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 The only NMR-accessible nuclides of many chemically important elements, 
e.g., 17O, 23Na, and 27Al, are quadrupolar with half-integer spin (i.e., I = 3/2, 5/2).  
The ability of NMR to provide information about the local environment of such 
nuclei in the solid state has been severely limited as a consequence of second-order 
quadrupolar broadening, which is not completely removed by conventional magic-
angle spinning (MAS).  This broadening is typically of the order of kilohertz and 
usually obscures any chemical shift information.  In early 1995, Frydman and 
Harwood demonstrated that high resolution can be achieved in NMR spectra of half-
integer quadrupolar nuclei in the solid state by performing a two-dimensional 
experiment, referred to as the multiple-quantum MAS, or MQMAS, experiment, in 
which multiple- and single-quantum coherences are correlated in the presence of 
MAS.  This new NMR experiment is investigated in detail in this thesis. 
 
 To date, most MQMAS experiments have been performed in such a way that, 
to obtain an NMR spectrum displaying only isotropic shifts (both chemical and 
second-order quadrupolar), it is necessary to apply a shearing transformation to the 
two-dimensional data set.  It is shown that shearing can result in an unwelcome 
distortion of the two-dimensional lineshape, and alternative MQMAS experiments 
are presented in which both multiple- and single-quantum evolution occurs during 
the t1 interval of the two-dimensional NMR experiment.  As well as avoiding the 
requirement for a shearing transformation, the amount of data processing necessary 
to achieve the optimum sensitivity is considerably reduced for these "split-t1" 
experiments.  Furthermore, in certain important cases, the sensitivity is expected 
theoretically and demonstrated experimentally to be better for the split-t1 approach. 
 
 The MQMAS experiment is applied to two problems of current chemical 
interest.  Firstly, high-resolution 27Al MQMAS spectra are obtained for two 
molecular sieves which undergo a topotactic phase transformation at elevated 
temperature.  Secondly, an 17O MQMAS spectrum of the synthesised geologically-
interesting mineral forsterite is presented, and the potential for providing 
information about water incorporation in the earth's mantle is discussed. 
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Chapter 1 
 
 
Introduction 
 
 
 Since the first reported demonstration in the bulk phase in 1946 [1, 2], nuclear 

magnetic resonance (NMR) has developed into one of the most widely used methods 

for the determination of structure and the study of dynamics.  For most liquid 

samples, NMR lineshapes are inherently narrow as a consequence of rapid molecular 

motion.  However, for powdered solids, where such isotropic motion does not occur, 

lineshapes are normally at least three orders of magnitude broader.  The problem in 

solid-state NMR spectra is not a lack of information, but rather that there is so much 

information that the overall result is a broad and often featureless lineshape.  The 

history of solid-state NMR has, therefore, been dominated by the development of 

experimental methods for removing some or all broadening mechanisms, such that 

meaningful spectra result. 

 

 Line-narrowing methods have sought to mimic how molecular motion in 

liquids introduces a time-dependence to the anisotropic interactions by either 

physically rotating the sample or performing rotations in spin space using 

radiofrequency pulses.  The first significant method to be developed was that of 

magic-angle spinning (MAS) in 1958 [3-5], in which the sample is physically rotated 

at an angle of 54.74° to the B0 magnetic field.  Successful narrowing was achieved for 

small dipolar couplings, for example between 19F nuclei in CaF2 [5], and also where 

the dominant broadening mechanism was a heteronuclear dipolar coupling or the 

chemical shift anisotropy (CSA).  However, it was found that MAS was not so 

effective for a homonuclear dipolar broadening larger than the spinning speed.  This 

represented a major limitation since the most problematic broadening is that due to 
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the homonuclear 1H-1H dipolar coupling, the strength of which is usually greater 

than even the maximum spinning speeds achievable today (~ 35 kHz).   

 

 As a result of the inability of MAS to remove large dipolar couplings, 

attention turned to methods involving averaging over spin, rather than spatial, 

parameters.  In particular, the aim was to remove homonuclear dipolar broadenings 

but retain the CSA.  In 1965, Lee and Goldberg presented a method [6] in which 

irradiation took place at the magic angle in the rotating frame, i.e., 

Ω/ω1 = tan(54.74°), where Ω is the resonance offset and ω1 is the nutation frequency 

of the pulse (see Chapter 4).  Such magic angle irradiation averages the homonuclear 

dipolar coupling, to a first-order approximation, to zero, while the CSA and the 

heteronuclear dipolar coupling are only scaled by √3.   

 

 In 1968, Waugh and co-workers presented the first of a series of multiple-

pulse train methods, consisting of regularly spaced cycles of on-resonance 90° pulses 

about the +x, +y, –x, and –y axes of the rotating frame [7, 8].  The initial four-pulse 

sequence, referred to as the WAHUHA experiment, averages the homonuclear 

dipolar coupling, up to a second-order approximation, to zero.  The understanding 

of these experiments was aided by the concept of an average Hamiltonian [8], which 

enabled the development of extended sequences which were designed to remove 

higher-order dipolar-broadening terms, e.g., the MREV-8 [9-11], BR-24 [12], and 

BLEW-48 [13] methods.   

 

 The demonstration by Pines et al. in 1972 that the signal due to a dilute spin, 

e.g. 13C, could be enhanced by cross polarisation (CP) [14-16] from an abundant spin, 

e.g. 1H, led to the development of CP MAS NMR [17-20].  The combination of proton 

decoupling [21-22] to remove broadening due to the heteronuclear 1H-13C dipolar 

coupling and MAS to average out the CSA, together with the CP signal 

enhancement, means that high-resolution 13C spectra can be routinely obtained at 

natural abundance [23].   
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 In 1977, Gerstein et al. showed that high-resolution 1H spectra could be 

achieved by combined rotation and multiple-pulse spectroscopy (CRAMPS) [24, 25], 

in which multiple-pulse trains to remove the homonuclear dipolar coupling are 

synchronised with MAS to remove CSA.  Unfortunately, CRAMPS has proved to be 

very sensitive to the missetting of experimental parameters, although, recently, a 

technically less-demanding pulse sequence has been proposed which is applicable at 

the very fast MAS speeds currently attainable [26]. 

 

 The above discussion has focused on line-narrowing methods for spin I = 1/2 

nuclei.  However, the only NMR-accessible nuclei of many elements are quadrupolar 

with half-integer spin.  For example, metals such as sodium and aluminium (23Na 

and 27Al are spin I = 3/2 and I = 5/2, respectively) are constituents of a wide range 

of industrially important materials, such as glasses and molecular sieves, while the 

spin I = 5/2 nucleus 17O is the only nuclide with non-zero nuclear spin of the 

element oxygen, which as well as being ubiquitous in nature is present in an 

enormous range of inorganic compounds.  The success of MAS as a line-narrowing 

method for spin I = 1/2 nuclei has encouraged its application to half-integer 

quadrupolar nuclei.  The results, however, have been generally disappointing since 

significant residual second-order quadrupolar broadening of the dominant central 

transition remains [27, 28].  Although improved narrowing can be achieved by 

changing the rotor angle in variable-angle spinning (VAS) experiments [29, 30], the 

attainable resolution is still poor. 

 

 In 1988, two methods for the removal of second-order quadrupolar 

broadening were presented, namely the double rotation (DOR) and dynamic angle 

spinning (DAS) techniques [31-39].  In both methods, line narrowing is achieved by 

sample rotation about two axes, either simultaneously (DOR) or sequentially (DAS).  

Considerable new structural information has been obtained using DOR and DAS, in 

particular for amorphous materials such as glasses, where the absence of long-range 
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order means that X-ray diffraction is unsuitable as a method for structure 

determination.  For example, Farnan et al. [37] have presented 17O DAS spectra of 

silicate glasses in which bridging and non-bridging oxygens can be distinguished.  

By analysing the observed distributions of quadrupolar and chemical shift 

parameters, valuable information on intermediate-range order within the glasses 

was obtained.   

 

 Although the DOR and DAS techniques are able to remove second-order 

quadrupolar broadening, the technical complexity and other drawbacks of the 

experiments has meant that their use has not become widespread.  In early 1995, 

Frydman and Harwood demonstrated that sample rotation about two different axes 

is not necessary. Instead, second-order quadrupolar broadening can be removed by 

performing a two-dimensional experiment in which multiple- and single-quantum 

coherences are correlated in the presence of MAS [40].  This multiple-quantum 

magic-angle spinning (MQMAS) experiment has generated much interest in the 

NMR community and beyond [41-78].  By way of example, Fig. 1.1 (overleaf) shows 

that the narrowing achieved by the MQMAS experiment, as compared to normal 

MAS, means that the two sodium sites in an approximately equal mixture of sodium 

oxalate and sodium sulphate are clearly resolved.   

 

 This thesis presents a detailed description of all aspects of the MQMAS 

experiment.  Chapter 2 introduces the fundamentals which provide the framework 

for the discussion in the later chapters.  A familiarity with the NMR phenomenon 

and the general features of the Fourier transform approach (for example, as 

described in basic texts [79, 80]) is assumed.  Firstly, the effect of the quadrupolar 

coupling on the energy levels of a quadrupolar nucleus is introduced.  This is 

followed by a description of the density operator formalism, by means of which 

complex multiple-pulse experiments can be understood.  The penultimate section of 

the chapter then discusses the Fourier transformation of one- and two-dimensional 

data sets and the appearance of the resultant lineshapes.  Finally, the NMR 
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a

b

 
 
Figure 1.1.  23Na (105.8 MHz) (a) MAS and (b) isotropic MQMAS spectra of an approximately equal mixture 

of sodium oxalate (BDH) and sodium sulphate (East Anglia Chemicals).  In both cases, the displayed spectral 

width (cut down from 20 kHz) equals 12.5 kHz.  In (a), the following experimental conditions were used: 

16 transients (consisting of 512 points) were averaged, the relaxation interval was 1 s, a radiofrequency pulse of 

duration 1.4 µs was used, and the spinning speed was 5.3 kHz.  Experimental parameters for (b) are given in 

Fig. 6.8.  It is evident that the two sites, whose second-order quadrupolar-broadened spectra overlap in (a) are 

clearly resolved in (b).  The peaks on either side of the central peaks in both spectra are spinning sidebands. 

 

spectrometers used to acquire the experimental results presented in the thesis are 

described. 

 

 In Chapter 3, the detailed mathematical derivation of the perturbation of the 

energy levels of a half-integer quadrupolar nucleus by the quadrupolar coupling is 

presented.  The calculated expressions are then used, together with simulated and 

experimental spectra, to illustrate the effect of sample rotation on the appearance of 
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quadrupolar-broadened spectra.  The final section of this chapter then describes the 

DAS and DOR experiments, before introducing the MQMAS experiment.  The 

optimisation of coherence transfer is integral to the success of the MQMAS 

experiment and forms the subject of Chapter 4.  In particular, the problem of 

achieving uniform excitation over the whole powder pattern is considered. 

 

 Halfway through the thesis, the position has been reached where the different 

approaches for the implementation of the MQMAS experiment can be presented.  In 

the original MQMAS experiment of Frydman and Harwood, phase cycling is used to 

select a coherence transfer pathway which gives rise to two-dimensional "phase-

twist" lineshapes.  However, Chapter 5 shows that the original experiment can be 

easily modified to ensure that pure absorption-mode lineshapes are obtained.  Two 

different approaches are described.  Firstly, the echo and antiecho pathways are 

combined with equal amplitude to yield a signal which is amplitude-modulated with 

respect to t1; a "hypercomplex" two-dimensional Fourier transform then gives rise to 

pure absorption-mode lineshapes.  Alternatively, if a spin echo is appended onto the 

original experiment, pure absorption-mode lineshapes can be obtained as a 

consequence of the properties of whole echoes.   

 

 In the experiments described in Chapter 5, the inhomogeneous quadrupolar 

broadening is spread out along a "ridge" which, for I = 3/2 nuclei, has a slope of –7/9 

with respect to the F2 axis.  To obtain a spectrum displaying only isotropic shifts, it is 

necessary to perform a shearing transformation such that the ridges appear parallel 

to the F2 axis.  However, Chapter 6 shows that this shearing transformation can 

cause unwelcome distortions in the two-dimensional lineshape, and alternative 

experiments in which both multiple- and single-quantum evolution occurs during t1 

are presented.  In these experiments, the anisotropic second-order quadrupolar 

broadening is fully refocused in t1 and, hence, undistorted inhomogeneously-

broadened ridges appear parallel to the F2 axis without the need for any shearing 
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transformation.  The "split-t1" experiments are then compared, in terms of relative 

sensitivity and ease of processing, with the experiments presented in Chapter 5. 

 

 In only two and a half years, a number of applications of the MQMAS 

experiment to novel samples have been published.  Chapter 7 summarises the recent 

developments and describes, as illustrations of the potential of the technique, the 

application of the MQMAS experiment to two problems of current chemical interest.  

Firstly, the topotactic phase transformation between two molecular sieves is 

investigated using 27Al MQMAS NMR.  Secondly, an 17O MQMAS spectrum of the 

synthesised mineral forsterite is presented, and the potential for providing 

information about water incorporation in the earth's mantle is discussed. 
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Chapter 2 
 
 
Fundamentals 
 
 
2.1 The Quadrupolar Coupling  

 

 NMR spectra of nuclei with spin I ≥ 1 are dominated by the interaction of the 

nuclear quadrupole moment Q with the electric field gradient at the nucleus.  This 

quadrupolar coupling is very strong, often of the order of megahertz, and causes 

both large quadrupolar splittings in spectra and efficient quadrupolar relaxation.  

Quadrupolar relaxation typically gives rise to homogeneous linewidths (i.e., ignoring 

the broadening associated with the quadrupolar splitting) which are significantly 

larger than those encountered in high-resolution 1H NMR.  However, it is the 

inhomogeneous broadening associated with the quadrupolar splitting which usually 

dominates the appearance of solid-state spectra.  This section introduces this effect of 

the quadrupolar coupling on the energy levels of quadrupolar nuclei, with a full 

mathematical description being given in Chapter 3. 

 

 Consider Fig. 2.1 (overleaf) which presents energy level diagrams for spin I = 

1 and I = 3/2.  As shown in the left-hand side of Figs. 2.1a and 2.1b, the degeneracy 

of the energy levels is lifted by the Zeeman interaction.  This gives rise to, in the 

absence of a quadrupolar splitting, two (I = 1) or three (I = 3/2) degenerate ∆mI = ±1 

transitions having frequency ω0 rad s–1, where ω0 is the Larmor frequency.  The 

effect of the quadrupolar coupling on the Zeeman energy levels, can be calculated, to 

successive degrees of approximation, using perturbation theory (this calculation is 

presented in detail in Chapter 3 for spin  
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Figure 2.1.  (a), (b) The perturbation, to a first-order approximation, of the energy levels of a spin (a) I = 1 and 

(b) I = 3/2 nucleus by the quadrupolar coupling.  The energy levels are labelled according to the mI quantum 

number, and energies are given in units of rad s–1. (c), (d) Simulated spin (c) I = 1 and (d) I = 3/2 spectra for a 

powder distribution of ωQ, where ωQ   
PAS

 /2π equals 4 and 2 kHz, respectively, and the spectral width is 12.5 kHz.  

Axial symmetry is assumed. 
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I = 3/2).  When the Zeeman interaction is much greater than the quadrupolar 

coupling, a first-order approximation suffices.  In this case, the ∆mI = ±1 transitions 

have frequencies ω0 – ωQ and ω0 + ωQ (I = 1), and ω0 – 2ωQ, ω0, and ω0 + 2ωQ 

(I = 3/2), where ωQ is the quadrupolar splitting parameter.   

 

 Comparing Figs. 2.1a and 2.1b, a clear difference is observed, namely, for 

I = 3/2 nuclei, but not for I = 1 nuclei, there is a central transition, whose frequency, 

to a first-order approximation, does not depend on ωQ.  In a powdered sample, there 

is a range of ωQ from zero to ωQ   
PAS (see Chapter 3) . This gives rise to characteristic 

spin I = 1 and I = 3/2 first-order powder patterns, as shown in Figs. 2.1c and 2.1d, 

respectively.  In particular, the presence of a dominant central transition, for the spin 

I = 3/2 case, is clearly seen in Fig. 2.1d.  This difference between integer and half-

integer quadrupolar nuclei means that very different strategies are required for 

handling inhomogeneous broadening in the two cases, and it is solely the latter case 

which is considered in this thesis.   

 

 The simulated spectrum in Fig. 2.1d corresponds to the case where the 

quadrupolar splitting is very small, as for example where there is significant 

motional averaging, e.g., in heterogeneous biological systems [81].  However, in a 

powdered solid, the quadrupolar splitting is normally of the order of megahertz.  

This has two important consequences on the observed spectra.  Firstly, the satellite 

transitions (mI = 3/2 ↔ mI = 1/2 and mI = –3/2 ↔ mI = –1/2) are typically 

inhomogeneously broadened to such an extent that they are lost in the baseline, and 

only the central transition is observed.  Secondly, as shown in, for example, Fig. 1.1a, 

a broadening of the central transition by the quadrupolar coupling is observed.  In 

terms of perturbation theory, the observed behaviour can be explained by the 

inclusion of a second-order approximation (see Chapter 3).   

 

 Returning to the spin I = 3/2 first-order energy-level diagram of Fig. 2.1b, 

closer examination reveals that, in addition to the central transition, the triple-



 
11

quantum transition (mI = 3/2 ↔ mI = –3/2) also does not, to a first-order 

approximation, depend on ωQ.  Indeed, it is found that, for half-integer quadrupolar 

nuclei, all symmetric (mI = +s ↔ mI = –s) transitions do not, to a first-order 

approximation, depend on ωQ.  This important fact is exploited in the removal of 

second-order inhomogeneous quadrupolar broadening by the MQMAS experiment. 

 

2.2 The Density Operator Formalism 

 

 This section introduces the density operator formalism [82], which offers a 

rigorous yet flexible approach for the understanding of complex multiple-pulse 

NMR experiments.  An NMR sample consists of a collection, or ensemble, of 

independent spin systems, where each spin system is described quantum-

mechanically by a wavefunction ψ(t).  Consider an expansion of ψ(t) in a complete 

set of orthonormal basis functions,  s〉 , i.e., 

 

 ψ(t)  =  Σ cs(t)  s〉  , (2.1) 
  s 
 

where cs(t) are time-dependent coefficients.  The expectation value of an observable, 

corresponding to the operator A, is then given by  

 

 < A >  =  Σ cs(t) cr(t)* 〈r A s〉  . (2.2) 
                                                                s, r 
 

The interesting feature of Eq. (2.2) is that the expectation value of any observable 

always depends on the same products, cs(t) cr(t)*.  This property leads to the 

definition of the density operator σ(t), whose matrix representation, termed the 

density matrix, has elements, σsr(t), given by 
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σsr(t)  =  〈s σ(t)  r〉 

                       _________ 

 =  cs(t) cr(t)*, (2.3) 

 

where the overbar denotes an ensemble average.   

 

 It is shown in Appendix A that the expectation value of an observable 

corresponding to the operator A is given simply by the trace (the sum of the diagonal 

elements) of the product of the matrix representation of the operator and the density 

matrix, i.e.,  

 

 < A >  =  Tr{ A σ(t) }  =  Tr{ σ(t) A } . (2.4) 

 

An example of the application of Eq. (2.4) relates to the calculation of the observable 

signal in an NMR experiment.  The detected x and y components of the 

magnetisation vector, Mx and My, are proportional to the x and y components of the 

spin angular momentum, Ix and Iy (the matrix representations of Ix and Iy are given 

in Appendix B).  Therefore, the real and imaginary parts of the free induction decay 

correspond to < Ix > and < Iy >, respectively: 

 

< Ix >  =  Tr{ Ix  σ(t) }  < Iy >  =  Tr{ Iy  σ(t) } .  (2.5) 

 

 Appendix A further presents the derivation, starting from the time-dependent 

Schrödinger equation, of an expression describing the time evolution of the density 

operator.  This expression is referred to as the Liouville-von Neumann equation, and 

is given as:  

 

 dσ(t)/dt  =  –i [ H(t), σ(t) ] , (2.6) 
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where H(t) is the Hamiltonian of the system.  If the Hamiltonian is time-independent 

or can be made so by a judicious choice of reference frame, Eq. (2.6) can be solved to 

give 

 

 σ(t)  =  exp{ –i H t } σ(0) exp{ +i H t } , (2.7) 

 

where H is now a time-independent Hamiltonian. 

 

 The above discussion has introduced density operator theory in terms of a 

general set of orthonormal basis functions.  To follow a specific NMR experiment, a 

suitable choice of basis set must be made.  In this thesis, the set of eigenstates, 

 s = mI〉 , of the Zeeman Hamiltonian, HZ = ω0 Iz, is used, i.e.,  

 

 HZ  s = mI〉   =  mI ω0  s = mI〉  . (2.8) 

 

(The matrix representations of the z-component of the spin angular momentum, Iz, 

are given in Appendix B.)  The choice of this basis set lies in the clear physical 

significance of the individual elements.  By way of illustration, the density matrix for 

a spin I = 3/2 nucleus has the form: 

 

 

 σ(t)  =  







σ11(t) σ12(t) σ13(t) σ14(t)

σ21(t) σ22(t) σ23(t) σ24(t)

σ31(t) σ32(t) σ33(t) σ34(t)

σ41(t) σ42(t) σ43(t) σ44(t)

   . (2.9) 

 

 

While the diagonal elements, σ11(t), σ22(t), σ33(t), and σ44(t), correspond to the 

relative populations of the energy levels, the off-diagonal elements correspond to 

coherent superpositions of eigenstates, or simply coherences.  For example, at 

thermal equilibrium, σ(t) is proportional to Iz [82], while the observable central and 

satellite transition single-quantum coherences are represented by σ23(t) and σ32(t), 

and σ12(t), σ21(t), σ34(t), and σ43(t), respectively.  The other elements then represent 
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multiple-quantum coherences, for example σ14(t) and σ41(t) correspond to p = +3 

and p = –3 coherences, respectively.  It should be noted that the density operator, by 

definition, is Hermitian, i.e., 〈r σ(t)  s〉 = 〈s σ(t)  r〉*, and therefore coherences of order 

+p and –p are always present together. 

 

2.3 NMR Lineshapes 

 

 In two-dimensional NMR, the design of the experiment affects both the way 

in which time-domain data sets must be processed, and the appearance of the 

lineshapes in the resulting spectra [83].  The purpose of this section is to provide an 

understanding of these considerations, which are very important in the context of the 

discussion in Chapters 5 and 6 of the different approaches for the implementation of 

the MQMAS experiment.  To begin with, lineshapes resulting from normal one-

dimensional NMR experiments are considered. 

 

2.3.1 One-Dimensional Experiments 

 

 All modern NMR spectrometers employ quadrature detection to ensure that 

the sense of precession in the rotating frame can be determined.  In the true complex 

approach, the real and imaginary parts of the free induction decay are 

simultaneously sampled at intervals of 1/SW, where SW is the spectral width in 

hertz, using two detectors with orthogonal reference phases.  A free induction decay, 

consisting of a single resonance, can then be described, for t ≥ 0, as  

 

 f(t)  =  exp{ i Ω t } exp{ –R t } , (2.10) 

 

where Ω is the resonance offset (in rad s–1), and R is a constant describing the 

transverse relaxation rate. 
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 To obtain the frequency-domain spectrum, F(ω), a complex Fourier transform 

is then performed: 

 
 +∞ 
 F(ω)  =  ∫  f(t) exp{ –i ω t } dt , (2.11) 
 – ∞ 

 

i.e., 

 
 +∞ 
 F(ω)  =  ∫  exp{ – ( i ( ω – Ω ) + R ) t } dt . (2.12) 
 0 

 

Performing the integration in Eq. (2.12) yields 

 
 F(ω)  =  AL(ω) – i DL(ω) , (2.13) 

 

where AL(ω) and DL(ω) correspond to Lorentzian absorptive and dispersive 

lineshapes, respectively: 

 

 AL(ω)  =  
R

R2 + (ω – Ω)2  (2.14a) 

 

 DL(ω)  =  
ω – Ω

R2 + (ω – Ω)2  . (2.14b) 

 

These lineshapes are plotted in Fig. 2.2a (overleaf).  Considering the absorptive 

Lorentzian line, it can be shown, using Eq. (2.14a) that the half width at half 

maximum height, ∆ω1/2, equals R rad s–1, or, in units of hertz, ∆υ1/2 equals R/(2π). 

 

 In the context of solid-state NMR, as a consequence of inhomogeneous 

broadening, it is often found that the observed NMR lineshapes more closely 

resemble Gaussian, rather than Lorentzian, lines.  Such absorptive and dispersive 
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Gaussian lineshapes are plotted in Fig. 2.2b.  From a comparison of the Lorentzian 

and Gaussian absorptive lineshapes, it is clear that the Gaussian lineshape is 

significantly narrower at the base.  Mathematically, absorptive and dispersive 

Gaussian lineshapes are described by 

 

a R I

b R I

 
Figure 2.2.  The real (R) – absorptive – and imaginary (I) – dispersive – parts of (a) Lorentzian and (b) Gaussian 

one-dimensional lineshapes.  In both cases, ∆υ1/2 equals 125 Hz, while the spectral width equals 12.5 kHz. 
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 AG(ω)  =  exp 






–(ω – Ω)2

2 ∆2   (2.15a) 

 

 DG(ω)  =  exp 






–(ω – Ω)2

2 ∆2   erf 





(ω – Ω)
∆ 2 √2   , (2.15b) 

 

where ∆2 is referred to as the second moment (in rad s–1), and erf{z} is the error 

function: 

 
 z 
 erf{z}  =  

2
√π   ∫  exp(–X2) dX . (2.16) 

 0 

 

For an absorptive Gaussian line, ∆ω1/2 equals ∆ √(2 ln2) rad s–1. 

 

 An alternative approach to obtaining quadrature detection is the so-called 

Redfield method [84, 85], in which only one detector samples points at an interval of 

1/(2 SW), with the phase of detection being incremented by 90° for successive points.  

(This is the method used by the Bruker spectrometers, on which the experimental 

results presented in this thesis were recorded.)  The resulting free induction decay is 

then of the form 

 

 f(t)  =  exp{ i Ω t } exp{ –R t } exp{ –i (2π) (SW/2) t } 

 

 =  [ cos{ Ω t } cos{ (2π) (SW/2) t } + sin{ Ω t } sin{ (2π) (SW/2) t } ] exp{ –R t }  

 

 =  cos{ ( Ω – (2π) (SW/2) ) t } exp{ –R t } , (2.17) 

 

where the 2π factor is necessary since SW is in units of hertz.  The Fourier transform 

of a cosine-modulated function gives rise to a spectrum which is symmetric about 

zero frequency.  However, it is apparent from Eq. (2.17) that the net effect of  
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incrementing the phase of detection is a shift of all resonance frequencies by SW/2.  

Therefore, although there is no sign discrimination in the spectrum, resonances 

which lie on either side of the receiver can still be distinguished.  Remembering that 

the spectral width has been doubled, the same spectrum as would result from true 

complex acquisition is obtained by discarding one of the two symmetric halves of the 

spectrum.   

 

2.3.2 Two-Dimensional Experiments 

 

 The pulse sequence and coherence transfer pathway diagrams [86] for two 

simple two-dimensional NMR experiments are shown in Fig. 2.3 (overleaf).  (The 

desired coherence transfer pathways can be selected experimentally by the technique 

of phase cycling [86], the rules for which are given in Appendix H, along with phase 

cycles for all the MQMAS experiments described in the thesis.)  Considering first the 

experiment in Fig. 2.3a, where only one pathway is selected, the time-domain data 

set, assuming only evolution under a resonance offset, Ω, is of the form 

 

 s(t1, t2)  =  exp{ –i Ω t1 } exp{ –R t1 } exp{ +i Ω t2 } exp{ –R t2 } . (2.18) 

 

If a complex Fourier transform is performed in the t2 dimension, Eq. (2.18) becomes 

 

 s(t1, ω2)  =  exp{ –i Ω t1 } exp{ –R t1 } [ A2{ +Ω } – i D2{ +Ω } ] , (2.19) 

 

where A2{Ω} and D2{Ω} represent one-dimensional absorptive and dispersive 

Lorentzian lineshapes centred at a frequency Ω in the ω2 frequency domain.   

