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Catalan Numbers

Author: Thomas A. Dowling, Department of Mathematics, Ohio State Uni-
versity.

Prerequisites: The prerequisites for this chapter are recursive definitions,
basic counting principles, recurrence relations, rooted trees, and generating
functions. (See Sections 3.4, 4.1, 6.1, 6.2, 6.4, and 8.1 of Discrete Mathematics
and Its Applications, Fifth Edition, by Kenneth H. Rosen.)

Introduction
Sequences and arrays whose terms enumerate combinatorial structures have
many applications in computer science. Knowledge (or estimation) of such
integer-valued functions is, for example, needed in analyzing the complexity of
an algorithm. Familiar examples are the polynomials in n, exponential func-
tions (with an integer base) with exponent a polynomial in n, factorials, and
the binomial coefficients. Less familiar are the Stirling numbers considered else-
where in this book. The sequence of positive integers to be met here, called
the Catalan* numbers, enumerate combinatorial structures of many different
types. Those include nonnegative paths in the plane, well-formed sequences of
parentheses, full binary trees, well-parenthesized products of variables, stack
permutations, and triangulations of a convex polygon.

After defining the Catalan numbers explicitly by formula, we will show by
a combinatorial argument that they count nonnegative paths in the plane. The
size of each set of structures subsequently considered is shown to be a Catalan
number by establishing a one-to-one correspondence between that set and a set
of structures shown earlier to be of that size.

* Eugène Charles Catalan (1814–1894) was a prominent Belgian mathematician
who had numerous publications on multiple integrals, general theory of surfaces, math-

ematical analysis, probability, geometry, and superior arithmetic.
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2 Applications of Discrete Mathematics

Using recurrence relations and generating functions, we will show by a
different approach that the size of one of these sets (well-parenthesized products
of variables) is a Catalan number. All the sets considered are then enumerated
by Catalan numbers in view of the existence of the one-to-one correspondences
previously established. The asymptotic behavior of the sequence is investigated,
and we obtain the order of magnitude of the nth Catalan number.

Paths and Catalan Numbers

Suppose m = a + b votes were cast in an election, with candidate A receiving a
votes and candidate B receiving b votes. The ballots are counted individually
in some random order, giving rise to a sequence of a As and b Bs. The number
of possible ballot sequences is the number C(m,a) of a-element subsets of the
set {1, 2, . . . ,m}, since each such subset indicates which of the m ballots were
cast for candidate A. Assuming all such sequences are equally likely, what is
the probability that candidate A led throughout the counting of the ballots?

Every sequence of m ballots can be represented by an ordered m-tuple
(x1, x2, . . . , xm) with xi = 1 if the ith ballot was a vote for A and xi = −1
if it was for B. Then after i ballots are counted, the ith partial sum si =
x1 + x2 + . . . + xi (with s0 = 0) represents A’s “lead” over B. If we denote by
P (a, b) the number of sequences (x1, x2, . . . , xm) with the partial sums si > 0 for
i = 1, 2, . . . ,m, then the probability that A led throughout is P (a, b)/C(m,a).

The Catalan numbers arise in the case where a = b, which we shall now
assume. Denote the common value of a and b by n, so that m = 2n. Suppose
we seek the probability that A never trailed throughout the counting. There
are C(2n, n) possible sequences of n 1s and n −1s. We seek the number for
which si ≥ 0 for i = 1, 2, . . . , 2n− 1.

We can represent the sequence (x1, . . . , x2n) by a path in the plane from the
origin to the point (2n, 0) whose steps are the line segments between (i− 1, si−1)
and (i, si), for i = 1, 2, . . . , 2n. The ith step in this path then has slope si −
si−1 = xi ∈ {1,−1}.

Example 1 Let n = 5, so the paths run from the origin to the point (10, 0).
We display three such sequences and their partial sum sequences. For clarity,
the 1s in the sequence are represented by plus signs and the −1s by minus signs.
Draw the corresponding paths.

Sequence Partial sum sequence
(i) (−,−,+,+,+,+,−,−,−,+) (0,−1,−2,−1, 0, 1, 2, 1, 0,−1, 0)
(ii) (+,+,−,+,−,−,+,+,−,−) (0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0)
(iii) (+,+,−,+,+,−,+,−,−,−) (0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 0)

Solution: The corresponding paths are shown in Figure 1.
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Figure 1. Some paths from (0,0) to (10,0).

Note that in sequence (i) the partial sum sequence has both positive and
negative entries, so the path lies both above and below the x-axis. In se-
quence (ii) all the partial sums are nonnegative, so the path does not go below
the x-axis. But in sequence (iii), we have si > 0 for i = 1, 2, . . . , 2n− 1. Hence,
except for its two endpoints, the path lies entirely above the x-axis.

We call a path from (0, 0) to (2n, 0) nonnegative if all si ≥ 0 and positive
if si > 0 for i = 1, 2, . . . , 2n − 1. Thus, a nonnegative path corresponds to a
ballot sequence in which candidate A and candidate B both received n votes,
but candidate A never trailed. Similarly, a positive path represents a ballot
sequence in which candidate A was leading all the way until the final ballot
brought them even.

We shall see that the number of nonnegative paths and positive paths from
the origin to the point (2n, 0) are both Catalan numbers. Before proceeding
with this ballot problem, let us define the Catalan numbers.

Definition 1 The Catalan number cn, for n ≥ 0, is given by

cn =
1

n + 1
C(2n, n).

The values of cn for n ≤ 10 are given in Table 1.

n 0 1 2 3 4 5 6 7 8 9 10
cn 1 1 2 5 14 42 132 429 1,430 4,862 16,796

Table 1. The first eleven Catalan numbers.

Example 2 Find all the nonnegative paths from the origin to (6, 0). Which
of these are positive paths?

Solution: There are C(4, 2) = 6 slope sequences of length 6 that start with 1
and end with −1. To check for nonnegativity, we compute their partial sums,
and we find the nonnegative paths have slope sequences
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(+,−,+,−,+,−), (+,−,+,+,−,−), (+,+,−,−,+,−),

(+,+,−,+,−,−), (+,+,+,−,−,−),

with respective partial sum sequences

(0, 1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 2, 1, 0), (0, 1, 2, 1, 0, 1, 0),

(0, 1, 2, 1, 2, 1, 0), (0, 1, 2, 3, 2, 1, 0).

These paths are shown in Figure 2.

Figure 2. The nonnegative paths from the origin to (6,0).

Let us now show that the numbers of nonnegative and positive paths are
Catalan numbers.

Theorem 1 The number of paths from the origin to (2n, 0) that are
(i) positive is the Catalan number cn−1,
(ii) nonnegative is the Catalan number cn.

