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Abstract

It is shown that the spherical growth function of repeated trunca-
tions of maps tend to a universal function

(1424%") = 143z +42> + 62> + 62" +62° +82° +1227 +102° +62° + ...

3

J(@) = (1+2)

n=0

which is independent of the original map as well as from the initial
vertex of the truncated map.

Let G be connected finite or locally finite graph, rooted as some vertex v.

Define §(G, v, n) to be the number of vertices at distance n from v. Further-
more, let f be the co-called (spherical) growth function. This means that
f(G,v;x) is the generating function for §(G,v,n) of G at v.

f(G,v;x) = i (G, v,n)z".
n=0

We may calculate the growth of iterated truncations of maps. Let T'(M)
denote the truncated map M. By T™(M) we denote the n—th iterated trun-
cation of M. Since T(M) is cubic, T?(M) contains a 2-factor consisting of
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Figure 1: Tetrahedron and its first 4 repeated truncations.



Figure 2: Cube and its first 3 repeated truncations.



Figure 3: Icosahedron and its first 3 repeated truncations.



Figure 4: The first truncation produces a cubic map. The second one puts
each vertex on a triangle. Each successive truncation subdivides the triangle
in a fractal way as shown here. The resulting graph is called the n-th extended
Sierpinski triangle and will be denote by S,,. Here we have S,,,n =0,1,2,3,4.



triangles (a patchwork [4]) and a 1-factor. We will refer to the edges belong-
ing to triangles as “blue” edges, and to other edges as the “red” edges. A
walk with alternating blue-red edges is called an alternating walk. Label each
red edge by = and blue edge by y.

Clearly we have: in T"(M),n > 2 any shortest path is alternating. Also:
T"(M) may be viewed as a T?(M) in which each triangle is subdivided in
a fractal way (see Figure 4). In other words, each triangle Sy is replaced be
the (n-2)-nd extended Sierpinski triangle S,,_o. A word of caution here! Our
notion of the (extended) Sierpinski triangle differs from the one that is used
in chaos theory [1]. The first difference is that we consider graphs: (finite)
abstract combinatorial structures while fractals arise from the study of iter-
ating functions in some metric spaces. The second difference is more impor-
tant. The classical Sierpinski triangle viewed as a graph would have triangles
touching, i.e. it would involve vertices of valence four, while our approach
separates the triangles by edges. In other words, the classical Sierpinski tri-
angle is obtained from our extended Sierpinski triangle by contracting the
“red” edges of the one-factor.

If the original map is cubic, like in the case of Figures 1 and 2, we may
start with T'(M) instead of T?(M) in the argument that follows.

Let us choose a root vertex and label each vertex of 72(M) by x%°, where
a+ b is its distance from the root and there are a red edges and b blue edges
on a shortest path. Clearly |a—b] < 1. For any subset S of vertices of T%(M)
we may describe the labeling of the corresponding induced subgraph as the
formal sum of vertex labels. In an even cycle we may reach the antipodal
vertex in two ways %"ty or 2%y%T!. Later we will think of y being “longer”
than z. That is why we will always select the first alternative and use the
labeling 2971y?. There are at most 6 types of triangles since each triangle is
labeled in at most one of the six ways:

Ps: a4+ 20y + 2%t = 2% (1 + 2 +vy)
P4 . xayb + $a+1yb + l.ayb — xayb(Q + .’L‘)

P3 . xayb + xa—&—lyb + $a+1yb _ l‘ayb(l + 21,)
P2 . xayb + xayb—l—l + l.ayb+1 — l‘ayb(l + 2y)
P a4 a0yt + ottt = 2%t (2 +y)
Py oy’ + a0yt + 2%y = 3ax%y°



The growth function fy(x) can be written as

fo(z) = Ps(z,x)(1+2x) + Py(z,x)(2 + x)
+Ps(x,z)(1 + 2x) + Po(z,x)(1 + 2x)
+P(x,2)(2 4+ z) + Po(x,x)3

where
fo(z,y) = Ps(z,y)(1+2+y)+ Pu(x,y)(2+2)
+Ps(z,y) (1 +22) + Po(z,y) (1 + 2y)
+Py(z,y)(2+y) + Po(z, )3

is the generating function for the number of vertices labeled z%y® and P
count the number of triangles of a given type. Note that the only nonzero
coefficients are for z%y” where b = a or b =a —1or b = a + 1. All the
P;s have an zy factor except P, where the two triangles nearest to the root
provide an extra 1 term and an = term.

