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Abstract

Ken Ono et al [Ono] showed partition numbers exhibit fractal behav-
ior which suggests that the primes upon which these numbers are based
may also be found to exhibit fractal behavior. Here we confirm it is the
case. Indeed we have experimental evidence confirming primes follow frac-
tal patterns considering a recursive integer sequence encoding all possible
integer factorisations. We then make conjectures having possible applica-
tions in additive number theory.

Introduction
Many sequences are related to primes and many of them involve the floor
function which is naturally related to the divisors. A very simple example
is
∑

k≥1

⌊
n
k

⌋
which counts the number of divisors of all integers less or equal to

n. Thus we have a formula for the number of divisors function:

τ(n) =
∑

k≥1

⌊n
k

⌋
−
⌊
n− 1

k

⌋

and then we have a caracterisation of prime numbers in term of the floor
function since τ(n) = 2 ⇔ n is prime. However we have very few information
about primes among other integers using this fact and the behaviour of the
arithmetical function τ(n) is not regular. In an other hand it is well known
that:

∑
µk

⌊n
k

⌋
= 1 ⇒ µn = 1−

n−1∑

k=1

µk

⌊n
k

⌋

Hence we have a recurrence formula for the Moebius functions involving
simply the floor function. This time we can say whether a given number has an
odd or even number of prime factors or if n is squarefree. But again this gives
few information about prime numbers and the Moebius function behaves quite
erraticaly.

It appears there is a way to obtain less erratic sequences related to the fac-
torisation of n using the floor function and in [Clo] we considered the function
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θ(x) = (−1)#x$ and discovered it has many nice arithmetical properties. This
is an example of function of good variation (FGV) (a tauberian concept intro-
duced in [Clo2]). More precisely θ generates a sequence encoding informations
about prime numbers and reveals a fractal structure. Since fractal is merging
chao and order we agree G. Tenenbaum and M. Mendès-France [TM]. In sec-
tion 1 we define this sequence (a(n))n≥1 and provide graphs showing its fractal
structure. In section 2 we give conjectural formulas relating the sequence to
the factorisation of integers. In section 3 we state conjectures related to gaps
in (a(n))n≥1 with application to additive number theory. In section 4 we give
another conjecture using properties of (a(n))n≥1. Finally in section 5 we discuss
the fractal aspects of the sequence. In the APPENDIX 3 we provide several ex-
amples of other functions θ yielding similar fractal aspects for sequences related
to primes or to the factorisation of n.

1 The sequence an

Taking θ(x) = (−1)#x$ we define the sequence (an)n≥1 recursively as follows:

a1 = 1 and
n∑

k=1

akθ(n/k) = 0 for (n ≥ 2)

This sequence (an)n≥1 is unbounded and begins:

1, 1,−2, 4,−2,−4,−2, 12, 2,−4,−2,−16,−2,−4, 6, 36,−2, 8,−2,−16, 6,−4,−2,−56, 2

Although an has certainly some fractal structure, the direct plot of an is not
very illuminating for the reader. A better way to see there is a fractal structure
in the sequence consists in considering the summatory function A(n). Here a
big picture of A(n).

The following graphs are more striking (scatterplot).
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Plot of A(n) for 2048 ≤ n ≤ 4096

Plot of A(n) for 4096 ≤ n ≤ 8192

We can see there is a quasi-self-similarity1 , not an exact one.
1“The fractal appears approximately (but not exactly) identical at different scales. Quasi-

self-similar fractals contain small copies of the entire fractal in distorted and degenerate forms.
Fractals defined by recurrence relations are usually quasi-self-similar. The Mandelbrot set is
quasi-self-similar, as the satellites are approximations of the entire set, but not exact copies.”
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Plot of A(n) for 214 ≤ n ≤ 215

Plot of A(n) for 215 ≤ n ≤ 216
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1.1 Another view
Forcing a symetrisation around the x axis we plot &(S(n)) where:

S(n+ 1) = iS(n) + a(n)

Plot of &(S(n)) for 512 ≤ n ≤ 1024

Plot of &(S(n)) for 1024 ≤ n ≤ 2048
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And it is interesting to make a zoom around the x axis where there is another
pattern

Zoom on &(S(n)) for 1 ≤ n ≤ 45000

Plot of %(S(n))
n in 2 different ranges for a complete oscillation around zero

This is more chaotic than the global picture but this oscillation stays roughly
self similar.
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1.2 Combination with arithmetical functions
It is worth mentioning a(n)λn (where λn = (−1)Ω(n) is the Liouville function)
appears to preserve a fractal structure. This time the scale factor is 4 not 2.