Proof: We shall first establish a one-to-one correspondence between positive
paths of length 2n and nonnegative paths of length 2n− 2. Let (s0, s1, . . . , s2n)
be the partial sum sequence of a positive path P . Then s0 = s2n = 0 and si ≥ 1
for i = 1, 2, . . . , 2n − 1. Let x = (x1, x2, . . . , x2n) be the corresponding slope
sequence of the steps, so xi = si − si−1 ∈ {1,−1}. Since s1 ≥ 1 and s0 = 0, we
must have s1 = 1. Hence the path P passes through the point (1, 1). Similarly,
since s2n−1 ≥ 1 and s2n = 0, we have s2n−1 = 1. Therefore P passes through
the point (2n−1, 1). If we omit the first and last terms from the slope sequence,
we have a sequence x′ that has n−1 1s and n−1 -1s. Further, the partial sums
for x′ satisfy

s′i = x′1 + x′2 + . . . + x′i

= x2 + x3 + . . . + xi+1

= si+1 − 1
≥ 0

for 0 ≤ i ≤ 2n − 2. Thus the positive path P from the origin to (2n, 0)
corresponds to a nonnegative path P ′ from the origin to (2n − 2, 0). Geomet-
rically, the path P ′ is produced from P by taking the segment of P from (1, 1)
to (2n− 1, 1) relative to the new coordinate system obtained by translating the
origin to the point (1, 1).
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Since the first and last terms of P must be 1 and −1, respectively, the
operation of deleting those terms is reversed by adding 1 before and −1 after P ′.
Thus the function that takes P to P ′ is invertible. Hence, if an is the number of
positive paths and bn the number of nonnegative paths from the origin to (2n, 0),
then an = bn−1. Part (ii) will then follow from (i) once we establish that
an = cn−1, since we would then have bn = an+1 = cn.

A positive path P from the origin to (2n, 0) is determined uniquely by its
segment P ′ from (1, 1) to (2n− 1, 1), which lies entirely above the x-axis. But
the number of such paths P ′ is the difference between C(2n − 2, n − 1), the
total number of paths from (1, 1) to (2n − 1, 1), and the number of paths Q
from (1, 1) to (2n− 1, 1) that meet the x-axis.

Thus, we can determine the number of paths P ′ by counting the number
of such paths Q. Suppose that Q first meets the x-axis at the point (k, 0).
Then k ≥ 2 since Q begins at the point (1, 1). If we reflect the segment Q1 of Q
from (1, 1) to (k, 0) about the x-axis, we obtain a path Q′

1 from (1,−1) to (k, 0).
Then if we adjoin to Q′

1 the segment Q2 of Q from (k, 0) to (2n−1, 1), we obtain
a path Q∗ = Q′

1Q2 from (1,−1) to (2n − 1, 1). But every such path Q∗ must
cross the x-axis, so we can obtain the path Q from Q∗ by reflecting the segment
of Q∗ from (1,−1) to its first point on the x-axis.

Hence we have a one-to-one correspondence between the paths Q and Q∗,
so the number of paths Q from (1, 1) to (2n−1, 1) that meet the x-axis is equal to
the number of paths Q∗ from (1,−1) to (2n− 1, 1). Every such path Q∗ must
have two more increasing steps than decreasing steps, so it has n increasing
steps and n − 2 decreasing steps. The number of such paths Q∗ is therefore
C(2n− 2, n− 2), and this is equal to the number of such paths Q.

The number, an, of positive paths P from the origin to (2n, 0) can now
be calculated. Since it is equal to the number of positive paths P ′ from (1, 1)
to (2n−1, 1), and this is the difference between the total number C(2n−2, n−1)
of paths from (1, 1) to (2n− 1, 1) and the number C(2n− 2, n− 2) of paths Q
from (1, 1) to (2n− 1, 1) that meet the x-axis, we have

an = C(2n− 2, n− 1)− C(2n− 2, n− 2)

=
(2n− 2)!

(n− 1)!(n− 1)!
− (2n− 2)!

(n− 2)!n!

=
(2n− 2)!

(n− 2)!(n− 1)!

(
1

n− 1
− 1

n

)
=

(2n− 2)!
(n− 2)!(n− 1)!

1
n(n− 1)

=
1
n

(2n− 2)!
(n− 1)!(n− 1)!

=
1
n

C(2n− 2, n− 1)

= cn−1.
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Well-formed Sequences of Parentheses

The Catalan numbers count several structures important in computer science.
Let us consider first the set of well-formed sequences of parentheses, which
can be defined recursively (see Section 3.4 in Discrete Mathematics and Its
Applications, Fifth Edition, by Rosen).

Definition 2 A sequence of parentheses is well-formed if and only if it can be
derived by a finite sequence of the following rules:

The empty sequence is well-formed.
If A is well-formed, then (A) is well-formed.
If A and B are well-formed, then AB is well-formed.

We say that the right parenthesis following A in the second rule closes the left
parenthesis preceding A.

Example 3 Find a sequence of n = 4 parentheses that is not well-formed and
a sequence that is well-formed.

Solution: The sequence ( ( ) ) ) ( ( ) is not well-formed since only one of the
third and fourth left parentheses can be closed by the single right parenthesis
that follows them. But the sequence ( ( ) ) ( ) ( ) is well-formed since each
left parenthesis is closed by the first right parenthesis following it that does not
close a left parenthesis between them.

Clearly each well-formed sequence of parentheses must have an equal num-
ber of left parentheses and right parentheses. Further, in any initial string con-
sisting of the first i parentheses of a well-formed sequence of 2n parentheses,
there must be at least as many left parentheses as right parentheses. Thus, if we
replace left parentheses by 1s and right parentheses by −1s in a well-formed se-
quence of parentheses, we obtain a sequence (x1, x2, . . . , x2n) ∈ {1,−1}2n with
all partial sums si ≥ 0, and hence a nonnegative path from (0, 0) to (2n, 0).
Conversely, any nonnegative path from (0, 0) to (2n, 0) produces a well-formed
sequence of parentheses. By Theorem 1 and this one-to-one correspondence,
we have established the following result.

Theorem 2 The number of well-formed sequences of parentheses of length 2n
is the Catalan number cn.

Example 4 Find the well-formed sequences of parentheses of length 2n = 6.

Solution: Since n = 3, by Theorem 2 there are exactly c3 = 5 such sequences:

( ) ( ) ( ), ( ) ( ( ) ), ( ( ) ) ( ), ( ( ) ( ) ), ( ( ( ) ) ).
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Stack Permutations

In Fundamental Algorithms, Volume 1, of his classic series of books, The Art
of Computer Programming , Donald Knuth posed the problem of counting the
number of permutations of a particular type that arise in the computer.

A stack is a list which can only be changed by insertions or deletions at one
distinguished end, called the top of the list. When characters are individually
inserted and deleted from the stack, the last one inserted must be the first one
deleted from the stack (lifo). An insertion to the top of the stack is called a
push; a deletion from the top is called a pop. We can interpret a stack as a
stack of plates, with a push representing the placement of a plate on top, and
a pop corresponding to the removal of a plate from the top.

