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RAMSEY’S THEORY 
 

You probably have heard of this interesting fact: among any six people in the world, there exist 
three who know each other or three who don’t know each other. Actually there are many other 
similar results. For example, among any nine people there exist three who know each other or four 
who don’t know each other, and among any fourteen people there exist three who know each other 
or five who don’t know each other. Here we are going to generalize the above results and to study 
the patterns behind them. 

 

Let , 2p q ≥  be two given integers. We define ( , )R p q  as the smallest integer n for which 
among any edge colouring of the complete graph on order n, nK , by red or blue, there exist a red 
complete graph on order p, pK , or a blue complete graph on order q, qK . Besides, we denote nE  

as a null graph of degree n. 

 

These numbers are known as Ramsey numbers. For example, (3,3) 6R = , (3, 4) 9R = , 
(3,5) 14R =  etc. are all Ramsey numbers. From the definition, we see that the Ramsey numbers 

have the following two properties: 

 

1. For any positive integers , 2p q ≥ , we have ( , ) ( , )R p q R q p= . 

2. For any positive integer 2q ≥ , we have (2, )R q q= . 

 

To date few Ramsey numbers are known. In addition to (2, )R q q=  mentioned above, it is not 
too difficult to find the values of the smaller Ramsey numbers like (3,3)R , (3, 4)R , (3,5)R , … 

But beyond that we are in a long journey of searching for Ramsey numbers. Here we will first find 
(3,3)R . 

 

Example 1. 

Prove that among any six people in the world, there exist three who know each other or three who 
don’t know each other. 

 

Solution. 

The question is equivalent to proving that if we colour each edge of the complete graph on order 6, 
6K , by red or blue, there exists a mono-coloured triangle. (In other words, we are to prove that 
(3,3) 6R = .) The proof goes as follows. 
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Pick a vertex v in 6K . There are five edges incident to v, each of which is red or blue. By the 

pigeon-hole principle, three of these edges are of the same colour. Without loss of generality, we 
may assume that 1vv , 2vv  and 3vv  are red. (Red edges are represented by solid lines in the 

diagram below.) 

 

v

v1

v2

v3

 

 

Consider the edges between the vertices 1v , 2v  and 3v . If any of these edges is red, then there will 
be a red triangle. Otherwise, 1 2v v , 2 3v v  and 3 1v v  are all blue, so 1 2 3v v v  is a blue triangle. 

This shows that the graph necessarily contains a mono-coloured triangle. (In fact we can even prove 
that there exist at least two mono-coloured triangles in the above diagram.) 

 

Theorem 1. 

(3,3) 6R = . 

 

Proof. From Example 1, we know that (3,3) 6R ≤ . It remains to construct an example of 5K  
which does not contain 3K  and 3E . An example is given below. 

 

 

 

 

This example establishes the fact that (3,3) 5R > , thereby proving the theorem. 

Q.E.D. 

 

Establishing a lower bound for (3,3)R  by construction as shown above is straightforward. 

However, when the number of vertices becomes larger and larger, such constructions become more 
and more difficult. For instance, to construct a 3-colouring of the edges of 16K  without a 
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mono-coloured triangle is by no means easy. 

Nowadays, mathematicians generally agree that unless new algorithms are found, computing 
the exact values of ( , )R p q  is difficult despite advances in computer technology. Consequently, 
computing upper and lower bounds for ( , )R p q  become increasingly important. A simple result is 

given below. 

 

Theorem 2. 

For any , 3p q ≥ , we have ( , ) ( 1, ) ( , 1)R p q R p q R p q≤ − + − . 

 

Proof. Denote ( 1, ) ( , 1)n R p q R p q= − + − . We shall establish below that any 2-coloring of nK  
by red and blue necessarily contains a red pK  or a blue qK . 

Take an arbitrary vertex v and consider the 1n −  edges incident to it. Note that among these 
there must be at least ( 1, )R p q−  red edges or ( , 1)R p q −  blue edges. Otherwise the total number 
of edges incident to v is at most [ ( 1, ) 1] [ ( , 1) 1] 2R p q R p q n− − + − − = − , which is impossible. 

Suppose there are ( 1, )R p q−  red edges incident to v. Then, among these ‘red neighbours’ of 
v there is a red 1pK −  or a blue qK . If there is a blue qK  then we are done. If there is a red 1pK − , 
then this 1pK −  together with v form a red pK . 

In the same way, we can prove that if there are ( , 1)R p q −  incident to v, there must be a red 

pK  or a blue qK . 

Q.E.D. 

 

With the help of this theorem we can easily find the values of (3, 4)R , (4, 4)R  and (3,5)R . 
For example, we have (3,4) (2,4) (3,3) 4 6 10R R R≤ + = + = . After some trials, it is not difficult to 
construct a graph of order 8 which does not contain 3K  or 4E . For example: 

 

 

 

Consequently, (3, 4) 8R > . On the other hand, we are unable to construct a graph of order 9 
which does not contain 3K  or 4E  after many trials, so we guess that (3, 4) 9R = . 
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Theorem 3. 

