4) shows that
fi(−1/pz) = λipz2fi(z). (3.5)

Therefore, from the definition (3.1) we have

Wp(−1/pz) =

∣∣∣∣∣∣∣∣∣
f1(−1/pz) . . . fg(−1/pz)
f ′1(−1/pz) . . . f ′g(−1/pz)

...
...

...
f

(g−1)
1 (−1/pz) . . . f

(g−1)
g (−1/pz)

∣∣∣∣∣∣∣∣∣
= pz2

∣∣∣∣∣∣∣∣∣
λ1f1(z) . . . λgfg(z)

f ′1(−1/pz) . . . f ′g(−1/pz)
...

...
...

f
(g−1)
1 (−1/pz) . . . f

(g−1)
g (−1/pz)

∣∣∣∣∣∣∣∣∣ . (3.6)

Using (3.5) and induction, we find that for each i and for all n ≥ 1 we have

f
(n)
i (−1/pz) = λi

pn+1z2n+2f
(n)
i (z) +

n−1∑
j=0

An,j(p, z)f (j)
i (z)

 , (3.7)

where each An,j is a polynomial in p and z which is independent of the value of i. Using (3.6),
(3.7), and properties of determinants, we find that

Wp(−1/pz) = p
g2+g

2 zg2+gλ1 . . . λgWp(z).

The lemma follows. �

We use the preceding lemma to construct a modular form W̃p(z) on Γ whose divisor encodes
the pertinent information regarding Weierstrass points on X0(p). A crucial fact for our proof
is that the form we construct also preserves the arithmetic of the relevant Fourier expansions.
This is described precisely in the following lemma.

Lemma 3.3. If p ≥ 23 is prime and k̃(p) := g(g + 1)(p + 1), then let W̃p(z) ∈ Sek(p) be the
cusp form ∏

A∈Γ0(p)\Γ

Wp(z)|g(g+1)A,

normalized to have leading coefficient 1. Then W̃p(z) has p-integral rational coefficients and
satisfies

W̃p(z) ≡ Wp(z)2 ≡ ∆(z)g(g+1)Ẽp+1(z)2gE14(z)g(g−1) (mod p).

Proof. That W̃p(z) is a weight k̃(p) cusp form on Γ follows easily from the fact that

[Γ : Γ0(p)] = p + 1.
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To prove the congruence, begin by observing that the matrices Aj =
(

0 −1

1 j

)
, for 0 ≤ j ≤ p− 1,

together with the identity matrix, form a complete set of representatives for the coset space
Γ0(p)\Γ. We may write Aj = wpBj , where Bj =

(
1/p j/p

0 1

)
. Using Lemma 3.2 we obtain

p−1∏
j=0

Wp(z)|g(g+1)Aj = ±
p−1∏
j=0

Wp(z)|g(g+1)Bj . (3.8)

For n ≥ 1, let c(n) denote the exponents which uniquely express Wp(z) as an infinite product
of the form

Wp(z) = q
g(g+1)

2

∞∏
n=1

(1− qn)c(n). (3.9)

Since Wp(z) has p-integral rational coefficients, it follows that the exponents c(n) are p-integral
rational numbers. Indeed, it is clear that the c(n) are rational. To see that they are p-integral,
notice that the first non p-integral exponent in (3.9) would produce a non p-integral coefficient
of Wp(z).

Now set ζp := e
2πi

p . After renormalizing, we find that the product in (3.8) is given by

q
g(g+1)

2

∞∏
n=1

p−1∏
j=0

(1− q
n
p ζnj

p )c(n) = q
g(g+1)

2

∏
p-n

(1− qn)c(n)
∏
p|n

(1− q
n
p )pc(n)

≡ q
g(g+1)

2

∞∏
n=1

(1− qn)c(n) (mod p).

The desired congruence follows. �

The next lemma gives the precise relation between the order of vanishing of W̃p(z) and the
Weierstrass weights of the corresponding points on X0(p). We will use the standard identifica-
tion of points τ ∈ H ∪ {0,∞} with points Qτ ∈ X0(p).

Lemma 3.4. For primes p ≥ 23, define εp(i) and εp(ρ) by

εp(i) =

(
1 +

(−1
p

))
(g2 + g)

4
,

εp(ρ) =

(
1 +

(−3
p

))
(g2 + g) + α(p)

3
,

where

α(p) :=
{

2 if p ≡ 19, 25 (mod 36),
0 otherwise.

