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Introduction
P2-receptors are membrane-bound receptors for extracellular
nucleotides such as ATP and UTP1-5. There are two distinct families
of P2-receptors: P2X-receptors, which are ligand-gated ion chan-
nels for cations, and P2Y-receptors, which are G-protein-coupled
receptors (GPCRs) with seven transmembrane regions3-9. Seven
mammalian P2X-receptor subtypes exist (P2X1-7)4,10,11. At the level
of the cell membrane they form trimers10,12 with homomeric or het-
eromeric receptor assemblies4,10,11 (see Table 1). Eight mammalian
P2Y-receptor subtypes have yet been cloned and functionally
defined as P2-receptors (P2Y1,2,4,6,11,12,13,14)3,5,9,13-15. However, 
the group of GPCRs mediating effects of extracellular nucleotides
is even larger as shown by the fact that extracellular UDP acts in
addition on some receptors for cysteinyl leukotrienes16-18. In addi-
tion to P2-receptors for adenine and uracil nucleotides, there are
four GPCRs for the nucleoside adenosine (P1-receptors1: A1, A2a,
A2b and A3 adenosine receptors19). And, finally, there exist a
recently identified group of GPCRs for the nucleobase adenine20-22

(tentatively named P0-receptors23).

Drug targets
P2-receptors are expressed on the surface of almost all cells. This
fact underlines the physiological significance of these receptors.
The receptors are activated by nucleotides that are released as
extracellular signalling molecules either from neurons by vesicular
transmitter release24-26 or from many other cells by mechanisms in-
cluding the opening of connexin hemichannels27-29. Several excel-
lent reviews have summarised the knowledge about the distribu-

tion and the physiological roles of native P2-receptors3,10,23,30-42. 
Targets, which are important for pharmacotherapy, include P2Y1-
and P2Y12-receptors involved in the aggregation of blood plate-
lets43,44. In fact, the thienopyridine compound clopidogrel was the
world's second highest selling pharmaceutical in 2007. Clopidogrel
is used for the prevention of vascular ischemic events as well as
for the therapy of patients with an acute coronary syndrome or
myocardial infarction. The active metabolite of clopidogrel irre-
versibly blocks the platelet P2Y12-receptor45. Antagonists blocking
P2X3-, P2X4- and P2X7-receptors are under development for the
treatment of chronic and neuropathic pain41,46-49. Agonists acting on
P2Y2-receptors mediating an increase in ion fluxes are used for the
treatment of the dry eye disease50. The present article now sum-
marises the pharmacology of P2-receptor subtypes in order to
facilitate the pharmacological characterization of native P2-recep-
tors (and, thereby, the identification of new drug targets).

Agonists acting on P2X-receptors
All known assemblies of P2X-receptor subtypes are activated by ATP,
which is the most potent physiological nucleoside triphosphate
agonist at these receptors (Table 1 and Figure 1).  With very few
exceptions described below, ADP and AMP are not active. There are
some nucleotide analogues with a restricted selectivity for P2X-re-
ceptor subtypes – in most cases, however, it will be difficult to
characterize a P2X-subtype only by the use of different agonists. 
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Table 1. Principle agonists acting at functionally defined 
mammalian P2X-receptor homomers and heteromers (EC50 concentrations in µM).

