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A FOOTNOTE TO THE LEAST NON ZERO DIGIT

OF n! IN BASE 12

Jean-Marc DESHOUILLERS

ABSTRACT. We continue the work initiated with Imre Ruzsa, showing that for
any a ∈ {3, 6, 9}, there exist infinitely many integers n such that the least non
zero digit of n! in base twelve is equal to a.
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The least (also called “last” or “final”) non zero digit of n! in a given base b,
denoted by ℓb(n!), has attracted the attention of several autors: numerical values
can be found on N. J. A. Sloanes’s project [6]; S. Kakutani [5] seems to be the
first one to show the 5-automaticity of ℓ10(n!). M. Dekking [2] studied the cases
b = 3 and b = 10; more recently G. Dresden [4] gave a detailed study of the case
b = 10.

Let us explain why I. Ruzsa and I studied in [3] the case b = 12. A-M.
Legendre has shown that the p-valuation of n!, denoted by vp(n!), is equal to
(n− sp(n))/(p− 1) where p denotes a prime number and sp(n) denotes the sum
of the digits of n written in base p; this implies that the number of zeroes of n!
is

min
i

⌊

n− spi
(n)

ai(pi − 1)

⌋

, when b = pa1

1 pa2

2 . . . with a1(p1 − 1) ≥ a2(p2 − 1) ≥ . . .

If b is a prime power or if a1(p1 − 1) > a2(p2 − 1), then the minimum is ⌊(n −
sp1

(n))/a1(p1 − 1)⌋ when n is sufficiently large, and the sequence (ℓb(n!))n is
p1-automatic. The smallest value of b for which a1(p1 − 1) = a2(p2 − 1) occurs
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when b = 12 and in this case, we suspect that the sequence (ℓb(n!))n is not
automatic; however I. Ruzsa and I showed that this sequence coincides on a set
of density 1 with a 3-automatic sequence and we proved the followingTheorem 1. Let 1 ≤ a ≤ 11. The sequence {n : ℓ12(n!) = a} has an asymptotic

density, which is 1/2 if a = 4 or a = 8 and 0 otherwise.

Thus 4 and 8 belong to the range of n 7→ ℓ12(n!). It is easy to check (thanks
to Pari, or by consulting the entry A136698 of [6]) that the range of this map is
indeed the whole set {a : 1 ≤ a ≤ 11}: for example, the values 1, 2, 3, 5, 6, 7, 9, 10,
and 11 are respectively attained when n = 46, 23, 30, 19, 28, 21, 31, 22, and 18.
Partially answering a question raised in [3], we show the followingTheorem 2. The least significant digit ℓ12(n!) of n! in base 12 takes infinitely

often each of the values 3, 6 and 9.

Theorem 2 will be deduced from the followingProposition 3. Let n be divisible by 144 and be such that v3(n!) ≥ v4(n!) + 2.
Then for any a ∈ {3, 6, 9} there exists k ∈ {0, 2, 3, 7} such that ℓ12((n+k)!) = a.

P r o o f. Assume first that v3(n!) ≥ v4(n!) + 2. In base 12, let us write n! =

· · ·m(n!)ℓ(n!)000 · · ·00, with ℓ(n!) = ℓ12(n!) 6= 0, then the number m(n!)ℓ(n!) is
divisible by 9, and so ℓ(n!) ∈ {3, 6, 9}.
Let us further remark that if ℓ(n!) = 6, then 9 divides 12m(n!) + 6, and so 3
divides 2m(n!)+1; since 2m(n!)+1 is odd, it is either congruent to 3 or 9 modulo
12, and then 6m(n!) + 3 is respectively congruent either to 9 or 3 modulo 12.

Assume now that n is divisible by 144. One readily checks that (n+1)(n+2)
is congruent to 2 modulo 144, that (n+1)(n+2)(n+3) is congruent to 6 modulo
144 and that (n+ 1) · · · (n+ 7)/144 is congruent to −1 modulo 12.

Combining the above results, if we assume that n is divisible by 144 and is
such that v3(n!) ≥ v4(n!) + 2, we have the following

(1) If ℓ(n!) = 3, then ℓ((n+ 2)!) = 6 and ℓ((n+ 7)!) = 9,
(2) If ℓ(n!) = 9, then ℓ((n+ 2)!) = 6 and ℓ((n+ 7)!) = 3,
(3) If ℓ(n!) = 6, then ℓ((n+ 2)!) is either 3 or 9 and ℓ((n+ 3)!) is respectively
either 9 or 3.

This proves Proposition 3. �

Proof of Theorem 2. By Legendre’s above-mentioned theorem (cf. [1], Cor. 3.2.2
or [3], Lemma 1), we have v3(n!) = (n− s3(n))/2 and v4(n!) = ⌊(n− s2(n))/2⌋.
For m ≥ 0, let n = 16 · 316384m+9. By Euler’s theorem, we know that 316384 =
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32
14

is congruent to 1 modulo 32768 = 215; we further have 39 = 19683 =
214 + 211 + 210 + 27 + 26 + 25 + 21 + 20, and so, for m ≥ 0 we have s2(n) ≥ 8
(and indeed s2(n) ≥ 9 for m ≥ 1, a remark that we do not use). We thus
have v4(n!) = ⌊(n− s2(n))/2⌋ ≤ (n− 8)/2. On the other hand, we have s3(n) =
s3(16) = s3(9+2×3+1) = 4, and v3(n!) = (n−4)/2 = (n−8)/2+2 ≥ v4(n!)+2.
Since n = 16 · 316384m+9 is divisible by 144, Proposition 3 implies that for any
m ≥ 0 we have {3, 6, 9} ⊂ {ℓ12((n+k)!) / k = 0, 2, 3, 7}, which proves Theorem 2.

Let me conclude with two open questions: do all the numbers from {1, 2, . . . ,
10, 11} occur infinitely often in the sequence (ℓ12(n!))n? How often do 3, 6 and
9 occur in (ℓ12(n!))n≤N when N is large?
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