Plot of
∑n

k=1 a(k)λk for 2048 ≤ n ≤ 8192

Plot of
∑n

k=1 a(k)λk for 8192 ≤ n ≤ 32768
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In the APPENDIX 4 we give several other examples. In general
∑n

k=1 a(k)f(k)
is fractal when f is an arithmetical function such as f(k) = ϕ(k).

2 Analysis of the sequence
It appears the sequence (an)n≥1 is clearly related to prime numbers since a
quick check led us to suppose:

• an = −4 ⇔ n = 2p where p is an odd prime

• an = 2 ⇔ n = p2k where p is an odd prime and k ∈ N!.

• an = −2 ⇔ n = p2k−1 where p is an odd prime and k ∈ N!.

Hence we can say that an encapsulates informations about primes (specially
an = −4 ⇔ n = 2p where p is an odd prime) and much more information than
the Moebius function. Thus the graph of A(n) indicates that prime numbers
follow fractal patterns among the set of integers. But much more seems true
and the sequence yields all possible factorisations.

2.1 The sequence gives all factorisations
The above observations can be extended and if p, q, r, s any distinct odd primes
we have also for instance:

• an = −10 ⇔ n = p2q.

• an = −26 ⇔ n = pqr.

• an = 62 ⇔ n = p2qr.

• an = 150 ⇔ n = pqrs.

• an = −50 ⇔ n = p3q2.

• an = −466 ⇔ n = p2qrs.

• an = −616 ⇔ n = 22pqr.

• an = −35296 ⇔ n = 23p3qr.

• an = −83312 ⇔ n = 24p3q2.

In fact it appears the sequence a(n) allows us to exhibit all integers n with
a given factorisation (but not for prime powers pn since we have in this case
a(pn) = (−1)n2). More precisely for any r ≥ 1 and for any r odd distinct
primes (pi)1≤i≤r we claim that when α0 ≥ 2 and α1,α2, ... ≥ 0 we have 3
types of formulas for a(n) involving only the exponents in the factorisation of
n. Namely we must have from experiments something like:
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a

(
r∏

i=1

pαi
i

)
= Fr(α1,α2, . . . ,αr)

a

(
2

r∏

i=1

pαi
i

)
= Gr(α1,α2, . . . ,αr)

a

(
2α0

r∏

i=1

pαi
i

)
= h(α0)Hr(α1,α2, . . . ,αr)

Where Fr, Gr and Hr are distinct symmetric functions in r variables and
h is a function in one variable (in fact it appears we can take h(x) = 3x as
suggested in 2.2.2. below). Next we give an exact recurrence formula involving
the divisors for integers n of form 2m−1 or 2(2m−1). Then we compute special
cases of Fr, Gr and Hr which are polynomials in a single variable.

2.2 Conjecture : an in terms of the divisors of n

We found an exact conjectural recursive formula for 2 types of numbers which
has been checked for n ≤ 300000:

n = 2m− 1 ⇒ a(n) = −2
∑

d|n,d<n

a(d)

n = 2(2m− 1) ⇒ a(n) = −2
∑

d|n,2d<n

a(d)

Despite these recursions are simple, we didn’t find closed form formula for
a(2m−1) nor a(2(2m−1)) but it is easy to see by induction that Fr and Gr are
indeed non trivial symmetric functions. Unfortunately we didn’t catch similar
simple recurrence formula for n of form n = 2k(2m− 1) and k ≥ 2 which seems
to be a difficult case.