(3, 4) 9R = . 

 

Proof. From the above discussions, we know that (3, 4) 8R > . So it suffices to prove that any 
2-colouring of 9K  necessarily contains a red 3K  or a blue 4K . 

We shall consider two cases: 

 

Case 1: Some vertex v in 9K  is incident to four red edges (as shown below). 

v

u1

u2 u3

u4

 
In this case, if any two of 1u , 2u , 3u , 4u  are connected by a red edge i ju u , then iu , ju  

and v form a red 3K . Otherwise all edges connecting 1u , 2u , 3u , 4u  are blue, so they form a 
blue 4K . 

 

Case 2: Some vertex v in 9K  is incident to six blue edges (as shown below). 

v

w 1

w 2

w 3 w 4

w 5

w 6

 
Among the edges connecting 1w , 2w , …, 6w , there must be a red 3K  or a blue 3K . So 

together with v, there must be a red 3K  or a blue 4K . 

 

Finally, we shall prove that at least one of the two cases will occur. If not, each vertex is 
incident to exactly three red edges and five blue edges. Removing all blue edges from the graph, 
each vertex is of degree 3, so the sum of the degrees of all vertices is equal to 3 9 27× = , 
contradicting the fact that the sum of degrees must be even. 
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Q.E.D. 

Next we shall consider (3,5)R . First, note that (3,5) (2,5) (3,4) 5 9 14R R R≤ + = + = . Now we 
shall prove that (3,5) 14R = , by constructing a graph of order 13 without 3K  or 5E . 

 

Theorem 4. 

(3,5) 14R = . 

 

Proof. Clearly, (3,5) (2,5) (3,4) 5 9 14R R R≤ + = + = . The following graph of order 13 does not 
contain 3K  or 5E : 

v7 v8

v6

v5

v4

v3

v2
v1

v13

v12

v11

v10

v9

 
The method of construction is as follows: iv  and jv  are adjacent if and only if 

{1, 5, 8,12}i j− ∈ . It is easy to see that the graph contains no 3K  or 5E . So (3,5) 14R = . 

Q.E.D. 

 

Theorem 5. 

(4, 4) 18R = . 

 

Proof. As in the proof of the previous theorem, we have (4,4) (4,3) (3,4) 9 9 18R R R≤ + = + = , 
while the diagram below guarantees that (4, 4) 17R > . 
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v9 v10

v8

v7

v6

v5

v4

v3

v2
v1

v17

v16

v15

v14

v13

v12

v11

 
In the figure, iv  and jv  are adjacent if and only if {1, 2, 4, 8, 9,13,15,16}i j− ∈ . 

Q.E.D. 

 

Here we shall not discuss the other exact values of ( , )R p q . The table below lists some known 
values or upper and lower bounds of some ( , )R p q : 

 

   q 

 p 
3 4 5 6 7 8 9 10 11 12 

3 6 9 14 18 23 28 36 
40 

43 

46 

51 

51 

60 

4  18 25 
35 

41 

49 

61 

53 

84 

69 

115 

80 

149 

96 

191 

106 

238 

5   
43 

49 

58 

87 

80 

143 

95 

216 

114 

316 

 

442 
  

6    
102 

165 

 

298 

 

495 

 

780 

 

1171 
  

 

¾ In the table, double-underlined numbers are exact values, and the upper and lower bounds are 
inclusive. 
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‘Suppose an evil alien would tell mankind “Either you tell me [the value of R(5,5)] or I will 
exterminate the human race.”… It would be best in this case to try to compute it, both by 
mathematicians and with a computer. 

If he would ask [for the value of R(6,6)], the best thing would be to destroy him before he 
destroys us, because we couldn’t [determine R(6,6)].’ 

—Erdös 

 

 

Exercises 

 

1. Prove that for any integers , 2p q ≥  we have 2
1( , ) p q

pR p q C + −
−≤ . (This is known as the 

Erdös-Szekeres upper bound.) 

Use this result to prove that 
14( , )
1

p

R p p
p

−

≤
−

. This upper bound was kept for 50 years until 

the Czech mathematician V. Rödl and later the Danish mathematician A. Thomason improved 
it to 

2 2
1

3
( , )

1

p
pA C

R p p
p

−
−×

≤
−

 

where A is a positive constant, in 1986 and 1988 respectively. 

 

2. Prove that for 3p ≥  we have 2( , ) 2
p

R p p > . In 1975 Spencer even proved that 

22( , ) (1) 2
p

R p p o p
e

 
> +  
 

. 

 Here o(1) is a function of p which converges to zero as p tends to infinity. 

 

 