A sequence of pushes and pops is admissible if the sequence has an equal
number n of pushes and pops, and at each stage the sequence has at least as
many pushes as pops. If we identify pushes with 1s and pops with −1s, then
an admissible sequence corresponds to a nonnegative path from the origin to
the point (2n, 0). Thus, by Theorem 1, the number of admissible sequences of
pushes and pops of length 2n is the Catalan number cn. When applied in a
computer, an admissible sequence of pushes and pops of length 2n transforms
an input string of length n to an output string with the same symbols, but in
a possibly different order.

Suppose we have as initial input string the standard permutation 123 . . . n
of the set N = {1, 2, . . . , n} and an admissible sequence of pushes and pops of
length 2n. Each push in the sequence transfers the last element of the input
string to the top of the stack, and each pop transfers the element on top of the
stack to the beginning of the output string. After the n pushes and n pops
have been performed, the output string is a permutation of N called a stack
permutation.

Example 5 Let n = 4 and consider the admissible sequence

(+,+,+,−,−,+,−,−),

where a plus sign represents a push and a minus sign represents a pop. Find
the stack permutation produced by this sequence of pushes and pops.

Solution: We will denote the result of each operation of the admissible se-
quence of pushes and pops by a string of the form α[σ]β, where α is the current
input string, β the current output string, and [σ] the current stack, with the
first element of σ being the top of the stack.

Then the admissible sequence given proceeds as follows to produce the
stack permutation 4132:
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Sequence α[σ]β Operation

1234[ ]
+ 123[4] Push 4
+ 12[34] Push 3
+ 1[234] Push 2
− 1[34]2 Pop 2
− 1[4]32 Pop 3
+ [14]32 Push 1
− [4]132 Pop 1
− [ ]4132 Pop 4.

A stack permutation of 123 . . . n is defined as one produced from 1, 2, . . . , n
by an admissible sequence of pushes and pops. But we have seen that there is
a one-to-one correspondence between admissible sequences of pushes and pops
of length 2n and nonnegative paths from the origin to the point (2n, 0). The
stack permutation can be found from its corresponding nonnegative path in the
plane as follows.

Let i index the horizontal axis and s the vertical axis, and suppose
the path passes through the points (i, si), i = 0, 1, 2, . . . , 2n. Let k be
the maximum ordinate si of the path.
(1) Draw (segments of) the horizontal lines with equations s = j for
j = 1, 2, . . . , k. The region bounded by the lines i = 0, i = 2n, s =
j − 1, s = j will be called box j.
(2) Label the increasing steps of the path from left to right with
n, n− 1, . . . , 1.
(3) For j = 1, 2, . . . , k, label each decreasing step in box j with the
label of the last increasing step in box j that precedes it.
(4) The stack permutation is the sequence from right to left of labels
on the n decreasing steps.

Since the path starts at the origin, never crosses the i-axis (with equa-
tion s = 0), and ends on the i-axis at (2n, 0), each box j must contain an
equal number of increasing and decreasing steps. Further, they must alternate
increasing-decreasing from left to right in box j, starting with an increasing
step. Thus the labeling of the increasing steps in step (2) and the decreasing
steps in step (3) establishes a one-to-one correspondence between the n increas-
ing steps and the n decreasing steps of the path, where corresponding steps
have the same label.

The label l on the increasing step in box j represents the element pushed
onto the stack at that term of the admissible sequence of pushes and pops.
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Element l is not popped until the path first returns to box j by the decreasing
step labeled l. The distinct labels on the steps between the two steps labeled l
each occur twice, and represent the elements that were pushed, and hence must
be popped, while l was on the stack.

Alternatively, in the well-formed sequence of parentheses corresponding to
the nonnegative path, each increasing step is regarded as a left parenthesis,
and the corresponding decreasing step is regarded as the right parenthesis that
closes it.

Example 6 Draw the nonnegative path produced by the admissible sequence
in Example 5, and find the corresponding stack permutation by labeling the
steps.

Solution: The sequence of ordinates of the path is the partial sum sequence

s = (0, 1, 2, 3, 2, 1, 2, 1, 0)

computed from the admissible sequence (slope sequence)

(+,+,+,−,−,+,−,−)

given in Example 5. The nonnegative path, with maximum ordinate k = 3, is
displayed in Figure 3, along with (segments of) the lines s = 1, 2, 3. The n = 4
increasing steps are labeled from left to right as 4, 3, 2, 1. The decreasing steps
are then labeled as shown in accordance with (3). When read from right to left,
the labels on the decreasing steps produce the stack permutation 4132.

Figure 3. Stack permutation 4132 from a nonnegative path
with n = 4.

A stack permutation can only be produced by a unique admissible sequence,
and therefore by a unique nonnegative path. We can recover the admissible se-
quence, and hence the path, from the stack permutation as follows. Starting
with the stack permutation, precede it by the empty input string α and the
empty stack [σ] as in Example 5. Begin with an empty push-pop sequence.
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Then, given a current content α[σ]β of the input, stack, and output, respec-
tively, with at least one of σ and β nonempty, proceed repeatedly as follows:

If the stack is empty or both of σ and β are nonempty, with the first
element b of β less than the first element s of σ, transfer b to the
left of σ (b was just popped) and add − to the right of the push-pop
sequence.

If the output is empty or both of σ and β are nonempty, with the first
element b of β greater than the first element s of σ, transfer s to the
right of α (s was just pushed) and add + to the right of the push-pop
sequence.

When the input string is α = 12 . . . n, σ and β are empty and the admis-
sible sequence that produced the stack permutation is the push-pop sequence
constructed.

Example 7 Find the the admissible sequence of pushes and pops that pro-
duces the stack permutation 4213.

Solution: α[σ]β Operation Sequence

[ ]4213
[4]213 4 Popped −
[24]13 2 Popped −
[124]3 1 Popped −
1[24]3 1 Pushed +
12[4]3 2 Pushed +
12[34] 3 Popped −
123[4] 3 Pushed +

1234[ ] 4 Pushed +

The admissible sequence, obtained by reading the sequence in the third column
upward, is (+,+,−,+,+,−,−,−).

It follows from the foregoing that there is a one-to-one correspondence
between the set of stack permutations of N and the set of nonnegative paths,
or between the set of stack permutations of N and set of admissible sequences.
By Theorem 1 we have the following theorem.

Theorem 3 The number of stack permutations of an n-element set is the
Catalan number cn.
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Well-parenthesized Products

Consider an algebraic structure S with a binary operation,which we will refer to
as multiplication. Then, as usual, we can denote the product of x, y ∈ S by xy.
Let us further assume that the operation is not commutative, so that xy 6= yx in
general. The product x1x2 · · ·xn+1 of n + 1 elements of S in that order is well-
defined provided that multiplication is associative, i.e. that (xy)z = x(yz) for all
x, y, z ∈ S. But let us suppose that multiplication in S is not associative. Then
a product x1x2 · · ·xn+1 is defined only after parentheses have been suitably
inserted to determine recursively pairs of elements to be multiplied. However,
we will refer to the sequence x1x2 · · ·xn+1 without parentheses simply as a
product.