2.2.1 Two families of polynomials

The recursions above allows to give the following kind of specific formulas:

• a(pn1p2) = −2(−1)n(2n+ 1)

• a(pn1p2p3) = 2(−1)n(4n2 + 6n+ 3)

• a(pn1p
2
2) = 2(−1)n(2n2 + 2n+ 1)

• a(pn1p2p3p4) = −2(−1)n(8n3 + 24n2 + 30n+ 13)

• a(pn1p
2
2p3) = −2(−1)n(4n3 + 10n2 + 12n+ 5)
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• a(pn1p
3
2) = −2(−1)n( 43n

3 + 2n2 + 8
3n+ 1)

and

• a(2pn1p2) = −4(−1)n(2n2 + 2n+ 1)

• a(2pn1p2p3) = 4(−1)n(4n3 + 10n2 + 12n+ 5)

• a(2pn1p
2
2) = 4(−1)n(2n3 + 4n2 + 5n+ 2)

In general there are some polynomials Pα1,α2,...,αr of degree α1 + ... + αr and
Qα1,α2,...,αr of degree α1 + ...+ αr + 1 such that for k ≥ 0 we have:

a

(
pk0

r∏

i=1

pαi
i

)
= 2(−1)n−rPα1,α2,...,αr (k)

a

(
2pk0

r∏

i=1

pαi
i

)
= 4(−1)n−rQα1,α2,...,αr (k)

In the APPENDIX 1 we provide an array for Pα1,α2,...,αr (k) and some
(α1,α2, ...). For numbers of form 2k(2m − 1) with k ≥ 2 and m ≥ 1 we un-
earthed in the next subsection another family of polynomials suggesting there
is also a formula like 2.2. involving the divisors of n.

2.2.2 A third family of polynomials

As said before the case n = 2k(2m − 1) and k ≥ 2 is not easy. However we
succeded to find the following conjectured formula explaining somewhat the
growing fractal picture of A(n) since for any fixed n odd a(2kn) is growing like
3k. Firstly we observe a simple formula for powers of 2:

k ≥ 2 ⇒ a(2k) = 4.3k−2

Next for k ≥ 2, m ≥ 2 and n = 2k
∏r

i=1 p
αi
i we claim there is the following

formula:

a

(
2k

r∏

i=1

pαi
i

)
= (−1)r3k−2Rα1,α2,...,αr (k)

where Rα1,α2,...,αr is a polynomial in k of degree α1 + ...+ αr. For instance we
have for k ≥ 2 and p, q, r distinct odd primes:

• a(2kp) = −3k−3(8k + 32)

• a(2kpq) = 3k−4(16k2 + 184k + 360)

• a(2kpqr) = −3k−5(32k3 + 720k2 + 4072k + 5352)

• a(2kp2q) = −3k−5(16k3 + 336k2 + 1760k + 2136)

In the APPENDIX 2 we list few more polynomials Rα1,α2,...,αr .
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3 Gap conjectures
We guess that the sequence a(n) has intrinsic properties due to its fractal be-
havior, i.e., not coming from number theory subtle results, allowing us to derive
something in the realm of additive number theory. To do this we state 3 conjec-
tures related to gaps in the sequence a(n). We define firstly the following set.
Suppose that λ, µ ≥ 1 are fixed integers then we define

Eλ,µ := {n ∈ N | a(λ) = a(n) = a(n+ µ)}

In other words, due to the arithmetical properties of the sequence given in
section 2, the set Eλ,µ contains all integers n such that n and n+µ have a same
given factorisation. In general we suspect that all possible gaps are reached
infinetely many time. This is more precisely described thereafter.

3.1 The gap conjecture for odd n

Suppose x, y ≥ 1 are fixed integers and suppose 2x− 1 is not a square then we
have

|E2x−1,2y| = +∞

If 2x− 1 is a square we have |E2x−1,2y| = 0.