 

 Inspection of Eq. (2.19) reveals that the phase of the lineshape in the ω2 

dimension varies as a function of t1, as shown in Fig. 2.4 (on page 20).  Such a data  
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set is then described as being phase-modulated with respect to t1.  If a complex Fourier 

transform is subsequently performed in the t1 dimension, the resulting frequency-

domain spectrum is given by 

 

 s(ω1, ω2)  =  [ A1{ –Ω } – i D1{ –Ω } ] × [ A2{ +Ω } – i D2{ +Ω } ]  

 

 =  ( A1{ –Ω } A2{ +Ω } – D1{ –Ω } D2{ +Ω } )  

 

 – i ( A1{ –Ω } D2{ +Ω } + D1{ –Ω } A2{ +Ω } ) .    (2.20) 

 

p = 0

+1

–1

t1

φ1 φ2

t2a

p = 0

+1

–1

t1

φ1 φ2

t2b

 
 
Figure 2.3.  Pulse sequences and coherence transfer pathway diagrams for two simple two-dimensional 

experiments.  The resulting signal is phase-modulated and amplitude-modulated with respect to t1 in (a) and (b), 

respectively. 
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R I

R I

R I

R I

R I

t1

 

 

Figure 2.4.  The real (R) and imaginary (I) parts of one-dimensional spectra resulting from a complex Fourier 

transform with respect to t2 of selected rows, with increasing t1 as indicated, of a two-dimensional time-domain 

data set simulated for a single resonance with a small resonance offset, using the experiment of Fig. 2.3a.  It can 

be seen that the spectra are phase-modulated with respect to t1. 
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a b

c d

e f

 
 

Figure 2.5.  (a)-(b) Contour plots of the (a) real and (b) imaginary parts of the two-dimensional spectrum 

obtained by a complex two-dimensional Fourier transform of a data set, for an on-resonance signal, resulting 

from the phase-modulated experiment of Fig. 2.3a.  The mathematical form of the lineshapes is given by 

Eq. (2.20).  The phase-twisted character of the Lorentzian lineshapes is apparent.  (c)-(f) Contour plots of the 

four components of the two-dimensional spectrum obtained by a hypercomplex two-dimensional Fourier 

transform of a data set, for an on-resonance signal, resulting from the amplitude-modulated experiment of 

Fig. 2.3b.  The spectra in (c) and (e), and (d) and (f) correspond to the deletion, after Fourier transform with 

respect to t2, of the real and imaginary components, respectively.  The Lorentzian lineshapes are pure 

absorption-mode in (c), and dispersion-mode in ω2, in ω1, and in both dimensions in (d), (e) and (f), 

respectively.  In all plots, ∆υ1/2 equals 150 Hz, the spectral width in F1 and F2 equals 10 kHz, positive and 

negative contours are shown as solid and dashed lines, and contour levels correspond to 4, 8, 16, 32 and 64% of 

the maximum height. 
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The contour plots of the real and imaginary parts of the spectrum described by 

Eq. (2.20) are presented in Figs. 2.5a and 2.5b (previous page), respectively.  It is clear 

that both components contain a mixture of absorptive and dispersive components.  

Such phase-twisted two-dimensional lineshapes are very undesirable, since the large 

"tails" due to the dispersive contribution mean that the resolution of different 

resonances is greatly reduced. 

 

 In the experiment of Fig. 2.3b, both p = +1 and p = –1 coherences are allowed 

to evolve during t1.  If the pathways are combined equally, the resulting time-

domain data set is then described by: 

 

s(t1, t2)  =  ( exp{ –i Ω t1 } + exp{ i Ω t1 } ) exp{ –R t1 } exp{ +i Ω t2 } exp{ –R t2 }  

 

 =  2 cos{ Ω t1 } exp{ –R t1 } exp{ +i Ω t2 } exp{ –R t2 } . (2.21) 

 

Complex Fourier transformation in the t2 dimension then yields 

 

 s(t1, ω2)  =  2 cos{ Ω t1 } exp{ –R t1 } [ A2{ +Ω } – i D2{ +Ω } ] . (2.22) 

 

In contrast to Eq. (2.19), inspection of Eq. (2.22) reveals that varying t1 changes the 

amplitude, rather than the phase, of the lineshape in the ω2 dimension, as shown in 

Fig. 2.6 (overleaf).  Such a data set is, therefore, described as being amplitude-

modulated with respect to t1.  To obtain pure absorption-mode lineshapes, it is 

necessary to separate the real and imaginary parts of Eq. (2.22) before performing the 

complex Fourier transform in the t1 dimension.  This approach is referred to as a 

hypercomplex two-dimensional Fourier transform to distinguish it from the complex 

two-dimensional Fourier transform which gave rise to Eq. (2.20). Considering only 

the real part, Eq. (2.22) becomes 
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R I

R I

R I

R I

R I

t1

 

 

Figure 2.6.  The real (R) and imaginary (I) parts of one-dimensional spectra resulting from a complex Fourier 

transform with respect to t2 of selected rows, with increasing t1 as indicated, of a two-dimensional time-domain 

data set simulated for a single resonance with a small resonance offset, using the experiment of Fig. 2.3b.  It can 

be seen that the spectra are amplitude-modulated with respect to t1. 



 
24

 s(t1, ω2)  =  2 cos{ Ω t1 } exp{ –R t1 } A2{ +Ω }  

 

 =  ( exp{ –i Ω t1 } + exp{ i Ω t1 } ) exp{ –R t1 } A2{ +Ω } . (2.23) 

 

Complex Fourier transformation in the t1 dimension then yields 

 

s(ω1, ω2)  =  ( A1{ –Ω } A2{ –Ω } + A1{ +Ω } A2{ +Ω } )  

 

  – i ( D1{ –Ω } A2{+Ω } + D1{ +Ω } A2{ +Ω } ) . (2.24) 

 

Figures 2.5c and 2.5e present contour plots of the real and imaginary parts, 

respectively, of the spectrum described by Eq. (2.24) for an on-resonance signal.  

Contour plots of the spectra obtained by retaining the imaginary part of Eq. (2.22) are 

presented in Figs. 2.5d and 2.5f.  The two-dimensional Lorentzian lineshapes are 

pure absorption-mode in Fig. 2.5c, and dispersion-mode in ω2, in ω1, and in both 

dimensions in Figs. 2.5d, 2.5e, and 2.5f, respectively.  From a comparison of Figs. 2.5a 

and 2.5c, it is clear why pure absorption-mode lineshapes are preferred.   

 

 For comparison, Fig. 2.7 (overleaf) presents contour plots of the two-

dimensional pure absorption-mode Lorentzian and Gaussian lineshapes.  It can be 

seen that while the Lorentzian lineshape is star-shaped with 'tails' parallel to the ω1 

and ω2 axes, the Gaussian lineshape exhibits circular contours [87]. 

 

 One apparent disadvantage of the amplitude-modulated experiment is that 

there is no sign discrimination in ω1 in the frequency-domain spectrum described by 

Eq. (2.24).  Sign discrimination can, however, be easily restored.  One approach, 

referred to as the States-Haberkorn-Ruben method [88], involves performing a 

second experiment in which the phase of the first pulse is incremented by 90°, with 

the result that the two pathways now subtract.  The signal is then sine modulated 

with respect to t1, i.e., 
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a

b

 
 

Figure 2.7.  Contour plots of two-dimensional pure absorption-mode (a) Lorentzian and (b) Gaussian 

lineshapes.  In both cases, ∆υ1/2 equals 150 Hz, the spectral width in both F1 and F2 is 2 kHz, and contour levels 

correspond to 4, 8, 16, 32 and 64% of the maximum peak height.   

 

 

 s(t1, t2)  =  2 sin{ Ω t1 } exp{ –R t1 } exp{ +i Ω t2 } exp{ –R t2 } . (2.25) 

 

Hypercomplex two-dimensional Fourier transformation of this data set yields, 

considering only the component containing pure absorption-mode lineshapes, 

 

 s(ω1, ω2)  =  ( A1{ –Ω } A2{ +Ω } – A1{ +Ω } A2{ +Ω } ) . (2.26) 
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It is then clear that sign discrimination in ω1 is easily restored by combining 

Eq. (2.26) with the real part of Eq. (2.24). 

 

 Alternatively, sign discrimination can be restored by the technique of Time 

Proportional Phase Increments (TPPI) [89].  This method involves only performing a 

single experiment, and is analogous to the Redfield method for achieving quadrature 

detection in F2.  The increment in t1 is halved to 1/(2 SW), and the phase of the first 

pulse (or group of pulses) is shifted, for each t1 increment, by π/(2|p|), where p 

corresponds to the order of coherence which evolves during t1.  TPPI has the effect of 

modulating a coherence of order p by exp{–i p φ}, where 

 

 φ  =  
π t1

2 |p| ∆t1
   =  

(2π) SW t1
2 |p|   . (2.27) 

 

Noting the dependence of the modulation on the sign of the coherence order, 

Eq. (2.23) becomes  

 

s(t1, ω2)  =  ( exp{ –i ( Ω + (2π) (SW/2) ) t1 } + exp{ i ( Ω + (2π) (SW/2) ) t1 } )  

 

 ∞  exp{ –R t1 } A2{ +Ω }   

 

   =  cos{ ( Ω + (2π) (SW/2) ) t1 }  exp{ –R t1 } A2{ +Ω } . (2.28) 

 

In an exactly analogous way to the Redfield method, the resultant frequency shift of 

SW/2 Hz, coupled with the doubling of the spectral width, means that sign 

discrimination in F1 is achieved by the TPPI method. 
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2.4 Instrumentation 

 

 Spectra presented in this thesis were recorded on Bruker MSL 500 

(St. Andrews), MSL 400 (Oxford), and AC 300 (Coventry) spectrometers, equipped 

with 11.8 T wide-bore, 9.4 T wide-bore, and 7.1 T standard-bore magnets, 

respectively.  A table of nuclei studied, listing the Larmor frequencies on the 

different spectrometers, is given in Appendix C.  The MSL 500 and MSL 400 

spectrometers are both equipped with 1 kW radiofrequency amplifiers, designed for 

NMR of solid samples, while the AC 300 spectrometer is equipped with a 300 W 

radiofrequency amplifier, intended for NMR of liquid samples.  The typical 

maximum radiofrequency field strengths obtained are given in Chapter 4.   

 

 Each spectrometer uses the same design of MAS apparatus [90], in which, to 

reduce frictional resistance, the cylindrical rotor is supported by double gas bearings.  

The rotor is caused to spin about its axis by drive gas which impinges 

perpendicularly onto flutes in the rotor cap.  Probes supporting rotors of 4 mm and 

7 mm diameter were used, with typical rotation speeds of approximately 8.5 kHz 

and 5 kHz, respectively.  The rotors and caps are made from zirconium oxide and 

Kel-F (polymerised FClC=CF2), respectively.   

 

 Except where otherwise stated, samples were obtained from commercial 

suppliers as indicated and used without further purification. 

 

 Fourier transformation and other processing were performed offline using 

software written by Paul Hodgkinson (a former D. Phil student in the Physical 

Chemistry Laboratory, Oxford).  In contour plots, positive and negative contours are 

shown as solid and dashed lines, and, except where otherwise stated, contour levels 

correspond to 4, 8, 16, 32 and 64% of the maximum peak height.   
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Chapter 3 
 
 
Second-Order  
 
Quadrupolar Broadening 
 
 
3.1 The Perturbation of the Energy Levels 

 

 The quadrupolar coupling and its effect on the NMR transitions of a half-

integer quadrupolar nucleus were introduced in the previous chapter.  The opening 

two sections of this chapter derive the mathematical expressions for the perturbation 

of the energy levels by the quadrupolar coupling, which lie behind the general 

results presented in Section 2.1.  These mathematical expressions are then used to 

explain the effect of sample rotation and other factors on the appearance of second-

order quadrupolar-broadened spectra. 

 

 Starting from classical electrostatic arguments, the Hamiltonian for the 

interaction of the nuclear quadrupole moment Q with a second-rank Cartesian 

tensor, V, representing the electric field gradient at the nucleus can be shown [91] to 

be equal to 

 

 H Q   
PAS   =  ωQ   

PAS  [ Iz2 – 
1
3  I ( I + 1 ) + 

η
3 ( Ix2 – Iy2 )  ] , (3.1) 

 

where PAS refers to the principal axis system of the electric field gradient, and the 

Hamiltonian is in units of rad s–1.  The quadrupolar coupling is therefore 

parameterised by two constants, the quadrupolar frequency, ωQ   
PAS , and the 
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asymmetry parameter, η, where 0 ≤ η ≤ 1.  The quadrupolar frequency is, in turn, 

equal to 

 

 ωQ   
PAS   =  

3 π CQ
2I ( 2I – 1 )  , (3.2) 

 

where CQ, the quadrupolar coupling constant, is in units of hertz and is given by 

 

 CQ  =  
e2 q Q

h   . (3.3) 

 

The electric field gradient, eq, and the asymmetry parameter, η, are defined as: 

 

 eq  =  Vzz (3.4a) 

 

 η  =  
Vxx – Vyy

Vzz
  , (3.4b) 

 

where Vxx, Vyy, and Vzz are the principal components of the Cartesian tensor V. 

 

 The calculation of the perturbation of the energy levels will now be presented 

for the simplest, spin I = 3/2, case.  The final results and an outline of the full 

derivation presented here have been published previously [32, 92].  The extension of 

the calculation to include a non-zero asymmetry parameter was carried out by 

Sharon Ashbrook [93]. 

 

 The first stage of the calculation involves a rotation from the principal axis 

system of the electric field gradient to the laboratory frame defined by the Zeeman 

Hamiltonian.  Such a transformation becomes much easier if Eq. (3.1) is re-expressed 

in terms of irreducible spherical tensor operators [94].  Using the matrix 

representations of Ix, Iy, and Iz given in Appendix B, the matrix form of the 

quadrupolar Hamiltonian is 
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 H Q   
PAS   =  ωQ   

PAS 











1 0

η
3 0

0 –1 0
η
3

η
3 0 –1 0

0
η
3 0 1

   . (3.5) 

 

 

 

It is then clear, from the matrix representations of the relevant tensor operators given 

in Appendix D, that Eq. (3.1) is equivalent to 

 

 H Q   
PAS   =  2 ωQ   

PAS  [ T2,0 + 
η
√6 ( T2,2 + T2,–2 )  ] . (3.6) 

 

 Tensor operators are particularly suitable for calculations involving axes 

transformations since their behaviour under rotation is well understood.  Formally, 

in the language of group theory, a tensor operator Tl,p transforms according to row p 

of the irreducible representation Dl of the full rotation group.  This leads to the result 

that, under a general rotation R(α, β, γ), where α, β, and γ are the Euler angles [95], 

the tensor operator Tl,p transforms [94] according to: 

 
   l 
 R(α, β, γ) Tl,p R(α, β, γ)–1  =  Σ  Dlp',p(α, β, γ) Tl,p' , (3.7) 
 p' = –l 

 

where the Wigner rotation matrix element, Dlp',p(α, β, γ), is defined [95]: 

 

 Dlp',p(α, β, γ)  =  dlp',p(β) exp{ – i ( α p' + γ p ) } . (3.8) 

 

The reduced rotation matrix elements, dlp',p(β), relevant to this calculation are given 

in Appendix E. 
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 If the transformation from the principal axis system to the laboratory frame is 

described by three Euler angles, specified here as ζ, θ, and φ, the laboratory-frame 

Hamiltonian is then, using Eqs. (3.6) and (3.7), given by 

 
                             2 

  HQ  =  2 ωQ   
PAS  Σ  [ D2p',0(ζ, θ, φ) + 

η
√6  { D2p',2(ζ, θ, φ) + D2p',–2(ζ, θ, φ) } ] T2,p' .    (3.9) 

                         p' = –2 

 

Expressing the tensor operators in matrix form, Eq. (3.9) becomes 

 

 

 HQ  =  ωQ   
PAS 







A  –B+   C+ 0

B– –A 0  C+

C– 0 –A  B+

0   C–  –B– A

   , (3.10) 

 

 

where 

 

 A  =  D20,0(ζ, θ, φ) + 
η
√6  { D20,2(ζ, θ, φ) + D20,–2(ζ, θ, φ) }  (3.11a) 

 

 B±  =  √2 [ D2±1,0(ζ, θ, φ) + 
η
√6  { D2±1,2(ζ, θ, φ) + D2±1,–2(ζ, θ, φ) } ] (3.11b) 

 

 C±  =  √2 [ D2±2,0(ζ, θ, φ) + 
η
√6  { D2±2,2(ζ, θ, φ) + D2±2,–2(ζ, θ, φ) } ] . (3.11c) 

 

At first sight, it appears that the quadrupolar Hamiltonian in Eq. (3.10) is not 

Hermitian.  However, if the Wigner rotation matrix elements in Eq. (3.11) are 

expanded according to Eq. (3.8), it is found that B+ = –(B–)* and C+ = (C–)*, where the 

asterix denotes the complex conjugate.  Therefore, the Hermiticity of the 

quadrupolar Hamiltonian is retained, as required. 

 

 The total Hamiltonian of the system, neglecting the contributions of other spin 

interactions, such as the CSA and homonuclear and heteronuclear dipolar couplings, 

is a combination of the Zeeman and quadrupolar Hamiltonians:   
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 H  =  HZ + HQ . (3.12) 

 

For nuclei for which the MQMAS experiment is applicable, the quadrupolar 

Hamiltonian is small compared to the Zeeman Hamiltonian and time-independent 

perturbation theory [96] can be used to calculate the quadrupolar contribution to the 

energy levels. 

 

 Consider the general case where the total Hamiltonian of the system, H, is a 

combination of two known time-independent Hamiltonians, H0 and Hpert.  If H0 

dominates Hpert, and the eigenstates,  s〉, and energies, E(0)|s>, of the Hamiltonian 

H0 are known, i.e., 

 

 H0  s〉   =  E(0)|s>  s〉  , (3.13) 

 

time-independent perturbation theory can be used.  The energy of an individual 

state, E|s>, is then given (assuming that third- and higher-order approximations are 

negligible) as 

 

 E|s>  =  E(0)|s> + E(1)|s> + E(2)|s> , (3.14) 

 

where 

 

 E(1)|s>  =  (Hpert)ss (3.15a) 

 

 E(2)|s>  =  Σ  






(Hpert)sr (Hpert)rs

 E(0)|s> – E(0)|r>
  . (3.15b) 

 r ≠ s 
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The superscripts 1 and 2 refer to first- and second-order approximations, while 

(Hpert)rs corresponds to the rs (row r, column s) element of the matrix representation 

of the Hamiltonian Hpert.  

 

 Using Eq. (3.15a), the quadrupolar contribution to the energy levels, to a first-

order approximation, is given by 

 

 E(1)|3/2>  =  E(1)|–3/2>  =  ωQ (3.16a) 

 

 E(1)|1/2>  =  E(1)|–1/2>  =  –ωQ , (3.16b) 

 

where the quadrupolar splitting parameter ωQ is: 

 

 ωQ  =  ωQ   
PAS  [ D20,0(ζ, θ, φ) + 

η
√6  { D20,2(ζ, θ, φ) + D20,–2(ζ, θ, φ) } ]  

 

   =  
ωQ   

PAS

2  (3cos2θ – 1 + η sin2θ cos2φ)  . (3.17) 

 

The result derived here is therefore clearly in agreement with the energy-level 

diagram of Fig. 2.1b. 

 

 The quadrupolar coupling is frequently of such magnitude that a second-

order approximation must be considered.  To calculate this second-order 

contribution to the energy levels, it is clear from Eqs. (3.10) and (3.15b) that it is 

necessary to take the product of two Wigner rotation matrix elements.  From angular 

momentum theory [95], such a product is given by 

 

  Dlp',p(α, β, γ) Dmq',q(α, β, γ)  =  Σ 〈lp, mq nr 〉〈 lp', mq' nr' 〉 Dnr',r(α, β, γ) ,   (3.18) 
    n 
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where r = p + q, r' = p' + q', and n takes all values  l – m ,  l – m + 1 , ...,  l + m .  The 

first two terms in the summation are constants referred to as Clebsch-Gordan 

coefficients, the values of which are given in standard reference texts [97]. 

 

 Using the expansion in Eq. (3.18), the following general expression for the 

second-order quadrupolar contribution to the energy levels can then be derived: 

 

E(2)|s>  =  –E(2)|–s>  =
(ωQ   

PAS)2

2ω0
  { A

I
s  Γ0(η) + B

I
s  Γ2(ζ, θ, φ, η) + C

I
s  Γ4(ζ, θ, φ, η) } , (3.19) 

 

where s is positive. The expression in Eq. (3.19) is valid for any half-integer 

quadrupolar spin, and Table 3.1 gives the coefficients A
I
s , B

I
s , and C

I
s  for spins 

I = 3/2 and 5/2. 

 

 The other functions in Eq. (3.19) are given by 

 

   Γ0(η)  =  ( 1 + 
 η2

3   ) (3.20a) 

TABLE 3.1 
 

Coefficients of the zero-, second-, and fourth-rank terms in Eq. (3.19) 
 

 

    I     s      A
I
s        B

I
s       C

I
s  

 

 3/2  1/2    –2/5    –8/7   54/35 

 3/2  3/2      6/5        0   –6/5 

 5/2  1/2  –16/15  –64/21  144/35 

 5/2  3/2     –4/5   –40/7   228/35 

 5/2  5/2      20/3    40/21  –60/7 
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   Γ2(ζ, θ, φ, η)  =  ( 1 – 
 η2

3   ) D20,0(ζ, θ, φ) – 
√2
√3  η { D20,2(ζ, θ, φ) + D20,–2(ζ, θ, φ) } (3.20b) 

 

   Γ4(ζ, θ, φ, η)  =  ( 1 + 
 η2

18   ) D40,0(ζ, θ, φ) + 
√10

6   η { D40,2(ζ, θ, φ) + D20,–2(ζ, θ, φ) }  

 

                               + 
35

18 √70  η2 { D40,4(ζ, θ, φ) + D40,–4(ζ, θ, φ) } .      (3.20c) 

 

It is interesting to note that the symmetry of the Wigner rotation matrix elements 

means that there are only even-rank Wigner rotation matrix elements in Eq. (3.20). 

 

3.2 Sample Rotation 

 

 The previous section derived expressions for the quadrupolar contributions to 

the energy levels in terms of three Euler angles, specified as ζ, θ, and φ, defining the 

rotation from the principal axis system to the laboratory frame.  When an experiment 

is performed under conditions of sample rotation, this transformation is best broken 

down into two parts: (i) the rotation of the principal axis system onto the sample 

frame, described by angles β and γ; (ii) the rotation of the sample frame onto the 

laboratory frame, described by angles χ and (–ωrt + ξ), where χ is the angle between 

the spinning axis and the z axis of the laboratory frame, ωr is the spinning frequency, 

and ξ is the initial phase of the crystallite relative to the rotor.  The Wigner rotation 

matrix elements in Eq. (3.20) can then be expanded: 

 

  Dl0,p(ζ, θ, φ)  =  Σ  Dl0,m(0, χ, –ωrt + ξ) Dlm,p(0, β, γ) , (3.21) 
                                                         m 
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where m = –l, (–l + 1), ..., l.  The above equation means that the second-order 

quadrupolar contribution to a given energy level changes with time as a function of 

the spinning frequency.   

 

 If an average over an integer number of rotor periods is assumed, Eq. (3.21) 

becomes time-independent.  Consider the following integral, where the upper limit 

corresponds to an integer number of rotor periods: 

 
 (2nπ/ωr) 

 I  =  ∫  exp{ i m ωr t } dt . (3.22) 
 0 

 

This integral is only non-zero when m equals zero, and, therefore, Eq. (3.21) 

becomes: 

 

 < Dl0,p(ζ, θ, φ) >  =  dl0,0(χ) Dl0,p(0, β, γ) . (3.23) 

 

On substituting Eq. (3.23) into Eq. (3.19), the second-order quadrupolar contribution 

to the energy levels over an integer number of rotor periods becomes 

 

 < E(2)|s> >  =  – < E(2)|–s> >  =  
(ωQ   

PAS)2

2 ω0
  { A

I
s  Q0(η) + B

I
s  d20,0(χ) Q2(β, γ, η)  

 

 + C
I
s  d40,0(χ) Q4(β, γ, η) } , (3.24) 

 

where 

 

 Q0(η)  =  ( 1 + 
 η2

3   ) (3.25a) 

 

 Q2(β, γ, η)  =  ( 1 – 
 η2

3   ) d20,0(β) – 
√8
√3  η d22,0(β) cos 2γ (3.25b) 
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 Q4(β, γ, η)  =  ( 1 + 
 η2

18   ) d40,0(β) + 
√10

3   η d42,0(β) cos 2γ  

 

 + 
35

9 √70  η2 d44,0(β) cos 4γ . (3.25c) 

 

Using Eq. (3.24), the second-order quadrupolar contribution to the central transition 

frequency of a half-integer quadrupolar nucleus, assuming an integer number of 

rotor periods, is then given by 

 

 < E(2)|1/2> – E(2)|–1/2> >  =  
(ωQ   

PAS)2

ω0
  { A

I
1/2  Q0(η) + B

I
1/2  d20,0(χ) Q2(β, γ, η)  

 

 + C
I
1/2  d40,0(χ) Q4(β, γ, η) } . (3.26) 

 

Thus, for a single crystallite spinning about an axis χ, there is an isotropic frequency 

shift of the central transition of A
I
1/2  Q0(η) (ωQ   

PAS )2/ω0, as well as second- and 

fourth-rank anisotropic shifts with amplitudes that depend on the angles χ, β, and γ.  

In a powdered sample, a spherical average over all orientations of the angles β and γ 

gives rise to second- and fourth-rank inhomogeneous broadening. 

 

 The dependence of the reduced rotation matrix elements in Eq. (3.26) on the 

rotor angle is given by 

 

 d20,0(χ)  =  
1
2 ( 3 cos2χ – 1 )   (3.27a) 

 

 d40,0(χ)  =  
1
8 ( 35 cos4χ – 30 cos2χ + 3 )  . (3.27b) 

 

The solutions of the equation 

 

 dl0,0(χ)  =  0 (3.28) 
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are 

 

 χ  =  54.74°   when l  =  2 (3.29a) 

 

 χ  =  30.56° or 70.12°  when l  =  4 . (3.29b) 

 

Therefore, since the two dl0,0(χ) terms do not have a common root, spinning around 

a unique angle χ cannot remove both second- and fourth-rank anisotropic 

broadenings.  For example, spinning at the magic angle will completely remove 

second-rank broadening, since d20,0(54.7°) = 0, but only partially average fourth-rank 

broadening.   