We shall determine the number of ways a product x1x2 · · ·xn+1 can be
parenthesized. The assumption that the binary operation is noncommutative
and nonassociative allows us to interpret this number as the maximum number
of different elements of S that can be obtained by parenthesizing the prod-
uct. However, we could instead consider the xis to be real numbers and the
binary operation to be ordinary multiplication. In this case we are seeking the
number of ways that the product x1x2 · · ·xn+1 can be computed by successive
multiplications of exactly two numbers each time. This was Catalan’s original
formulation of the problem.

Example 8 Find the distinct ways to parenthesize the product x1x2x3x4.

Solution: Whenever a left parenthesis is closed by a right parenthesis, and
we have carried out any products defined by closed pairs of parentheses nested
between them, we must have a product of exactly two elements of S. The
well-parenthesized sequences for the product x1x2x3x4 are found to be

((x1(x2x3))x4), (x1((x2x3)x4)), ((x1x2)(x3x4)),

(x1(x2(x3x4))), (((x1x2)x3)x4).

Note that we used n = 3 pairs of parentheses in each parenthesized prod-
uct in Example 8. Although not necessary, it is convenient to include outer
parentheses, where the left parenthesis is first and the right parenthesis last.

We will now formally define what is meant by parenthesizing a product.

Definition 3 A product is well-parenthesized if it can be obtained recursively
by a finite sequence of the following rules:

Each single term x ∈ S is well-parenthesized.

If A and B are well-parenthesized, then (AB) is well-parenthesized.
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Note that a well-parenthesized product, other than a single element of S,
includes outer parentheses. Thus, (xy) is well-parenthesized, but xy is not. We
can then use mathematical induction to prove that n pairs of parentheses must
be added to x1x2 · · ·xn+1 to form a well-parenthesized product.

If the n+1 variables x1, x2, . . . , xn+1 are deleted from a well-parenthesized
product, the n pairs of parentheses that remain must be a well-formed sequence
of parentheses. But not every well-formed sequence of n pairs of parentheses
can arise in this way. For example,

(( )( )( ))

is a well-formed sequence of n = 4 pairs of parentheses, but since the operation
is binary, the outer pair of parentheses would call for the undefined product of
the three elements of S that are to be computed within the inner parentheses.

Example 9 Show by identifying A and B at each step that

((x1(x2x3))(x4x5))

is obtained from the product x1x2x3x4x5 by the recursive definition, and hence
is a well-parenthesized product.

Solution:

x1x2x3x4x5

x1(x2x3)x4x5

(x1(x2x3))x4x5

(x1(x2x3))(x4x5)
((x1(x2x3))(x4x5))

A = x2, B = x3

A = x1, B = (x2x3)
A = x4, B = x5

A = (x1(x2x3)), B = (x4x5).

We will now show that there is a one-to-one correspondence between well-
parenthesized products of x1, x2, · · · , xn+1 and nonnegative paths from the ori-
gin to the point (2n, 0). A well-parenthesized product forms a string p of length
3n + 1 with three types of characters: n left parentheses, n + 1 variables, and
n right parentheses. But the slope sequence of the nonnegative paths from the
origin to the point (2n, 0) has just two different numbers, 1 and −1, with n of
each. To obtain a sequence from p with a structure similar to that of the slope
sequence, we form a string q = S(p) of length 2n by deleting the last variable
xn+1 and the n right parentheses.

Example 10 Find the string q, if p = ((x1(x2x3))(x4x5)) is the well-parenthesized
product in Example 8.
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Solution: Deleting x5 and the right parentheses from p gives

q = ((x1(x2x3(x4.

Let us examine the properties of this string q = S(p) obtained from a
well-parenthesized product p. We will then show that p can be obtained from
a string q with these properties. By the way that q was defined, we first note
the following.

Lemma 1 The string q = S(p) has n left parentheses and the n variables
x1, x2, . . . , xn in that order.

Since p cannot have a left parenthesis between xn and xn+1, the last char-
acter of the string q must be xn. This is in fact implied by a more general
property that q satisfies, analogous to the property satisfied by nonnegative
paths, which we state in the following lemma.

Lemma 2 Let q = S(p), where p is a well-parenthesized product of the
variables x1, x2, . . . , xn+1. For i ≤ 2n, the number of left parentheses in the
string q1q2 · · · qi is at least as large as the number of variables.

Proof: We will prove the lemma by induction on n. If n = 1, then we must
have p = (x1x2), so q = (x1 and the conclusion holds.

Suppose n ≥ 2 and that the conclusion holds whenever q is obtained from a
well-parenthesized product p of k ≤ n variables. Let p be a well-parenthesized
product of n + 1 variables. From the recursive definition, p = (AB) is the
product of two nonempty well-parenthesized products, A and B. The first left
parenthesis in p is placed before AB, so the number of left parentheses up
to each character of p preceding B is one more than in A. But if xk is the
last variable in A, then it does not appear in S(A), but does appear following
xk−1 in q = S(p). Thus the difference between the number of left parentheses
and the number of variables in q exceeds the corresponding difference in S(A)
by one until xk is reached, where it becomes zero. The differences at each
character of B are then the same as they are at that character in p. Since A is
a well-parenthesized product of k ≤ n variables, it then follows by the inductive
hypothesis that the number of left parentheses in q1q2 · · · qi for i ≤ 2n is at least
as large as the number of variables.

We say that a string q satisfying Lemmas 1 and 2 is suitable.

Theorem 4 There is a one-to-one correspondence between the set of suitable
strings of length 2n and the set of well-parenthesized products of length 3n+1.
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Proof: We will show that the function S is a one-to-one correspondence. Let q
be a suitable string. We need to show that we can reconstruct the well-
parenthesized product p such that q = S(p). First we adjoin xn+1 to the
right of q and call the new string q′ = qxn+1. Then by Lemma 1 we have the
following.

Lemma 1 ′ The string q′ has n left parentheses and the n + 1 variables
x1, x2, . . . , xn+1 in that order.

Since q and q′ agree in the first 2n positions, we will denote the character
of q′ in position i by qi for i ≤ 2n. Then q′ satisfies the conclusion of Lemma 2.

Let us prove the theorem by mathematical induction. If n = 1 then q′ =
(x1x2, so we must have p = (x1x2).