Then we have
F (W̃p, x) = xεp(ρ)(x− 1728)εp(i) · Fp(x). (3.10)
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Proof. For A ∈ Γ and τ ∈ H, we have

ordτ (Wp|g(g+1)A) = ordA(τ)(Wp). (3.11)

If τ0 is neither Γ-equivalent to ρ nor to i, then the set {A(τ0)}A∈Γ0(p)\Γ consists of p + 1 points
which are Γ0(p)-inequivalent. For τ ∈ H we define `τ ∈ {1, 2, 3} as the order of the isotropy
subgroup of τ in Γ0(p)/{±I}. Then we have

1
`τ

ordτ (Wp) = ordQτ
(Wp(z)(dz)(g

2+g)/2) +
(g2 + g)

2
(1− 1/`τ )

= wt(Qτ ) +
(g2 + g)

2
(1− 1/`τ ).

(3.12)

Using the definition of W̃p together with (3.11) and (3.12), we see that if τ0 is Γ-equivalent
neither to ρ nor to i, then

ordτ0(W̃p) =
∑

τ∈Γ0(p)\H, τ
Γ∼τ0

ordτ (Wp) =
∑

τ∈Γ0(p)\H, τ
Γ∼τ0

wt(Qτ ). (3.13)

By (3.13) we conclude that, for such τ0, the power of x − j(τ0) appearing in the polynomials
on either side of (3.10) is the same.

We next verify that the powers of x on either side are the same. Define k∗ ∈ {0, 1, 2} by
k∗ ≡ k̃(p) (mod 3). Then if

ordρ(W̃p) = k∗ + 3N, (3.14)

we see that
the power of x in F (W̃p, x) is k∗ + N . (3.15)

The list [A(ρ)]A∈Γ0(p)\Γ contains 1 +
(−3

p

)
elliptic fixed points of order 3 which are Γ0(p)-

inequivalent. The remainder of the list is comprised of the three Γ0(p)-equivalent points ρ,
−1
ρ+1 = ρ, and −1

ρ , together with 1
3

(
p− 3−

(−3
p

))
orbits, each of which contains three points of

the form
−1

ρ + j

Γ0(p)∼ −1
ρ + j′

Γ0(p)∼ −1
ρ + j′′

,

where for 2 ≤ j ≤ p − 1 we set j′ = −1/(j − 1) and j′′ = 1 − 1/j. From this together with
(3.11) we see that

ordρ(W̃p) = 3
∑

τ∈Γ0(p)\H, τ
Γ∼ρ

τ not elliptic fixed point

ordτ (Wp) +
∑

τ∈Γ0(p)\H, τ
Γ∼ρ

τ elliptic fixed point

ordτ (Wp). (3.16)

Using (3.11), (3.12), (3.14), and (3.16) we see that

k∗ + 3N = 3
∑

τ∈Γ0(p)\H, τ
Γ∼ρ

wt(Qτ ) +
(
1 +

(
−3
p

))
(g2 + g),
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from which

k∗ + N =
∑

τ∈Γ0(p)\H, τ
Γ∼ρ

wt(Qτ ) +

(
1 +

(−3
p

))
(g2 + g) + 2k∗

3
. (3.17)

Now if p ≡ 2 (mod 3) then k∗ = 0, while if p ≡ 1 (mod 3) then an easy calculation using (1.2)
and the valence formula shows that k∗ = 0 except when p ≡ 19, 25 (mod 36), in which case
k∗ = 1. Therefore, using (3.15) and (3.17), we see that the powers of x in the polynomials given
in (3.10) indeed agree.

The verification that the powers of x − 1728 agree follows similar lines, and we omit the
details for brevity. �

Proof of Theorem 1. Since the theorem is trivial for p < 23 (i.e. both sides of the congruence
are identically 1), we assume that p ≥ 23. In view of Lemma 3.4 and (2.7), it suffices to prove
that

F (W̃p, x) ≡ xεp(ρ)(x− 1728)εp(i) · F (Ep−1, x)g2−g (mod p). (3.18)

If k(p) denotes the weight of

Gp(z) := ∆(z)g(g+1)Ẽp+1(z)2gE14(z)g(g−1)

(this is the form appearing in Lemma 3.3), then k̃(p) = k(p) + (g2 − g)(p − 1). Therefore we
have the following congruence between two weight k̃(p) modular forms:

W̃p(z) ≡ Gp(z)Ep−1(z)g2−g (mod p).