Type Principle agonists Selected references

P2X1 ATP(0.1-1 µM)= 2-methylthio-ATP(0.1-1 µM)≥ αβ-meATP(1-3 µM)> BzATP(3-30 µM) 4, 10, 36, 51-55
P2X2 ATP(1-30 µM)= 2-methylthio-ATP(3-10 µM)> BzATP(30 µM)>> αβ-meATP(>300 µM) 4, 10, 36, 52-56
P2X3 2-methylthio-ATP(0.3 µM)≥ ATP(1 µM)= αβ-meATP(1 µM) 4, 10, 36, 47, 53, 57, 58
P2X2/3 2-methylthio-ATP(1 µM)> ATP(2 µM)>αβ-meATP(3 µM) 4, 10, 36, 47, 53, 58
P2X4 ATP(10 µM)≥ 2-methylthio-ATP(1-100 µM)>> αβ-meATP(>300 µM)≥ BzATP(>500 µM) 4, 10, 36, 59-61
P2X5 ATP(10 µM)= 2-methylthio-ATP(10 µM)>> αβ-meATP(>300 µM)≥ BzATP(>500 µM) 4, 10, 36, 62, 63
P2X1/5 ATP(0.7 µM)> 2-methylthio-ATP(1.3 µM)> αβ-meATP(3.1 µM) 4, 10, 36, 64, 65 
P2X6 2-methylthio-ATP(9 µM)≥ ATP(12 µM)>> αβ-meATP(>100 µM) 4, 10, 36, 62 
P2X4/6 ATP(6.3 µM) ≥ 2-methylthio-ATP(7.7 µM)> αβ-meATP(12 µM) 4, 10, 36, 66
P2X7 BzATP(3 µM)> 2-methylthio-ATP(10 µM)> ATP(100 µM)> αβ-meATP(>300 µM) 4, 10, 36, 67

αβ-meATP, α,β-methylene-ATP; BzATP, benzoyl-benzoyl-ATP. 



2

Pharmacology of mammalian P2X- and P2Y-receptors

Figure 1.  
Structures of ATP, UTP and UDP-glucose and
selected P2X- and P2Y-receptor compounds.
Bold text indicates compounds available
from BIOTREND (with catalogue numbers). 



centrations (see references in Table 1). The properties of P2X1/5-
heteromers are similar to those of the P2X1-receptor (Table 1).

P2X6 and P2X4/6: Homomeric P2X6-receptors are not readily
expressed in most cells studied so far4. P2X6-receptors as well 
as P2X4/6-heteromeric assemblies respond to activation by ATP 
and 2-methylthio-ATP (Table 1). 

P2X7: The P2X7-receptor operates in immunocytes and microglia
cells. It is involved in pore formation of macrophages in response
to stimulation by ATP (see references in Table 1). In comparison 
to the other P2X-receptors, there are distinguishing features of
the P2X7-receptor. Activation of the receptor requires high con-
centrations of ATP; BzATP (benzoyl-benzoyl-ATP) is a much more
potent agonist than ATP itself (Table 1). For that reason, BzATP is
often used in studies analysing the P2X7-receptor. However, 
it should be noted that BzATP is not selective for the P2X7-recep-
tor (see P2X1 in Table 1 and P2Y11 in Table 3). ADP and AMP are
weak agonists at the P2X7-receptor; their action is potentiated
after a pre-exposure of the receptors to ATP70. 

P2X-receptor antagonists
Reactive blue-271, suramin72,73 and PPADS (pyridoxal-5'-phosphate-6-
azophenyl-2,4-disulfonate)74 have been used for several years to
antagonize P2X- and P2Y-receptors54,75-77. However, suramin and
PPADS block a number of P2X- and P2Y-subtypes (Tables 2 and 4). 
In order to facilitate the pharmacological characterization of the
subtypes, several subtype-selective antagonists have been de-
veloped in the last years. These compounds include analogues of
suramin and PPADS. Most of the new derivatives have fewer effects
on other targets such as ectonucleotidases91 or G-proteins.

P2X1: P2X1-receptors are abundantly expressed in smooth muscle
tissues, where they mediate constriction (see ref. 3 and Table 1).
ATP and the analogues 2-methylthio-ATP and ATPγS are potent
agonists. The receptor is sensitive to activation and desensitation
by α,β-methylene-ATP (Table 1). The naturally-occurring diadeno-
sine polyphosphates and closely-related nucleotides (e.g. Ap5A
and Ap5G) also act as agonists at the P2X1-receptor. BzATP (ben-
zoyl-benzoyl-ATP, Table 1) and CTP only activate the receptor when
used at higher concentrations. As an exception, homomeric
assemblies of a P2X1-receptor splice variant (lacking 17 amino
acids of exon 6) are activated by ADP, but not by ATP68 (but see 
discussion69 of the physiological relevance). 