Every xy term becomes z(yx) in moving from the nth truncation to the
(n + 1)st. Thus in going from the 2nd truncation to the nth one replaces y
by 22" for all y in the generating function for x alone. We can now write
down the growth function of the 7" (M) for an appropriate root:

on—2

Fa(@) = Ps(z,22" 0P (@) + Pz, 22" D (@) + Ps(z,22" )P ()

o —2 an—2

+Po(2, 27" WD (@) + Pu(w, e WD (@) + Po(w, a7 )t (x)

where ¢ (x) represent the growth in the n-th extended Sierpinski triangle
S, with a given boundary conditions and are given by the following recursion

formulas:

(@) = 1+2)t? (@) +2* 7t (2)
@) = 2+t (2)

(@) = (1+22)t),(x)

(@) = 2, (x)1+22"")

(@) = 262, (2) + 27" 1), (2)
() = 3t (x)



ty'(x) = 142
t5(z) = 2+
té?’) (x) 1+ 2x
9 (z) 1+ 2z
ty(@) = 2+a
t0) = 3

It is not hard to see that

(14202 7%) = 1+ 20 + 202 + 423 + 204 + 42% + 425 + 827 + .. + 22"

s

) (z) =

k=2

It makes sense to define the limit of ¢ (x) when n tends to infinity.

o0

() =[]0 +22*")

n=0

One can similarly get:

P2) = 1+2)tP ()
O(a) = (24 2)0()
tO(x) = 1+ 22)tP(2)
D) = 2()
O@) = 3()

We have enough information for computing the exact growth function for
T"(M) for a specific root. We may view T"(M) as a T?(M) in which each
triangle is replaced by a copy of the (n-2)-fold extended Sierpinski triangle
Sp_2. If we are given a root in T%(M) this defines a root in the corresponding
T"(M).

For example, in the case of the cube C', we may label the vertices of
T(C) and obtain: Py(z,y) = 1 + z, Pi(z,y) = 223y* and Pi(x,y) = 0,
for i = 5,4,3,0. Hence the growth function of 7"(M) can be computed
by the above method. For the truncated tetrahedron we get: Py(z,y) =
1+ + 2zy + 22%y, Ps(x,y) = 22y and Pj(z,y) =0, for i = 4,3, 1,0.

We may define the limit truncation 7°°(A/) which is a planar graph that
consists of infinitely many isomorphic components.
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The same approach can be used to look at the growth of the “infinite” trun-
cation of an arbitray map M:

flz) = (1+2)tP(z)
= 14+32+42> +62° + 62* + 62° + 825 + 1227 + ...

It seems that in this case the growth function is universal. It is independent
of the choice of the original map and vertex.

We may verify the result by an independent argument. Observe that the
neighborhood of each vertex in a repeated truncation looks like two extended
Sierpinski triangles joined by an edge. The first few extended Sierpinski
triangles are depicted in Figure 4. The growth in the n-th extended Sierpinski
triangle .S,, from one of its corners is given by g,, where:

(1+ 2z)

(1+ 227)go(x)
(1+22")g1()
(

1+ 22%)gy(2)

)
[\
A~ A~~~
\_/5/\/\_/
I

Let g(x) = limy, o0 gn(x). There is a very simple rule for generating the
list a,, of coefficients of g, from the list of coefficients a,,_; for g,_;.

ap = (1)
p = Gp_1 % 20,1

where * denotes the concatenation of lists.

(1)
(1,2)
a = (1,2,2,4)
(
(

ayg =

a; =

1,2,2,4,2,4,4,8)
1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16)

a3 =

a, =

At each step we double the number of known coefficients of g(x).
Hence we do get f(z) = (1 +2)t®) () as g(x) = t? (z).
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Figure 5: A connected component of the limit graph may be obtained by
attaching two extended Sierpinski triangles on an edge.
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Figure 6: The Petersen graph P, and some if its derivative graphs:
S(P), T(P), T(I'(P)), L(P), T(L(P)).
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There is a generalization of our approach. Namely, triangulation of a
trivalent map is independent of the surface in which the graph is embedded.
It can be described in a combinatorial way using two well-known concepts
in graph theory: subdivision graphs S(G) and line-graphs [5] L(G). Define
T(G) = L(S(G)). For trivalent graphs this operation coincides with map
truncation. However, it can be studied for other graphs. For instance, if
G is k + 1-valent then T'(G) is also k + 1-valent. The computation can
be repeated for general k. Instead of extended Sierpinski triangles we get
extended Sierpinski simplices: for £ = 3 tetrahedra. The universal growth
function becomes:

fley=>14+z) | |1+ k:czj) =(1+2z)(1 + kx + kx® + k22 + kot + k225 + k225 + k327 + )

=

0

J

Note. We have not been very specific about the type of limiting process
considered in this paper. A possible formalization is indicated in [2].
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