Since these forms have the same weight, we have

F̃ (W̃p, x) ≡ F̃ (GpE
g2−g
p−1 , x) (mod p).

If we define Gp(x) by

Gp(x) :=
g2−g∏
s=1

Cp

(
k(p) + (g2 − g − s)(p− 1);x

)
,

then arguing inductively with Theorem 2.3 gives

F̃ (W̃p, x) ≡ Gp(x)F̃ (Gp, x)F̃ (Ep−1, x)g2−g (mod p).

Therefore we have

F (W̃p, x) = hek(p)(x)F̃ (W̃p, x)

≡ hek(p)(x)Gp(x)F̃ (Gp, x)F̃ (Ep−1, x)g2−g (mod p). (3.19)
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We must determine the first three factors appearing in the right hand side of (3.19). The
polynomial F̃ (Gp, x) can be computed using the facts that

ordρ(Gp) = 2g

(
g +

(
−3
p

))
and ordi(Gp) = g

(
g +

(
−1
p

))
. (3.20)

Using Theorem 2.3, a straightforward (albeit tedious) case by case analysis gives the following:

hek(p)(x)Gp(x) =



1 if p ≡ 1, 13 (mod 36),
x if p ≡ 25 (mod 36),

x(g2−g)/3 if p ≡ 5, 17 (mod 36),

x(g2−g+1)/3 if p ≡ 29 (mod 36),

(x− 1728)(g
2−g)/2 if p ≡ 7, 31 (mod 36),

x(x− 1728)(g
2−g)/2 if p ≡ 19 (mod 36),

x(g2−g)/3(x− 1728)(g
2−g)/2 if p ≡ 11, 35 (mod 36),

x(g2−g+1)/3(x− 1728)(g
2−g)/2 if p ≡ 23 (mod 36).

(3.21)

By (2.3) we have

hp−1(x)g2−g =


1 if p ≡ 1 (mod 12),

xg2−g if p ≡ 5 (mod 12),

(x− 1728)g2−g if p ≡ 7 (mod 12),

xg2−g · (x− 1728)g2−g if p ≡ 11 (mod 12).

(3.22)

A calculation using (3.20), (3.21) and (3.22) reveals that in every case we have

xεp(ρ)(x− 1728)εp(i)hp−1(x)g2−g ≡ hek(p)(x)Gp(x)F̃ (Gp, x) (mod p).

In view of (3.19), the last congruence is equivalent to (3.18). This completes the proof of
Theorem 1. �

4. The X0(37) example

Here we compute the polynomial F37(x) corresponding to the genus 2 modular curve X0(37).
The space S2(Γ0(37)) is generated by the two newforms

f1(z) = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + · · · ,

f2(z) = q + q3 − 2q4 − q7 − 2q9 + · · · ;

these correspond to the two isogeny classes of elliptic curves with conductor 37 in the usual
way. The Wronskian W37(z) is the weight 6 cusp form in S6(Γ0(37)) whose expansion is

W37(z) = q3 + 4q4 − 7q5 + 8q6 − 13q7 + 2q8 − · · · .
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We find that the cusp form W̃37(z) ∈ S228 begins with the terms

W̃37(z) = W37(z) ·
37∏

j=1

W37

(
z + j

37

)
= q6 + 4413440825818343120655190936q7 + 2803262001874354376603110724740q8 − · · · .

Then by Lemma 2.1 and Lemma 3.4, we find that

F37(x) = x6 + 4413440825818343120655186904x5 − 11708131433416357804111150282868x4

+ 8227313090499295114362093811016384x3 − 16261934011084142326646181531500240x2

+ 5831198927249541212473378689357603456x + 26629192205697265626049513958147870272.

By Lemma 2.1 we have

F (E36, x) ≡ S37(x) ≡ (x + 29)(x2 + 31x + 31) (mod 37).

Then, as asserted by Theorem 1, we have

F37(x) ≡ S37(x)2 (mod 37).
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