 

3.3 Magic-Angle Spinning 

 

 The previous section showed that, over an integral number of rotor periods, 

second-rank quadrupolar broadening is removed by MAS.  Experimentally, this 

assumption is equivalent to sampling the free induction decay at the start of every 

rotor period.  However, the free induction decay is not normally acquired in a rotor-

synchronised fashion.  To understand the effect of MAS in this case it is necessary to 

examine the explicit time-dependence of the Wigner rotation matrix elements 

described by Eq. (3.21).  Consider first a spin interaction which gives rise to solely 

second-rank inhomogeneous broadening, e.g., the CSA.  Using Eq. (3.21), the 

contribution to the central transition frequency (neglecting any isotropic shifts and 

assuming axial symmetry) is of the form 

 
                                                    2 

 E|1/2> – E|–1/2>  =  K  Σ { D20,m(0, χ, –ωrt + ξ) d2m,0(β) } ,   (3.30) 
                                            m = –2 

 

where K is a constant describing the magnitude of the spin interaction.  If the Wigner 

rotation matrix elements are expanded using Eq. (3.8), Eq. (3.30) becomes  
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      E|1/2> – E|–1/2>  =  K { d20,0(χ) d20,0(β) 
 
 – 2 d20,1(χ) d20,1(β) [ cos ωrt cos ξ – sin ωrt sin ξ ]  

 

 + 2 d20,2(χ) d20,2(β) [ cos 2ωrt cos 2ξ – sin 2ωrt sin 2ξ ] } .   (3.31) 

 

The presence of trigonometric terms with an explicit time dependence in Eq. (3.31) 

means that the derivation and understanding of analytical solutions for the 

frequency-domain spectrum is rather complex, requiring the use of Bessel functions 

[98, 99].  An alternative approach, which is adopted in this section, is the computer 

simulation of spectra using a brute-force numerical method.   

 

 Figure 3.1a (overleaf) shows the static second-rank powder pattern.  

Figure 3.1b then considers the effect of MAS at a frequency which is relatively small 

compared to the width of the powder pattern.  It can be seen that the static pattern 

breaks up into narrow lines, separated by the spinning frequency, with the envelope 

of the lines approximately corresponding to the static lineshape.  For a powder 

pattern, all lines in the spinning sideband manifold have the same phase [100].  As 

the spinning frequency increases in Fig. 3.1c, the resemblance to the static pattern is 

lost, and eventually, when the spinning frequency is significantly greater than the 

width of the powder pattern, a solitary centreband at the isotropic frequency is 

observed, as shown in Fig. 3.1d.  It should be noted that the spectra in Figs. 3.1b to 

3.1d are normalised relative to each other, such that it is clear that the integrated 

signal intensity is independent of the spinning frequency.   

 

 Referring back to Eq. (3.31), the contribution of the different terms is now 

apparent.  While the time-dependent terms give rise to spinning sidebands, the first, 

time-independent, term represents the narrowing of the inhomogeneously-

broadened powder pattern achieved by spinning.  In this case, since d20,0(54.7°) = 0, 
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there is no inhomogeneous contribution to the linewidth of the centreband and 

sidebands.   

 

 An analogous expression to Eq. (3.31) can be calculated for the second-order 

quadrupolar broadening of the central transition, where there are both second- and 

fourth-rank contributions.  In this case, since d40,0(54.7°) ≠ 0, the fourth-rank 

inhomogeneous contribution to the linewidth of the centreband and sidebands is 

only reduced, not removed, by MAS.  This is illustrated in Fig 3.2.  Figure 3.2a shows 

ba

c d

 
 
Figure 3.1.  Simulated spectra showing the effect of MAS on an axially-symmetric second-rank powder pattern.  

In (a) the sample is static, while the MAS spinning frequency equals 1, 2 and 40 kHz in (b), (c) and (d), 

respectively.  In all spectra, the spectral width equals 12.5 kHz.  Time-domain data sets were simulated using an 

explicit density-matrix calculation (summing over 200 equally-spaced values of the angle θ in (a), and 90 

equally-spaced values of the angles β and ξ in (b), (c) and (d)).  A Gaussian line-broadening equivalent to a 

∆υ1/2 of 75 Hz was applied.  Uniform excitation of single-quantum coherence over all values of the anisotropic 

frequency shift was assumed.  In the MAS simulations, the rotor periods were broken into 50 equally-spaced 

intervals.  The same vertical scale is used in (b), (c) and (d). 

 



  
41

a static second-order quadrupolar-broadened powder pattern.   It can be seen, in Fig. 

3.2b, where the spinning frequency is significantly greater than the width of the 

inhomogeneously-broadened powder pattern, that a residual fourth-rank second-

order quadrupolar broadening remains.  Comparing Figs 3.2a and 3.2b, it is apparent 

that MAS has narrowed the static powder pattern to approximately a third of its 

initial width. 

 

 Figure 3.3 (overleaf) presents experimental 87Rb NMR spectra obtained using 

a sample of rubidium nitrate, RbNO3, which is known to have a unit cell containing 

three crystallographically distinct Rb sites.  In the static spectrum of Fig. 3.3a, the 

expected sharp features due to the second-order quadrupolar broadening are lost 

under additional broadening due to the CSA and dipolar interactions.  These latter 

two broadenings are removed along with the second-rank second-order quadrupolar 

broadening by MAS.  However, the residual fourth-rank second-order quadrupolar 

broadening means that the three sites are  not resolved, as shown in Fig. 3.3b.  For 

comparison, Fig. 3.3c presents the  

ba

 
 
Figure 3.2.  Simulated spectra showing the effect of MAS on a spin I = 3/2 second-order quadrupolar-broadened 

central transition powder pattern.  In (a) the sample is static, while the MAS spinning frequency equals 40 kHz 

in (b).  The parameters describing the second-order quadrupolar broadening were: CQ = 2 MHz, η = 0, 

ω0/2π = 100 MHz.  Otherwise, the same simulation parameters as described in Fig. 3.1 were used. 
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a

b

c

 
 

Figure 3.3.  Experimental 87Rb (130.9 MHz) (a) static and (b) MAS spectra of RbNO3 (Aldrich).  The displayed 

spectral width (cut down from 20 kHz) equals 15 kHz.  The following experimental conditions were used: 

4 transients (consisting of 512 points) were averaged, the relaxation interval was 100 ms, and a radiofrequency 

pulse of duration 1.3 µs was used.  The spinning speed was 5.3 kHz in (b).  (c) Isotropic MQMAS spectrum.  

Experimental parameters are given in Fig. 6.9c.  The displayed spectral width equals 8.4 kHz.  Peaks either side 

of the central spectral features in (b) and (c) are spinning sidebands. 
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isotropic MQMAS spectrum, where all inhomogeneous broadening is removed, such 

that the three separate sites are now revealed. 

 

 Returning to Eq. (3.31), it is interesting to note that the time-independent term 

is equal to the second-rank term in Eq. (3.26), which was calculated assuming an 

integer number of rotor periods.  Since it is the time-dependent terms in Eq. (3.31) 

which correspond to spinning sidebands, it is then clear that Eq. (3.26) corresponds 

to a spectrum containing solely the centreband.  Therefore, if a knowledge of the 

spinning sideband manifold is unnecessary, Eq. (3.26) is a perfectly acceptable 

approximation.  This approximation is used in the simulation of spectra in the 

following section, and in Chapters 5 and 6 to explain how the MQMAS experiment 

works. 

 

3.4 The Appearance of Second-Order Quadrupolar-Broadened MAS Spectra 

 

 The inability of MAS to remove the fourth-rank second-order quadrupolar 

broadening, such that crystallographically distinct sites are often unresolved, has 

been clearly demonstrated in Figs. 1.1a and 3.3b.  Although, initially, it may be 

thought that it is simply desirable to totally remove the inhomogeneous broadening, 

there is potentially valuable information in the quadrupolar parameters, CQ and η, 

which describe this broadening.  Therefore, the spectroscopist ideally wants a 

technique which, as well as resolving the individual sites, allows their individual 

quadrupolar parameters to be determined.  As is demonstrated in later chapters, this 

is exactly what the MQMAS experiment achieves.  The two-dimensional nature of 

the experiment means that, as well as obtaining high-resolution isotropic spectra of 

the type shown in Figs. 1.1b and 3.3c, rows corresponding to the individual MAS 

spectra can be extracted.  These MAS spectra can then be fitted to obtain the 

quadrupolar parameters.  The purpose of this section is to illustrate the effect of the  
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f
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c d

e

 
 

 
Figure 3.4.  Simulated spin I = 3/2 second-order quadrupolar-broadened central transition MAS spectra, where 

the asymmetry parameter, η, equals 0.0 in (a), 0.2 in (b), 0.4 in (c), 0.6 in (d), 0.8 in (e) and 1.0 in (f).  Spectra 

were simulated in the frequency-domain (summing over 200 equally-spaced values of the two angles β and γ, 

with a Gaussian linewidth of ∆υ1/2 = 75 Hz) using a modified version of a program written by Sharon Ashbrook 

[93].  The following parameters were used: CQ = 2 MHz, ω0/2π = 100 MHz, and the spectral width equals 

7 kHz.  The centre of each spectrum corresponds to the isotropic frequency shift.   
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Figure 3.5.  Simulated spin I = 3/2 second-order quadrupolar-broadened central transition MAS spectra.  For (a) 

to (c), the quadrupolar coupling constant equals 2.0 MHz in (a), 1.5 MHz in (b), and 1.0 MHz in (c), and a 

Gaussian linewidth of ∆υ1/2 = 75 Hz was used.  For (d) to (f), the ∆υ1/2 of the individual Gaussian lineshapes 

equals 50 Hz in (d), 150 Hz in (e), and 300 Hz in (f), and the quadrupolar coupling constant equals 2.0 MHz.  In 

each case, the asymmetry parameter was set equal to zero.  Otherwise, the same simulation parameters as 

described in Fig. 3.4 were used. 
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quadrupolar parameters and other factors on the appearance of these second-order 

quadrupolar-broadened MAS spectra.   

 

 Figure 3.4 (on page 44) demonstrates how the appearance of the spin I = 3/2 

spectrum is progressively altered as the asymmetry parameter changes from 0 to 1, 

while Fig. 3.5 (previous page) shows the effect of changing the size of the 

quadrupolar coupling constant, CQ, and the homogeneous linewidth.  It is 

interesting to note from Fig. 3.5 that the characteristic features of the second-order 

quadrupolar-broadened lineshape can be obscured by either a reduction in CQ (Fig. 

3.5c) or an increase in the homogeneous linewidth (Fig. 3.5f).  A closer examination 

of Figs. 3.5a and 3.5c further reveals that, as expected from the (ωQ   
PAS )2 dependence 

in Eq. (3.26), doubling CQ causes a four-fold increase in the width of the second-

order quadrupolar-broadened spectrum.  Additionally, Eq. (3.26) further shows that 

the degree of second-order quadrupolar broadening is inversely proportional to the 

Larmor frequency, ω0.  This is clearly demonstrated in Fig. 3.6 (overleaf), which 

presents 87Rb MAS spectra of RbNO3 obtained at 98.2, 130.9, and 163.8 MHz.  In 

addition to the reduction in the total linewidth, it is apparent that the nature of the 

observed lineshape changes with increasing frequency.  This latter change is 

explained in Section 7.5. 

 

 From Eq. (3.2), it can be seen that the quadrupolar frequency, ωQ   
PAS , depends 

on the spin quantum number, I.  This has the consequence that for a given CQ, the 

quadrupolar frequency for a spin I = 5/2 nucleus is 3/10 the size of that for a spin I = 

3/2 nucleus.  This is demonstrated in Fig. 3.7 (on page 48), which show 23Na and 

27Al MAS spectra of sodium sulphate, Na2SO4, and the mineral albite (Oxford 

University Museum, OUM 9408), NaSi3AlO8, respectively.  It is known that both 

samples only contain one crystallographic site for the observed nucleus.  The 

quadrupolar parameters, as determined by a fitting performed by Sharon Ashbrook 

[93], are CQ = 2.42 ± 0.05 MHz and η = 0.65 ± 0.05, and  CQ = 3.21 ± 0.05 MHz and η = 

0.65 ± 0.1 for Na2SO4 and albite, respectively.  Even though the  
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a

b

c

 
 
Figure 3.6.  Experimental 87Rb MAS NMR spectra of RbNO3, recorded at Larmor frequencies of (a) 98.2 MHz, 

(b) 130.9 MHz, and (c) 163.6 MHz.  In all spectra, the displayed spectral width (cut down from 25 kHz) equals 

15 kHz.  The following experimental conditions were used: 128 transients (consisting of 1024 points) were 

averaged and the relaxation interval was 100 ms.  In (a), (b), and (c) respectively, a radiofrequency pulse of 

duration 2 µs, 1 µs, and 1.3 µs was used, and the spinning speed was 5.0 kHz, 5.0 kHz, and 8.5 kHz.  Peaks 

either side of the central spectral features are spinning sidebands. 
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quadrupolar coupling constant is larger for the spin I = 5/2 nucleus, 27Al, it is 

evident that there is significantly more second-order quadrupolar broadening for the 

spin I = 3/2 nucleus, 23Na. 

 

 In a similar way to the use of chemical shifts, the quadrupolar parameters, CQ 

and η, have the potential to offer much chemically relevant information.  For 

a

b

 
 

Figure 3.7.  (a) Experimental 23Na (105.8 MHz) MAS spectrum of Na2SO4.  The following experimental 

conditions were used: 16 transients (consisting of 512 points) were averaged, the relaxation interval was 1 s, a 

radiofrequency pulse of duration 1.0 µs was used, and the spinning speed was 5.2 kHz.  (b) Experimental 27Al 

(104.3 MHz) MAS spectrum of a sample of albite.  The following experimental conditions were used: 

64 transients (consisting of 512 points) were averaged, the relaxation interval was 1 s, a radiofrequency pulse of 

duration 1.2 µs was used, and the spinning speed was 5.2 kHz.  In both cases, the displayed spectral width (cut 

down from 25 and 17.2 kHz in (a) and (b), respectively) equals 15 kHz.  Peaks either side of the central spectral 

features are spinning sidebands. 
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example, it has been shown that CQ values for 17O increase as the ionic character of 

the neighbouring bonds decrease.  In this way, it is possible to distinguish Al-O-Al, 

Si-O-Al, and Si-O-Si bonds in aluminosilicate glasses [73].  Moreover, Farnan et al. 

have stated that an observed 17O asymmetry parameter can be interpreted in terms 

of the M-O-M bond angle [37].  To date, however, there have been few published 

examples of correlations between the quadrupolar parameters and chemical 

structure.  It is hoped that, as the library of these parameters builds up as a 

consequence of the MQMAS experiment, the understanding of their correlation to 

chemical structure will improve.  

 

3.5 The Quest for High Resolution 

 

 To obtain an informative high-resolution spectrum, it is necessary to remove 

the anisotropic shifts, while retaining the isotropic shifts.  From Eq. (3.29), it is clear 

that sample rotation around a single axis cannot achieve this for second-order 

quadrupolar broadening.  In 1988, two ingenious approaches to this problem were 

proposed, namely dynamic angle spinning (DAS) and double rotation (DOR) [31-39].  

Both these methods involve sample rotation around two axes, either sequentially 

with DAS or simultaneously with DOR.  This section first describes these two 

experiments, noting their significant drawbacks, and then introduces the MQMAS 

experiment. 

 

3.5.1 Dynamic Angle Spinning 

 

 The pulse sequence and coherence transfer pathway diagram for the simplest 

DAS experiment [35] is shown in Fig. 3.8a (overleaf).  It can be seen that DAS 

involves a switch of the rotor angle between the two evolution periods, t1 and t2, 

during which the magnetisation is stored as a population distribution.  Considering 

the coherence pathway represented by the solid line, the separate  
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Figure 3.8.  Pulse sequences and coherence transfer pathway diagrams for three DAS experiments.  The rotor 

angles χ1 and χ2 form a DAS pair as discussed in the text, while χ3 in (c) equals 54.7°.  All flip angles refer to 

the nutation of the central transition.  In (a) and (c), the selection of both the solid and dotted pathways gives 

rise to an amplitude-modulated signal with respect to t1.  In (b), whole echoes are acquired in t2 as a 

consequence of the added spin-echo sequence.  The experiments in (a), (b), and (c) are analogous to the z-

filtered amplitude-modulated MQMAS experiment of Fig. 5.11, the amplitude-modulated whole-echo MQMAS 

experiment of Fig. 5.1b, and the z-filtered amplitude-modulated split-t1 MQMAS experiment of Fig. 6.3a, 

respectively. 
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second- and fourth-rank contributions to the resulting signal, using Eq. (3.26), are 

given by 

 

sl=2(t1, t2)  =  exp [ 
(ωQ   

PAS)2

ω0
  { B

I
1/2  d20,0(χ1) Q2(β, γ, η)  } t1 ]  

  

 ∞  exp [ 
(ωQ   

PAS)2

ω0
  { B

I
1/2  d20,0(χ2) Q2(β, γ, η)  } t2 ]  (3.32a) 

 

sl=4(t1, t2)  =  exp [ 
(ωQ   

PAS)2

ω0
  { C

I
1/2  d40,0(χ1) Q4(β, γ, η)  } t1 ]  

  

 ∞  exp [ 
(ωQ   

PAS)2

ω0
  { C

I
1/2  d40,0(χ2) Q4(β, γ, η)  } t2 ] . (3.32b) 

 

The two rotor angles are chosen such that at a time (x2/x1) t1 during t2, both second- 

and fourth-rank inhomogeneous broadening is refocused.  From Eq. (3.32), suitable 

pairs of angles satisfy the following conditions: 

 

 x1 d20,0(χ1) + x2 d20,0(χ2)  =  0 (3.33a) 

 

 x1 d40,0(χ1) + x2 d40,0(χ2)  =  0 (3.33b) 

 

 x1 + x2  =  1 . (3.33c) 

 

Although there is a continuous set of solutions to Eqs. (3.33a) to (3.33c), the most 

commonly-used angle pairs are (37.38°, 79.19°) and (0°, 63.43°), where x1 and x2 are 

(1/2, 1/2) and (1/6, 5/6), respectively.  The latter case has two advantages [39]: first, 

cross polarisation is most efficient when the rotor angle equals 0°; and second, this 

pair of angles corresponds to the most effective narrowing of any homonuclear 

dipolar broadening.  It should be noted that the CSA, which gives rise to a second-

rank anisotropic contribution analogous to that in Eq. (3.32a), is also refocused in the 

DAS experiment.  
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 The refocusing of the inhomogeneous broadening at a time (x2/x1) t1 during 

t2 gives rise to the appearance of inhomogeneously-broadened ridges, with gradient 

(x2/x1), in the frequency-domain two-dimensional spectrum.  The isotropic DAS 

spectrum then corresponds to a projection onto an axis perpendicular to the ridges.  

Such a projection is, however, normally obtained by performing a shearing 

projection such that the ridges are parallel to the F2 axis.  Two approaches have been 

proposed to ensure that pure absorption-mode lineshapes are obtained: firstly, the 

two pathways are combined with equal amplitude using a z filter [36], as in Fig. 3.8a; 

alternatively, a spin echo is appended such that a whole echo is acquired in t2 [38], as 

in Fig. 3.8b.  In the experiment of Fig. 3.8c, a second rotor hop to the magic angle is 

incorporated to ensure that the CSA and dipolar broadenings are removed from the 

anisotropic lineshapes [36].  In this case, the inhomogeneous broadening is refocused 

at t2 = 0 such that the ridges appear parallel to the F2 axis without the need for a 

shearing transformation.  All these experimental features have MQMAS analogues 

which are discussed at length in Chapters 5 and 6. 

 

 There are three significant drawbacks to the DAS experiment.  Firstly, the 

technique cannot be applied to samples where the longitudinal relaxation time, T1, is 

less than the time required for the switch in rotor angle (typically 50 ms).  Secondly, 

homonuclear dipolar broadenings are not removed from isotropic DAS spectra.  As a 

consequence, residual linewidths of the order of 1 kHz are often observed in, for 

example, 11B and 27Al DAS spectra [64].  In comparison, such small homogeneous 

broadenings are easily removed by MAS.  The final disadvantage relates to the 

considerable cost and mechanical unreliability of DAS hardware. 
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3.5.2 Double Rotation 

  

 In the DOR experiment, the sample spins inside an inner rotor which is itself 

embedded inside a second outer rotor.  It can be shown that both second- and fourth-

rank quadrupolar broadening is removed if the inner rotor axis is inclined at an 

angle of 30.56° to the outer rotor axis, which is itself inclined at an angle of 54.74° to 

the B0 field [34].  These angles are, respectively, the roots of the fourth- and second-

rank reduced rotation matrix elements given in Eq. (3.29).  Although rotor-

synchronisation methods [34] have been devised which partially alleviate the 

problem, a significant complication is the large number of spinning sidebands which 

result from the necessarily slow spinning frequency of the outer rotor (typically 1 

kHz).  Additionally, the experiment is intrinsically one-dimensional and, to obtain 

the quadrupolar parameters, it is necessary to perform an often complicated fitting of 

the spinning sideband manifold.  Finally, like DAS, the DOR hardware is very 

expensive and prone to mechanical breakdown. 

 

3.5.3 Multiple-Quantum Magic-Angle Spinning 

  

 In 1995, Frydman and Harwood demonstrated that sample rotation about two 

different angles is not necessary to remove the second-order quadrupolar 

broadening.  In particular, they recognised that the coefficients of the isotropic and 

anisotropic shifts differ between single- and multiple-quantum transitions, as shown 

in Table 3.1.  The fourth-rank anisotropic broadening can hence be refocused, whilst 

still retaining the isotropic information, by performing a two-dimensional 

experiment in which (odd-order) multiple- and single-quantum coherences are 

correlated, while spinning at the magic angle to remove second-rank anisotropic 

broadening.  Spinning at the magic angle has the advantages that (i) conventional 

MAS hardware can be used and (ii) MAS will also average any additional first-order 

broadening due to dipolar couplings or the CSA.   
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Chapter 4 
 
 
Coherence Transfer 
 
 
4.1 "Hard" and "Soft" Pulses 

 

 In Fourier transform NMR, an important parameter is the inherent nutation 

frequency of a radiofrequency pulse, ω1 = –γB1, where γ is the gyromagnetic ratio, 

and B1 is the radiofrequency field strength.  When recording an NMR spectrum, it is 

normally desirable that ω1 exceeds the range of resonance frequencies to be studied; 

a radiofrequency pulse is then said to be "hard".  This, however, is not normally 

possible for half-integer quadrupolar nuclei in the solid state.  In a powdered 

sample, the quadrupolar splitting parameter, ωQ, ranges from zero to ωQ   
PAS .  There is 

then a distribution of crystallites with values of the ratio ωQ/ω1 from zero upwards.  

(Strictly speaking, the ratio referred to is |ωQ/ω1| since both ωQ and ω1 can be 

either positive or negative.  However, to avoid unnecessarily complicated notation, 

the magnitude signs are not included here or elsewhere in the thesis.)  Therefore, 

while for some crystallites ωQ < ω1 and the pulse is hard, there are many crystallites 

for which, even using the highest radiofrequency power amplification currently 

available, the ratio ωQ/ω1 is significantly greater than unity.  In the latter case, the 

radiofrequency pulse is considered to be "soft", and only the central transition is 

excited.  This first section investigates the effect of such a distribution for a simple 

single-pulse experiment, before the latter sections move on to consider the individual 

coherence transfer processes relevant to the MQMAS experiment. 
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 The different nutation properties of hard and soft pulses can be understood by 

considering a pulse applied along the rotating frame x axis to a system at thermal 

equilibrium.  Section 2.2 stated that the evolution of the density operator is described 

by the Liouville-von Neumann equation, Eq. (2.6).  For a hard pulse, the Hamiltonian 

equals ω1 Ix, and, therefore, 

 
dσ(t)

dt    =  – i [ ω1 Ix, Iz ] 

 

 =  – ω1 Iy . (4.1) 

 

Equation (4.1) describes the nutation of the magnetisation towards the –y axis at a 

rate ω1 .   

 

 For a soft pulse, only the central transition is excited, and the system is 

effectively simplified to one involving only two levels.  The understanding of such a 

system is simplified by the introduction of the "fictitious spin I = 1/2 operators" [101-

103].  Using spin I = 3/2 as an example, the matrix representations of Ix(1/2,–1/2) and 

Iy(1/2,–1/2) are: 

 Ix(1/2,–1/2)  =  
1
2  









0 0 0 0

0 0 1 0
0 1 0 0
0 0 0 0

   (4.2a) 

 Iy(1/2,–1/2)  =  
i
2  









0 0 0 0

0 0 –1 0
0 1 0 0
0 0 0 0

   . (4.2b) 

Closer examination reveals that the central 2 ×  2 fragments of the matrices 

correspond to the spin I = 1/2 matrix representations of Ix and Iy (given in Appendix 
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B).  Using these operators, the evolution of the density operator, for general half-

integer quadrupolar spin I, is then described by 

 
dσ(t)

dt    =  – i [ ( I + 
1
2  ) ω1 Ix(1/2,–1/2), Iz ] 

 

 =  – ( I + 
1
2  ) ω1 Iy(1/2,–1/2) . (4.3) 

 

Comparing Eqs. (4.1) and (4.3), it is apparent that the nutation frequency, when the 

pulse is selective for the central transition, is (I + 1/2) times faster than in the hard 

pulse case. 

 

 This difference in nutation frequency is demonstrated in Fig. 4.1 (overleaf), 

which plots, for a spin I = 3/2 nucleus, the dependence of the central transition 

amplitude on the flip angle for different values of ωQ/ω1.  The two limiting cases, 

namely ωQ/ω1 equals zero and infinity are plotted as solid and dotted lines, 

respectively.  The factor of two difference in nutation frequency then means that the 

same pulse duration corresponds to the maximum signal (a flip angle of 90°) and a 

null (a flip angle of 180°) for a hard and soft pulse, respectively.  To avoid confusion, 

this thesis adopts the convention, as demonstrated in the labelling of the x axis in Fig. 

4.1, that quoted flip angles refer to the hard pulse case, unless explicitly stated 

otherwise.  (The flip angle of a pulse equals ω1 τp rad or (180 ω1 τp)/π degrees, where 

τp is the duration of the pulse.)  In addition to the increase in nutation frequency, it is 

evident that, if only the central transition is excited, the maximum signal amplitude 

is also reduced by (I + 1/2) relative to the hard pulse amplitude.   

 

 In a powdered sample, there is a range of ωQ/ω1 values, and, therefore, there 

is a gradation in nutation frequency between the hard and soft limits.  For example, 

the dashed line in Fig. 4.1 represents an intermediate case where ωQ/ω1 equals 0.5.  

A distribution of nutation frequency across a powder pattern would be expected to 

lead to significant distortions in the observed spectrum.  To investigate this, consider 
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Fig. 4.2 (overleaf), which presents simulated static and MAS spin I = 3/2 second-

order quadrupolar-broadened central-transition spectra for a range of flip angles.  

For a 45° pulse (i) there are no observable distortions in both the static and MAS 

lineshapes.  However, in the static case, it is very clear that a clean null is not 

obtained for a 90° pulse and there is significant lineshape distortion for a 135° 

pulse (iv).  In contrast, in the MAS case, there is a fairly clean null and only small 

distortions in the spectra corresponding to larger flip angles.  Referring back to Eq. 

(3.21), this difference can be related to the additional averaging over the initial phase 

of a crystallite relative to the rotor in the MAS case.  (This is discussed further in 

Section 4.2.2.) 
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Figure 4.1.  The dependence of the spin I = 3/2 central transition amplitude on the flip angle of an on-resonance 

excitation pulse, for ωQ/ω1 equal to zero (solid line), 0.5 (dashed line), and (effectively) infinity (dotted line).  

The data sets were simulated using an explicit density matrix calculation, in which the sample was assumed to 

be static and only first-order quadrupolar contributions (assuming axial symmetry) to the energy levels were 

considered.  The vertical scale is normalised relative to the maximum single-quantum coherence generated by a 

pulse which is selective for the central transition.  The labelling of the x axis corresponds to the hard pulse case, 

i.e., where ωQ/ω1 equals zero, such that the flip angle of a pulse equals (180 ω1 τp)/π degrees, where τp is the 

duration of the pulse. 
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Figure 4.2.  Simulated (a) static and (b) MAS spin I = 3/2 second-order quadrupolar-broadened central 

transition spectra, where the flip angle of the excitation pulse equals (i) 45°, (ii) 90°, (iii) 105°, and (iv) 135°.  