P2X2: The receptor is found in many neuronal tissues in the peri-
pheral and central nervous system (see ref. 3 and Table 1). Com-
pared with the P2X1-receptor, higher concentrations of ATP and 2-
methylthio-ATP have to be used for receptor activation (Table 1).
The receptor is almost insensitive to α,β-methylene-ATP (Table 1). 

P2X3 and P2X2/3: P2X3-homomeric as well as P2X2/3-heteromeric
assemblies play important roles in sensory neurones (see referen-
ces in Table 1). The properties of P2X2/3-heteromeric assemblies
are similar to those of the P2X3-homomers4,10. 2-Methylthio-ATP is
more potent than ATP (Table 1 and Figure 1). The assemblies are
sensitive to α,β-methylene-ATP (Table 1).  Ap5A and Ap5G are also
active. 

P2X4 and P2X5: Both receptors are expressed in the CNS and are
activated by higher concentrations of ATP and 2-methylthio-ATP
(Table 1). Ap4A is a partial agonist at the P2X4-receptor and CTP 
as well as GTP activate the P2X5-receptor when used at higher con-
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Table 2. Potencies of selected antagonists and potentiators at recombinant P2X-receptors (IC50/EC50 concentrations in µM)

Compound P2X1 P2X2 P2X3 P2X2/3 P2X4 P2X5 P2X6 P2X7 Selected references
Antagonists:
Suramin 1 8-10 3 >500 4 >100 78-500 4, 10, 36, 55
PPADS 1 1 1 ↓80% >500 3 >100 50 4, 10, 36

(10 µM)
NF023 0.2 >10 8.5 >100 4
TNP-ATP 0.006 1 0.001 0.003 15 >30 4, 10 
MRS2159 0.01 0.1 78
NF279 0.02 0.8 1.6 >300 2.8 79-81
NF449 0.0003 47 1.8 0.3 >300 40 82, 83
NF110 0.08 4.1 0.04 >300 84
A-317491 10 >10 0.02 0.1 >10 85 
BB-G >5 1.4 >10 3-10 0.01-0.3 4
KN-62 0.02 (human) 86
A-438079 0.1 87, 88 

Potentiators: 
MRS2219 5.9 89
Ivermectin 0.2 90

The table summarizes studies analyzing potencies of P2X-receptor antagonists and potentiators at recombinant P2X-receptors. PPADS, pyridoxal-5´-phosphate-6-
azophenyl-2´,4´-disulfonate; NF023, 8'-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid; TNP-ATP, 2',3'-O-(2,4,6-trinitrophenyl)-
ATP; MRS2159, pyridoxal-a5-phosphate-6-phenylazo-4'-carboxylic acid; NF279, 8,8'-(carbonylbis(imino-4, 1 -phenylenecarbonyl-imino-4,1-phenylenecarbonylimino))
bis(1,3, 5-naphthalenetrisulfonic acid);  NF449, 4,4',4'',4'''-[carbonylbis(imino-5,1,3-benzenetriyl-bis (carbonylimino))]tetrakis-1,3-benzenedisulfonic acid;  
NF110, 4,4',4'',4'''-[carbonylbis[imino-5,1,3-benzenetriylbis( carbonylimino)]]tetrakisbenzenesulfonic acid; BB-G, brilliant blue G; KN-62, 1-[N,O-bis(5-Isoquinolinesulfonyl)-
N-methyl-L-tyrosyl]-4-phenylpiperazine (also acts at an inhibitors of calcium calmodulin kinase II); A438079, 3-[[5-(2,3-Dichlorophenyl)-1H-tetrazol-1-yl]methyl]
pyridine; MRS2219, 1,5-dihydro-3-hydroxy-8-methyl[1,3,2]dioxaphosphepino[5 ,6-c]pyridin-9-ol-3-oxide.
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P2X4: Responses to activation of the P2X4-receptor are increased 
by addition of ivermectin (Table 2).