Examples

E2×3−1,2×1 = {3, 5, 11, 17, 27, 29, 41, 59, 71, 101, 107, 125, 137, 149, 179, 191, ....}

E2×3−1,2×2 = {3, 7, 13, 19, 23, 27, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, ....}

E2×3−1,2×3 = {5, 7, 11, 13, 17, 23, 31, 37, 41, 47, 53, 61, 67, 73, 83, 97, 101, ....}

E2×38−1,2×1 = {423, 475, 603, 637, 845, 925, 1773, 2007, 2523, 2525, ....}

E2×38−1,2×2 = {171, 275, 927, 1175, 1179, 2057, 2299, 2421, 2523, 2525, ....}

E2×38−1,2×3 = {147, 363, 867, 925, 1519, 2523, 3751, 4107, 5547, 5819, ....}

3.2 The gap conjecture for n of form 2(2m− 1)

Suppose x, y ≥ 1 are fixed integers and suppose 2x− 1 is not a square then we
have

∣∣E2(2x−1),4y

∣∣ = +∞

If 2x− 1 is a square we have
∣∣E2(2x−1),4y

∣∣ = 0.
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Examples

E2(2×35−1),4×1 = {66, 110, 170, 182, 186, 282, 286, 318, 366, 370, 402, 406, ....}

E2(2×35−1),4×2 = {70, 102, 130, 174, 182, 222, 230, 238, 258, 282, 310, 366, ....}

E2(2×35−1),4×3 = {30, 66, 102, 170, 174, 246, 310, 354, 406, 418, 426, 430, ...}

E2(2×116−1),4×1 = {1326, 2618, 3090, 3770, 4026, 4070, 4130, 4182, 4466, ....}

E2(2×116−1),4×2 = {2002, 2470, 2982, 3094, 3190, 3534, 4270, 4522, 4810, ...}

E2(2×116−1),4×3 = {858, 1110, 1218, 1290, 1794, 2478, 3090, 3198, 3306, ....}

3.3 The gap conjecture for n of form 2k(2m− 1) with k ≥ 2

Suppose x, y ≥ 1 are fixed integers and suppose 2x− 1 is not a square and
k ≥ 2 then we have

∣∣E2k(2x−1),2k+1y

∣∣ = +∞

If 2x− 1 is a square we have
∣∣E2k(2x−1),2k+1y

∣∣ = 0.

Examples

E23(2×35−1),24×1 = {264, 440, 680, 728, 744, 1128, 1144, 1272, 1464, 1480, ....}

E23(2×35−1),24×2 = {280, 408, 520, 696, 728, 888, 920, 952, 1032, 1128, 1240, ....}

E23(2×35−1),24×3 = {120, 264, 408, 680, 696, 984, 1240, 1416, 1624, 1672, 1704, ....}

E23(2×116−1),24×1 = {5304, 10472, 12360, 15080, 16104, 16280, 16520, 16728, ....}

E23(2×116−1),24×2 = {8008, 9880, 11928, 12376, 12760, 14136, 17080, 18088, ....}

E23(2×116−1),24×3 = {3432, 4440, 4872, 5160, 7176, 9912, 12360, 12792, 13224, ....}

3.4 Corollary: there are infinitely many twin primes
Using the conjecture 4.2 we have |E6,4| = +∞ which means there are infinitely
many odd n such that a(2n) = a(2n+ 4) = −4. Since we made the claim

an = −4 ⇔ n = 2p

where p is an odd prime, there are infinitely many twin primes.
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4 Conjecture : additional arithmetical properties
of a(n)

Of course our gap conjectures allow us to derive much more results in additive
number theory and here we give another conjecture. From the conjectured
properties of the sequence there are two strictly increasing sequences (b1(n))n≥1
and (b2(n))n≥1 of odd integers such that for any fixed k ≥ 0 we have

a (2n) = a
(
n+ 2k

)
⇔ n ∈

{
2kb1(i)

}
i≥1

a (2n) = a
(
n− 2k

)
⇔ n ∈

{
2kb2(i)

}
i≥1

Proof 2n and n± 2k must have the same factorisation thus n must be of the
form n = 2k(2m− 1).