Time-domain data sets were simulated using an explicit density matrix calculation (summing over 200 equally-

spaced values of the angle θ in (a), and 90 equally-spaced values of the angles β and ξ in (b)).  The following 

parameters were used: CQ = 2 MHz, η = 0, and ω0/2π = 100 MHz, and a Gaussian line-broadening equivalent to 

a ∆υ1/2 equal to 75 Hz was applied.  In all spectra, the spectral width equals 12.5 kHz.  The centre of each 

spectrum corresponds to the isotropic frequency shift.   
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4.2 The Excitation and Reconversion of Multiple-Quantum Coherence 

 

 Although only single-quantum coherence can be detected directly in an NMR 

experiment, many important NMR experiments incorporate the excitation of 

multiple-quantum coherence [104-106].  In liquid-state NMR of spin I = 1/2 nuclei, 

examples include the double-quantum filtered correlation spectroscopy (DQF-COSY) 

experiment [107, 108], heteronuclear multiple-quantum coherence (HMQC) 

experiments [109], the INADEQUATE experiment [110], spin topology filters [111], 

and heteronuclear editing techniques, e.g. DEPT [112].  Moreover, in spin I = 3/2 

NMR, double- and triple-quantum filtered techniques enable both the reliable 

measurement of relaxation rates in liquids [113] and the differentiation of nuclear 

environments in heterogeneous systems [81].  Furthermore, the excitation of 

multiple-quantum coherence also has advantages in the context of NMR imaging 

[114]. 

 

 In the solid state, the extensive dipolar couplings of abundant spins, e.g. 1H, 

means that very high multiple-quantum coherence orders can be excited (p > 100 has 

been observed).  In such systems, useful structural information can be obtained 

using spin-counting experiments [115, 116].  Alternatively, Spiess and co-workers 

have recently shown that the combination of fast MAS and dipolar recoupling 

schemes, e.g., DRAMA [117], allows the resolution of 1H-1H dipolar couplings [118, 

119].  Multiple-quantum spectroscopy has also been applied to quadrupolar nuclei in 

the solid state.  For example, a double-quantum spectrum of a spin I = 1 nucleus, e.g. 

2H, reveals chemical shift information, which is obscured by the quadrupolar 

broadening in the single-quantum spectrum [120, 121].  (As can be seen from Fig. 

2.1a, the double-quantum transition does not, to a first-order approximation, depend 

on ωQ.)  Moreover, it was demonstrated as early as 1980 that triple-quantum 

coherence can be excited in the solid-state for spin I = 3/2 nuclei [122]. 
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 When working with liquid samples, multiple-quantum coherence is usually 

excited using a two-pulse excitation method [123], such as that shown in Fig. 4.3a for 

the excitation of triple-quantum coherence (an additional 180° pulse is usually 

inserted in the centre of the τ evolution period to refocus any B0 inhomogeneity).  

Although this method was used in the first demonstration of the MQMAS 

experiment by Frydman and Harwood [40], several researchers have subsequently 

shown that the single-pulse excitation method shown in Fig. 4.3b is more efficient for 

powder samples where ω1 < ωQ   
PAS  [41-45].  The theoretical description of how 

multiple-quantum coherence can be excited by a single pulse for a spin I = 3/2 

p = 0
+1
+2
+3

–1
–2
–3

t1 t2

φ3

a

p = 0
+1
+2
+3

–1
–2
–3

t1

φ1 φ2

t2b

φ1 φ2

τ

 
 
Figure 4.3.  Pulse sequences and coherence transfer pathway diagrams for (a) two-pulse and (b) single-pulse 

excitation of triple-quantum coherence.  The optimisation of the flip angles in (b) is discussed in the text.  

Factors affecting the choice of pathway are discussed in Section 5.1.  
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nucleus was first presented by Wokaun and Ernst [102], and the calculation 

presented here is based on their work. 

 

4.2.1 Excitation of Triple-Quantum Coherence by a Single Pulse 

 

 Considering a static sample, the Hamiltonian for an on-resonance pulse along 

the +x axis of the rotating frame, including the effect of evolution under a 

quadrupolar splitting, is given by  

 

 H  =  ω1 Ix + ωQ ( Iz2 – 
1
3  I ( I + 1 ) ) . (4.4) 

 

In matrix form, the spin I = 3/2 Hamiltonian is then: 

 

 

 

 H  =  ωQ  











1

√3 z
2 0 0

√3 z
2 –1 z 0

0 z –1
√3 z

2

0 0
√3 z

2 1

   , (4.5) 

 

 

 

where z = ω1/ωQ. 

 

 To calculate the evolution of the density operator using the Liouville-von 

Neumann equation (Eq. 2.7), it is first necessary to diagonalise the Hamiltonian.  This 

diagonalisation can be performed analytically by a two step process.  Firstly, the 

transformation  

 

 H'  =  X H X–1 , (4.6) 

 

where the matrix X equals 
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 X  =  
1
√2  









1 0 0 1

0 1 1 0
1 0 0 –1
0 1 –1 0

  , (4.7) 

gives  

 

 

 

 H'  =  ωQ  











1

√3 z
2 0 0

√3 z
2 z –1 0 0

0 0 1
√3 z

2

0 0
√3 z

2 –z –1

   . (4.8) 

 

 

 

The matrix H' consists of two 2 × 2 submatrices, and can be diagonalised by the 

transformation 

 HD  =  W H' W–1 , (4.9) 

 

where the matrix W is: 

 W  =   







  cosθ– sinθ– 0 0

–sinθ– cosθ– 0 0

0 0   cosθ+ sinθ+

0 0 –sinθ+ cosθ+

   , (4.10) 

with 

 

 tan 2θ±  =  
z √3
2 ± z  . (4.11) 

 

The diagonalised Hamiltonian, HD, is then: 
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 HD  =  







E11 0 0 0

0 E22 0 0

0 0 E33 0

0 0 0 E44

   ,  (4.12) 

where 

 

 E11  =  ωQ { 
z
2  – √( 1 – z + z2 ) } (4.13a) 

 

 E22  =  ωQ { 
z
2  + √( 1 – z + z2 ) } (4.13b) 

 

 E33  =  ωQ { 
–z
2   + √( 1 + z + z2 ) } (4.13c) 

 

 E44  =  ωQ { 
–z
2   – √( 1 + z + z2 ) } . (4.13d) 

 

Applying the Liouville-von Neumann equation, the density operator at time t is then 

given by 

 

 σ(t)  =  X–1 W–1 exp { –i HD t } W X σ(0) X–1 W–1 exp { +i HD t } W X . (4.14) 

 

Although, as demonstrated in Ref. [122], a general analytical solution can be 

obtained using the full form of Eq. (4.14), the calculation is considerably simplified if 

ω1 « ωQ.  In this limit, z is assumed to be sufficiently close to zero that θ+ = θ– = 0, 

and, therefore, W is the unit matrix.  If this approximation is made, it can be shown, 

by expanding the square roots in Eq. (4.13) as power series, that 

 

 σ(t)  =  X–1 exp { –i HD t } σ'(0) exp { +i HD t } X , (4.15) 

 

where 
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 σ'(0)  =  X σ(0) X–1  

 

 

 

   =  











0 0

3
2 0

0 0 0
1
2

3
2 0 0 0

0
1
2 0 0

   .  (4.16) 

 

 

 

Performing the matrix multiplication then yields 

   σ(t)  =  
1
2 







  3 cos(λ3 t) 0 0   3i sin(λ3 t)

0   cos(λ1 t)   i sin(λ1 t) 0

0 –i sin(λ1 t) –cos(λ1 t) 0

–3i sin(λ3 t) 0 0 –3 cos(λ3 t)

   , (4.17) 

where 

 

 λ1  =  2 ω1 (4.18a) 

 

 λ3  =  
3 ω13

8 ωQ2  . (4.18b) 

 

Examining the off-diagonal elements, it is clear that triple-quantum coherence (σ14(t) 

and σ41(t)) as well as single-quantum coherence (σ23(t) and σ32(t)) is generated by 

the pulse: 

 

 σ23(t)  =  –σ32(t)  =  i sin( 2 ω1 t ) (4.19a) 

 

 σ14(t)  =  –σ41(t)  =  3i sin( 
3 ω13 t
8 ωQ2   ) . (4.19b) 
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Using Eq. (4.19), and the fact that the duration of a 90° pulse, τp90°, equals π/2ω1, the 

pulse duration, τpmax, corresponding to the first maxima for the build-up of single- 

and triple-quantum coherence are given as 

 

 τpmaxp = –1  =  
τp90°

2   (4.20a) 

 

 τpmaxp = –3  =  
8
3 







ωQ

ω1
 
2
 τp90°. (4.20b) 

 

For single-quantum coherence, the first maximum corresponds to a 45° flip angle, as 

demonstrated earlier in Fig. 4.1.  In comparison, for triple-quantum coherence, Eq. 

(4.20b) predicts that the optimum flip angle depends on the ratio ωQ/ω1.   

 

 When ωQ/ω1 equals 5, Eq. (4.20b) predicts that maximum triple-quantum 

coherence is obtained using a flip angle of 6000°.  This is demonstrated by the solid 

line in Fig. 4.4 (overleaf), where the amount (calculated by an exact numerical 

method) of triple-quantum coherence generated by a single pulse is plotted as a 

function of flip angle for different values of ωQ/ω1.  The vertical scale is normalised 

relative to the amount of single-quantum coherence generated by a single pulse 

acting on the central transition. 

 

 A closer examination of Fig. 4.4 reveals that there are small oscillations in the 

sine curve for the case where ωQ/ω1 equals 5.  These oscillations are a consequence 

of terms which would be present in Eq. (4.19b) if the simplifying approximation that 

ω1/ωQ tends to zero had not been made.  It is expected that the build up curves 

would deviate further from the ideal sinusoidal behaviour, as the ratio ωQ/ω1 

decreases.  This is indeed observed in Fig. 4.4 where the dashed and dotted lines 

correspond to ωQ/ω1 values equal to 2 and 1, respectively.  Nevertheless it is 

interesting to note that, even though the approximation that ωQ/ω1 tends to zero is 

clearly not appropriate in these cases, the theoretical flip angles corresponding to 
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maximum triple-quantum coherence are in reasonable agreement with the observed 

values in Fig. 4.4.  (Eq. (4.20b) predicts values of 1440° and 240°, respectively.)  

 

4.2.2 Excitation and Reconversion of Multiple-Quantum Coherence in the MQMAS 

Experiment 

 

 In the context of the MQMAS experiment, Medek et al. [44] and Amoureux et 

al. [51] have carried out detailed studies of the conditions necessary to optimise 

multiple-quantum excitation and reconversion, and the discussion presented here is 

based on their work.   

 

 On the basis of Fig. 4.4, it might be expected that it would be necessary to use 

a very large flip angle to excite triple-quantum coherence.  However, if a powder 

distribution of ωQ is considered, it is found, for a range of ωQ   
PAS /ω1 values, that the 

optimum flip angle for a spin I = 3/2 nucleus is  
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Figure 4.4.  The dependence of the triple-quantum coherence amplitude on the flip angle of an on-resonance 

excitation pulse, for ωQ/ω1 equal to 5 (solid line), 2 (dashed line), and 1 (dotted line).  Otherwise, the same 

simulation parameters as described in Fig. 4.1 were used.  The vertical scale is normalised as in Fig. 4.1.   
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Figure 4.5.  (a) The dependence of the spin I = 3/2 triple-quantum coherence amplitude on the flip angle of an 

on-resonance excitation pulse for a powder distribution (summing over 90 equally-spaced values of the angle θ), 

where ωQ   
PAS

 /ω1 equals 2.5 (solid line), 5 (dashed line), and 7.5 (dotted line).  Otherwise, the same simulation 

parameters as described in Fig. 4.1 were used.  The vertical scale is normalised as in Fig. 4.1.  (b) Experimental 

23Na (105.8 MHz) results for Na2SO4 showing how the height of the triple-quantum filtered MAS spectrum 

varies as a function of the flip angle of the excitation pulse.  The vertical scale is in arbitrary units.  The 

following experimental conditions were used: 24 transients (consisting of 512 points) were averaged, the 

relaxation interval was 1 s, a reconversion pulse of duration 1.5 µs was used, the spectral width was 25 kHz, and 

the spinning speed was 5.2 kHz.  The ratio ωQ   
PAS

 /ω1 equals 7.7 and the 90° pulse length is 3.2 µs. 
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approximately 240°.  This is shown in Fig. 4.5a (previous page).  The vertical scale in 

Fig. 4.5a is normalised relative to the amount of single-quantum coherence generated 

by a single pulse.  It is therefore evident that triple-quantum excitation is a relatively 

efficient process, although it becomes less efficient as ωQ   
PAS /ω1 increases.  For 

comparison, Fig. 4.5b presents experimental 23Na NMR results obtained for a sample 

of Na2SO4, showing how the height of the triple-quantum filtered spectrum varies as 

a function of the flip angle of the excitation pulse.  There is good agreement between 

experimental and simulated results.  (In Fig. 4.5b, ωQ   
PAS /ω1 equals 7.7 and the 90° 

pulse length is 3.2 µs.)  

 

 Since only single-quantum coherences are directly observable in an NMR 

experiment, it is necessary to reconvert the multiple-quantum coherence into 

observable signal.  As shown in the following chapter, the flip angle dependence of 

the efficiency of the separate p = +3 → p = –1, and p = –3 → p = –1 coherence transfer 

steps in Fig. 4.3b is different.  Moreover, Chapter 5 further demonstrates that the 

choice of flip angle can depend on factors other than the simple maximisation of 

signal.  Keeping these considerations in mind, Fig. 4.6a (overleaf) presents plots 

showing the effect of varying the flip angle of the reconversion pulse for a spin I = 

3/2 nucleus for the experiment in Fig. 4.3b where only the p = –3 to p = –1 pathway 

is selected (the choice of this pathway is discussed in Section 5.1).  For comparison, 

Fig. 4.6b presents experimental results again obtained for a sample of sodium 

sulphate.  The optimum flip angle can be seen to correspond to approximately 60°.   

 

 An obvious feature of Fig. 4.6a is the significant loss of signal compared to a 

single-pulse experiment.  Since Fig. 4.5a showed that triple-quantum coherence can 

be excited with a sensitivity comparable to the excitation of single-quantum 

coherence in a single-pulse experiment, the loss of sensitivity must be a consequence 

of the reconversion pulse.  This is because a weak pulse cannot convert triple-

quantum coherence into central transition single-quantum  
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Figure 4.6.  (a) The dependence, for the triple-quantum excitation experiment in Fig. 4.3b (selecting the p = –3 

to p = –1 pathway), of the spin I = 3/2 central transition amplitude on the flip angle of an on-resonance 

reconversion pulse for a powder distribution, where ωQ   
PAS

 /ω1 equals 2.5 (solid line), 5 (dashed line), and 7.5 

(dotted line).  In each case, the flip angle of the on-resonance excitation pulse was 240°.  Otherwise, the same 

simulation parameters as described in Fig. 4.5a were used.  The vertical scale is normalised as in Fig. 4.1.  

(b) Experimental 23Na (105.8 MHz) results for Na2SO4 showing how the height of the triple-quantum filtered 

MAS spectrum varies as a function of the flip angle of the reconversion pulse.  The vertical scale is in arbitrary 

units.  An excitation pulse of duration 7.5 µs was used.  Otherwise, the same experimental parameters as 

described in Fig. 4.5b were used.   
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coherence.  Instead, it can be shown, using Eq. (4.15), that an initial state of triple-

quantum coherence (σ41(t) = –σ14(t) = i) is converted by a weak pulse (ω1 << ωQ) into 

   σ(t)  =  







  sin(λ3 t) 0 0 –i cos(λ3 t)

0 0 0 0
0 0 0 0

  i cos(λ3 t) 0 0 –sin(λ3 t)

   . (4.21) 

Therefore, the resulting state is solely a population difference across the outer two 

energy levels.  To obtain central transition single-quantum coherence, a hard pulse is 

required; this is apparent from Fig. 4.6a, where the maximum signal increases with 

decreasing ωQ   
PAS /ω1. 

 

 Figure 4.7 (overleaf) presents plots of the dependence, for a spin I = 3/2 

nucleus, of the final central transition amplitude on the quadrupolar coupling 

constant, CQ, for different values of ω1.  (Optimum flip angles are used for the 

excitation and reconversion of triple-quantum coherence.)  While the dotted and 

dashed lines correspond to ω1/2π equal to 75 kHz and 100 kHz, respectively (the 

nutation frequencies typically obtained experimentally for the 7 mm and 4 mm 

probes, respectively), the solid line represents an ω1/2π of 300 kHz (the nutation 

frequency claimed by the instrument manufacturer, Bruker, for its newly-released 

dedicated MQMAS probe).  In each case, the signal intensity rises from zero (triple-

quantum coherence cannot be excited if the quadrupolar splitting equals zero) 

reaches a maximum and then falls away, as CQ increases.  It is important to note that 

as ω1 is increased the CQ value corresponding to the maximum signal increases.   
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 The main current drawback of the MQMAS experiment is clearly illustrated 

by Fig. 4.7.  Namely, nuclear sites with different CQ values are not excited with equal 

amplitude.  The experiment is therefore not quantitative, and in the worst case some 

nuclear sites are excited with such low amplitude that they are lost in the noise.  For 

example, on the MSL 400 spectrometer, it was only possible to observe the third 23Na 

site, where CQ equals 3.7 MHz, in an MQMAS experiment recorded on a sample of 

dibasic sodium phosphate, Na2HPO4, if the 4 mm probe, where ω1 is larger, was 

used.  There is obviously major interest in the development of solutions to this 

problem.  In addition to the development of amplifiers and probes which give rise to 

larger radiofrequency field strengths, alternative methods of excitation and 

reconversion, for example the use of adiabatic or shaped pulses [55, 74], are being 

considered.  
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Figure 4.7.  The dependence, for the triple-quantum excitation experiment in Fig. 4.3b (selecting the p = –3 to 

p = –1 pathway), of the spin I = 3/2 central transition amplitude on the quadrupolar coupling constant, CQ, for 

ω1/2π equal to 300 kHz (solid line), 100 kHz (dashed line), and 75 kHz (dotted line).  In each case, the flip 

angles of the on-resonance excitation and reconversion pulses were 240° and 60°, respectively.  Otherwise, the 

same simulation parameters as described in Fig. 4.5a were used.  The vertical scale is normalised as in Fig. 4.1.   
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 An important question which arises is, does the dependence of the efficiency 

of multiple-quantum excitation on the quadrupolar splitting give rise to distorted 

second-order quadrupolar-broadened spectra?  Figure 4.8 shows that, although the 

static triple-quantum filtered spectrum is severely distorted, the corresponding MAS 

spectrum is relatively undistorted.  This difference can be understood in the 

following way.  Consider, for a static sample, the crystallites lying on a cone 

subtending an angle of 54.7° with respect to the B0 field.  The quadrupolar splitting, 

ωQ, for all these crystallites (assuming axial symmetry) equals zero (θ = 54.7° in Eq. 

(3.17)), and thus multiple-quantum coherence cannot be excited.  This gives rise to a 

ba

c d

 
 
Figure 4.8.  Simulated (a and b) static and (c and d) MAS second-order quadrupolar-broadened central 

transition spectra for, (a and c), a simple single-pulse experiment and, (b and d), the triple-quantum excitation 

experiment in Fig. 4.3b (selecting the p = –3 to p = –1 pathway).  In (a) and (c), uniform excitation of single-

quantum coherence over all values ωQ was assumed, while in (b) and (d), the flip angles of the on-resonance 

excitation and reconversion pulses were 240° and 60°, respectively.  Otherwise, the same simulation parameters 

as described in Fig. 4.2 were used.   
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"hole" in the multiple-quantum filtered spectrum (Fig. 4.8b).  In an MAS experiment, 

in contrast, during a rotor period each crystallite experiences a range of ωQ 

characteristic (again assuming axial symmetry) of the angles β and (ξ – ωrt).  As 

described in Section 3.2, β describes the rotation of the principal axis system onto the 

sample frame, while ξ is the initial phase of the crystallite relative to the rotor.  It is 

important to note that the set of crystallites with the same β, but different ξ, have 

associated with them the same rotor-averaged ωQ, which determines the second-

order quadrupolar shift.  However, at the instant when a pulse is applied, these 

crystallites have a range of instantaneous values of ωQ.  Therefore, for the particular 

set of crystallites with a rotor-averaged ωQ equal to zero, multiple-quantum 

coherence can still be excited, since the instantaneous ωQ is non-zero for virtually all 

crystallites. 

 

 For comparison, Fig. 4.9 (overleaf) presents 87Rb MAS and triple-quantum 

filtered MAS spectra obtained for RbNO3.  The spectra are presented on different 

vertical scales indicating the loss of signal associated with excitation and 

reconversion of triple-quantum coherence.  It should be further noted that there are 

only very small differences between the two lineshapes. 

 

 The discussion so far in this section has focused on spin I = 3/2 nuclei.  The 

MQMAS experiment is equally applicable to spin I = 5/2 (and indeed I = 7/2, 9/2 

nuclei), and it is therefore necessary to investigate the optimum conditions for the 

excitation and reconversion of multiple-quantum coherence for such nuclei.  For spin 

I = 5/2 nuclei, quintuple- as well as triple-quantum coherence evolution can be used 

in an MQMAS experiment.  Analogous simulations (not shown) to those presented 

for spin I = 3/2 show that a flip angle of approximately 180° corresponds to the 

optimum excitation of both triple- and quintuple-quantum coherence, while flip 

angles of 65° and 75° give rise to the most efficient p = +3 → p = –1 and p = –5 → p = 

–1 reconversion steps, respectively (the choice of these pathways is discussed in 

Section 5.1).  Using these optimum flip angles, Figs. 4.10a and 4.10b (overleaf) show 
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plots of the resulting central transition amplitude as a function of CQ for the triple- 

and quintuple-quantum experiments.  It is clear that both the overall signal intensity 

is less and the fall off occurs at lower CQ for the quintuple-quantum experiment.  

However, as demonstrated in Chapter 7, there are some important advantages 

associated with performing a quintuple-quantum MQMAS experiment. 

a

b

× 5

 
 
Figure 4.9.  Experimental 87Rb (163.6 MHz) MAS spectra of RbNO3 obtained using (a) a simple single-pulse 

experiment, and (b) the triple-quantum excitation experiment in Fig. 4.3b (selecting the p = –3 to p = –1 

pathway).  In both cases, 128 transients (consisting of 1024 points) were averaged, with a relaxation interval of 

100 ms, and the spinning speed was 8.5 kHz.  In (a), a radiofrequency pulse of duration 1.3 µs was used, while 

in (b), the excitation and reconversion pulses were of duration 4.1 and 1.1 µs, respectively.  In both spectra, the 

displayed spectral width (cut down from 25 kHz) equals 15 kHz.   
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Figure 4.10.  The dependence, for (a) the triple-quantum excitation experiment in Fig. 4.3b (selecting the p = +3 

to p = –1 pathway) and (b) a quintuple-quantum excitation experiment (selecting the p = –5 to p = –1 pathway), 

of the spin I = 5/2 central transition amplitude on the quadrupolar coupling constant, CQ, for ω1/2π equal to 

300 kHz (solid line), 100 kHz (dashed line), and 75 kHz (dotted line).  The flip angles of the on-resonance 

excitation and reconversion pulses were 180° and 65°, respectively in (a), and 180° and 75°, respectively in (b).  

Otherwise, the same simulation parameters as described in Fig. 4.5a were used.  The vertical scale is normalised 

as in Fig. 4.1.   
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4.3 Central Transition Coherence Transfer Processes 

 

 The previous section showed that the reconversion of multiple-quantum into 

single-quantum coherence, rather than multiple-quantum excitation, is the inefficient 

step of a multiple-quantum experiment.  A hard pulse is required to convert 

multiple-quantum coherence (for spin I = 3/2 between the outer two energy levels) 

into central transition single-quantum coherence.  However, in some cases, for 

example the inversion of central transition single-quantum coherence (p = +1 →  
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Figure 4.11.  Experimental 27Al (104.3 MHz) MAS spectra of a sample of albite obtained using a spin-echo 

experiment.  The nutation frequency, ω1/2π, of the central transition 180° inversion pulse was 75 kHz (full 

power) in (a), 42 kHz in (b), 17 kHz in (c), and 6 kHz in (d).  The following experimental conditions were used: 

32 transients (consisting of 512 points) were averaged, the relaxation interval was 1 s, a full-power pulse of 

duration 1 µs was used to excite single-quantum coherence, and the spinning speed was 5.3 kHz.  In all spectra, 

the displayed spectral width (cut down from 25 kHz) equals 8 kHz.   
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p = –1) in a spin-echo experiment, it is desirable to avoid the loss of signal that would 

result from unwanted coherence transfer processes.  In this case, it is found that the 

signal intensity increases as ω1 is reduced, i.e., as the pulse becomes selective for the 

central transition.  This is demonstrated in Fig. 4.11, which presents 27Al spectra of 

albite obtained using a spin-echo experiment.  As the nutation frequency, ω1/2π, of 

the inversion pulse is reduced, the signal intensity is observed to rise to a maximum 

in Fig. 4.11c.  Beyond the optimum value of ω1 in Fig. 4.11c, the observed signal 

decreases since the pulse is no longer able to excite the full extent of the second-order 

quadrupolar-broadened central transition.  As shown in the following chapters, for 

many MQMAS experiments, the requirement to reduce ω1 for pulses which are 

selective for the central transition is often essential to achieve an acceptable 

sensitivity. 
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Chapter 5 
 
 
The MQMAS Experiment 
 
 
5.1 Echoes, Antiechoes, and Shifted Echoes 

 

 The principle of the MQMAS experiment was introduced at the end of 

Chapter 3.  It was stated that the fourth-rank anisotropic broadening can be 

refocused, whilst still retaining the isotropic information, by performing a two-

dimensional experiment in which multiple- and single-quantum coherences are 

correlated.  The second-rank anisotropic broadening is removed by spinning at the 

magic angle.  For spin I = 3/2, the simplest implementation of the MQMAS 

experiment is represented by the solid coherence transfer pathway in Fig. 5.1a 

(overleaf).  (This corresponds to the original experiment of Frydman and Harwood 

[40], except that, as discussed in Section 4.2, Frydman and Harwood initially used a 

two-pulse sequence for the excitation of multiple-quantum coherence.)  Using 

Eq. (3.24), the time-domain signal for this experiment, in the presence of MAS and 

neglecting homogeneous broadening and chemical shift terms, is given by 

 

 s(t1, t2)  =  exp{ i 
(ωQ   

PAS)2

ω0
  [ 

6
5  Q0(η) – 

6
5  d40,0(χ) Q4(α, β, η) ] t1 } 

 

 ×  exp{ i 
(ωQ   

PAS)2

ω0
  [ – 

2
5  Q0(η) + 

54
35  d40,0(χ) Q4(α, β, η) ] t2 } . (5.1) 

 

Examination of Eq. (5.1) reveals that an echo corresponding to the refocusing of the 

fourth-rank inhomogeneous broadening forms at 
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 t2  =  
6
5 



35

54   t1  =  
7
9  t1 .   (5.2) 

 

This is shown in Fig. 5.2a (overleaf), which presents a schematic representation of the 

time-domain data set.  When t1 = 0, it is seen that a half echo (i.e., the signal falls from 

its maximum value to zero) forms at t2 = 0.  As t1 increases, the echo tracks forwards 

through t2, until eventually a point is reached where a whole echo (i.e., the signal 

p = 0
+1
+2
+3

–1
–2
–3

t1

φ1 φ2
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p = 0
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φ1 φ2 φ3

τ t2
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Figure 5.1.  Pulse sequences and coherence transfer pathway diagrams for the (a) simple echo (solid line) and 

simple antiecho (dashed line) and (b) shifted-echo (solid line) and shifted-antiecho (dashed line) MQMAS 

experiments (for spin I = 3/2 nuclei).  Amplitude-modulated experiments result if both the echo and antiecho 

pathways are retained and have equal amplitudes.  The optimum flip angles for the individual pulses are 

described in the text.  The spin-echo interval, τ, in (b) should be chosen to ensure that a whole echo is obtained 

in t2 for all values of t1.  Phase cycling schemes for the pulse phases φ1, φ2 and φ3 and for the receiver Rx are 

given in Tables H1 and H2 of Appendix H. 
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starts from zero, rises to its maximum value, then returns to zero) is observed.  