P2X5: The P2X5-receptor is blocked by suramin and PPADS (Table 2).

P2X6: There are no antagonists known.

P2X7: The P2X7-receptor is potentially blocked by brilliant blue G
and A-438079 (Table 2). The isoquinoline compound KN-62 is a
potent blocker of the human P2X7-receptor (Table 2), but it is inac-
tive at the rat P2X7-receptor. KN-62 also blocks the calcium sensi-
tive calmodulin-dependent protein kinase II. 

Agonists acting on P2Y-receptors
Some P2Y-receptors are selectively activated by adenine nucleo-
tides; the other P2Y-receptors respond to uracil nucleotides 
or UDP-glucose (Table 3). 

Adenine-nucleotide selective P2Y-receptors
P2Y1: The cloned P2Y1-receptor accounts for the functionally defined
P2Y-purinoceptor3. It operates in a variety of tissues including
smooth muscle, endothelium and neuronal tissues as well as in
blood platelets. As shown in Table 3, the P2Y1-receptor is selective
for adenine nucleotides. ADP is the most potent physiological ago-
nist. Its analogue 2-methylthio-ADP has a ten times higher affinity
at the human P2Y1-receptor than ADP105. The analogue N-methano-
carba-2-methylthio-ADP (MRS2365)104 displays selectivity for the
P2Y1-receptor over the P2Y12- and P2Y13-receptor. 2-Methylthio-ATP
and ATPγS act as agonists at the P2Y1-receptor with potencies simi-
lar to that of ADP. ATP itself is a partial agonist105.

There is evidence for the operation of a heteromeric assembly of
adenosine A1 and P2Y1-receptors with distinct pharmacological
properties154; the heteromer is activated by adenine nucleotides 
and blocked by the adenosine A1 antagonist cyclopentyl-dipropyl-
xanthine (DPCPX) 154.

P2X1: Micromolar concentrations of PPADS, suramin and NF023, 
an analogue of suramin, block the P2X1-receptor (Table 2 and Figure
1). However, these antagonists are not subtype-selective (Table 2;
for an action of NF023 on recombinant P2Y1-receptors see ref. 92).
The P2X1-receptor is potently blocked by the nucleotide Ip5I93,94. 
A further nucleotide antagonist, TNP-ATP (2',3'-O-(2,4,6-trinitro-
phenyl)-ATP), blocks P2X1-, P2X3- and P2X2/3-assemblies, but not
P2X2-, P2X4- and P2X7-receptors when used in nanomolar concen-
trations (Table 2). Several non-nucleotide antagonists including
NF110 (an analogue of suramin) and MRS2159 (an analogue of
PPADS) have been found to exert potent effects on both P2X3- and
P2X1-receptors (Table 2). And, recently, the suramin analogues
NF279 and NF449 have been shown to act as highly potent and
selective antagonists at the P2X1-receptor. These antagonists clearly
discriminate P2X1-receptors from P2X3-receptors (Table 2 and Figure
1). When tested on isolated cells, NF279 and NF449 act in nano-
molar concentrations (Table 2).  Possibly due to a complex kinetic of
diffusion of the antagonists, one often has to use higher concen-
trations or a prolonged pre-incubation period in studies on organ
tissues81,95. MRS221989 increased responses to activation of the P2X1-
receptor.

P2X2: There are no subtype-selective antagonists available. 
The P2X2-receptor is blocked by suramin, PPADS, TNP-ATP, NF279,
NF110 and brilliant blue G, when these antagonists are used 
in micromolar concentrations (Table 2).

P2X3 and P2X2/3: Suramin and PPADS block P2X3-receptors (Table 2).
TNP-ATP is a very potent antagonist at P2X3-homomeric as well as
P2X2/3-heteromeric assemblies (and at P2X1-receptors; see Table 2).
In addition, NF110 has been shown to be a non-nucleotide P2X3-
antagonist that can be used in studies analysing neuronal P2X3-re-
ceptors84. However, NF110 also blocks P2X1-receptors (Table 2). 
A further, recently developed non-nucleotide antagonist is A-317491,
which potently blocks P2X3-homomeric as well as P2X2/3-hetero-
meric assemblies without major effects on P2X1-, P2X2- and P2X4-
receptors (Table 2). 