Conjecture related to the sequences b1 and b2

Similarly as was suggested in section 3 we guess the fractal properties of the
sequence a allow us to claim that for any fixed k ≥ 0 and any integer value x
there are infintely many values of n such that we have

a (2n) = a
(
n+ 2k

)
= a(2k(2x− 1))

and also there are infintely many values of n such that we have

a (2n) = a
(
n− 2k

)
= a(2k(2x− 1))

Consequently taking x = 2 there are infinitely many values of n such that:

• b1(n) and b1(n)+1
2k are primes.

Also there are infinitely many values of n such that:

• b2(n) and b2(n)−1
2k are primes.

In other words there are infinitely many primes p such that 2kp−1 is prime and
there are infinitely many primes q such that 2kq + 1 is prime. As a corollary
there are infinitely many Sophie Germain primes.

Examples If k = 1 the sequence b1 begins:

1, 5, 13, 37, 49, 61, 65, 69, 73, 77, 129, 157, 185, 193, 221, 237, 265, 277, 309, ...

And primes in the sequence b1 (5, 13, 37, 61, 73, ...) are primes p such that p+1
2

is also prime (A005383 in [Slo]). The sequence b2 begins:

7, 11, 23, 47, 59, 83, 107, 111, 115, 155, 167, 179, 183, 187, 227, 247, 259, 263, 267, 287, ...

And primes in the sequence b2 (7, 11, 23, 47, 59, 83, ...) are primes p such that
p−1
2 is also prime (A005385 in [Slo]).
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5 The fractal property of an
The previous formulas relating the sequence to the factorisation of integers is
helpless to understand why there is a fractal structure due to the mysterious
nature of prime numbers. The reccurence in 2.2. shows the sequence a(n) is
somewhat a self referential sequence but this reccurence alone can’t be used to
say wether there is a fractal structure. Hence we claim the fractal structure of
A(n) comes simply from the discontinuity of the function θ(x) = (−1)#x$ at 2.
Loosely speaking there is a way to see this. Let us consider a smooth example
of function that is:

• θ(1/x) = 1− 2x(1− x)

We still define a1 = 1 and
∑n

k=1 akθ(n/k) = 0 for (n ≥ 2). Then this is an
proved example of FGV of index 1/2 and A(n)n1/2 is bounded and behaves very
smoothly (see [Clo2]). Now consider the modified function having a discontinu-
ity at 2:

• θ!(1/x) = 1− 2x(1− x) if x )= 1/2 and θ!(2) = 1 .

and again let a1 = 1 and
∑n

k=1 akθ
!(n/k) = 0 for (n ≥ 2). We then observe

this perturbation generates clear fractal pattern in the vincinity of a smooth
curve as shown thereafter.
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Plot of A(n)n1/2 for 1024 ≤ n ≤ 2048

Plot of A(n)n1/2 for 2048 ≤ n ≤ 4096

So we see that a single discontinuity at 2 yields a fractal behaviour (around a
smooth curve behaving like the graph generated by the function without discon-
tinuity at 2 θ(1/x) = 1− 2x(1− x)). This phenomenom is discussed elsewhere
[Clo].
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Concluding remarks
The sequence an has many connections with combinatorics since we have for in-
stance from our conjectured formula in 2.2. a (p1p2...pn) = 2(−1)nA000670(n),
a (2p1p2...pn) = 4(−1)nA069321(n) or a

(
p20p1p2...pn

)
= 2(−1)nA069321(n+ 1)

where A000670 is the number of preferential arrangements of n labeled elements
and A069321 is the number of compatible bipartitions of a set of cardinality n
for which at least one subset is not underlined [Slo]. Thus it could be closed form
formulas or nice generating functions for the functions F,G and H described
above.

Perhaps advances regarding our FGV concept [Clo2] could give rise to many
new results in analytic number theory using suitable θ functions (see the AP-
PENDIX 3 for examples of other functions).