Fourier transformation of the one-dimensional data set s(t1, t2 = (7/9)t1) gives rise to 

an isotropic spectrum of the type presented in Figs. 1.1b and 3.3c. 

 

 From Eq. (5.2b), it is clear that the position in t2 at which the echo forms 

depends on the ratio of the fourth-rank anisotropic broadening between multiple- 

and single-quantum coherences.  This ratio is of such significance in these 

experiments that it will hence be referred to as the MQMAS ratio.  For spin I = 3/2 

and 5/2, the (triple-quantum) MQMAS ratio equals –7/9 and 19/12, respectively 

(refer to Table 3.1).  The key feature of all MQMAS experiments is that the fourth-

f
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Figure 5.2.  Schematic representations of the spin I = 3/2 time-domain signal obtained with the (a) simple echo, 

(b) simple antiecho, (c) shifted-echo, (d) shifted-antiecho, (e) simple amplitude-modulated, and (f) amplitude-

modulated whole-echo experiments.  In (e) and (f), the contributions of the echo and antiecho pathways are 

shown as solid and dotted lines, respectively. 
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rank anisotropic broadening is refocused when the ratio of the durations of the 

single- and triple-quantum coherence evolution periods equals the magnitude of the 

MQMAS ratio.  It is important to note the difference in sign in the MQMAS ratio 

between I = 3/2 and 5/2 nuclei; as will become clearer in the following discussion, 

this has significant consequences with respect to coherence transfer pathway 

selection.  For clarity, the discussion in the opening sections of this chapter will be 

restricted to spin I = 3/2, with the spin I = 5/2 case being considered in Section 5.4. 

 

 The sign of the MQMAS ratio is very important since it determines the 

relative sign of triple- and single-quantum coherences necessary to refocus the 

second-order broadening and form an echo.  Thus, for spin I = 3/2 nuclei, since the 

MQMAS ratio is negative, the echo pathway corresponds to the correlation of p = –3 

and p = –1 coherences, as shown above.  In describing MQMAS experiments, it is 

also useful to introduce the concept of an antiecho pathway (represented by the 

dashed line in Fig. 5.1a), where the fourth-rank anisotropic broadening appears to be 

refocused at negative values of the acquisition time, t2.  The difference between 

experiments that select the echo and antiecho pathways is illustrated in Figs. 5.2a 

and 5.2b.  When t1 = 0, there is no difference between the two experiments, with a 

half echo forming at t2 = 0 for both pulse sequences.  However, as t1 increases, the 

echo can be seen to track forwards and backwards through t2 for the echo and 

antiecho sequences, respectively.  Eventually a point is reached where, while there is 

a whole echo in Fig. 5.2a, the signal has disappeared outside the acquisition window 

in Fig. 5.2b.   

 

 Extending methods developed for the DAS technique (refer to Fig. 3.8b of 

Section 3.5.1), Massiot et al. have recently presented MQMAS experiments in which 

the signals from the echo and antiecho experiments are shifted in t2 by forming a spin 

echo using a selective inversion pulse on the central transition [43].  The shifted-echo 

(solid line) and shifted-antiecho (dashed line) coherence transfer pathways are 

shown in Fig. 5.1b, while Figs. 5.2c and 5.2d show schematic representations of the 
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time-domain data sets obtained for the two experiments.  As in Figs. 5.2a and 5.2b, 

the echo still moves forwards and backwards, respectively, in t2 as t1 increases but 

there are now two important differences.  Provided the spin-echo interval, τ, is of 

sufficient length, firstly, at t1 = 0, a whole, rather than half, echo is formed and, 

secondly, the antiecho signal does not disappear from the acquisition window as t1 

increases.  Since whole echoes are obtained for all values of t1, experiments based on 

shifted-echo and shifted-antiecho sequences are referred to as whole-echo 

experiments. 

 

5.2 Pure Absorption-Mode Two-Dimensional Lineshapes 

 

 In the original experiment of Frydman and Harwood (Fig. 5.1a), phase cycling 

is used to select a pathway which, as is evident from Eq. (5.1), is phase-modulated 

with respect to t1.  As discussed in Section 2.3.2, the complex two-dimensional 

Fourier transform of a time-domain data set of the type exp{iAt1} exp{iBt2} gives rise 

to undesirable two-dimensional phase-twist lineshapes, and therefore such 

lineshapes result from this experiment.  This is demonstrated by Figs. 5.3a and 5.3b 

(overleaf), which show simulated spectra for the simple echo and simple antiecho 

experiments, respectively.  In both cases, the presence of the fourth-rank anisotropic 

broadening means that the phase-twist lineshapes add up to form a ridge.  However, 

while, for the echo sequence, the phase-twist lineshapes add up constructively with 

the gradient of the ridge (with respect to the F2 axis) equalling the MQMAS ratio, for 

the antiecho sequence the gradient has the opposite sign to the MQMAS ratio and 

the phase-twist lineshapes add up destructively.  The consequences of the 

constructive and destructive summation of lineshapes is evident in Figs. 5.3a and 

5.3b; in particular, the dispersive character is less apparent in the echo pathway 

lineshape, especially at the centre of the ridge.  In addition, it should be noted that 

the signal maximum in Fig. 5.3a  
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Figure 5.3.  Contour plots of spin I = 3/2 spectra obtained with the, (a) and (c), simple echo and, (b), simple 

antiecho experiments in Fig. 5.1a.  The spectra in (a) and (b) were simulated in the time domain and it can be 

seen that phase-twist lineshapes add up to form a ridge, as indicated by the dashed line.  The contour plot in (c) 

corresponds to a 5 × 5 kHz region of a 87Rb (130.9 MHz) MQMAS spectrum of RbNO3.  The full F1 and F2 

spectral widths were 25 and 17.2 kHz, respectively, 96 transients (consisting of 512 points each) were averaged 

for each of 128 increments of t1, and the relaxation interval was 100 ms.  The durations of the triple-quantum 

excitation and the p = –3 to p = –1 reconversion pulses were 6.8 and 2.4 µs, respectively. 
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is twice that in Fig. 5.3b, which is unsurprising if the time-domain representations 

shown in Figs. 5.2a and 5.2b are compared. 

 

 Figure 5.3c shows a 87Rb MQMAS spectrum of RbNO3 obtained with the 

simple echo sequence in Fig. 5.1a.  The spectrum contains three ridges corresponding 

to the three Rb sites in the unit cell (the lower two ridges are only partially 

separated).  The obvious dispersive character of the "mixed-phase" lineshapes 

reduces the degree to which different sites are resolved, and it is, therefore, much 

better to obtain pure absorption-mode two-dimensional lineshapes.  The next three 

subsections discuss methods for obtaining such lineshapes. 

 

5.2.1 The Simple Amplitude-Modulated Experiment 

 

 If the echo and antiecho pathways in Fig. 5.1a are combined with the same 

amplitude, an amplitude-modulated signal is obtained as a function of t1 [41-43].  In 

the case where the two pathways add, the signal is cosine-modulated: 

 

 s(t1, t2)  =  2 cos{ 
(ωQ   

PAS)2

ω0
  [ 

6
5  Q0(η) – 

6
5  d40,0(χ) Q4(α, β, η) ] t1 }  

 

 ×  exp{ i 
(ωQ   

PAS)2

ω0
  [ – 

2
5  Q0(η) + 

54
35  d40,0(χ) Q4(α, β, η) ] t2 } .  (5.3) 

 

The processing of amplitude-modulated data sets was discussed in Section 2.3, 

where it was shown that firstly, pure absorption-mode lineshapes are obtained in the 

frequency-domain spectrum if a hypercomplex two-dimensional Fourier transform 

is performed.  Secondly, sign discrimination can be restored using the States-

Haberkorn-Ruben or TPPI methods, which in this case, since p = +3 and –3 

coherences evolve during t1, involves incrementing the phase of the first pulse by 

30°.  For comparison, a schematic representation of the time-domain data set for the 

simple amplitude-modulated experiment is given in Fig. 5.2e, with the contributions 
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of the echo and antiecho pathways being shown as solid and dashed lines, 

respectively. 

 

5.2.2 Phase-Modulated Whole-Echo Experiments 

 

 The pulse sequence and coherence transfer pathway diagram for the shifted-

echo experiment was shown in Fig. 5.1b.  This experiment differs from the simple 

echo experiment only in the presence of a spin echo, and the time-domain signal is 

now given as 

 

 s(t1, t2) =  exp{ i 
(ωQ   

PAS)2

ω0
  [ 

6
5  Q0(η) – 

6
5  d40,0(χ) Q4(α, β, η) ] t1 }  

 

 ×  exp{ i 
(ωQ   

PAS)2

ω0
  [ – 

2
5  Q0(η) + 

54
35  d40,0(χ) Q4(α, β, η) ] (t2 – τ) } ,   (5.4) 

 

where τ is the length of the spin-echo interval.  From Eq. (5.4), it can be seen that the 

fourth-rank anisotropic frequency shifts are refocused when 

 

 t2  =  τ + 
6
5 



35

54   t1  =  τ + 
7
9  t1 .    (5.5) 

 

An analogous expression to Eq. (5.5) can easily be obtained for the shifted-antiecho 

experiment, and it is found that refocusing now occurs when 

 

 t2  =  τ – 
7
9  t1 .    (5.6) 

 

Thus, as demonstrated in Figs. 5.2c and 5.2d, as t1 increases, the echo moves 

forwards and backwards in t2 for the shifted-echo and shifted-antiecho experiments, 

respectively.  In practice, this has the obvious consequence that the τ interval must be 

significantly longer in the shifted-antiecho experiment, hence there is more signal 

loss through relaxation than in the shifted-echo experiment.  For the shifted-echo 
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experiment, the τ period can be kept to a minimum, since it only needs to be of 

sufficient length to ensure that the echo is not truncated. 

 

 The difference in the direction in which the echo moves as t1 is incremented 

might also be expected to have an effect on the resolution of the isotropic projection.  

The expressions given so far for the time-domain signal have neglected the effect of 

relaxation.  To include the effect of transverse relaxation in the expression for the 

shifted-echo experiment, given in Eq. (5.4), it is necessary to multiply by an 

additional factor of 

 

 exp{ – RTQ t1 } exp{ – RSQ ( τ + t2 ) } ,  (5.7) 

 

where RTQ and RSQ correspond to the relaxation rates of triple- and (central-

transition) single-quantum coherence.  The effect of relaxation on the shifted-

antiecho experiment is also given by Eq. (5.7), except that, as discussed above, the τ 

interval will be much longer.  Considering only the point at which refocusing occurs, 

substituting the expressions for t2 in Eqs. (5.5) and (5.6) into Eq. (5.7) yields 

 

 exp{ – ( RTQ ± 
7
9  RSQ ) t1 } exp{ – 2 RSQ τ } ,  (5.8) 

 

where the + or – sign refers to the shifted-echo and shifted-antiecho experiments, 

respectively.  Equation (5.8) describes the decay due to transverse relaxation of the 

time-domain counterpart of the projection of the two-dimensional spectrum onto an 

axis orthogonal to the ridges.  Unless RSQ is significantly less than RTQ, it would, 

therefore, be expected that relaxation is slower, and, hence, the resolution in the 

isotropic projection is better for the shifted-antiecho experiment.  However, to date, 

no convincing experimental evidence for a difference in resolution between the 

shifted-echo and shifted-antiecho experiments has been observed. 
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Figure 5.4.  (a) The complex Fourier transform of a simulated time-domain signal whose real (R) and 

imaginary (I) parts are symmetric and anti-symmetric about t = 0, respectively, gives rise to a frequency-domain 

signal whose real part is purely absorptive and whose imaginary part is zero.  (b) When the symmetry of the 

echo is lost (in this case, due to the application of an exponential damping function to mimic the effects of 

relaxation), the imaginary part is no longer zero, but now contains a dispersive contribution. 
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 The success of these experiments, with regards to obtaining pure absorption-

mode two-dimensional lineshapes, depends on the properties of whole echoes.  A 

principle much used in magnetic resonance imaging [124] is that the complex one-

dimensional Fourier transform of a function whose real and imaginary parts are 

respectively symmetric and anti-symmetric around t = 0 yields a spectrum whose 

real part is purely absorptive and whose imaginary part is zero.  This is illustrated in 

Fig. 5.4a (previous page).  In the shifted-echo and shifted-antiecho MQMAS 

experiments, to obtain such a symmetric function, it is essential that the 

inhomogeneous second-order quadrupolar broadening dominates the homogeneous 

broadening [43].  When the homogeneous broadening becomes significant, the 

symmetry of the echo is lost.  In such a situation, as shown in Fig. 5.4b, the imaginary 

part of the spectrum now contains a dispersive contribution. 

 

 Experimentally, since the echo forms at t2 = τ, rather than t2 = 0, when t1 = 0, it 

is necessary to apply a τ-dependent first-order phase correction equal to exp{i ω2 τ} 

[43].  If the echo forms at the centre of t2, the application of this phase correction 

becomes considerably easier.  As shown in Fig. 5.5 (next page), such a phase 

correction then corresponds to simply either shifting the time origin of the Fourier 

transform to the centre of the echo, or, in frequency domain, negating alternate data 

points [125]. 

 

 The properties of whole echoes, therefore, mean that, even though the time-

domain signal in Eq. (5.4) is phase-modulated with respect to t1, as in the original 

experiment of Frydman and Harwood, a complex two-dimensional Fourier 

transform gives rise to pure absorption-mode lineshapes, provided the 

inhomogeneous broadening dominates the homogeneous broadening.  Furthermore, 

the selection of phase modulation intrinsically yields sign discrimination in F1.  As 

an experimental example, Fig. 5.6 (on page 90) presents the real and imaginary parts 

of a 87Rb free induction decay obtained for RbNO3  
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Figure 5.5.  The Fourier transformation and processing of a simulated time-domain signal whose real (R) and 

imaginary (I) parts are, respectively, symmetric and anti-symmetric about the centre of t2.  The required τ-

dependent first-order phase correction, exp{iω2τ}, here simply corresponds to inverting the sign of alternate 

data points.  The same result can be achieved by redefining the time origin of the Fourier transform to be the top 

of the echo. 
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using the shifted-antiecho experiment in Fig. 5.1b (dashed line) with t1 = 0.  The spin-

echo interval, τ, was chosen such that the fourth-rank inhomogeneous broadening 

was refocused at the centre of the acquisition period. 

 

R

I

 

 

Figure 5.6.  The real (R) and imaginary (I) parts of a 87Rb free induction decay obtained for RbNO3 using the 

shifted-antiecho experiment in Fig. 5.1b (dashed line) with t1 = 0.  A spin-echo interval, τ, of duration 4.4 ms 

was used and the total acquisition time displayed equals 8.7 ms.  The displayed free induction decay 

corresponds to the first row of a two-dimensional data set, the frequency-domain spectrum of which is 

presented, along with all the experimental parameters, in Fig. 6.9c. 
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5.2.3 The Amplitude-Modulated Whole-Echo Experiment 

 

 Massiot et al. have also presented an amplitude-modulated whole-echo 

experiment [43], which is simply a combination of the shifted-echo and shifted-

antiecho sequences of Fig. 5.1b.  A schematic time-domain data set for the 

experiment is shown in Fig. 5.2f, with the contributions of the shifted-echo and 

shifted-antiecho pathways again being shown as solid and dashed lines respectively.  

As with the phase-modulated whole-echo experiment, pure absorption-mode 

lineshapes are only obtained when the inhomogeneous broadening dominates the 

homogeneous broadening.  It should be noted that a genuinely amplitude-

modulated signal only arises when the contributions of the shifted-echo and shifted-

antiecho pathways are equal.  However, as a consequence of the properties of whole 

echoes, a hypercomplex two-dimensional Fourier transform still gives rise to pure 

absorption-mode lineshapes even when the contributions of the two pathways are 

unequal.  Sign discrimination must again be restored using the States-Haberkorn-

Ruben or TPPI methods.  An important further point to note is that it is necessary to 

use the much longer spin-echo interval required by the shifted-antiecho sequence. 

 

5.3 Conversion of Triple- to Single-Quantum Coherence 

 

 An important part of all MQMAS experiments is the conversion of triple-

quantum coherences into single-quantum coherences of the central transition.  

Consideration of the coherence transfer pathway diagrams in Fig. 5.1 shows that 

there are two different changes in coherence order, |∆p|, associated with this pulse, 

namely |∆p| = 2 and |∆p| = 4.  It is, therefore, instructive to examine the flip angle 

dependence of the efficiency of the two different conversions.  Figures 5.7a-c 

(overleaf) show such plots for different ratios of the quadrupolar frequency, ωQ   
PAS , to 

the nutation frequency of the pulse, ω1.   
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Figure 5.7.  (a-c) Calculated efficiency of coherence transfer between coherence orders p = +3 and p = +1 (solid 

line) and p = –3 and p = +1 (dashed line) for a spin I = 3/2 nucleus over a range of values of the flip angle.  The 

single-quantum coherences (p = ±1) are those of the central transition only.  The ratio ωQ   
PAS

 /ω1 is 0.0 in (a), 2.5 

in (b), and 5.0 in (c).  The efficiency of coherence transfer has been normalised such that it is equal to 1.0 for 

the intense (ω1 >> ωQ   
PAS

 ) 90° pulse in (a).  The calculation assumes a powder distribution of crystallite 

orientations.  (d) Experimental efficiency of coherence transfer between coherence orders p = +3 and p = +1 

(crosses) and p = –3 and p = +1 (circles) over a range of pulse durations for 87Rb NMR (98.2 MHz) of RbNO3.  

The results were obtained by measuring the height of the echo for the shifted-antiecho and shifted-echo 

experiments in Fig. 5.1b, respectively.  The vertical scale in (d) has been normalised such that it is equal to 1.0 

where the two efficiencies are equal, corresponding to a 90° pulse. 
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 From Fig. 5.7a, it is seen that, for a hard pulse, where ωQ   
PAS /ω1 ≈ 0, the two 

amplitudes are equal when the flip angle equals 90°; this is a familiar result from 

NMR of liquids [126].  Furthermore, in this limit, the maximum transfer intensities 

for the |∆p| = 2 and |∆p| = 4 pathways are the same, although that for |∆p| = 2 

occurs at a lower flip angle (70.5°) than that for |∆p| = 4 (109.5°).  An obvious, 

though significant, point is that the maximum coherence transfer intensities for the 

individual pathways are greater than the transfer intensity corresponding to the flip 

angle where the two conversions are equal. 

 

 As stated in Chapter 4, it is usually the case that ω1, is significantly less than 

ωQ   
PAS ; this is the situation shown in Figs. 5.7b and 5.7c, where ωQ   

PAS /ω1 equals 2.5 

and 5, respectively.  The following important features are evident from these plots.  

Firstly, the two pathways are again equal when the flip angle equals 90° [41, 51].  

Secondly, the maximum transfer intensity is now greater for the smaller coherence 

transfer change, |∆p| = 2, with this maximum occurring at a lower flip angle as 

before.  It is should be noted, as discussed in Chapter 4, that the magnitude of the 

transfer intensity decreases as ωQ   
PAS /ω1 increases. 

 

 For comparison, Fig. 5.7d presents 87Rb experimental transfer intensities 

obtained, by measuring the signal in the shifted-echo and shifted-antiecho 

experiments, for a sample of RbNO3.  It is clear that the same features, as seen in the 

simulations, are observed.  In particular, the |∆p| = 2 change is more efficient than 

the |∆p| = 4 change.  (It should be noted that this plot is in fact a superposition of 

three curves, associated with the three cystallographically inequivalent Rb sites in 

the unit cell.  There is, however, not much difference between the shapes of the 

individual curves, since the difference in ωQ between the sites is small.)  The results 

in Fig. 5.7d were obtained on the Bruker AC 300 spectrometer, equipped with only a 

300 W radiofrequency amplifier, such that ωQ   
PAS /ω1 ranged between 7.1 and 8.2 for 

the three sites (using the CQ values given in Ref. [43]).  Similar results have been 

obtained on the Bruker MSL 400 spectrometer, equipped with a 1 kW amplifier, 
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while analogous 23Na NMR results for Na2SO4 have recently been presented in Ref. 

[51]. 

 

 It was stated earlier that pure absorption-mode lineshapes are obtained in the 

simple amplitude-modulated experiment when the two pathways are combined 

with equal amplitude.  An important question to ask is, what happens when the flip 

angle of the triple- to single-quantum coherence conversion pulse is such that the 

two pathways are not combined with equal amplitude?  The effect of a complex two-

dimensional Fourier transform on simulated data sets resulting from the separate 

echo and antiecho pathways of Fig. 5.1a was demonstrated in Figs. 5.3a and 5.3b.  In 

the case where the two pathways add up with equal intensity in the simple 

amplitude-modulated experiment, the dispersive parts of the lineshapes cancel 

leaving a pure absorption-mode lineshape.  This is demonstrated in Fig. 5.8a 

(overleaf).   

 

 Figures 5.8b and 5.8c show what happens when the spectra from the two 

pathways are not combined with equal amplitude.  The ratios of the echo to antiecho 

pathways equal 0.7 and 2.5, respectively, and were chosen to correspond to those in 

the experimental spectra of Figs. 5.8e and 5.8f.  From these contour plots, it is evident 

that the degree of dispersive character only becomes significant in Fig. 5.8c, where 

the ratio of the two pathways differs considerably from unity.  Figures 5.8d-f show 

experimental 87Rb MQMAS spectra of RbNO3 obtained with the simple amplitude-

modulated experiment in Fig. 5.1a, where the flip angle of the p = ±3 to p = –1 

conversion pulse is varied.  The spectra were recorded at the same time as the results 

in Fig. 5.7d, and the ratio of the two pathways, |∆p| = 2 to |∆p| = 4, can be read off 

from Fig. 5.7d, namely (d) 1 at 4.25 µs, (e) 0.7 at 5.25 µs, and (f) 2.5 at 2.75 µs.  As in 

the simulations, there is only evidence of significant dispersive character in (f), where 

the ratio differs most from unity. 
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Fig. 5.8.  Contour plots of simulated (a-c) and experimental (d-f) spectra obtained with the simple amplitude-

modulated experiment in Fig. 5.1a, where the echo and antiecho pathways are combined with different 

amplitudes.  The ratio of the two pathways is denoted E/A and is indicated in the figure.  The contour plots in 

(d-f) show 6 ∞ 6 kHz regions of 87Rb (98.2 MHz) MQMAS spectra of RbNO3.  The full F1 and F2 spectral 

widths were 40 and 25 kHz, respectively, 192 transients (consisting of 512 points each) were averaged for each 

of 192 increments of t1, and the relaxation interval was 100 ms.  The duration of the triple-quantum excitation 

pulse was 8.5 µs.  The duration of the p = ±3 to p = –1 reconversion pulse was 4.3, 5.3, and 2.8 µs in (d), (e) and 

(f), respectively. 
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5.4 Spin I = 5/2 Nuclei 

 

 For spin I = 5/2 nuclei, quintuple-quantum as well as triple-quantum 

coherence can be correlated with single-quantum coherence in an MQMAS 

experiment.  However, for clarity, the discussion in this and the next chapter is 

restricted to the triple-quantum case, with the quintuple-quantum experiment not 

being considered until Chapter 7.  Considering the triple-quantum case, it was stated 

earlier that the MQMAS ratio for spin I = 5/2 equals 19/12.  The difference in sign to 

that for spin I = 3/2 (MQMAS ratio equals –7/9) means that the echo pathway now 

corresponds to the correlation of triple- and single-quantum coherences of opposite 

sign.  The solid and dashed lines in Fig. 5.1 therefore now correspond to the antiecho 

and echo pathways, respectively.  Furthermore, the echo now forms at t2 = (19/12) 

t1, and the inhomogeneously-broadened ridges have a gradient equal to 19/12. 

 

 For spin I = 3/2, as illustrated in Fig. 5.9a (overleaf), the coherence transfer 

amplitudes for the p = +3 to p = –1 and the p = –3 to p = –1 steps are the same, for all 

values of ωQ/ω1, if a pulse with a flip angle of 90° is used.  However, for spin I = 

5/2, there is no flip angle where the p = ±3 to p = –1 amplitudes are the same for all 

values of ωQ/ω1.  The difference between the two transitions is minimised for a 60° 

pulse.  This case is illustrated in Fig. 5.9b.  When this flip angle is used in the simple 

amplitude-modulated experiment, apparently pure absorption-mode lineshapes are 

often observed.   

 

 However, in some of the first published MQMAS spectra obtained using the 

simple amplitude-modulated experiment in Fig. 5.1a [52, 59], the mixed-phase 

character of the lineshapes is evident.  As an example, Fig. 5.10a (on page 98) 

presents a 27Al MQMAS spectrum of γ-alumina, obtained using the simple 

amplitude-modulated experiment.  While the narrow ridge (bottom left-hand 

corner), corresponding to the tetrahedral site, is apparently pure absorption-mode, 

the lineshapes (both the central peak and the spinning sidebands in F1) 
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corresponding to the octahedral site, where the homogeneous broadening is 

significant compared to the inhomogeneous broadening, are clearly mixed-phase. 

 

 In response to this problem, Amoureux et al. have recently presented an 

experiment in which, as shown in Fig. 5.11 (on page 99), the p = ±3 coherences are 

converted to p = –1 coherences via a population state, p = 0 [49, 61].  The symmetry 

of such a z-filtered [127] experiment means that the two pathways always combine 

with equal amplitude.  The success of this z-filtered simple  
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Figure 5.9.  Plots comparing the efficiency of coherence transfer as a function of ωQ/ω1 between coherence 

orders p = –3 and p = –1 (solid line) and p = +3 and p = –1 (dashed line) for (a) spin I = 3/2 nuclei and (b) spin 

I = 5/2 nuclei.  The single-quantum coherences (p = ±1) are those of the central transition only.  It should be 

noted that the two curves are superimposed in (a).  In each case, the optimised flip angle is used such that the 

difference between the two transitions is minimised, namely 90° in (a) and 60° in (b).  The vertical scale gives 

the normalised coherence transfer amplitudes calculated for the relevant states expressed in a single-element 

operator basis. 

 



 
98

 

F1

F2

a b

 

 

Figure 5.10.  Contour plots of experimental 27Al (104.3 MHz) MQMAS spectra of a sample of γ-alumina 

(BDH), obtained with (a) the simple amplitude-modulated experiment in Fig. 5.1a and (b) the z-filtered simple 

amplitude-modulated experiment in Fig. 5.10.  (These spectra were recorded in collaboration with Sharon 

Ashbrook [93].)  Two Al environments can be distinguished, namely an octahedral site (the centre of the 

spectrum, with spinning sidebands either side in both F1 and F2) and a tetrahedral site (indicated by an arrow).  