Assume that n ≥ 2 and the theorem is true with n − 1 replacing n. By
Lemmas 1 and 2 the last two characters of q are either xn−1xn or (xn, so the
last three characters of q′ are either xn−1xnxn+1 or (xnxn+1. By Lemma 1 ′,
in either case q′ will have three consecutive characters of the form (xjxj+1

for some j ≥ 1. Let j1 be the minimum such j. When right parentheses
are inserted in q′ to form a well-parenthesized product, a right parenthesis
must immediately follow (xj1xj1+1, so p would contain (xj1xj1+1). Replace
(xj1xj1+1) by a new variable y1 in q′ to form a string q1. Then q1 has n−1 left
parentheses and n variables. Further, q1 satisfies the conclusion of Lemma 1′

with n−1 replacing n. Then by our inductive hypothesis, the well-parenthesized
product p1 can be recovered. Substituting (xj1xj1+1) for y1 in p1 gives a well-
parenthesized product p such that q = S(p). Since S is one-to-one and can be
inverted, it is a one-to-one correspondence.

Example 11 Recover the well-parenthesized product p from the suitable string
q = (x1((x2((x3x4x5 so that q = S(p).

Solution: We form q′ = (x1((x2((x3x4x5x6 by adding x6 to the right of q.
Then locate at each stage j the first occurrence of a left parenthesis immediately
followed by two variables, and replace this string of length three by the new
variable yj equal to this string with a right parenthesis added on the right as a
fourth character.

q′ = (x1((x2((x3x4x5x6

= (x1((x2(y1x5x6

= (x1((x2y2x6

= (x1(y3x6

= (x1y4

= y5

y1 = (x3x4)
y2 = (y1x5)
y3 = (x2y2)
y4 = (y3x6)
y5 = (x1y4)
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Then, on setting p = y5 and successively substituting for the new variables
y5, y4, . . . , y1 their values on the right we obtain

p = y5

= (x1y4)
= (x1(y3x6))
= (x1((x2y2)x6))
= (x1((x2(y1x5))x6))
= (x1((x2((x3x4)x5))x6)).

Corollary 1 The number of well-parenthesized products of n + 1 variables is
the Catalan number cn.

Proof: By Theorem 4, each well-parenthesized sequence from x1x2 · · ·xn+1

corresponds to a suitable string q of length 2n with n left parentheses and
the n variables x1, x2, . . . , xn. Define a sequence z = (z1, z2, . . . , z2n) by

zi =
{

1 if qi is a left parenthesis
−1 if qi is a variable xj .

Then it follows from Lemma 2 that the partial sums si of z are nonnegative.
Thus, corresponding to q is a nonnegative path from (0, 0) to (2n, 0). Conse-
quently, by Theorem 1, the number of well-parenthesized products is cn.

Full Binary Trees

Recall (see Section 9.1 of Discrete Mathematics and Its Applications, Fifth Edi-
tion) that a full binary tree is a rooted tree in which each internal vertex has
exactly two children. Thus, a full binary tree with n internal vertices has 2n
edges. Since a tree has one more vertex than it has edges, a full binary tree T
with n internal vertices has 2n + 1 vertices, and thus n + 1 leaves. Suppose
we label the leaves of T as they are encountered along a transversal (preorder,
postorder, or inorder; see Section 9.3 of Discrete Mathematics and Its Appli-
cations) with x1, x2, . . . , xn+1. Then T recursively defines a well-parenthesized
product of x1, x2, · · · , xn+1 by the following rule.

Labeling rule: If v is an internal vertex with left child a and right
child b, having labels A and B, respectively, then label v with (AB).
The label on the root of the tree will be the well-parenthesized product.
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Conversely, given a well-parenthesized product of n+1 variables x1, x2, . . . ,
xn+1, a labeled full binary tree is determined by first labeling the root with the
well-parenthesized product, then moving from the outer parentheses inward by
adding two children labeled A and B to each vertex v with label (AB). The
leaves of the tree will be labeled with the variables x1, x2, . . . , xn+1 in the order
encountered by a traversal. Consequently, there is a one-to-one correspondence
between the well-parenthesized products of n + 1 variables and the full binary
trees with n+1 leaves and n internal vertices. By Theorem 4 we therefore have
the following result.

Theorem 5 The number of full binary trees with n internal vertices is the
Catalan number cn.

Example 12 Draw and label the full binary tree defined by the well-paren-
thesized product ((1(23))(45)).

Solution: The full binary tree is shown in Figure 4.

Figure 4. Full binary tree obtained from ((1(23))(45)).

Triangulations of a Convex Polygon

In this section we consider a geometric interpretation of the Catalan numbers.
An n-gon (n ≥ 3) in the plane is a polygon P with n vertices and n sides.
Let v0, v1, . . . , vn−1 be the vertices (in counterclockwise order). Let us denote
by vivj the line segment joining vi and vj . Then the n sides of P are si =
vi−1vi for 1 ≤ i ≤ n− 1 and s0 = vnv0. A diagonal of P is a line segment vivj

joining two nonadjacent vertices of P . An n-gon P is convex if every diagonal
lies wholly in the interior of P .

Let D be a set of diagonals, no two of which meet in the interior of a
convex n-gon P , that partitions the interior of P into triangles. The sides of
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the triangles are either diagonals in D or sides of P . The set T of triangles
obtained in this way is called a triangulation of P . Three triangulations of a
convex hexagon are shown in Figure 5.

Figure 5. Three triangulations of a convex hexagon.

We shall next determine the number of diagonals needed to form a trian-
gulation.

Lemma 3 A triangulation of a convex n-gon has n− 2 triangles determined
by n− 3 diagonals.

Proof: We shall argue by induction on n. If n = 3 there is one triangle and no
diagonals, while if n = 4 there are two triangles and one diagonal.

Assume that n ≥ 5 and that the conclusion holds for triangulations of a
convex m-gon with 3 ≤ m < n. Let P be a convex n-gon and let T be a
triangulation of P with diagonal set D. Since n > 3 there must be at least one
diagonal in D, say v0vk, where 2 ≤ k ≤ n − 2. The diagonal v0vk of P then
serves jointly as a side of the convex (k + 1)-gon P1 with vertices v0, v1, . . . , vk

and the convex (n−k+1)-gon P2with vertices v0, vk, vk+1 . . . , vn−1. Triangula-
tions T1 and T2 of these two convex polygons are defined by subsets D1 and D2,
respectively, of the set D of diagonals of P other than v0vk. Since k + 1 ≤ n
and n − k + 1 ≤ n, we may apply the inductive hypothesis. Then T1 and T2

have k − 1 and n − k − 1 triangles defined by k − 2 and n − k − 2 diagonals,
respectively. Adding the numbers of triangles gives (k−1)+(n−k−1) = n−2
triangles in T . We add 1 (for v0vk) to the sum (k− 2) + (n− k− 2) = n− 4 of
the numbers of diagonals to get n− 3 diagonals in D.

It is convenient now to assume that P is a convex (n + 2)-gon for n ≥ 1,
with vertices v0, v1, . . . , vn+1 and sides s0, s1, . . . , sn+1. Then, by Lemma 3,
every triangulation of P is defined by n− 1 diagonals and has n triangles.