To us this fractality of numbers is satisfying from a philosophical view point
but not really from a mathematical view point if we restrein our goal to asymp-
totic considerations, i.e., the study of the behaviour of A(n). Indeed the frac-
tality is not important regarding the asymptotic behaviour and is forced by the
recurrence formula once the function θ has a discontinuity at 2 as said in sec-
tion 3 and we elaborate upon this in [Clo]. Hence the mystery of numbers is
not explained by any kind of fractal theory and our belief is that the concept
of good variation [Clo, Clo2] makes fractality natural when we consider specific
FGV. Arithmetic makes sometime an appearance and our approach could have
important application such as mentioned in section 3, but it looks like a nice
accident and a deeper and general mathematical theory is working.

References
[Ono] Ken Ono, Amanda Folsom, Zach Kent, l-adic properties of the partition

function, American Institute of Mathematics, 2011.

[TM] Gérald Tenenbaum and Michel Mendès-France, Nombres premiers, entre
l’ordre et le chaos, Dunod, 2011.

[Clo] Benoit Cloitre, Good variation, preprint, 2011

[Clo2] Benoit Cloitre, A tauberian approach to RH, http://arxiv.org/abs/
1107.0812

[Slo] Neil J.A. Sloane, The encyclopedia of integer sequences, published elec-
tronically at: http://oeis.org/

16



APPENDIX 1

Here p0, p1, . . . , pr are distinct odd primes.

r (αi)1≤i≤r
(−1)n−r

2 a (pn0
∏r

i=1 p
αi
i )

1 (1) 2n+ 1
1 (2) 2n2 + 2n+ 1
1 (3) (4/3)n3 + 2n2 + (8/3)n+ 1
1 (4) (2/3)n4 + (4/3)n3 + (10/3)n2 + (8/3)n+ 1
1 (5) (4/15)n5 + (2/3)n4 + (8/3)n3 + (10/3)n2 + (46/15)n+ 1
2 (1,1) 4n2 + 6n+ 3
2 (1,2) 4n3 + 10n2 + 12n+ 5
2 (1,3) (8/3)n4 + (28/3)n3 + (58/3)n2 + (56/3)n+ 7
2 (1,4) (4/3)n5 + 6n4 + (56/3)n3 + 30n2 + 26n+ 9
2 (2,3) (8/3)n5 + (44/3)n4 + (140/3)n3 + (238/3)n2 + (212/3)n+ 25
3 (1,1,1) 8n3 + 24n2 + 30n+ 1
3 (1,1,2) 8n4 + 36n3 + 78n2 + 80n+ 31
3 (1,1,3) (16/3)n5 + 32n4 + (308/3)n3 + 178n2 + 160n+ 57
3 (1,2,2) 8n5 + 52n4 + 172n3 + 306n2 + 280n+ 101
3 (2,2,2) 8n6 + 72n5 + 336n4 + 904n3 + 1422n2 + 1198n+ 409
4 (1,1,1,1) 16n4 + 80n3 + 180n2 + 190n+ 75
4 (1,1,1,2) 16n5 + 112n4 + 380n3 + 690n2 + 640n+ 233
4 (1,1,1,3) (32/3)n6 + 96n5 + (1336/3)n4 + (3580/3)n3 + 1870n2 + (4712/3)n+ 535
5 (1,1,1,1,1) 32n5 + 240n4 + 840n3 + 1560n2 + 1470n+ 541
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APPENDIX 2
r (αi)1≤i≤r a (2n

∏r
i=1 p

αi
i )× (−1)r × 3(2−n−α1−α2−...−αr)

1 (1) 8n+ 32
1 (2) 8n2 + 80n+ 132
1 (3) 16

3 n3 + 96n2 + 1280
3 n+ 448

1 (4) 8
3n

4 + 224
3 n3 + 1864

3 n2 + 5344
3 n+ 1412

1 (5) 16
15n

5 + 128
3 n4 + 1696

3 n3 + 9184
3 n2 + 32968

5 n+ 4320
2 (1, 1) 16n2 + 184n+ 360
2 (2, 1) 16n3 + 336n2 + 1760n+ 2136
2 (3,1) 32