Table 3. Principle agonists acting at functionally defined mammalian P2Y-receptor subtypes.

Type Principle agonists Selected references

P2Y1 MRS2365>2-MeSADP>ADP=ADPβS 96-105
P2Y2 UTP≥ATP>INS37217>Ap4A>ATPγS 106-115
P2Y4 UTP>UTPγS (human) 111, 114, 116-123

UTP=ATP (rat, mouse)
P2Y6 UDP=5Br-UDP>>UTP 111, 124-128
P2Y11 ATPγS=BzATP=ARC67085>ATP (human) 129-135

ADPβS=2-MeSADP>ATP (canine)
P2Y12 2-methylthio-ADP>ADP>ATP 104, 136-142
P2Y13 2-methylthio-ADP>(=)ADP>ADPβS 143-146
P2Y14 2-thio-UDP-glucose>UDP-glucose>UDP-galactose 147-150
Not listed are non-mammalian receptors: e.g., the P2Y3-receptor151,152 representing an avian orthologue of the mammalian P2Y6-receptor and the tp2y-receptor152,153, an avian
receptor similar to the mammalian P2Y2- and P2Y4-receptors. ARC67085, 2-propylthio-β,γ-difluoromethylene-D-ATP; Ap4A, diadenosine-tetraphosphate; ATPγS, 
adenosine-(O-3-thiotriphosphate); 5-Br-UDP, 5-bromo-UDP; BzATP, benzoyl-benzoyl-ATP; INS37217, P1-(uridine 5´)-P4-(2´-deoxycytidine-5´)tetraphosphate; 2-MeSADP, 
2-methylthio-ADP; MRS2365 (N)-methanocarba-2-methylthio-ADP; 2-MeSATP, 2-methylthio-ATP; UTPγS, uridine-(O-3-thiotriphosphate). 
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P2Y11: The P2Y11-receptor is highly expressed in immunocytes129. 
The human P2Y11-receptor is activated by ATP, NAD+ 155 and, very
potently, by the analogue 2-propylthio-β,γ -dichloromethylene-
D-ATP (ARC67085) (Table 3). In contrast to the human receptor,
ADP-analogues act as agonists at the canine P2Y11-receptor 
(Table 3). There are no rodent orthologues of this receptor.

P2Y12: The P2Y12-receptor is expressed in platelets, microglia and
neuronal tissues5. It plays a very important role in platelet aggrega-
tion43. The receptor is activated by adenine diphosphate derivatives
with 2-methylthio-ADP being much more potent than ADP (Table 3). 

P2Y13: The P2Y13-receptor is expressed in cells of haemopoietic ori-
gin as well as in neuronal cells. The P2Y13-receptor responds to 
adenine diphosphate analogues, similarly as the P2Y12-receptor
(Table 3). ATP and 2-methylthio-ATP appear to be partial agonists
with weak potencies at the P2Y13-receptor145. 

P2Y-receptors activated by uracil nucleotides or UDP-sugar derivatives
P2Y2: P2Y2-receptors are expressed in many tissues including lung,
heart, skeletal muscle, spleen, kidney, liver and epithelia5. 
The receptors play an important role in regulating ion transport in
epithelial cells38. Most functionally defined P2U-receptors3 are likely
to be in fact P2Y2-receptors. Triphosphate nucleotides including UTP,
ATP, UTPγS and ATPγS act as full agonists at this receptor (Table 3).
In addition to the triphosphate nucleotides, the receptor responds
to diadenosine-tetraphosphate (Ap4A)156 as well as to Up4U
(diquafosol, INS365)157, which is used for the treatment for the dry
eye disease50. The analogue P1-(uridine 5´)-P4-(2´-deoxycytidine-5´)
tetraphosphate (INS37217) is a potent agonist at the 
P2Y2-receptor with some effects at the P2Y4-receptor (Table 3).  