Let tn be the number of triangulations of a convex (n + 2)-gon P . Then
clearly t1 = 1 and t2 = 2.
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Example 13 Draw all the triangulations of a convex pentagon to show that
t3 = 5.

Solution: Since n = 3, each triangulation has three triangles defined by two
diagonals. If vivj is one of the diagonals, the other diagonal must meet vi

or vj . Thus each of the two diagonals must join the common endpoint to a
nonadjacent vertex. We find the five triangulations shown in Figure 6.

Figure 6. The triangulations of a convex pentagon.

Consider the string s1s2 · · · sn+1 formed by taking the n + 1 sides of P
other than s0 in order around P . We shall show that the product s1s2 · · · sn+1

is well-parenthesized by a triangulation of P . One side, s0, is excluded above
in order that the remaining sides form an open path in the plane. The sides,
taken in the order of the path, then form a sequence analogous to the product
of n + 1 variables considered earlier.

Let T be a triangulation of P defined by a set D of n− 1 diagonals, where
n ≥ 4. Each side si of P is a side of exactly one of the n triangles of T . There
are two types of triangles in T that contain sides of P :

(i) The three sides of an outer triangle are two adjacent sides si, si+1

of P and the diagonal vi−1vi+1 of D.
(ii) The three sides of an inner triangle are a side si = vi−1vi of
P and the two diagonals vi−1vj , vivj of D for some vertex vj , with
j 6= i− 2, i + 1.

For example, hexagons (a) and (b) in Figure 5 each have two outer tri-
angles, while (c) has three. In order to establish a one-to-one correspondence
between triangulations and well-parenthesized products, we must show that any
triangulation has an outer triangle not having s0 as a side.

Lemma 4 If n ≥ 2, every triangulation T of a convex (n + 2)-gon P has at
least two outer triangles.

Proof: Suppose that at most one of the n triangles of T has two sides of P
as sides. Let ni be the number of sides of P that are sides of the ith triangle.
Then ni = 1 for at least n− 1 triangles and ni = 2 for at most one. When we
sum these n numbers ni, we conclude that P has at most n + 1 sides. But P
has n + 2 sides, so we have a contradiction. Thus P must have at least two
outer triangles.
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Theorem 6 The number of triangulations of a convex (n + 2)-gon is the
Catalan number cn.

Proof: By Corollary 1, it will suffice to establish a one-to-one correspondence
between triangulations of a convex (n + 2)-gon P and well-parenthesized prod-
ucts of the n + 1 sides of P other than s0.

Let n ≥ 2 and assume such a one-to-one correspondence exists for (n + 1)-
gons. Let T be a triangulation of the convex (n + 2)-gon P . Since every side
of P is a side of exactly one triangle of T , and by Lemma 4 there are at least two
outer triangles, there must be an outer triangle in T that does not have s0 as a
side. This triangle has vertices vi−1, vi, vi+1 for some i, 1 ≤ i ≤ n, so has as sides
the two sides si, si+1 of P and the diagonal vi−1vi+1 in D. Label this diagonal
with (sisi+1). If we delete vertex vi and replace sides si, si+1 by the diagonal
labeled (sisi+1), we have a convex (n + 1)-gon P ′. By the inductive hypothesis
we can establish a one-to-one correspondence between triangulations T ′ of P ′

and well-parenthesized products of the sides of P ′ other than s0. But one of
the sides of P ′ is labeled with the well-parenthesized product (sisi+1) of two
sides of P . Thus the well-parenthesized product of the sides of P ′ represents a
well-parenthesized product of the sides of P .

Conversely, each innermost pair of parentheses in a well-parenthesized
product of the sides of P other than s0 indicates that the two sides within
that pair are in an outer triangle. Then the diagonal completing the outer
triangle must be included in D. Each closing of parentheses acts in this way
to add diagonals that complete outer triangles on the reduced polygon until a
triangulation of P is obtained.

Summary of Objects Counted by the Catalan Numbers

The one-to-one correspondences we have established between the sets of trian-
gulations of a convex (n+2)-gon, well-parenthesized products of n+1 variables,
well-formed sequences of n pairs of parentheses, stack permutations of 12 · · ·n,
and nonnegative paths from the origin to the point (2n, 0) are illustrated in
Figure 7 for the case n = 4.

The side s0 in the hexagon that does not correspond to a variable in the
corresponding well-parenthesized product of n+1 variables is shown as a dashed
line segment. For clarity, each of the other sides, si, which corresponds to a
variable in the corresponding well-parenthesized product, is labeled simply i.

The Generating Function of the Catalan Numbers

We started by defining the Catalan number cn by means of a formula, and we
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Figure 7. One-to-one correspondences with n= 4 between the sets
of triangulations of a convex hexagon, well-parenthesized products,
well-formed sequences of parentheses, stack permutations, and non-
negative paths.

then showed by a combinatorial argument that it enumerates nonnegative paths
in the plane. We subsequently found one-to-one correspondences between sev-
eral different types of combinatorial structures, starting with the nonnegative
paths. It followed that the number of structures of each type must be equal to
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the number cn of nonnegative paths. Having established the one-to-one corre-
spondences, the same conclusion would follow if we showed (combinatorially or
otherwise) that the number of structures of any particular type is given by

cn =
1

n + 1
C(2n, n). (1)

In this section we will obtain (1) as the number of well-parenthesized products
of n+1 variables using recurrence relations and generating functions (see Chap-
ter 6 of Discrete Mathematics and Its Applications). In the next section we will
investigate the behavior of the sequence {cn} for large values of n.

A sequence {an} = a0, a1, . . . satisfies a linear homogeneous recurrence
relation of degree k with constant coefficients if each term an for n ≥ k can be
computed recursively from the previous k terms by means of

an = C1an−1 + C2an−2 + · · ·+ Ckan−k (2)

for some constants Ci, 1 ≤ i ≤ k, with Ck 6= 0. Any sequence satisfying (2) is
completely determined by its k initial values.

The generating function of a sequence {an} is the power series

A(x) =
∞∑

n=0

anxn.

If the sequence satisfies a linear homogeneous recurrence relation with con-
stant coefficients of some fixed degree k, the generating function is a rational
function of x. The polynomial in the numerator depends only on the k initial
values, while the polynomial in the denominator depends only on the recur-
rence relation. Once the roots of the polynomial in the denominator are found
(or estimated by an algorithm), the value of any term of the sequence can be
obtained by means of partial fractions and known power series.