It is clear that pure absorption-mode lineshapes are only obtained for both sites in (b).  In both cases, the 

displayed F1 and F2 spectral widths are 50 kHz (cut down from 100 kHz) and 25 kHz, respectively.  The 

following experimental parameters were used: 168 transients (consisting of 512 points each) were averaged for 

each of 256 increments of t1, the relaxation interval was 1 s, and the spinning speed was 8.9 kHz.  The duration 

of the triple-quantum excitation pulse was 3 µs.  The duration of the p = ±3 to p = –1 reconversion pulse in (a), 

and the p = ±3 to p = 0 pulse in (b) were of duration 1.5 µs and 1 µs, respectively.  The duration of the p = 0 to 

p = –1 pulse in (b), selective for the central transition, was 45 µs, with the nutation frequency, ω1/2π, being 

reduced to 3 kHz.  In both experiments, sign discrimination was restored using the TPPI method of 

incrementing the phase of the first pulse by 30° for each increment of t1.  The bottom contour in both spectra 

corresponds to 8% of the maximum height.  The observed spinning sideband patterns in F1 are discussed in 

Appendix I. 
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amplitude-modulated experiment with regards to obtaining pure absorption-mode 

lineshapes is clearly demonstrated in Fig. 5.10b.  Furthermore, it should be noted that 

the experiment is equally applicable in the spin I = 3/2 case, where it avoids the 

necessity for the careful calibration of the flip angle of the conversion pulse. 

 

 At first sight, it would be thought that the optimum flip angles for the p = 0 to 

p = ±3 and p = ±3 to p = 0 conversions in Fig. 5.11 would be the same.  However, Eq. 

(4.21) showed that, for spin I = 3/2, a weak pulse only converts triple-quantum 

coherence into a population difference across the outer energy levels, rather than 

across the central transition as required.  Therefore, a strong pulse is required.  An 

analogous result is obtained for spin I = 5/2, and, in both cases, it is found that the 

optimum flip angle for the p = ±3 to p = 0 conversion is 60°.  Additionally, the 

sensitivity of the experiment is improved if ω1 is reduced for the final pulse (p = 0 to 

p = –1), such that it is selective for the central transition. 

 

t1

φ1 φ2 φ3

t2

p = 0
+1
+2
+3

–1
–2
–3  

 
Figure 5.11.  Pulse sequence and coherence transfer pathway diagram for the z-filtered simple amplitude-

modulated experiment.  The symmetry of the experiment ensures that the echo and antiecho pathways are 

combined with equal amplitude.  The optimum flip angles for the individual pulses are described in the text.  

The interval between the second and third pulses is of negligible duration (~ 3 µs).  A phase cycling scheme for 

the pulse phases φ1, φ2 and φ3 and for the receiver Rx is given in Table H1 of Appendix H. 
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5.5 Signal-to-Noise Considerations 

 

 When choosing which experiment to perform, a vital question to ask is, which 

experiment yields the best signal-to-noise ratio (henceforth denoted S/N)?  The final 

section of this chapter, therefore, examines the relative S/N of the three basic 

experiments presented in Section 5.2.  The discussion here is restricted to a 

qualitative comparison, with quantitative results being given in the next chapter.  

Schematic representations of time-domain data sets for the simple amplitude-

modulated experiment, the shifted-echo experiment, and the amplitude-modulated 

whole-echo experiment are given in Figs. 5.2e, 5.2c and 5.2f, respectively.  Initially, 

an idealised situation will be considered where, firstly, there is no signal loss 

associated with the spin echo, and, secondly, the contributions of the echo and 

antiecho pathways are equal and the same in each of the experiments.  When these 

simplifications are made, comparing the S/N of the three different experiments is 

relatively straightforward. 

 

 Examining first the amplitude-modulated whole-echo data set in Fig. 5.2f, it is 

evident that the time-domain signal is symmetric about the centre of t2, with each 

mirror image being identical to that of the simple amplitude-modulated data set in 

Fig. 5.2e.  Therefore, the signal in Fig. 5.2f is double that in Fig. 5.2e.  However, the 

noise is √2 greater, since the acquisition time in Fig. 5.2f is double that in Fig. 5.2e, 

and, hence, there is only a √2 improvement in S/N between the two experiments.   

 

 Furthermore, when the contribution of the two pathways in the amplitude-

modulated whole-echo experiment is equal, the imaginary part, after performing the 

Fourier transform in the t2 dimension, only contains noise, and can therefore be 

deleted and zero-filled.  In contrast, in the phase-modulated whole-echo experiment, 

the imaginary part contains signal and cannot be deleted.  There is, therefore, √2 less 

noise in the frequency-domain for the amplitude-modulated whole-echo experiment.  

There is no difference in the height of the individual peaks, and, thus, the amplitude-
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modulated whole-echo experiment offers a √2 improvement in S/N over the phase-

modulated whole-echo experiment.  Thus, for these idealised data sets, the relative 

S/N of the three experiments is in the ratio of 1:1:√2 for the simple amplitude-

modulated, the phase-modulated whole-echo, and the amplitude-modulated whole-

echo experiments, respectively. 

 

 Unsurprisingly, in practice, the situation is significantly more complicated 

than that discussed above for an idealised case.  Firstly, there will, of course, be 

signal loss associated with the spin echo as a consequence of transverse relaxation.  

Furthermore, if the pulse which inverts the central transition is not perfectly 

selective, additional signal will be lost.  Clearly, these features will tend to degrade 

the S/N of the two whole-echo experiments in Fig. 5.1b relative to the simple 

amplitude-modulated experiment in Fig. 5.1a.  In addition, to record the shifted-

antiecho signal in the amplitude-modulated whole-echo experiment, it is necessary 

to use a much longer spin-echo interval than in the phase-modulated experiment.  

More signal is, hence, lost through relaxation, and the √2 difference in S/N between 

the two experiments is significantly reduced. 

 

 A second important consideration is the relative contribution of the echo and 

antiecho pathways.  For the idealised data sets discussed above, the contribution of 

the two pathways was assumed to be equal and the same in all data sets.  However, 

Fig. 5.7 showed that the maximum coherence transfer amplitudes for the individual 

|∆p| = 2 or |∆p| = 4 steps are greater than the transfer amplitude when the two 

steps are equal.  This has the consequence that the optimum flip angle for the triple- 

to single-quantum coherence conversion pulse differs between the three experiments 

and, hence, the S/N of the single-pathway, phase-modulated whole-echo 

experiments improve relative to the other two. 

 

 From the representations of the time-domain data sets in Fig. 5.2, it is evident 

that significant amounts of the acquisition time are spent recording only noise.  In 
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order to achieve the optimum sensitivity, the application of time-domain filters, 

whose position changes as a function of t1, has been proposed [38, 43].  In both the 

simple amplitude-modulated and amplitude-modulated whole-echo experiments, 

the proportion of the acquisition time occupied by signal increases as t1 increases.  

For example, in Fig. 5.2e, at t1 = 0, a half echo forms in t2, while at larger t1, a whole 

echo forms.  In contrast, in the phase-modulated whole-echo experiments, a whole 

echo of the same length is formed for all values of t1.  The consequence of this is that 

a greater amount of noise can be filtered out in the phase-modulated whole-echo 

experiments, hence increasing their S/N relative to that of the other two 

experiments. 
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Chapter 6 
 
 
The Split-t1 Approach 
 
 
6.1 Shearing 

 

 In Chapter 5, it was simply stated and shown that the inhomogeneous 

quadrupolar broadening is spread out along a ridge, the gradient of which depends 

on the MQMAS ratio.  Usually, the purpose of performing an MQMAS experiment is 

to obtain, firstly, a spectrum displaying only isotropic shifts (both chemical and 

second-order quadrupolar in origin), and secondly, the second-order quadrupolar-

broadened one-dimensional spectra corresponding to the resolved sites.  To achieve 

this, it is necessary to perform a shearing transformation such that the ridges appear 

parallel to the F2 axis.  To avoid interpolation problems, it is preferable to perform 

the shearing transformation in the mixed frequency-time domain, S(t1, ω2).  

Grandinetti et al. [38] have shown that this shearing transformation corresponds to 

the application of the following t1-dependent first-order phase correction [83]: 

 

 S'(t1', ω2')  =  exp{ – i G ω2 t1 } S(t1, ω2) , (6.1) 

 

where G denotes the gradient of the ridge in the frequency domain, which equals 

plus or minus the MQMAS ratio, depending on the sign of the multiple-quantum 

coherence which evolves during t1.  As discussed in Refs. [43, 53], shearing the data 

set reduces the spectral width in F1 by a factor, using the notation of Table 3.1, of 

|C
I
1/2 |/(|C

I
1/2 | + |C

I
3/2 |), i.e., 9/16 and 12/31 for spin I = 3/2 and I = 5/2 (triple-

quantum), respectively. 
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Figure 6.1.  Contour plots showing how the ratio of the inhomogeneous to homogeneous broadening affects the 

degree of distortion associated with shearing.  In (a-c), there is no inhomogeneous broadening, while in (d-f) 

and (g-i) significant inhomogeneous broadening is present, with the ratio taking its largest value in (g-i).  In (d) 

and (g), two-dimensional Gaussian lineshapes are summed along the diagonal F1 = –F2, such that the projection 

onto an axis parallel to the ridge is a typical second-order quadrupolar-broadened spectrum.  The middle 

column, (b, e, h), shows the effect of performing a shearing transformation on the lineshapes in (a, d, g).  For 

comparison, the right-hand column, (c, f, i), illustrates the case where the same Gaussian lineshapes are summed 

parallel to the F2 axis. 

 

 Shearing, however, is not a perfect solution, even if carried out in the S(t1, ω2) 

domain.  Although it must be stressed that shearing does not affect the isotropic 

projection, it can cause distortions in the two-dimensional lineshapes.  Figure 6.1 

shows how the ratio of the inhomogeneous to homogeneous broadening affects the 

degree of distortion associated with shearing.  The top row of Fig. 6.1 illustrates the 

case where there is no inhomogeneous broadening, and Fig. 6.1a is simply a plot of a 

two-dimensional pure absorption-mode Gaussian lineshape.  Figures 6.1d and 6.1g 
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correspond to a summation of Gaussian lineshapes along the diagonal F1 = –F2, such 

that the projection onto an axis parallel to the ridge is a typical second-order 

quadrupolar-broadened spectrum.  The ratio of the inhomogeneous to homogeneous 

broadening is greater in Fig. 6.1g, and the ridge is seen to be considerably narrower.   

 

 Figures 6.1b, 6.1e and 6.1h show the effect of performing a shearing 

transformation on the frequency-domain data sets of Figs. 6.1a, 6.1d and 6.1g, 

respectively.  For comparison, Figs. 6.1c, 6.1f and 6.1i illustrate the case where the 

same Gaussian lineshapes add up parallel to the F2 axis.  It is clear that the degree of 

distortion associated with shearing decreases as the ratio of the inhomogeneous to 

homogeneous broadening increases.  A frequency-domain shearing transformation 

was used in Figs. 6.1b, 6.1e and 6.1h but, for the special case of a 1:1 ridge (i.e., one 

along F1 = ± F2), there are no interpolation problems associated with this method.  

Exactly the same result would have been obtained if the shearing had been 

performed in the mixed frequency-time domain using Eq. (6.1).  Analytical 

expressions supporting the above conclusions have been derived, and are presented 

in Appendix F. 

 

 The undesirable effects associated with shearing are further demonstrated by 

the experimental 23Na MQMAS spectra in Fig. 6.2 (overleaf).  Figure 6.2a shows an 

unsheared spectrum, displaying two of the three crystallographically inequivalent 

sites in Na2HPO4, obtained with the simple amplitude-modulated experiment in Fig. 

5.1a.  Two ridges are seen in the centre of the spectrum with spinning sidebands 

either side, the ratio of the inhomogeneous to homogeneous broadening being 

greater for the lower ridge.  The spectrum in Fig. 6.2b corresponds to the same 

experimental data set as in Fig. 6.2a, except that, as described above, a shearing 

transformation has been performed in the S(t1, ω2) domain, such that the ridges now 

lie parallel to the F2 axis.  It is clear that the broader ridge, in particular, has been 

distorted by the shearing transformation (although this would not affect the isotropic 
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projection).  The spectrum in Fig. 6.2c corresponds to an experiment described in the 

following section, where undistorted ridge lineshapes appear parallel to the F2 axis. 

 

a b c

F1

F2

 

 

Figure 6.2.  Contour plots taken from 23Na (105.8 MHz) MQMAS spectra of Na2HPO4 (Aldrich) obtained with, 

(a) and (b), the simple amplitude-modulated experiment in Fig. 5.1a and, (c), the amplitude-modulated split-t1 

experiment in Fig. 6.3a.  In (a), the displayed F1 and F2 spectral widths are 15 and 6 kHz, respectively. The 

spectrum in (b) is the result of applying a shearing transformation in the S(t1, ω2) domain, as described in the 

text, to the data set in (a).  The shearing transformation reduces the F1 spectral width by 9/16, such that the 

displayed F1 spectral width is 8.4 kHz in (b).  For comparison, the displayed F1 and F2 spectral widths in (c) are 

8.4 and 6 kHz, respectively.  It was not necessary to apply a shearing transformation in (c).  Experimental 

conditions as similar as possible were used for the two experiments: the full F2 spectral width was 25 kHz, 

192 transients (consisting of 512 points each) were averaged for each of 128 increments of t1, the relaxation 

interval was 1 s, and the spinning speed was 5.3 kHz.  The duration of the triple-quantum excitation pulse was 

8.0 µs.  Sign discrimination was restored using the TPPI method of incrementing the phase of the first pulse by 

30° for each increment of t1.  The full F1 spectral width equalled 25 and 14.1 kHz in (a) and (c), respectively.  

The duration of the p = ±3 to p = –1 reconversion pulse in (a) was 3 µs, while that of the p = +3 to p = +1 and 

p = –3 to p = –1 conversion pulse in (c) was 1.5 µs.  The first and second pulses in the z filter in (c) had duration 

1 µs and 20 µs respectively, with the nutation frequency, ω1/2π, being reduced to 6 kHz for the latter pulse.  The 

observed spinning sideband patterns in F1 are discussed in Appendix I. 
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6.2 Refocusing the Anisotropic Quadrupolar Broadening in t1 

 

 The previous section showed that shearing can cause unwanted distortions in 

two-dimensional lineshapes.  Although an undistorted spectrum showing isotropic 

shifts (the projection onto the F1 axis after shearing) can still be obtained, problems 

occur when F2 cross sections through the two-dimensional spectrum are used to 

extract the parameters CQ and η, especially when lineshapes overlap.  This section 

therefore describes modified amplitude- and phase-modulated experiments where 

the ridges appear parallel to the F2 axis without the need for a shearing 

transformation. As shown in Figs. 6.1c, 6.1f and 6.1i, this yields two-dimensional 

lineshapes that are completely free of distortion.  Again, for clarity, the discussion is 

first restricted to spin I = 3/2 nuclei, with spin I = 5/2 nuclei being considered in 

Section 6.4. 

 

 The key feature of all MQMAS experiments is the refocusing of the fourth-

rank anisotropic broadening when the ratio of the durations of the single- and 

multiple-quantum evolution periods equals the magnitude of the MQMAS ratio.  In 

all of the experiments introduced so far, this refocusing has occurred within the t2 

period.  If, however, the t1 period is split into single- and multiple-quantum 

evolution periods in the ratio of the MQMAS ratio, the fourth-rank anisotropic 

broadening is refocused at the end of the t1 period, for all values of t1.  This 

refocusing of the quadrupolar broadening at t2 = 0 means that undistorted 

inhomogeneously-broadened ridges appear parallel to the F2 axis without the need 

for a shearing transformation.  Furthermore, as discussed later, the fact that the 

signal always appears at the same position in t2 has important advantages, in 

particular with regards to achieving the optimum sensitivity.  The partition of t1 into 

two separate evolution periods means that experiments based on this approach are 

collectively referred to as split-t1 experiments. 
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6.2.1 Amplitude-Modulated Split-t1 Experiments 

 

 Figure 6.3 shows the pulse sequences and coherence transfer pathway 

diagrams for two amplitude-modulated experiments where the t1 period can be seen 

to be split into single- and triple-quantum evolution periods in the ratio of the 

MQMAS ratio.  A schematic representation of a time-domain data set resulting from 

such amplitude-modulated split-t1 experiments is presented in Fig. 6.4a, from which 
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Figure 6.3.  Pulse sequences and coherence transfer pathway diagrams for two amplitude-modulated split-t1 

experiments (for spin I = 3/2 nuclei). The experiment in (a) uses a z filter at the end of the evolution period, t1, 

while that in (b) uses a single pulse to transfer the two mirror image pathways into observable coherence. The 

evolution period is split between single- and triple-quantum evolution according to the MQMAS ratio as 

indicated.  The optimum flip angles for the individual pulses are described in the text.  The interval between the 

third and fourth pulses in (a) is of negligible duration (~ 3 µs).  Phase cycling schemes for the pulse phases φ1, 

φ2, φ3 and φ4 and for the receiver Rx are given in Table H3 of Appendix H. 
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it is clear, as stated above, that the signal appears at the same position in t2, for all 

values of t1.  For comparison, Fig. 6.4c presents the time-domain representation for 

the simple amplitude-modulated experiment (repeated from Fig. 5.2e).  As with the 

simple amplitude-modulated experiment, sign discrimination in F1 can again be 

restored in the amplitude-modulated split-t1 experiments by using the States-

Haberkorn-Ruben or TPPI methods. 

 

 To obtain genuinely pure absorption-mode lineshapes, it is necessary that the 

two mirror-image coherence transfer pathways combine with equal amplitude.  This 

can be achieved most reliably, for all pulse powers, using a z filter, as shown in Fig. 

6.3a.  The flip angles of the two pulses of the z filter should be set equal to 45° pulses 

(i.e., for optimum sensitivity, they should be fully selective (ω1 << ωQ) 90° pulses on 

the central transition).  Figure 6.2c presents an experimental 23Na spectrum of 

Na2HPO4 for this experiment.  It can be seen that, unlike in Fig. 6.2b, undistorted 

ridges, lying parallel to the F2 axis, are obtained.  It should be noted that the data sets 

b

t2

t1

a

dc

 
 
Figure 6.4.  Schematic representations of the spin I = 3/2 time-domain signal obtained with the (a) amplitude-

modulated split-t1, (b) phase-modulated split-t1, (c) simple amplitude-modulated, and (d) shifted-echo 

experiments.  In (a) and (c), the contributions of the echo and antiecho pathways are shown as solid and dotted 

lines, respectively. 
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leading to the spectra in Fig. 6.2 were recorded using experimental conditions that 

were as similar as possible.  In particular, although the full spectral width in F1 

equals 25 and 14.0625 kHz, respectively, for Figs. 6.2a and 6.2c, shearing reduces the 

spectral width by 9/16 and, therefore, the F1 spectral widths are the same in Figs. 

6.2b and 6.2c. This is unsurprising since the triple-quantum evolution period is 

incremented by the same amount and the echo forms at the same time in both 

experiments. 

 

 The z-filtered split-t1 experiment in Fig. 6.3a requires two pulses more than 

the simple amplitude-modulated experiment in Fig. 5.1a and, if these pulses cannot 

be fully optimised, this will result in reduced sensitivity.  An alternative is to use a 

single pulse to convert between p = ±1 and p = –1 coherences, as shown in Fig. 6.3b.  

It was shown in Fig. 5.9a, for the simple amplitude-modulated experiment, that the 

coefficients of the p = +3 to p = –1 and p = –3 to p = –1 coherence transfer steps are 

the same, for all values of ωQ/ω1, if a 90° pulse is used.  Unfortunately, for the split-

t1 experiment in Fig. 6.3b, as with the spin I = 5/2 p = ±3 to p = –1 case, there is no 

single flip angle where the coefficients of the p = +1 to p = –1 and p = –1 to p = –1 

coherence transfer steps are the same for all values of ωQ/ω1.  However, as shown in 

Fig. 6.5 (overleaf), when the flip angle is 45° the difference between the two transfer 

coefficients is small.  It should be noted that, as the magnitude of ωQ/ω1 increases, 

the two curves converge and that the efficiency of coherence transfer increases.  

Clearly, the optimum pulse for this coherence transfer step, therefore, is a 45° pulse 

with ω1 << ωQ, i.e., a fully selective 90° pulse on the central transition. 

 

 Figure 6.6 (on page 112) presents 23Na MQMAS spectra of a mixture of 

Na2SO4 and Na2C2O4 obtained with the simple amplitude-modulated experiment in 

Fig. 5.1a and the amplitude-modulated split-t1 experiment in Fig. 6.3b.  Experimental 

conditions as similar as possible were again used, although, as discussed above, the 

duration of the pulse which combines the two pathways equalled 3.7 and 1.9 µs 

(equivalent to 90° and 45° flip angles) in Fig. 6.6a and Fig. 6.6c, respectively.  As 
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predicted in Fig. 6.1, it is clear from Fig. 6.6b that, with long narrow ridges, shearing 

does not produce any distortion of the lineshape.  Using the pulse sequence in Fig. 

6.3b, pure absorption-mode lineshapes are apparently obtained in Fig. 6.6c although, 

in order to achieve this, full radiofrequency power had to be used for the final pulse.  

This is a good example of a general feature of amplitude-modulated MQMAS 

experiments that was frequently encountered experimentally: namely, it is 

straightforward to achieve pure absorption-mode lineshapes in z-filtered 

experiments, but much more difficult to achieve them in single-pulse conversion 

experiments.   

 

6.2.2 Phase-Modulated Split-t1 Experiments 

 

 The split-t1 approach is equally applicable to the phase-modulated whole-

echo experiments presented in Section 5.2.2, and Fig. 6.7 (on page 113) shows the 

pulse sequences and coherence transfer pathway diagrams for two possible 

experiments.  The two experiments shown select coherence transfer pathways  
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Figure 6.5.  A comparison (for spin I = 3/2 nuclei) of the efficiency of coherence transfer as a function of ωQ/ω1 

between coherence orders p = –1 and p = –1 (solid line) and p = +1 and p = –1 (dashed line) of the central 

transition.  The optimised flip angle, 45°, is used such that the difference between the two conversions is 

minimised.  The vertical scale is normalised as in Fig. 5.9. 
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Figure 6.6.  Contour plots taken from 23Na (105.8 MHz) MQMAS spectra of a mixture of Na2C2O4 and 

Na2SO4 obtained with, (a) and (b), the simple amplitude-modulated experiment in Fig. 5.1a and, (c), the 

amplitude-modulated split-t1 experiment in Fig. 6.3b.  In (a), the displayed F1 and F2 spectral widths are 25 and 

10 kHz, respectively. The spectrum in (b) is the result of applying a shearing transformation in the S(t1, ω2) 

domain, as described in the text, to the data set in (a).  The shearing transformation reduces the F1 spectral width 

by 9/16, such that the displayed F1 spectral width is 14.1 kHz in (b).  For comparison, the displayed F1 and F2 

spectral widths in (c) are 14.1 and 10 kHz, respectively.  It was not necessary to apply a shearing transformation 

in (c).  Experimental conditions as similar as possible were used for the two experiments: the full F2 spectral 

width was 25 kHz, 96 transients (consisting of 256 points each) were averaged for each of 256 increments of t1, 

the relaxation interval was 1 s, and the spinning speed was 5.4 kHz.  The duration of the triple-quantum 

excitation pulse was 7.4 µs.  Sign discrimination was restored using the TPPI method of incrementing the phase 

of the first pulse by 30° for each increment of t1.  The full F1 spectral width equalled 50 and 28.1 kHz in (a) and 

(c), respectively.  The duration of the p = ±3 to p = –1 reconversion pulse in (a) was 3.7 µs, while that of the p = 

+3 to p = +1 and p = –3 to p = –1 conversion pulse in (c) was 2.0 µs.  The p = ±1 to p = –1 conversion pulse in 

(c) had duration 1.9 µs.  The bottom contour in each spectrum corresponds to 8% of the maximum height.  The 

observed spinning sideband patterns in F1 are discussed in Appendix I. 
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Figure 6.7.  Pulse sequences and coherence transfer pathway diagrams for two phase-modulated split-t1 

experiments (for spin I = 3/2 nuclei).  The evolution period, t1, is split between single- and triple-quantum 

evolution according to the MQMAS ratio as indicated.  The second pulse changes the coherence order by ∆p = 

–2 in (a) and by ∆p = +4 in (b).  As a result, if ω1 < ωQ, the sensitivity of the experiment in (a) is higher than 

that in (b) and makes it the phase-modulated experiment of choice for spin I = 3/2 nuclei.  A whole echo always 

forms at the centre of the acquisition period, t2, for all values of t1.  The optimum flip angles for the individual 

pulses are described in the text.  The spin-echo interval, τ, should be of sufficient length to ensure that the whole 

echo is not truncated.  The phase cycling schemes for the pulse phases φ1, φ2 and φ3 and for the receiver Rx are 

the same as those for the shifted-antiecho and shifted-echo experiments in Fig. 5.1b and are given in Table H2 

of Appendix H. 

 

which differ in the change of coherence order induced by the second pulse.  It was 

shown in Section 5.3 that the maximum coherence transfer efficiency for |∆p| = 2 is 

greater than that for |∆p| = 4, and hence the sequence in Fig. 6.7a is to be preferred.  

The experiments in Fig. 6.7 involve the correlation of triple- and single-quantum 

coherences of the same sign, and are, therefore, modified versions of the shifted-echo 
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sequence.  (Similarly modified versions of the shifted-antiecho sequence also exist; 

however, as discussed earlier, a much longer spin-echo interval is necessary in this 

case.)  A schematic representation of the time-domain data set resulting from a 

phase-modulated split-t1 experiment is shown in Fig. 6.4b, along with, for 

comparison, in Fig. 6.4d, the time-domain representation for the shifted-echo 

experiment (repeated from Fig. 5.2c). 

 

 Comparison of the shifted-echo experiment in Fig. 5.1b and the split-t1 

experiment in Fig. 6.7b reveals that they only differ in how t1 is defined, and hence 

there is no inherent difference in resolution or sensitivity between the two 

approaches.  Furthermore, it was shown in Section 6.1 that phase-modulated whole-

echo experiments only give rise to pure absorption-mode lineshapes when the 

inhomogeneous broadening dominates the homogeneous broadening.  In this limit, 

shearing does not distort the two-dimensional lineshape.  However, it is shown in 

the next section that there are still important advantages associated with using the 

split-t1 experiments.   

 

 As an experimental example, Fig. 6.8 (overleaf) presents a 23Na MQMAS 

spectrum of a mixture of Na2SO4 and Na2C2O4 obtained with the phase-modulated 

split-t1 experiment in Fig. 6.7a.  (The isotropic spectrum obtained by projecting the 

two-dimensional spectrum onto the F1 axis was shown in Fig. 1.1b.)  It should be 

noted that this experiment involves the evolution of p = +3 coherence, as compared 

to p = –3 coherence in the shifted-echo experiment.  This has the consequence that 

the F1 frequency of a ridge in a spectrum obtained using the split-t1 experiment of 

Fig. 6.7a will be of opposite sign to that observed in a sheared spectrum obtained 

using the shifted-echo (or simple amplitude-modulated) experiment.  To avoid 

confusion, the F1 axis in Fig. 6.8 has been flipped, such that the displayed spectrum is 

equivalent to that shown in Fig. 6.6. 
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6.3 Signal-to-Noise Considerations 

 

 A qualitative comparison of the sensitivity of the simple amplitude-

modulated, the shifted-echo, and the amplitude-modulated whole-echo experiments 

was presented in Section 5.5.  This purpose of this section is then twofold: firstly, to 

compare, both qualitatively and quantitatively, the sensitivity of the split-t1 

experiments to that of their direct Chapter 5 analogues; and secondly, to determine, 

F1

F2

 
 
Figure 6.8.  Contour plot taken from a 23Na (105.8 MHz) MQMAS spectrum of a mixture of Na2C2O4 and 

Na2SO4, recorded using the phase-modulated split-t1 experiment in Fig. 6.7a.  The displayed spectral width is 

15 kHz in both the F1 and F2 dimensions.  The full F1 and F2 spectral widths were 15 kHz and 50 kHz, 

192 transients (consisting of 256 points each) were averaged for each of 64 increments of t1, the relaxation 

interval was 1 s, and the spinning speed was 5.3 kHz.  The triple-quantum excitation pulse, the p = +3 to +1 

conversion pulse, and the selective central transition inversion pulse were of duration 6.1 µs, 2.1 µs, and 4.0 µs, 

respectively.  The spin-echo interval, τ, was 1.33 ms.  It was not necessary to apply a shearing transformation.  

