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Introduction

A family of sets is called linked if every two sets have a non-empty
intersection. As application of & recent results of Kleitman estimar
the number of antichains on an n-point-set, we derive asymptotic formu.=
for the 2log of the following numbers:

the number A(n) of maximal linked families of subsets of {1,2,..

the number A(n) of all linked families of subsets of {1,2,...,n!
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In his survey [1] p. 79, P. Erdds asked for an asymptotic formula for

A(n). Our concern came forth from an investigation [4], on maximal

linked families of closed sets in topological spaces.

Notation

S
n

P

n

M c Pn is linked if vS8,8' e M S ns' =9
M < Pn is an antichain if ¥S,8' ¢ M S ¢ 8’

an mls is a maximal linked (sub)system (of Pn)

i(n)

For arbitrary M c Pn we define

M

{1,2,...,n}

P(Sn) = powerset of 8

{MCPn | Mis an mis}

{MCPn | M is a non-empty antichain}

{Man | aM=p}

MIN

Finally for two function f,g: N ~ R we write

L, |

[{McP_ | M is linkedl}|

MIN(M) = {seM | vrcs TeM = T=S}

el

b



iff lim
The first lemma is trivial.

Lemma 1

(a) A linked family M c Pn is an mls iff M contains §, and moreover
(precisely) one set of each pair of complementary proper subsets of
Sn.

(b) Each linked femily is contained in (at least one) mls.

(¢) Two mls's M,M' < Pn are different iff 3SeMIsS'eM' SnS' = @.

Lemma 2.
n-1 )
5 [n/21-1 < A(n).
Proof.

We give slightly different proofs for even and for odd n.

_ oL 1,2k, _ 2k-1 )
Let n = 2k. Let {{A,, S \A/} | 1 <1< 3(; ) = (_;)} ve the femily of
all unordered pairs of complementary k = n/2-point-sets in Sn. If we

choose one k-point-set from each pair then we obtain a linked system.
2k-1
( )

k-1

Thus we obtain 2 different linked femilies, with the properties

that for two such families, say A and A', JFAcA JA'€A' AnA' = §. By
2k-1
( k_1)
1o + lc 1t follows that there are at least 2 different mls's.
Let n = 2k-1. Consider the family ({A,, S \&} | 1 <i < (550)} of all

pairs of complementary sets A., S \A. satisfying 1 € A. and A. has k - 1
i* "n 7 i i
. (2k—2)

points. The same reasoning as sbove leads to 2 k-2

< x(n).

Lemms 3.

A(n) < a(n-1).



Proof.

Define f: Ln > A.n_1 by
£(M) = {s | 5 e MIN{T | n ¢ T e M}}.

By la the family M' = {T | n ¢ T € M} uniquely determines M (viz.
M=M ui{s | nesc s, and 8 \' 8 ¢ M'}), and hence also MIN M’

uniquely determines M, as M' = {T ¢ Sn 1 |35 e MIN M': S ¢ T}, Finally

MIN M' obviously is an antichain in Pn .

Lemma 4. KLEITMAN [2]

210g aln) ~ (a2

Lemma 5.
(BT mely ot 2R
[n/23-1 (211" Bm  /Br(aci)
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The last lemma is trivial. From 2, 3, 4 and 5 we immediately obtain our

main result:

Theorem 6.

n
2log A(n) ~ 21og a(n-1) ~ CHN
vamn

From this result it is easy to deduce an asymptotic formula for

2log A(n). First we observe that A(n) > i(n). The wellknowmn expression
for i(n), see below, can be obtained by first counting for all k € Sn
all families A with {k} < nA. Then for k # k' the families with

{k,k'} < nA were counted twice, so their number should be subtracted

and so on.

Lemma, T.

n n-k -1
)< T ETRT T = i) < ale) < am).20



(t 1/12]) of”
() (A(n)/2 " ).2

Proof.
: n-1
Let M c Pn be an arbitrary mls. Then, by la, M nas 2 members, and,

. . . n
by Sperner's lemma [3], M being an antichain,.has at most ([n/2])

MIN °
2n—1
members. Thus Mcontains?2 linked subfamilies, which proves the

right-hand inequality of (a) and (b). To prove the left-hand side of
(v), we observe that M is the only mls containing MMIN . This means
that no linked system N satisfies MMIN c N cMand MﬁIN c NcM for

. -1
different mls's M and M'. As there are at least o

sets in M\MM__LN , the left-hand inequality follows.

n
- ((ay27) meny

From 6 and Ta we see that

Theorem T.

2log i(n) ~ 210g An) ~ il .

In the numerical results (see page 5) A(6) (and A(1) - A(5)) were

computed by means of the bijection
¢: L+ {Me P | Mis a linked antichain}

defined as follows. Let A= {8, | 1< i < 2%} ve a selection of sub-
sets of Sn of at most n/2 points such that A contains precisely one of

each pair of complementary subsets of Sn' Then for M e L :
n

4 (M)
and 67 (N)

MIN(MnA),

{A e Pn | A" ¢ N A" c A} v

C

{A e Pn\A | ~3A'e N A" < S, \A}.

Moreover A(1) - A(5) and a(1) - a(L) were also computed by hand, and
A7), «(5) and a(6) have been obtained by means of a PDP-8 computer,

but were evaluated only once.
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