Suppose we define an to be the number of well-parenthesized products of n
variables. We showed earlier that an+1 is the Catalan number cn given by (1).
But let us find an using recurrence relations and generating functions. To form
a well-parenthesized product of n ≥ 2 variables x1, x2, · · · , xn by the recursive
definition, the outer parentheses would be the last ones added to form (AB),
where A and B are well-parenthesized products, each having at least one of the
variables. The outer parentheses then would enclose AB, where A is one of the
ai well-parenthesized products of the first i variables and B is one of the an−i

well-parenthesized products of the last n − i variables, for some i satisfying
1 ≤ i ≤ n− 1. Then, by the product rule and the sum rule, we obtain

an = a1an−1 + a2an−2 + · · ·+ an−1a1 =
n−1∑
i=1

aian−i. (3)
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Note that (3) is a homogeneous recurrence relation with constant coefficients.
However, it is not linear, but quadratic. In addition, since the number of
previous terms that determine an depends on n, and the degree of a recurrence
relation is defined only when this number is some fixed integer k, the degree is
not defined in (3).

If we define a0 = 0, then the terms a0an and ana0 can be added to the
right-hand side of (3) without changing its value, and we obtain

an = a0an + a1an−1 + · · ·+ ana0 =
n∑

i=0

aian−i. (4)

The right-hand side of (4) is zero for n ≤ 1, but for n ≥ 2 it is the coefficient
of xn in the square of the generating function A(x) =

∑∞
i=0 anxn. Since a1 = 1,

it follows that
A2(x) = A(x)− x,

which is a quadratic equation in A(x). By the quadratic formula, we obtain as
solutions

A(x) =
1
2
(1±

√
1− 4x). (5)

Since A(0) = a0 = 0, and when we set x = 0 the right-hand side of (5) with
the plus sign is 1, we must take the minus sign. Thus the generating function
of the sequence an is

A(x) =
1
2
(1−

√
1− 4x). (6)

Using a generalization of the binomial theorem, it can be shown that

√
1− 4x = (1− 4x)1/2 = 1 +

∞∑
n=1

(−1)n ( 1
2 )n

n!
4nxn, (7)

where ( 1
2 )n is the falling factorial function (x)n = x(x−1) · · · (x−n+1) evaluated

at x = 1/2. The terms in the sum in (7) can be simplified after writing 4n

as 2n2n, carrying out the multiplication of ( 1
2 )n = (1

2 )( 1
2 − 1) · · · ( 1

2 − n + 1) by
(−1)n2n termwise, writing the remaining factor 2n as 2(2n−1)(n− 1)!/(n− 1)!,
and noting that 2n−1(n− 1)! = 2 · 4 · · · (2n− 2). We then obtain

√
1− 4x = 1− 2

∞∑
n=1

1
n

C(2n− 2, n− 1) xn. (8)

From (6) and (8) we obtain the generating function

A(x) =
∞∑

n=1

1
n

C(2n− 2, n− 1) xn. (9)
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Thus the coefficient of xn+1 in (9) is an+1 = 1
n+1 C(2n, n), which by (1) is the

Catalan number cn. Similar methods could be used to show that the sizes of
the other structures considered are Catalan numbers. It would suffice to show
that the sequence satisfied the recurrence relation (4) and that the initial values
agree, perhaps after a shift.

Asymptotic Behavior of the Catalan Numbers

Let us consider the behavior of the sequence {cn} of Catalan numbers for
large values of n. In the previous section we let an be the number of well-
parenthesized products of n variables and showed that the sequence {an} sat-
isfies the recurrence relation (3). Using the generating function A(x) of the
sequence {an}, we found that an+1 is equal to the Catalan number cn given
by (1). If we substitute cj for aj+1 in (3) and adjust the range of the index
variable i, we see that the sequence {cn} satisfies the recurrence relation

cn = c0cn−1 + c1cn−2 + · · ·+ cn−1c0 =
n−1∑
i=0

cicn−i−1 (10)

with c0 = 1. This is a quadratic homogeneous recurrence relation with constant
coefficients, but with the degree undefined. The asymptotic behavior of the
sequence {cn} can be more easily found by showing that it satisfies a second
homogeneous recurrence relation, one that is linear of degree one but with a
variable coefficient. The linear recurrence relation could have been found earlier
using Definition 1 of the Catalan numbers, but we will find it using the solution
given by (1) to the quadratic recurrence relation (10).

A linear homogeneous recurrence relation of degree one with a constant
coefficient has the form an = Can−1. On iterating this recurrence relation n−1
times, we obtain the formula an = Cna0. Suppose that instead of making our
original definition of cn, which is the same as (1), we had defined cn as the
number of well-parenthesized products of n + 1 variables. Then we would find,
as in the last section, that the sequence {cn} satisfies the quadratic recurrence
relation (10), and that the solution is given by (1). On using the formula for
the binomial coefficient, it can be then be shown (see Exercise 6) that

cn =
4n− 2
n + 1

cn−1, (11)

so that the constant coefficient C is replaced by a variable coefficient

C(n) =
4n− 2
n + 1

= 4− 6
n + 1

.
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Clearly C(n) increases to 4 as a limit as n →∞. However, this does not imply
that cn can be approximated by a constant multiple of 4n. That would be the
case if fact C(n) was identically equal to the constant C = 4.

However, on using the familiar expression for a binomial coefficient in-
volving three factorials, and replacing each of those factorials by an approxi-
mate value, we can approximate cn, and use this approximation to find a func-
tion f(n) with a relatively simple form such that cn = O(f(n)). The simplest
form of Stirling’s approximation sn of n! is given by

sn =
√

2πn e−nnn. (12)

Using this approximation, it can be shown (see Exercise 7) that

cn = O(n−3/24n). (13)

Suggested Readings
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2. L. Comptet, Advanced Combinatorics, D. Reidel, 1974.

3. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd
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4. F. Roberts, Applied Combinatorics, Prentice-Hall, 1984.

Exercises

In Exercises 1–4 find the structures that correspond to the given structures
under the one-to-one correspondences established.

1. Given the sequence (+ + − + − + − − + + −−) of ±1s with nonnegative
partial sums, find or draw the corresponding

a) well-formed sequence of six pairs of parentheses
b) nonnegative path from the origin to (12, 0)
c) stack permutation of 123456.

2. Given the sequence (++−+−−++−−) of ±1s with nonnegative partial
sums, find or draw the corresponding

a) well-parenthesized product of six variables
b) full binary tree with six leaves whose vertices are labeled with well-

parenthesized products
c) triangulation of a convex septagon.
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3. Given the following triangulation of a convex octagon, find or draw the
corresponding

a) well-parenthesized product of seven variables
b) sequence of twelve ±1s with nonnegative partial sums
c) nonnegative path from the origin to (12, 0)
d) stack permutation of 123456.

4. Given the well-parenthesized product ((1(23))((45)6)) of six variables (with
xi denoted by i), find or draw the corresponding

a) sequence of ten ±1s with nonnegative partial sums
b) stack permutation of 12345
c) triangulation of a convex septagon.

5. Find the sequence of ten pushes (+) and pops (−) that produces the stack
permutation 42135, and draw the corresponding nonnegative path.