P2Y4: P2Y4-receptors are expressed in the placenta and at lower 
levels in lung and vascular smooth muscle158. In contrast to the rodent
orthologues, the human P2Y4-receptor is highly selective for uracil
triphosphate derivatives (Table 3). UDP and ADP are inactive111. 

P2Y6: P2Y6-receptors are widely expressed5. The P2Y6-receptor is 
a nucleoside diphosphate preferring receptor with UDP being much
more potent than UTP111. Adenine nucleotides are almost inactive
(Table 3). 

P2Y14: The receptor has a widespread distribution with highest
expression in man in the placenta, adipose tissue, stomach and
intestine148. UDP-glucose and its analogue 2-thio-uridine-diphos-
phate-glucose (2-thio-UDP-glucose) 150 are potent agonists (Table 3).

CysLT1 and CysLT2: The receptors are activated by the cysteinyl
leukotrienes LTC4, LTD4, and LTE4 and, in addition, by UDP, 
but not by UTP or ATP16,17. 

P2Y-receptor antagonists
Reactive blue-271, suramin72,73 and PPADS74 block a number of P2X-
and P2Y-receptor subtypes (Tables 2, 4 and Figure 1). More recently,
subtype-selective P2Y-receptor antagonists have been developed.

P2Y1: The human P2Y1-receptor is blocked by suramin, PPADS, 
reactive blue-2 (Table 4) and, in addition, by NF023 (8'-[carbonyl-
bis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-
trisulphonic acid; an analogue of suramin) and MRS2210 
(6-(2'-chloro-azophenyl)-pyridoxal-α5-phosphate; an analogue of
PPADS)92.  Bisphosphate analogues with higher affinity and selectiv-
ity for the P2Y1-receptor have been developed. 2´-Deoxy-N6-methy-
ladenosine-3´,5´-bisphosphate (MRS2179; Table 4) acts as a com-
petitive antagonist at the turkey P2Y1-receptor with a pA2-value 
of about 7164. The affinity constant of MRS2179 at the human P2Y1-
receptor also amounts to about 100 nM (Table 4). It should be noted
that MRS2179 has some antagonistic activity at the P2X1-receptor77

and may be broken down by ectoenzymes when used in tissues. The
analogues MRS2279 (2-chloro-N6-methyl-(N)-methanocarba-2´-
deoxyadenosine 3´,5´-bisphosphate) and MRS2500 (2-iodo-N6-
methyl-(N)-methanocarba-2´-deoxyadenosine 3´,5´-bisphosphate)
even have higher potencies at the P2Y1-receptor (affinity constants
of about 4 and 2 nM, respectively). These bisphosphate analogues
show no interaction with other P2Y-receptors (Table 4). 

P2Y2: Suramin blocks the P2Y2-receptor with an affinity about 
20 times lower when compared to that determined at the P2Y1-
receptor (Table 4). 

P2Y4: Suramin does not block the P2Y4-receptor even when used 
at high concentrations (Table 4). PPADS reduced maximal responses
at functionally expressed human P2Y4-receptors, but was without
any effect at rat P2Y4-receptors114. Reactive blue-2 caused a modest
reduction of agonist-induced responses at the human P2Y4-receptor
and abolished the responses at the rat P2Y4-receptor114,119. 

P2Y6: The P2Y6-receptor is blocked by reactive blue-2, PPADS and
suramin (Table 4). 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate
(DIDS)178 and its analogue MRS2578 (N,N''-1,4-butanediylbis[N'-
(3-isothiocyanatophenyl)thiourea)171 act as irreversible or slowly
reversible antagonists at human and rat P2Y6-receptors. MRS2578 
is highly potent at the P2Y6-receptor and shows no interaction with
P2Y1-, P2Y2-, P2Y4- and P2Y11-receptors171.