The bottom contour in each spectrum corresponds to 8% of the maximum height.  The observed spinning 

sideband pattern in F1 is discussed in Appendix I. 
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using 87Rb NMR of RbNO3 as a model example, which experiment overall has the 

best S/N. 

 

 Considering first the phase-modulated split-t1 experiment in Fig. 6.7b, it was 

stated in the previous section that there is no inherent difference in resolution or 

sensitivity between this experiment and the phase-modulated shifted-echo 

experiment in Fig. 5.1b.  However, the processing required to obtain the optimum 

S/N is considerably simpler in the split-t1 experiments.  In addition to not needing to 

apply a shearing transformation, the key advantage, as illustrated in Fig. 6.4b, is the 

fact that the echo always forms at the same position in t2. This has the following 

favourable consequences.  Firstly, since the echo does not move through t2, the 

length of the acquisition period, and hence the introduction of noise, can be kept to a 

minimum.  There is, thus, no requirement to use t1-dependent weighting functions to 

optimise the S/N.  Secondly, to record an echo which is symmetric about its centre, it 

is obvious that the centre of the echo should correspond to the centre of t2.  As 

discussed earlier, this means that it is very easy to apply the necessary phase 

correction to ensure that the centre of the echo corresponds to t2 = 0, when t1 = 0.   

 

 Furthermore, there is an additional advantage of the phase-modulated split-t1 

experiment in Fig. 6.7a as a consequence of the |∆p| = 2 change being more efficient 

than the |∆p| = 4 change.  For the experiments in Fig. 5.1b, where there is only 

triple-quantum coherence evolution during t1, it is the shifted-antiecho sequence that 

has the favourable coherence order change.  However, it was stated earlier that there 

will be greater signal loss due to relaxation in the shifted-antiecho sequence as a 

consequence of the longer spin-echo interval.  In contrast, the split-t1 experiment in 

Fig. 6.7a has both the optimum coherence order change and the optimum spin-echo 

interval.   
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 To confirm these predictions, 87Rb MQMAS spectra of RbNO3 were obtained 

using the shifted-echo and shifted-antiecho experiments in Fig. 5.1b, and the phase-

modulated split-t1 experiment in Fig. 6.7a.  As similar as possible experimental 

conditions were used, except, as noted above, it was necessary to use a longer spin-

echo interval in the shifted-antiecho experiment, and the unfavourable |∆p| = 4 

coherence transfer step for the shifted-echo experiment.  The spectra obtained using 

the shifted-antiecho and split-t1 experiments are presented in Fig. 6.9 (overleaf).  In 

this case, since the inhomogeneous broadening must dominate the homogeneous 

broadening for the whole-echo approach to be applicable, it is unsurprising that 

there is no evidence of any distortion of the two-dimensional lineshapes in the 

sheared spectrum (Fig. 6.9b).   

 

 Comparing the S/N for the three experiments, the S/N of the shifted-antiecho 

experiment was 1.6 times higher than that of the shifted-echo experiment, while that 

of the phase-modulated split-t1 experiment in Fig. 6.7a was 2.0 times higher.  Hence, 

the predicted sensitivity advantage for spin I = 3/2 nuclei of the split-t1 experiment 

in Fig. 6.7a is confirmed.  (It should be noted that the measured S/N in spectra 

obtained using the shifted-echo and shifted-antiecho experiments were optimised by 

the application of t1-dependent time-domain filters to remove unwanted noise.)    

 

 Turning to the amplitude-modulated split-t1 experiments in Fig. 6.3, it is clear 

that at least one additional pulse is required relative to the simple amplitude-

modulated experiment in Fig. 5.1a (as also for the z-filtered simple amplitude-

modulated experiment in Fig. 5.11).  Although the favourable |∆p| = 2 coherence 

transfer step is carried out by the triple- to single-quantum conversion pulse, it 

would still be expected that the amplitude-modulated split-t1 experiments have 

poorer S/N.  This was indeed found to be the case in the experimental 23Na NMR 

spectra in Fig. 6.2, where, recorded under as similar conditions as possible, the S/N 

of the simple amplitude-modulated spectrum in  
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Figure 6.9.  Contour plots taken from 87Rb (130.9 MHz) MQMAS spectra of RbNO3 obtained with, (a) and (b), 

the shifted-antiecho experiment in Fig. 5.1b (dashed line) and, (c), the phase-modulated split-t1 experiment in 

Fig. 6.7a.  (These spectra were recorded in collaboration with Sharon Ashbrook [93].)  In (a), the displayed F1 

and F2 spectral widths are 15 and 6 kHz, respectively. The spectrum in (b) is the result of applying a shearing 

transformation in the S(t1, ω2) domain, as described in the text, to the data set in (a).  The shearing 

transformation reduces the F1 spectral width by 9/16, such that the displayed F1 spectral width is 8.4 kHz in (b).  

For comparison, the displayed F1 and F2 spectral widths in (c) are 8.4 and 6 kHz, respectively.  It was not 

necessary to apply a shearing transformation in (c).  Experimental conditions as similar as possible were used 

for the two experiments: the full F2 spectral width was 29.4 kHz, 96 transients (consisting of 1024 and 512 

points each in (a) and (c), respectively) were averaged for each of 192 increments of t1, the relaxation interval 

was 100 ms, and the spinning speed was 5.2 kHz.  The full F1 spectral width equalled 44.4 and 25 kHz in (a) 

and (c), respectively.  The durations of the triple-quantum excitation and the p = +3 to p = +1 conversion pulses 

were 6.8 and 1.0 µs, respectively.  The duration of the central transition inversion pulse was 70 µs, with the 

nutation frequency, ω1/2π, being reduced to 4 kHz.  The spin-echo interval, τ, was 7.8 ms in (a) and 4.4 ms in 

(c). 
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Fig. 6.2a was 1.5 times higher than that of the z-filtered split-t1 spectrum in Fig. 6.2c.  

Nevertheless, depending on the particular experimental application, this modest 

reduction in sensitivity may be a price worth paying to ensure that undistorted 

lineshapes are obtained.  It should be noted that the z-filtered simple amplitude-

modulated experiment yielded an even smaller sensitivity advantage over the z-

filtered split-t1 experiment: a 23Na NMR spectrum of Na2HPO4 (not shown) 

recorded under comparable conditions to the split-t1 spectrum in Fig. 6.2c had a S/N 

that was only 1.1 times better.   

 

 It should be noted that, as with the phase-modulated split-t1 experiments, the 

amplitude-modulated split-t1 experiments in Fig. 6.3 have the practical advantage 

that the time-domain signal does not move within the acquisition period t2, meaning 

that this can be kept short and that normal (i.e., t1-independent) weighting functions 

can be used to optimise the S/N.  It is also interesting to note that the S/N of the 

experiments in Fig. 6.3 can, in principle, be increased by a factor of √2 by appending 

a spin echo to the pulse sequence and acquiring a whole, rather than half, echo. 

 

 In a separate experimental study to that described above for the phase-

modulated split-t1 experiments, 87Rb MQMAS spectra of RbNO3 were obtained 

using the phase-modulated split-t1 experiment in Fig. 6.7a, the simple amplitude-

modulated, the amplitude-modulated whole-echo experiment, and the z-filtered 

simple amplitude-modulated experiment.  The S/N of the four experiments were 

then in the ratio 1.0: 0.7: 0.6: 0.5, indicating that the phase-modulated split-t1 

experiment has the best sensitivity. 

 

6.4 Spin I = 5/2 Nuclei 

 

 The split-t1 experiments introduced in Section 6.2 are equally applicable to 

spin I = 5/2 nuclei, and the optimum (triple-quantum) amplitude- and phase-
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modulated experiments are presented in Fig. 6.10.  In this case, the evolution time is 

now partitioned between single- and triple-quantum evolution in the ratio of 19/12.   

 

 For spin I = 5/2 nuclei, it was observed, experimentally, that the maximum 

transfer amplitude, for a range of samples, was much lower for the |∆p| = 4 triple- 

to single-quantum conversion step than that for the |∆p| = 2 case, typically between 

3 and 6 times smaller.  This has a significant consequence on the sensitivity of the 
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Figure 6.10.  Pulse sequences and coherence transfer pathway diagrams for the optimum (a) amplitude-

modulated split-t1 experiment and (b) phase-modulated split-t1 experiment for spin I = 5/2 nuclei.  The 

evolution period, t1, is split between single- and triple-quantum evolution according to the MQMAS ratio as 

indicated.  A whole echo always forms at the centre of the acquisition period, t2, for all values of t1 in (b).  

Phase cycling schemes for the pulse phases φ1, φ2 and φ3 and for the receiver Rx in (a) is given in Table H3 of 

Appendix H, while that in (b) is the same as that for the shifted-antiecho experiment in Fig. 5.1b and is given in 

Table H2 of Appendix H. 
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amplitude-modulated split-t1 experiment, which, since the MQMAS ratio is positive, 

utilises this unfavourable change.  As an example, Fig. 6.11 (overleaf) presents 27Al 

MQMAS spectra of aluminium hydroxide, Al(OH)3, recorded using the z-filtered 

simple amplitude-modulated in Fig. 5.11 and the amplitude-modulated split-t1 

experiment in Fig. 6.10a.  The ratio of the inhomogeneous to homogeneous 

broadening for the two resolvable ridges is small, and, to avoid the distortion of the 

two-dimensional lineshapes caused by shearing in Fig. 6.11b, it is necessary to 

perform an amplitude-modulated split-t1 experiment.  However, as shown by the 

poor quality of the lineshapes in Fig. 6.11c, there is an unacceptable loss of sensitivity 

(ten times, in this case) associated with this experiment.  (It should be noted that, 

although the correlation of triple-quantum with single-quantum evolution has given 

rise to two-dimensional spectra in Fig. 6.11 offering more information than that 

observed in a one-dimensional spectrum, in this case, the MQMAS experiment has 

not achieved any observable line narrowing in F1.  This suggests that second-order 

quadrupolar broadening is not the dominant line-broadening mechanism.) 

 

 For the phase-modulated split-t1 experiment, the more efficient |∆p| = 2 

triple- to single-quantum conversion can be used, with, as shown in Fig. 6.10b, the 

second part of the t1 period now following the final pulse.  As an example, Fig. 6.12 

(on page 123) presents a 27Al spectrum of the mineral kyanite (Oxford University 

Museum, OUM 29205), Al2SiO5, obtained with the experiment in Fig. 6.10b.  Three 

long narrow ridges can be identified (the isotropic shifts are marked with arrows in 

the F1 dimension) and, as two of the CQ values for kyanite are very similar [53], these 

correspond to the four crystallographically inequivalent sites. 
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Figure 6.11.  Contour plots taken from 27Al (104.3 MHz) MQMAS spectra of Al(OH)3 (BDH) obtained with, 

(a) and (b), the z-filtered simple amplitude-modulated experiment in Fig. 5.11 and, (c), the amplitude-modulated 

split-t1 experiment in Fig. 6.10a.  In (a), the displayed F1 and F2 spectral widths are 40 and 16 kHz, respectively. 

The spectrum in (b) is the result of applying a shearing transformation in the S(t1, ω2) domain, as described in 

the text, to the data set in (a).  The shearing transformation reduces the F1 spectral width by 12/31, such that the 

displayed F1 spectral width is 15.5 kHz in (b).  For comparison, the displayed F1 and F2 spectral widths in (c) 

are 15.5 and 16 kHz, respectively.  It was not necessary to apply a shearing transformation in (c).  The 

following experimental conditions were used for the two experiments: the full F2 spectral width was 50 kHz, 

768 transients (consisting of 512 points) were averaged for each of 128 increments of t1, the relaxation interval 

was 500 ms, and the spinning speed was 9.5 kHz.  Sign discrimination was restored using the TPPI method of 

incrementing the phase of the first pulse by 30° for each increment of t1.  The full F1 spectral width equalled 

100 and 27.6 kHz in (a) and (c), respectively.  The duration of the p = ±3 to p = 0 pulse in (a) was 1.2 µs, while 

that of the p = +3 to p = –1 and p = –3 to p = +1 conversion pulse in (c) was 2.0 µs.  The duration of the triple-

quantum excitation pulse was 3.5 µs.  The duration of all pulses acting on the central transition inversion pulse 

was 25 µs, with the nutation frequency, ω1/2π, being reduced to 5 kHz.  The bottom contour in each spectrum 

corresponds to 8% of the maximum height.  The observed spinning sideband patterns in F1 are discussed in 

Appendix I. 
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Figure 6.12.  A contour plot taken from an 27Al (104.2 MHz) MQMAS spectrum of kyanite recorded using the 

phase-modulated split-t1 experiment in Fig. 6.10b.  (This spectrum was recorded in collaboration with Sharon 

Ashbrook [93].)  The displayed spectral width is 10 kHz (cut down from 38.7 and 50 kHz, respectively) in both 

the F1 and F2 dimensions.  The following experimental conditions were used: 672 transients (consisting of 

256 points each) were averaged for each of 192 increments of t1, the relaxation interval was 500 ms, and the 

spinning speed was 8.5 kHz.  The durations of the triple-quantum excitation and the p = +3 to p = +1 conversion 

pulses were 3.6 and 0.8 µs, respectively.  The duration of the central transition inversion pulse was 30 µs, with 

the nutation frequency, ω1/2π, being reduced to 8 kHz.  The spin-echo interval, τ, was 1.4 ms.  It was not 

necessary to apply a shearing transformation.  The observed spinning sideband pattern in F1 is discussed in 

Appendix I. 

 

6.5 Discussion and Conclusions 

 

 This and the previous chapter have presented the different methods by which 

the MQMAS technique can be implemented; before moving on, in the final chapter, 

to describe some novel experimental applications, the final section of this chapter 

will summarise the discussion of these different MQMAS experiments. 
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 It has been shown that the various methods proposed for obtaining pure 

absorption-mode lineshapes in MQMAS experiments of half-integer quadrupolar 

nuclei can be classified according to whether the data is amplitude- or phase-

modulated as a function of t1.  To date, both classes of experiment have most often 

been performed in such a way that the inhomogeneous quadrupolar broadening is 

spread out along a ridge which has a slope of –7/9 or 19/12 with respect to the F2 

axis for spin I = 3/2 and 5/2, respectively.  In this chapter, it has been shown that 

there are disadvantages associated with recording the data in this fashion.  Firstly, 

this approach means that the echo that is formed moves through the acquisition 

period, t2, as the evolution period, t1, is incremented, which, in turn, means that the 

t2 period is much longer than necessary and that complicated t1-dependent 

weighting functions must be used to optimise the sensitivity.  Secondly, to obtain 

both the isotropic projection and the individual second-order broadened spectra, the 

spectroscopist has to apply a shearing transformation to the final spectrum.  This 

transformation can result in a significant distortion of the two-dimensional 

lineshapes and, in particular, of the F2 cross sections containing the individual 

second-order broadened spectra.   

 

 Phase-modulated whole-echo MQMAS experiments yield pure absorption-

mode lineshapes when the inhomogeneous quadrupolar broadening is much greater 

than the homogeneous broadening.  In this limit, compared to the amplitude-

modulated experiments in Figs. 5.1a and 6.3, they have the advantage that only a 

single coherence transfer pathway need be selected, thereby avoiding the need to use 

z filters or carefully calibrated single pulses to combine two mirror-image pathways 

with equal amplitudes.  Phase-modulated split-t1 experiments were introduced, 

where the whole echo is stationary within the acquisition period, t2 (meaning that 

the t2 period is short and that simple weighting functions can be used), and where 

the inhomogeneously-broadened ridges are parallel to F2, thereby avoiding the need 

for shearing.   
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 In addition to these practical advantages, for spin I = 3/2, the inherent 

sensitivity of the optimum phase-modulated split-t1 experiment (Fig. 6.7a) is 

expected (and was indeed experimentally demonstrated) to be better than that of 

either the shifted-echo or shifted antiecho experiment in Fig. 5.1b since it features 

both a short spin-echo interval, τ, and an optimum coherence transfer step of |∆p| = 

2.  Moreover, it is further expected that the sensitivity of the optimum versions of the 

phase-modulated split-t1 experiment (Figs. 6.7a and 6.10b for spin I = 3/2 and 5/2, 

respectively) will often be better than that of the amplitude-modulated whole-echo 

experiment, since the latter, despite its theoretical √2 sensitivity advantage, requires 

a longer spin-echo interval, τ, and makes use of a coherence transfer step with |∆p| 

= 4.  This result was again experimentally demonstrated for 87Rb NMR of RbNO3. 

 

 Amplitude-modulated MQMAS experiments can be used to yield pure 

absorption-mode lineshapes whatever the ratio of the inhomogeneous to 

homogeneous broadening.  Amplitude-modulated split-t1 experiments were 

introduced, where the time-domain signal is stationary within the acquisition period, 

t2, and where the inhomogeneously-broadened ridges are parallel to F2.  In spite of 

these practical advantages, the sensitivities of the two amplitude-modulated split-t1 

experiments are expected (and, for spin I = 3/2, observed) to be slightly worse than 

that of the simple amplitude-modulated experiment in Fig. 5.1a.  This is because at 

least one additional pulse is always required.  It should be noted, however, that the 

amplitude-modulated experiments are most clearly preferable to the phase-

modulated MQMAS experiments when the inhomogeneous broadening is small and 

that it is in this limit that shearing is least desirable.  For spin I = 5/2, the 

requirement that the coherence transfer pathways utilise the unfavourable |∆p| = 4 

triple- to single-quantum conversion step means that the sensitivity of the 

amplitude-modulated split-t1 experiment is found to be very poor. 

 

 In summary, therefore, it has been shown that MQMAS experiments which 

refocus the anisotropic second-order quadrupolar broadening in the evolution 
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period, t1, have many advantages over those experiments that require the application 

of a shearing transformation to the final spectrum. The sensitivities of split-t1 

MQMAS experiments are comparable to those of the other methods and, in the case 

of phase-modulated MQMAS experiments for spin I = 3/2, are even expected to be 

slightly superior. 
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Chapter 7 
 
 
Novel Experimental Applications 
 
 
7.1 Overview 

 

 In the previous chapters, the general and specific features of the MQMAS 

experiment have been demonstrated experimentally using model compounds, which 

were chosen on account of their favourable sensitivity and short T1 relaxation times.  

However, for the MQMAS experiment to be of interest beyond the NMR community, 

the technique must be applicable to samples of current chemical and physical 

interest.  The purpose of this chapter is to show that structural information can be 

obtained, for a wide range of novel samples, using the MQMAS experiment. 

 

 The industrially-important samples studied to date by 27Al, 11B, 23Na, and 

17O MQMAS NMR are detailed in Table 7.1.  From this table, it is evident that 

interest has mainly focused on two areas of materials science, namely microporous 

solids and glasses.  In the latter, solid-state NMR can provide structural information 

which is inaccessible by X-ray diffraction as a consequence of a lack of long-range 

order [37, 53, 60, 128, 129], while in the context of microporous solids, 27Al MQMAS 

NMR has enabled the unambiguous resolution of the predicted 27Al nuclear sites 

[42, 47, 52, 56, 62, 67], which was not possible by MAS alone due to the presence of 

second-order quadrupolar broadening.  In addition, the MQMAS technique has 

provided valuable information with regards to understanding temperature-

dependent phase transformations in, for example, Na2HfO3 [50] and VPI-5 [56]. 
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TABLE 7.1 Applications of the MQMAS Experiment 

 

Nucleus Sample        Ref(s) 

 

27Al  AlPO4-11 (microporous)      42 

27Al  VPI-5 (microporous)      42, 56 

27Al  triclinic CHA-like precursor of AlPO4-34 (microporous) 47 

27Al  AlPO4-14 (microporous)      52, 61 

27Al  CaAl2Si2O8 (glass)       53 

27Al  magnesium aluminoborate glass     53 

27Al  Mo, P impregnated γ-alumina  

  (hydrodenitrogenation catalysts)     59 

27Al  AlMePO-β (microporous)      62 

27Al  ZSM-5 (microporous)      63 

27Al  fluorinated-triclinic CHA-like precursor of AlPO4-34  67 

27Al  κ-alumina        75 
 
11B  Na2O-B2O3-SiO2 (glass)      46 

11B  vitreous B2O3 (glass)      48, 66 

11B  potassium borate glass      48 

11B  vitreous B2S3 (glass)       66 

11B  borane-triphenylphosphite complex    68 
 
23Na  Na2HfO3        50 

23Na  Na3AlP3O9N and Na2Mg2P3O9N nitridophosphates  57 

23Na  Na2O-B2O3-SiO2 (glass)      60 
 
17O  stilbite         64 

17O  aluminosilicate glass      73 
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 In the following sections, two specific applications of the MQMAS experiment 

are presented.  The main part of the discussion focuses on molecular sieves, a general 

introduction to which is given is Section 7.2.  One area of current interest are the 

aluminium methylphosphonates (AlMePOs) [62, 130-133]; 27Al MQMAS spectra of 

these microporous inorganic-organic materials are presented in Sections 7.3 and 7.4, 

and the inferences which can be drawn with regards to the understanding of the 

phase transformation between the α and β forms are discussed.  In addition, these 

MQMAS spectra are used to demonstrate, firstly in Section 7.4, the enhanced 

resolution which can be achieved by the quintuple-quantum MQMAS experiment, 

and, secondly in Section 7.5, how the separate isotropic chemical and second-order 

quadrupolar shifts can be extracted from a single MQMAS spectrum. 

 

 At first sight, the spin I = 5/2 nucleus 17O, with its very low natural 

abundance of 0.037% and its relatively small Larmor frequency (see Appendix C), 

looks a distinctly unpromising nucleus for NMR studies.  However, it is shown, in 

Section 7.6, that, with the help of isotopic enrichment, an 17O MQMAS spectrum of 

the synthesised mineral forsterite can still be obtained.  The potential of the 17O 

MQMAS experiment for providing insight into geological processes is then 

discussed. 

 

7.2 Molecular Sieves 

 

 The term molecular sieve encompasses zeolites and other analogous 

structures with different elemental compositions.  These crystalline microporous 

materials have a very narrow pore-size distribution, such that they allow the highly 

selective discrimination of molecules on the basis of their dimensions.  The purpose 

of this section is to provide a general introduction to these industrially important 

materials [134, 135]. 
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 Molecular sieves are classified, irrespective of their chemical composition, 

according to their topology (in simple terms, the three-dimensional shape).  The 

observed pore diameters, which can be arranged in a one-, two-, or three-

dimensional system, are typically in the range 4 - 13 Å.  For example, while VPI-5 

contains unidimensional channels of diameter 12 Å, ZSM-5 has a three-dimensional 

pore system with pore diameters of 5 Å.  The range of available topologies means 

that a wide variety of molecules can be adsorbed selectively.  Moreover, by changing 

the elemental composition of the framework, molecules can be discriminated further 

on the basis of their chemical properties. 

 

 In zeolites themselves, the framework consists of corner sharing TO4 

tetrahedra, where T is Si or Al with the ratio Si:Al between 1 and infinity.  Since the 

replacement of tetravalent Si by trivalent Al results in a charge-deficient framework, 

alkali metal or alkaline earth cations are also present to maintain charge balance.  

Such a structure means that zeolites are hydrophilic and possess ion exchange sites.  

Furthermore, zeolites containing hydrated alkaline earth cations act as strong 

Brønsted acids of comparable strength to sulphuric acid.  Another important class of 

microporous material are the aluminophosphates, or AlPOs, in which the framework 

contains trivalent Al and pentavalent P in equal proportion and is therefore neutral 

overall.  As a result, AlPOs, in contrast to zeolites, do not possess acidic sites. 

 

 As well as finding applications as ion exchange materials and adsorbents, 

molecular sieves act as catalysts in many industrial processes.  For example, zeolites 

are widely used as environmentally friendly alternatives to conventional mineral 

acids in oil refining and petrochemical manufacture.  Moreover, there is growing 

interest in the use of microporous materials in the manufacture of fine chemicals, 

whereby the introduction of a redox metal centre into a molecular sieve enables its 

use as a heterogeneous catalyst for the liquid-phase oxidation of organic compounds.  

Such a catalysed process removes the necessity to use stoichiometric amounts of an 

inorganic oxidant, along with all the associated problems of the disposal of large 
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quantities of waste material.  There is, therefore, much interest in the understanding 

of existing and the development of new molecular sieves, and MQMAS NMR of, in 

particular, 27Al has considerable potential to provide valuable structural 

information, complementary to that achievable by other techniques, e.g., X-ray 

diffraction. 

 

7.3 Triple-Quantum MQMAS NMR of AlMePOs 

 

 In microporous AlPOs, the chemical character of the pores is dominated by 

the oxygen anions; this, for example, explains the observed hydrophilic character.  

Recently, the synthesis and characterisation of two members of a new family of 

microporous aluminium methylphosphonates, or AlMePOs, have been presented 

[130-132], in which the channel walls are modified by the introduction of 

hydrophobic methyl groups attached to phosphorous atoms.  The two forms, 

AlMePO-α and AlMePO-β, are structurally very similar, containing unidimensional 

channels, with the three oxygen atoms in each CH3PO3 unit being bound to one six-

coordinate (octahedral) and two four-coordinate (tetrahedral) aluminium atoms.  

There are, therefore, three tetrahedral Al sites to every one octahedral site, although 

the symmetry of AlMePO-α means that there is only one crystallographically-distinct 

octahedral and tetrahedral site, compared to one octahedral and three tetrahedral 

crystallographically-distinct sites in AlMePO-β. 

 

 Carter et al. [133] have recently reported that the β polymorph undergoes a 

topotactic (i.e., the crystal axes remain in the same orientation) transformation into 

the α polymorph when heated up to 500°C under water vapour partial pressures of 

30 Torr.  Such a transformation is rare in framework solids, where elevated 

temperatures usually cause the loss of crystallinity and a transformation to a denser 

phase.  The same authors have proposed a mechanism for the transformation, in 

which bond-breaking and bond-forming occurs in a concerted fashion without the 

formation of an intermediate.  To investigate this process, a sample was prepared by 
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Vinton Carter (of St. Andrew's University) where the phase transformation was 

interrupted (by allowing the sample to cool slowly back to room temperature) before 

the conversion to the α polymorph was complete.  In this and the following section, 

27Al MQMAS spectra of this material are presented, which are compared, at the end 

of Section 7.4, with those obtained for the pure α and β forms.  

 

 Figure 7.1 presents an 27Al MAS spectrum of the phase-transformation 

interrupted α, β mixture.  While two octahedral sites are clearly observed (at lower 

frequency), the presence of residual second-order quadrupolar broadening prevents 

any of the tetrahedral sites being resolved; only a shoulder at high frequency hints at 

the presence of more than one site.  The ratio of the α and β polymorphs can be 

determined from the relative integrals of the two octahedral peaks, i.e., in this case, 

the ratio β:α equals approximately 2 (the chemical shift of the α form is more 

negative). 