6. Prove that the Catalan numbers cn satisfy the recurrence relation (11).

7. Use the Stirling approximation (12) for n! to prove that the Catalan number
cn satisfies (13).

In Exercises 8–10, suppose T is a triangulation of a convex (n+2)-gon P with
diagonal set D. Let v0v1 · · · vn+1 be the vertices of P in order, and let si be
the side vi−1vi for 1 ≤ i ≤ n + 1, s0 = v0vn+1. Denote by p the corresponding
well-parenthesized product s1s2 · · · sn+1 of its sides other than s0.

8. Prove that the diagonal vivj is in the diagonal set D if and only if the
product si+1si+2 · · · sj is well-parenthesized in p.

9. Let 1 ≤ k ≤ n − 1. Prove that the nonnegative path corresponding to T
meets the x-axis at the point (2k, 0) if and only if D contains the diagonal
vkvn+1.

10. Prove that the nonnegative path corresponding to T is positive if and only
if D contains the diagonal v0vn.
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Computer Projects

1. Given a positive integer n as input, find the Catalan number cn using
a) the recurrence relation (10).
b) the recurrence relation (11).

2. Given positive integers n and N , find N random sequences xj = {xij} of n
1s and n −1s, compute the corresponding sequences sj = {sij} of partial
sums sij = x1j + x2j + · · · + xij , and let a, b be the number of positive,
nonnegative sequences sj , respectively. Compute the ratios

a) a/C(2n, n).
b) b/C(2n, n).
c) a/b.

3. Given a positive integer n, find a random sequence x of n 1s and n −1s
that has a nonnegative sequence s of partial sums. Using s, produce the
corresponding

a) well-formed sequence of parentheses.
b) stack permutation.
c) well-parenthesized product.
d) full binary tree (graphics).
e) triangulation of a convex polygon (graphics).

Exercise Solutions

1. a) Substituting left parentheses for 1 and right parentheses for −1 gives
the well-formed sequence (( )( )( ))(( )).
b)

c) Starting with 123456[ ], and interpreting each + as a push and each −
as a pop, the sequence successively produces: 12345[6],1234[56], 1234[6]5,
123[46]5, 123[6]45, 12[36]45,12[6]345, 12[ ]6345, 1[2]6345, [12]6345, [2]16345,
[ ]216345. The stack permutation is therefore 216345.

2. a) The string q of left parentheses together with the first five variables
is ((1(23((45. Adding the last variable on the right and closing parentheses
from the left gives the well-parenthesized product p = ((1(23))((45)6)).
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b) c)

3. a) ((1((2(34))(56)))7).
b) (+ +−+ +−+−−+−−).
c)

d) 12345[6], 1234[56], 1234[6]5, 123[46]5, 12[346]5, 12[46]35, 1[246]35,
1[46]235, 1[6]4235, [16]4235, [6]14235, [ ]614235.

4. a) (+ + +−−−+ +−−+−).
b) 12345[6], 1234[56], 123[456], 123[56]4, 123[6]54, 123[ ]654, 12[3]654,
1[23]654, 1[3]2654, 1[ ]32654, [1]132654, [ ]132654.
c)

5.
[ ]42135
[4]2135 4 Popped −
[24]135 2 Popped −
[124]35 1 Popped −
1[24]35 1 Pushed +
12[4]35 2 Pushed +
12[34]5 3 Popped −
123[4]5 3 Pushed +
1234[ ]5 4 Pushed +
1234[5] 5 Popped −
12345[ ] 5 Pushed +

The admissible sequence is therefore (+−+ +−+ +−−−). The path is
the following:
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6. cn = 1
n+1

(2n)!
(n!)2 = 2n(2n−1)

(n+1)n2
(2n−2)!

((n−1)!)2 = (4n−2)·(2n−2)!
(n+1)n·((n−1)!)2 = 4n−2

n+1 cn−1.

7. Substituting Stirling’s approximation for the factorials in cn gives cn =
1

n+1
(2n)!
n!n! ≈

1
n+1

√
4πn (2n)2n

2πn n2n = 22n

(n+1)
√

πn
≈ 4n

√
π n3/2 = O(n−3/2 4n).

8. If vivj ∈ D, then the polygon P ′ with vertices vi, vi+1, . . . , vj is triangu-
lated by the set D′ of diagonals of D that are also diagonals of P ′. With
vivj serving as the excluded side of P ′, the product of sides si+1si+2 · · · sj

is well-parenthesized into p′ by recursively parenthesizing the two polygon
sides that are sides of outer triangles, and then reducing the polygon. The
order of reducing the polygons does not affect the well-parenthesized prod-
uct finally obtained, so p′ will be a subsequence of consecutive terms of p.
Conversely, if si+1si+2 · · · sj is well-parenthesized in p as p′, then p′ will
appear on the diagonal joining the end vertices of the path formed by the
sides in p′. But that diagonal is vivj .

9. Suppose that D contains the diagonal vkvn+1. Then after putting
i = k, j = n + 1 in Exercise 8, the product sk+1sk+2 · · · sn+1 is well-
parenthesized as a sequence p′. Corresponding to p′ is a nonnegative path
from the origin to (2(n − k), 0). Translating this path to the right 2k
units identifies it with the segment of the path corresponding to T from
(2k, 0) to (2n, 0). Conversely, suppose the nonnegative path corresponding
to T meets the x-axis at the point (2k, 0). On removing sn+1 and the n
right parentheses from the corresponding well-parenthesized sequence p of
the product s1s2 · · · sn+1, we obtain a sequence q with n left parentheses
interlaced with the product s1s2 · · · sn. Since the path passes through the
point (2k, 0), the first 2k terms of q have k left parentheses interlaced
with s1s2 · · · sk. Hence the subsequence q′ consisting of the last 2(n − k)
terms of q interlaces n − k left parentheses with sk+1sk+2 · · · sn. Since
the path is nonnegative, the segment corresponding to q′ is nonnegative,
and so corresponds to a triangulation of the (n − k + 2)-gon with sides
sk+1sk+2 · · · sn+1 and the diagonal (of P ) joining the end vertices of the
path. But that diagonal is vkvn+1.

10. If D contains the diagonal v0vn, then vnvn+1v0 is an outer triangle, so
no diagonals on vn+1 can be in D. By Exercise 9 the corresponding path
cannot meet the x-axis at any point (2k, 0) for 1 ≤ k ≤ n − 1. Since the
path starts on the x-axis, it can only return to the x-axis after an even
number 2k of steps. Thus the path is positive. Conversely, if the path is
positive, then D contains no diagonals vkvn+1 for 1 ≤ k ≤ n−1. Since every
side of P is in exactly one triangle of T , sn, s0 must be in the same triangle.
But the outer triangle vnvn+1v0 is the only triangle that can contain both.
Thus T contains the diagonal v0vn.