P2Y11: Suramin is an antagonist at the human P2Y11-receptor with 
a pA2-value of 6.1 (Table 4). Its analogue NF157 also acts as 
an antagonist at the P2Y11-receptor (Table 4). In addition, NF157
blocks P2X1-receptors155,172. The bisphosphate derivative adenosine-
3´-phosphate-5´-phosphosulfate had been shown to be a partial
agonist/antagonist at the P2Y11-receptor130.

P2Y12: The receptor is blocked by suramin and, with a relatively high
potency, by reactive blue-2 (Table 4). 2-Methylthio-AMP and ATP are
low-affinity antagonists136,179. In contrast, some triphosphate ana-
logues including cangrelor (AR-C69931MX, N6-(2-methylthioethyl)-
2-(3,3,3-trifluoropropylthio)-β,γ -dichloromethylene-ATP; Table 4)
and AR-C67085 (2-propylthio-β,γ -dichloromethylene-D-ATP) act as
very potent and competitive P2Y12-antagonists180.



carbocyclic nucleoside analogue (AZD6140) has been developed 
as an orally active P2Y12-receptor antagonist186. 

P2Y13: The human P2Y13-receptor is blocked by suramin, reactive
blue-2 and high concentrations of PPADS (Table 4). The 2-chloro-5-
nitro analogue of PPADS (MRS2211) has recently been shown to act
as a competitive antagonist at the human P2Y13-receptor with 
a pA2-value of 6.3 (Table 3). Moreover, cangrelor also block the
human P2Y13-receptor with a non-competitive mode of inter-
action145. A non-competitive mode of interaction has also been
shown for the blockade of the rat P2Y13-receptor by cangrelor146,187.  

P2Y14: A recent study demonstrated that UDP acts as an antagonist
at the P2Y14-receptor with a pKB-value of 7.3177. 

CysLT1: Responses to UDP were blocked by the antagonist MK571
which showed no interaction with recombinant P2Y4- and P2Y6-
receptors16,17. 

The pA2-value of cangrelor (AR-C69931MX) at the recombinant hu-
man P2Y12-receptor amounted to 9.1174. For AR-C67085 a pA2-value
of 8.2 has been reported173. However, it should be noted that these
compounds are not selective for the P2Y12-subtype. AR-C67085 acts
as an agonist at the human P2Y11-receptor (see above) and both
AR-C67085 and cangrelor also block human and rat P2Y13-receptors
(see below). In contrast, the active metabolites of thienopyridine
compounds appear to act as P2Y12-selective antagonists. The thieno-
pyridine compounds ticlopidine181, clopidogrel182 and prasugrel 
(CS-747)183 are known to be powerful inhibitors of the ADP-induced
platelet aggregation. The compounds act only in vivo; they have to
be metabolized. Their active metabolites interact in a covalent man-
ner with the receptor proteins (for clopidogrel see ref. 45). The
active metabolite of prasugrel affected only human P2Y12-, but not
human P2Y1-receptors184. The acyclic analogue of adenosine bisphos-
phate, MRS2395, inhibited the ADP-induced aggregation of human
platelets without any effects on the P2Y1-receptor mediated acce-
leration of phospholipase C activity185. And finally, an uncharged
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Table 4. Affinities (KB in µM) of selected antagonists at recombinant human P2Y-receptors

Compound P2Y1 P2Y2 P2Y4 P2Y6 P2Y11 P2Y12 P2Y13 P2Y14 Selected references

Suramin 3 50 - ↓27% 0.8 3 ↓80% 130, 138, 145, 159-161 
(300µM) (100µM) (10µM)

PPADS 4-12 - ↓30% ↓69% - - ↓50% 117, 130, 132, 137, 145, 
(30µM) (100µM) (100µM) (100µM) (100µM) (10µM) 159-162

RB-2 0.8 ↓33% 1 ↓80% 0.025 ↓80% 92, 117, 130, 137, 145,
(100µM) (100µM) (10µM) 162, 163

MRS2179 0.15 - - - - - 103, 138, 145, 164-166 
(30µM) (30µM) (30µM) (10µM) (100µM)

MRS2279 0.004 - - - - 167, 168
(30µM) (30µM) (30µM) (30µM)