3 n4 + 1040
3 n3 + 10048

3 n2 + 32896
3 n+ 9680

2 (4,1) 16
3 n5 + 736

3 n4 + 11168
3 n3 + 68288

3 n2 + 54344n+ 38544
2 (2,2) 16n4 + 544n3 + 5528n2 + 19088n+ 17724
2 (3,2) 32

3 n5 + 1568
3 n4 + 25456

3 n3 + 166720
3 n2 + 141584n+ 106128

3 (1, 1, 1) 32n3 + 720n2 + 4072n+ 5352
3 (2,1,1) 32n4 + 1136n3 + 12064n2 + 43456n+ 41856
3 (3,1,1) 64

3 n5 + 3232
3 n4 + 54032

3 n3 + 363584
3 n2 + 316064n+ 241296

3 (2,2,1) 32n5 + 1664n4 + 28720n3 + 199888n2 + 539280n+ 424728
4 (1,1,1,1) 64n4 + 2368n3 + 26288n2 + 99128n+ 99768
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APPENDIX 3
More fractal properties of prime numbers

For various suitable functions θ we still define the recursion

a1 = 1 and
n∑

k=1

akθ(n/k) = 0 for (n ≥ 2)

For each function we give a property showing the sequence an is closely related
to primes or to the factorisation of n.

The function θ(x) = +x, − 2
⌊
x
2

⌋

This is +x, modulo 2. Among properties of an there is this simple one showing
the sequence is connected to the factorisation of n. We have:

• an = −2 ⇔ n
8 is an odd squarefree number for which the number of prime

divisors is odd.

The function θ(x) = +x, − 3
⌊
x
3

⌋

This is +x, modulo 3. Among properties of an there is this one showing the
sequence is connected to semi-primes. Namely we have for n > 6:

• an = −4 ⇔ n = 6pq where p and q are 2 distinct odd prime numbers
greater than or equal to 5.

This time this is a fractal with scale factor 3 not 2.

The function θ(x) = (−1)
∑

k≥1 τ(k)+x
k,

Here τ is the Ramanujan tau function ( A000594 in [Slo]). Although the arith-
metical properties of the tau function are not easy to unearth we provide here
a very simple connection with prime numbers. We claim that:

• |an| = 2 ⇐⇒ n is an odd prime number.

Moreover
an = −2 for those n:

3, 5, 7, 19, 23, 29, 31, 47, 53, 67, 71, 79, 83, 89, 101, 103, 107, 137, 139, 149, 157, 163, 167, ...

an = +2 for those n:

11, 13, 17, 37, 41, 43, 59, 61, 73, 97, 109, 113, 127, 131, 151, 179, 191, 193, 199, 211, ...

Thereafter we provide graphics for A(n) and these 3 functions.

19



θ(x) = +x, − 2
⌊
x
2

⌋

Plot of A(n) for 2048 ≤ n ≤ 4096

Plot of A(n) for 4096 ≤ n ≤ 8192
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θ(x) = +x, − 3
⌊
x
3

⌋

Plot of A(n) for 36 ≤ n ≤ 37

Plot of A(n) for 37 ≤ n ≤ 38
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θ(x) = (−1)
∑

k≥1 τ(k)+ x
k,

Plot of A(n) for 512 ≤ n ≤ 1024

Plot of A(n) for 1024 ≤ n ≤ 2048

We have an asymptotic fractal picture. Small detail differ but we suspect
that the plot of A(n) becomes very similar for 2k ≤ n ≤ 2k+1 and k → ∞.
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APPENDIX 4
The patterns are very similar to A(n) (see section 1 to compare).

Plot of
∑n

k=1 a(k)ϕ(k) for 8192 ≤ n ≤ 16384

Plot of
∑n

k=1 a(k)ϕ(k) for 16384 ≤ n ≤ 32768
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Plot of
∑n

k=1 a(k)τ(k) for 4096 ≤ n ≤ 8192

Plot of
∑n

k=1 a(k)τ(k) for 8192 ≤ n ≤ 16384

24