MRS2500 0.002 - 169, 170 
(100µM)

MRS2578 - - - 0.04 - 171
(10µM) (10µM) (10µM) (10µM)

NF157 0.5 155, 172    

Cangrelor 0.0008 ↓80% 137, 145, 173, 174
(0.01µM)

Clopidogrel m. 0.1& - 145, 175 
(2µM)

MRS2211 >10 - 0.5 176
(10 µM)

UDP 0.05 177
(human)

The table summarizes studies analyzing the potencies (affinity constant in µM) of P2-receptor antagonists at recombinant human P2Y-receptors or inhibitory effects 
mediated by these antagonists on responses to receptor stimulation. PPADS, pyridoxal-5´-phosphate-6-azophenyl-2´,4´-disulfonate; RB-2, reactive blue 2; MRS2179, 
2´-deoxy-N6-methyladenosine-3´,5´-bisphosphate; MRS2279, 2-chloro-N6-methyl-(N)-methanocarba-2´-deoxyadenosine 3´,5´-bisphosphate; MRS2500, 2-iodo-N6-me-
thyl-(N)-methanocarba-2´-deoxyadenosine 3´,5´-bisphosphate; MRS2578, N,N''-1,4-butanediylbis[N'-(3-isothiocyanatophenyl)thio urea; NF157, 8,8'-[carbonylbis
[imino-3,1-phenylenecarbonylimino(4-fluoro-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalene trisulfonic acid; cangrelor=ARC69931MX, N6-(2-methylthioethyl)-2-
(3,3,3-trifluoropropylthio)-β,γ-dichloromethylene-ATP;  Clopidogrel m., active metabolites of clopidogrel; MRS2211, 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-me- thyl-
3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde. &, estimated from published data. -(30µM), no antagonistic effect at concentrations up to 30 µM; ↓30%(100µM),
decrease by 30 % at the concentration of 100 µM. 
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P2X- and P2Y-receptor compounds

Cat. No. Product Category

BN0014 2-Methylthio-ADP trisodium salt Potent P2Y1,12,13 agonist
BN0013 2-Methylthio-ATP tetrasodium salt P2 purinergic agonist

BN0680 Clopidogrel hydrogensulfate P2Y12 purinergic antagonist, prodrug
BN0208 Evans Blue tetrasodium salt Selective P2X purinergic antagonist
BS0104 KN-62 Non-competitive P2X7 antagonist, CaM kinase II inhibitor
BN0377 NF 023 Selective P2X1 antagonist, G0/iα-subunit inhibitor
BN0378 NF 279 Potent, selective P2X1 antagonist
BN0379 NF 449 Potent, selective P2X1 antagonist
BN0427 PPADS tetrasodium salt Non-selective P2 purinergic antagonist
BN0428 iso-PPADS P2X purinergic antagonist
BN0573 PPNDS Potent, selective P2X1 antagonist
BP0363 Spinorphin Potent P2X3 receptor antagonist
BN0510 Suramin hexasodium salt Non-selective P2 purinergic antagonist, S1P3 antagonist
BG0339 Ticlopidine hydrochloride P2Y12 purinergic antagonist, prodrug
BN0523 TNP-ATP Potent, selective P2X antagonist

Other

Cat. No. Product Category

BN0278 Ivermectin P2X4 receptor positive allosteric modulator
BN0570 MRS 2219 P2X1 receptor potentiator

Related Radioligands

Cat. No. Product Category

ART-0338 [3H]-Adenosine 5'-monophosphate P2 endogenous ligand
ART-1256 [3H]-Suramin hexasodium salt Non-selective P2 purinergic antagonist, S1P3 antagonist

P2Y-Receptor Cell Lines

Receptor Sub-type Species Stable Cell Lines *EZ Cells

Purinergic P2Y1 human A676 A476
P2Y6 human A677 A477

P2Y11 human A679 A486

*EZ Cells are growth-arrested cryopreserved cells from all of our stable cell lines. 
They will be packed at 6 million cells per vial.
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