* * *

 
Figure 7.1.  An 27Al (130.2 MHz) MAS spectrum of a mixture of AlMePO-α and AlMePO-β, where the phase 

transformation between the two polymorphs was interrupted.  The displayed spectral width equals 15 kHz (cut 

down from 25 kHz).  The following experimental conditions were used: 128 transients (consisting of 512 

points) were averaged, the relaxation interval was 500 ms, a radiofrequency pulse of duration 2.0 µs was used, 

and the spinning speed was 6.7 kHz.  The positions of spinning sidebands are labelled by *.  The small hump at 

the centre corresponds to an amorphous impurity. 
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 Figure 7.2 (overleaf) presents triple-quantum 27Al MQMAS spectra of the 

phase-transformation interrupted α, β mixture recorded on the MSL 500 

spectrometer using, (a) and (b), the z-filtered simple amplitude-modulated 

experiment in Fig. 5.11 and, (c) and (d), the phase-modulated split-t1 experiment in 

Fig. 6.10b.  It should be noted that the displayed F1 spectral width is 12/31 times 

smaller in (c) and (d), which, as discussed in Section 6.1, is the reduction which 

would result from shearing the spectra in (a) and (b).  (Although the sheared spectra 

are not presented, it was found, in this case, that such a shearing transformation 

caused significant distortion to the two-dimensional lineshapes.)  The tetrahedral 

and octahedral regions are so far separated in frequency that they are plotted 

separately in (a) and (c), and (b) and (d), respectively.  Examining the spectra 

corresponding to the tetrahedral sites, it can be seen that the triple-quantum 

MQMAS technique has enabled the resolution of two tetrahedral sites. 

 

 The spectrum in Fig. 7.2b of the two octahedral sites illustrates a further 

important feature of the MQMAS experiment, namely that the gradient of an 

observed ridge does not always equal the MQMAS ratio [42].  For spin I = 5/2, the 

(triple-quantum) MQMAS ratio equals 19/12, and a dashed line with this gradient is 

labelled A (for anisotropic).  It is clearly seen that the gradients of the two observed 

ridges are not equal to 19/12.  This is unsurprising since the quadrupolar coupling 

constants for these octahedral sites are very small [62], and hence there is little 

inhomogeneous quadrupolar broadening.  Instead, the ridges are observed to lie 

along a line with a gradient of 3, which corresponds to a distribution of isotropic 

chemical shifts (labelled CS).   
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Figure 7.2.  Contour plots taken from 27Al (130.2 MHz) MQMAS spectra of a mixture of AlMePO-α and 

AlMePO-β, where the phase transformation between the two polymorphs was interrupted.  The tetrahedral and 

octahedral regions are shown separately in (a) and (c), and (b) and (d), respectively.  Spectra were obtained 

with, (a) and (b), the z-filtered simple amplitude-modulated experiment of Fig. 5.11 and, (c) and (d), the phase-

modulated split-t1 experiment of Fig. 6.10b.  In all spectra, the displayed F2 spectral width equals 4.2 kHz (cut 

down from 31.3 kHz).  The displayed F1 spectral widths equal 3 and 1.6 kHz  (cut down from 50 and 19.4 kHz) 

for the amplitude-modulated and phase-modulated experiments, respectively.  In both experiments, 192 

transients (consisting of 512 points) were averaged for each of 256 increments of t1, the relaxation interval was 

500 ms, the spinning speed was 6.7 kHz, and the duration of the triple-quantum excitation pulse was 5.0 µs.  For 

the z-filtered simple amplitude-modulated experiment, the duration of the p = ±3 to p = 0 pulse was 2.0 µs, 

while that of the p = +3 to p = +1 pulse in the phase-modulated split-t1 experiment was 1.6 µs.    The spin-echo 

interval, τ, was 4.1 ms in the phase-modulated experiment.  For pulses acting on the central transition, the 

nutation frequency, ω1/2π, was reduced to 7 kHz, with the p = 0 to p = –1 and central transition inversion pulses 

having durations 18 and 36 µs, respectively.  Sign discrimination was restored in the amplitude-modulated 

experiment using the TPPI method of incrementing the phase of the first pulse by 30° for each increment of t1.  

In (b), dotted lines indicate the direction of the anisotropic (A) and isotropic chemical shift (CS) axes, with 

gradients 19/12 and 3, respectively. 
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Figure 7.3.  Contour plot, showing the octahedral site centre band, taken from the 27Al MQMAS spectrum of γ-

alumina, previously presented in Fig. 5.10b.  The displayed F1 and F2 spectral widths equal 10 kHz.  Dotted 

lines indicate the direction of the anisotropic (A), the isotropic chemical shift (CS), and the isotropic second-

order quadrupolar shift (ISOQ) axes, with gradients 19/12, 3, and 3/4, respectively.  The bottom contour 

corresponds to 8% of the maximum height. 

 

 In MQMAS spectra of disordered materials, e.g., glasses, more complicated 

lineshapes can be observed [53], since it is further possible to have a distribution of 

isotropic second-order quadrupolar shifts, the gradient of which, in the notation of 

Table 3.1, equals A
I
s /AI

1/2 , i.e., –3 and 3/4 for spin I = 3/2 and I = 5/2 (triple-

quantum), respectively.  An example of an MQMAS spectrum displaying such a 

complicated distribution has already been presented, namely the spectrum of γ-

alumina in Fig. 5.10b.  To illustrate this, the region of the spectrum corresponding to 

the octahedral site centreband is presented again in Fig. 7.3, with dashed lines 

indicating the three gradients of interest.  This ability of the MQMAS experiment to 

identify such distributions of both isotropic chemical shifts and isotropic second-
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order quadrupolar shifts provides further useful information with regards to the 

understanding of the structure of disordered materials. 

 

 For the split-t1 experiment, where the anisotropic gradient equals zero, it can 

be shown that a distribution of isotropic chemical shifts would give rise to, for a spin 

I = 5/2 triple-quantum experiment, a ridge with a gradient equal to –17/31.  This 

distribution is, however, less apparent in Fig. 7.2d since, for the octahedral region, it 

was necessary to apply a symmetric weighting function in t2 to remove sinc 

"wiggles" in the final spectrum due to the necessary truncation of the whole echo (a 

longer spin-echo interval, τ, resulted in an unacceptable sensitivity reduction).  This 

requirement to apply a weighting function means that the whole-echo experiment is 

not well-suited to studying the octahedral region; however, it is the tetrahedral 

region which is of interest in this study, and no such problems were observed there. 

 

7.4 Quintuple-Quantum MQMAS NMR of AlMePOs 

 

 For spin I = 5/2 nuclei, in addition to the triple-quantum MQMAS 

experiment, it is further possible to perform a quintuple-quantum MQMAS 

experiment.  Although, as discussed in Section 4.2.2, quintuple-quantum excitation 

and reconversion is less efficient than triple-quantum excitation and reconversion, 

Amoureux and co-workers have shown that significant enhancement in resolution 

can be achieved using the quintuple-quantum MQMAS experiment [42, 47, 62].  Such 

improvements in resolution are due to two factors: firstly, the isotropic chemical shift 

is 5/3 times bigger; and secondly, and more importantly, the isotropic second-order 

quadrupolar shift, for spin I = 5/2, is 25/3 times bigger. 
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 The pulse sequence and coherence transfer pathway diagram for the optimum 

quintuple-quantum phase-modulated split-t1 MQMAS experiment is presented in 

Fig. 7.4.  It can be seen that the single-quantum and quintuple-quantum evolution 

periods are partitioned in the ratio of the spin I = 5/2 quintuple-quantum MQMAS 

ratio, 25/12.  Since the MQMAS ratio is positive, the single-quantum evolution 

period now follows the second pulse. 

 

 Figure 7.5 (overleaf) presents 27Al MQMAS spectra of the phase-

transformation interrupted α, β mixture obtained on the MSL 400 spectrometer using 

the triple-quantum and quintuple-quantum phase-modulated split-t1 experiment of 

Figs. 6.10b and 7.4, respectively.  (It is interesting to note that, since the quadrupolar 

coupling constants are small, optimum multiple-quantum excitation and 

reconversion was achieved by reducing the nutation frequency, ω1, from its 

maximum value.)  The tetrahedral and octahedral regions are again shown 

separately.  In all spectra, the displayed spectral widths in both dimensions equal 3 

kHz, and it is very clear that the separation of the individual sites is significantly 

increased in the quintuple-quantum spectra.  In particular, the  
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Figure 7.4.  Pulse sequence and coherence transfer pathway diagram for the optimum quintuple-quantum phase-

modulated split-t1 experiment for spin I = 5/2 nuclei.  The evolution period, t1, is split between single- and 

quintuple-quantum evolution according to the MQMAS ratio as indicated.  A whole echo always forms at the 

centre of the acquisition period, t2, for all values of t1.  A phase cycling scheme for the pulse phases φ1, φ2, and 

φ3 and for the receiver Rx is given in Table H4 of Appendix H. 
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Figure 7.5.  Contour plots taken from 27Al (104.3 MHz) MQMAS spectra of a mixture of AlMePO-α and 

AlMePO-β, where the phase transformation between the two polymorphs was interrupted.  The tetrahedral and 

octahedral regions are shown separately in (a) and (c), and (b) and (d), respectively.  Spectra were obtained 

with, (a) and (b), the triple-quantum and, (c) and (d), the quintuple-quantum phase-modulated split-t1 

experiments of Figs. 6.10b and 7.4, respectively.  In all spectra, the displayed F1 and F2 spectral widths equal 3 

kHz.  In both experiments, the full F2 spectral width was 25 kHz, the relaxation interval was 500 ms, the 

spinning speed was 7.4 kHz, and the duration of the central transition inversion pulse was 60 µs, with the 

nutation frequency, ω1/2π, being reduced to 4 kHz.  For the triple- and quintuple-quantum experiments, 

respectively, the multiple-excitation pulses were of duration 4.0 and 5.5 µs, the p = +3 to p = +1 and p = +5 to p 

= +1 reconversion pulses were of duration 1.0 and 1.75 µs, the spin-echo interval, τ, was 5.3 and 2.7 ms, 96 and 

160 transients (consisting of 512 and 256 points) were averaged for each of 192 increments of t1, and the full F1 

spectral width equalled 19.4 and 30.8 kHz  The bottom contour in each spectrum corresponds to 8% of the 

maximum height. 
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apparent two tetrahedral sites in (a) are clearly separated in (c), where the upper 

peak can be seen to consist of two peaks very close together.  A further interesting 

feature is the fact that the homogeneous linewidths in F1 are larger in Figs. 7.5c and 

7.5d (quintuple-quantum) than in Figs. 7.5a and 7.5b (triple-quantum).  Further 

research is required to determine which factors cause this difference.  

 

 27Al MQMAS spectra of the tetrahedral region for samples of pure AlMePO-α 

and pure AlMePO-β (again prepared by Vinton Carter) are presented in Figs. 7.6a 

and 7.6b (overleaf), respectively.  As expected, while three distinct sites are clearly 

observed for the β-polymorph, only one site is observed for the α-polymorph.  (The 

differentiation of the three tetrahedral sites in Fig. 7.6b is in agreement with spectra 

published by Rocha et al. [62] who carried out triple-quantum and quintuple-

quantum simple amplitude-modulated experiments on AlMePO-β.)   

 

 The MAS spectrum of the phase-transformation interrupted mixture in Fig. 

7.1 indicated that the α and β polymorphs were present in the ratio 1:2, and, 

therefore, it is instructive to add together the spectra due to the pure forms in this 

ratio; the resulting spectrum is presented in Fig. 7.6c.  Comparing this spectrum with 

that for the phase-transformation interrupted mixture, which is repeated in Fig. 7.6d, 

it is apparent that the separation of the two tetrahedral peaks at higher F1 is greater 

in Fig. 7.6c than in Fig. 7.6d.  This is more clearly seen in Fig. 7.7 (on page 141) which 

presents the F1 (isotropic) projections of the spectra in Fig. 7.6.  Furthermore, an 

MQMAS spectrum (not shown) obtained for a physical mixture of the pure α and β 

polymorphs in the same ratio showed a similar clear separation of the two 

tetrahedral peaks at higher F1 as that observed in Fig. 7.7c. 

 

 The question that then arises is, what insight do the observed MQMAS spectra 

offer with regards to the understanding of the phase transformation?  There is no 

evidence in the spectrum of the phase-transformation interrupted  
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Figure 7.6.  (a), (b) Contour plots corresponding to the tetrahedral region taken from 27Al (104.3 MHz) 

MQMAS spectra of (a) pure AlMePO-α and (b) pure AlMePO-β, obtained with the quintuple-quantum phase-

modulated split-t1 experiment of Fig. 7.4.  The spectrum in (a) was recorded in collaboration with Sharon 

Ashbrook.  In all spectra, the displayed F1 and F2 spectral widths equal 3 kHz (cut down from 25 and 30.8 kHz, 

respectively).  In both experiments, the relaxation interval was 500 ms, the spin-echo interval, τ, was 2.7 ms, 

and the p = +5 to p = +1 reconversion pulse was of duration 1.75 µs.  In (a) and (b), respectively, 320 and 

160 transients (consisting of 256 points) were averaged for each of 192 increments of t1, the spinning speed was 

9.0 and 7.4 kHz, the quintuple-excitation pulse was of duration 6.5 and 5.5 µs, and the duration of the central 

transition inversion pulse was 50 and 60 µs, with the nutation frequency, ω1/2π, being reduced to 5 and 4 kHz.  

The spectrum in (c) results from the combination of the spectra in (a) and (b) in the ratio 1:2.  For comparison, 

(d) is a repeat of the spectrum in Fig. 7.5c for the mixture of AlMePO-α and AlMePO-β, where the phase 

transformation between the two polymorphs was interrupted.  The bottom contour in each spectrum corresponds 

to 8% of the maximum height. 
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mixture of peaks not observed for the pure α and β polymorphs.  This, therefore, 

supports the proposition that the phase transformation occurs in a topotactic fashion 

without the formation of a stable intermediate.  The origin of the observed blurring 

of the tetrahedral resonances is not fully understood, but is probably a consequence 

of the bond-breaking and bond-forming process at the reaction boundary.  It is 

hoped that investigation of further samples, where the phase transformation is 

interrupted at a different stage will provide additional evidence and information. 

 

ba

c d

F1  
 

Figure 7.7.  F1 projections for the corresponding spectra presented in Fig. 7.6.  
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7.5 Extraction of the Isotropic Shifts 

 

 An interesting feature of the MQMAS technique is that the relative position of 

two ridges in an MQMAS spectrum varies according to the magnetic field strength, 

B0, of the spectrometer.  For example, compare the MQMAS spectra in Figs. 5.8d and 

6.9a, which were obtained for a sample of RbNO3 at Larmor frequencies of 98.2 and 

130.9 MHz, respectively; it is seen that the relative separation of the three ridges is 

different, with the resolution being, surprisingly, better at the lower field.  This 

phenomenon arises from the dependence of the F1 and F2 frequency of a ridge on the 

combination of the isotropic chemical shift and the isotropic second-order 

quadrupolar shift, which are, respectively, directly and inversely proportional to ω0.   

 

 This dependence further explains the change in the appearance, with 

increasing ω0, of the MAS spectra of RbNO3, presented in Fig. 3.6.  Indeed, before the 

advent of the MQMAS technique, the only way of extracting the two isotropic shifts 

was to record spectra at more than one field strength.  However, the different single- 

and multiple-quantum evolution of the isotropic chemical shift and the isotropic 

second-order quadrupolar shift means that the two separate shifts can be determined 

from a single MQMAS spectrum [43].  The purpose of this section is then to show 

how the two shifts can be determined, using as an example the three resolved 

tetrahedral sites in the spectrum of AlMePO-β presented in Fig. 7.6b. 

 

 It is first necessary to determine the dependence of the F1 and F2 frequencies 

on the two isotropic shifts, for the spin I = 5/2 quintuple-quantum phase-modulated 

split-t1 experiment in Fig. 7.4.  This can be calculated by considering evolution under 

solely, first, the isotropic chemical shift, here represented by Ωcs: 
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 s(t1, t2)  =  exp{ –i (2π) Ωcs [ ( 5 × 
12
37  ) + 

25
37  ] t1 } exp{ +i (2π) Ωcs t2 } 

 

 =  exp{ 
–i (2π) Ωcs 85 t1

37   } exp{ +i (2π) Ωcs t2 } , (7.1) 

 

and second, the isotropic second-order quadrupolar shift: 

 

 s(t1, t2)  =  exp{ –i (2π) ΩQ  
iso  [ ( 

20
3   × 

12
37  ) – ( 

16
15  × 

25
37  ) ] t1 } exp{ –i 

16 (2π) ΩQ  
iso

15   t2 } 

 

 =  exp{ –i 
160 (2π) ΩQ  

iso

111   t1 } exp{ –i 
16 (2π) ΩQ  

iso

15   t2 } , (7.2) 

 

where 

 

 ΩQ  
iso   =  

(ωQ   
PAS)2

 (2π) ω0
 Q0(η) . (7.3) 

 

The F1 and F2 frequencies in hertz, υ1 and υ2, are then given by 

 

 υ1  =  – 
85
37  Ωcs – 

160
111  ΩQ  

iso   (7.4a) 

 

 υ2  =  Ωcs – 
16
15  ΩQ  

iso  . (7.4b) 

 

It should be noted that Eq. (7.4) is equally valid for isotropic shifts and F1 and F2 

frequencies in units of ppm.  Analogous expressions for the dependence of υ1 and υ2 

on Ωcs and ΩQ  
iso  are given in Appendix G for all the spin I = 3/2 and I = 5/2 

MQMAS experiments presented in this thesis. 

 

 Rearranging Eqs. (7.4a) and (7.4b), it can easily be shown that 

 

 ΩQ  
iso   =  – 

37
144  { υ1 + 

85
37  υ2 }  (7.5a) 

 

 Ωcs  =  – 
37
135  { υ1 – 

50
37  υ2 } . (7.5b) 
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Therefore, all that is required to calculate the two isotropic shifts, is the 

determination of the observed frequencies υ1 and υ2 in ppm units.  The υ2 values in 

kHz for the three sites in Fig. 7.6b are given in Table 7.2.  In this case, since the 

second-order quadrupolar broadening is small, determining the observed isotropic 

shift in υ2 is straight-forward.  In other cases, it is necessary to refer to Fig. 3.4 to 

determine which feature of the second-order quadrupolar-broadened lineshape 

corresponds to the isotropic shift.  To determine the frequency corresponding to zero 

ppm, it was necessary to perform a separate experiment in which a few drops of 1M 

aluminium nitrate, Al(NO3)3, were placed inside an identical 4 mm rotor inside the 

same probe.  Using the observed zero ppm frequency of –3.86 kHz, the υ2 values in 

ppm are given in Table 7.2. 

 

 It is slightly more complicated to determine the observed υ1 values in ppm, 

since the scaling of the resonance offset must be taken into account.  The centre of the 

spectrum, of which Fig. 7.6b is a part, corresponds to a frequency of –4.11 kHz, and, 

therefore, an aluminium site at zero ppm has a resonance offset of + 250 Hz.  Thus, 

using Eq. (7.4a), the frequency in F1 corresponding to zero ppm equals { –4.1 + (–

85/37) × 250) } = –4.7 kHz.  The observed υ1 values for the three sites in Hz and ppm 

are given in Table 7.2.  The isotropic chemical and second-order quadrupolar shifts 

TABLE 7.2 Calculation of the Isotropic Shifts 

 

 υ1/ υ1/ υ2/ υ2/ Ωcs/ ΩQ  
iso / SOQE/ 

 kHz ppm kHz ppm ppm ppm MHz 

 

 –15.9 –107.1 0.5 41.6 44.8 3.0 2.4 

 –15.3 –101.3 0.4 41.1 43.0 1.8 1.8 

 –15.0 –98.6 0.3 40.1 41.9 1.6 1.8 
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are then easily calculated using Eqs. (7.5a) and (7.5b), and their values are again 

shown in Table 7.2.  A comparison to Ref. [62] reveals that the results presented in 

Table 7.2 are in close agreement with those obtained by Rocha et al. 

 

 From the isotropic second-order quadrupolar shift alone, the quadrupolar 

parameters CQ and η cannot be determined separately.  Instead, it is found (starting 

with Eq. (7.3)) that a field-independent quantity referred to as the "second-order 

quadrupolar effect parameter" (SOQE) is given in hertz as 

 

 CQ ( 1 + 
 η2

3   )1/2  =  
4 I ( 2I – 1 ) υ0 √ΩQ  

iso

3 ∞ 103   , (7.6) 

 

where υ0 is the Larmor frequency in hertz, and ΩQ  
iso  is in units of ppm.  (The 

numerical factor I(2I – 1) equals 3 and 10 for spin I = 3/2 and I = 5/2, respectively.)  

The SOQE values for the three sites in AlMePO-β are given in Table 7.2.  To obtain 

the separate parameters CQ and η, it is necessary to perform a fitting procedure on 

the individual lineshapes.  For example, such a fitting procedure (performed by 

Sharon Ashbrook) for the site with the largest SOQE revealed the following values 

for the quadrupolar parameters: CQ = 2.2 MHz and η = 0.8.  These results give a 

SOQE in perfect agreement with the value given in Table 7.2. 

 

7.6 Oxygen-17 MQMAS NMR 

 

 The only oxygen nuclide accessible to NMR is 17O (spin I = 5/2).  However, 

its very low natural abundance (0.037%) means that an acceptable sensitivity can 

only be achieved for enriched samples.  In spite of the considerable effort and 

expense required to achieve such enrichment, the presence of oxygen in an 

enormous range of compounds and materials has encouraged the development of 

17O NMR.  In the 1980s, Oldfield and co-workers presented MAS and VAS spectra of 

a variety of solid samples [136-138], including simple oxides, minerals, zeolites, and 

transition-metal carbonyls.  Although individual oxygen sites are usually not fully 
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resolved in such spectra as a consequence of second-order quadrupolar broadening, 

the large spread of 17O chemical shifts (approximately 600 ppm) often allows 

individual lineshapes to be extracted by a fitting process.  In the early 1990s, Pines 

and co-workers showed that much higher resolution can be achieved using DAS and 

DOR [139, 140], such that the validity of the earlier assignment of 17O sites in 

enriched minerals could be confirmed.  Very recently, Dirken et al. [73] have shown 

that two oxygen sites in an aluminosilicate glass, which are unresolved by MAS, are 

clearly resolved in an 17O MQMAS spectrum. 

 

 In this section, an 17O MQMAS spectrum of synthesised forsterite is 

presented.  Forsterite (Mg2SiO4) is closely related to a form of the mineral olivine 

with the composition Mg1.8Fe0.2SiO4 which is the principal component of the earth's 

mantle (the region between the core and the crust).  Mantle olivine is estimated to 

contain 1% water by weight, and there is much interest in how this water may be 

stored [141-143].  Although infra-red spectroscopy and 1H and 29Si NMR have 

provided useful information [144-146], a full knowledge of the mechanism and site 

of water incorporation remains elusive.  To date, it has not been possible to directly 

probe the oxygen atoms themselves, and, in this context, 17O MQMAS NMR offers 

considerable potential. 

 

 A sample of water-free 17O-enriched pure forsterite was prepared by Andrew 

Berry (formerly at the Department of Earth Sciences, Oxford University, currently at 

the Research School of Earth Sciences, Australian National University, Canberra) in 

the following way.  Starting with 35% enriched H217O, Mg17O and Si17O2 were first 

synthesised.  To prepare Mg17O, H217O was added dropwise to Mg3N2 in CCl4, 

under argon, and the mixture was stirred for several hours.  The vigorous reaction 

was moderated by the solvent, CCl4, which was removed by evaporation.  The 

resulting powder was heated under argon at 500°C for 12 hours to give Mg17O: 
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 Mg3N2 + 6 H217O  –––>  3 Mg(17OH)2 + 2 NH3 (7.7a) 

 

 Mg(17OH)2  –––>  Mg17O + H217O . (7.7b) 

 

Si17O2 was prepared in the following way [139].  H217O was added dropwise to 

SiCl4 and refluxed under argon for 4 hours.  Excess SiCl4 was removed by 

evaporation.  Silica was obtained by heating the resulting white solid under argon at 

1100°C for 12 hours: 

 

 SiCl4 + 2 H217O  –––>  Si17O2 + 4 HCl . (7.8) 

 

Forsterite was then synthesised by mixing together, pressing into a pellet, and 

heating under argon at 1500°C for 12 hours a stoichiometric amount of Mg17O and 

Si17O2: 

 

 2 Mg17O +  Si17O2  –––>  Mg2Si17O4 . (7.9) 

 

 An 17O MQMAS spectrum of Mg2Si17O4, recorded using the triple-quantum 

phase-modulated split-t1 experiment of Fig. 6.10b, is presented in Fig. 7.8 (overleaf).  

This spectrum was obtained in collaboration with Sharon Ashbrook.  The presence of 

three ridges corresponding to the three crystallographically-distinct oxygen sites is 

clearly seen, and the resolution is much better than that achieved by DAS or DOR at 

the same field strength [139].  For comparison, Fig. 7.9 (on page 149) presents the 

MAS spectrum together with the isotropic MQMAS projection. (It should be noted 

that a larger spectral width is shown than that presented in Fig. 7.8.) 

 

 It has hence been established that a high-resolution 17O MQMAS spectrum of 

forsterite can be obtained in a reasonable length of time (the total acquisition time 

was 7 hours.)  Future work will involve an investigation of hydrated  
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forsterite.  In particular, it is hoped that information about water incorporation can 

be obtained using CP MQMAS.  Although cross polarisation to a quadrupolar 

nucleus [147-149] is less straightforward than in the more familiar abundant spin I = 

1/2 (e.g. 1H) to "dilute" spin I = 1/2 (e.g. 13C or 29Si) case, both 1H-17O CP MAS [138] 

and, more recently, 19F-23Al and 1H-23Al CP MQMAS [67, 69] have been successfully 

demonstrated.  In the latter work, the addition of a cross-polarisation step resulted in 

an MQMAS spectrum in which only peaks corresponding to Al atoms directly 

bonded to 19F or 1H were observed.  It is hoped that similar "spectral editing" in an 

F2

F1

 
 
Figure 7.8.  A contour plot taken from an 17O (54.3 MHz) MQMAS spectrum of 17O-enriched forsterite 

recorded using the triple-quantum phase-modulated split-t1 experiment in Fig. 6.10b.  The displayed spectral 

widths are 1.45 and 3.75 kHz (cut down from 9.7 and 25 kHz) in F1 and F2, respectively.  The following 

experimental conditions were used: 192 transients (consisting of 512 points each) were averaged for each of 256 

increments of t1, the relaxation interval was 500 ms, and the spinning speed was 5.4 kHz.  The durations of the 

triple-quantum excitation and the p = +3 to p = +1 conversion pulses were 9.0 and 1.5 µs, respectively.  The 

duration of the central transition inversion pulse was 48 µs, with the nutation frequency, ω1/2π, being reduced to 

5 kHz.  The spin-echo interval, τ, was 5.3 ms.   
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17O MQMAS spectrum of hydrated forsterite will determine which oxygen sites are 

hydrated. 

a

b

** * ** *

  
Figure 7.9.  17O (54.3 MHz) (a) MAS and (b) isotropic MQMAS spectra of 17O-enriched forsterite.  In both 

cases, the displayed spectral width equals 7.5 kHz.  In (a), the following experimental conditions were used: 

16 transients (consisting of 1024 points) were averaged, the full spectral width was 50 kHz, the relaxation 

interval was 500 ms, and a radiofrequency pulse of duration 1.2 µs was used.  Experimental parameters for (b) 

are given in Fig. 7.8.  Spinning sidebands are indicated by *. 
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Appendix A 
 
 
Density Operator Theory 
 

 

A.1 The Expectation Value of an Observable 

 

 Using the expansion of ψ(t) in a complete set of orthonormal basis functions 

described by Eq. (2.1), the expectation value of an observable, corresponding to the 

operator A, is given in Eq. (2.2) as 

 

 < A >  =  Σ cs(t) cr(t)* 〈r A s〉  . (A.1) 
                                                                s, r 
 

If an ensemble average is considered, Eq. (A.1) becomes (by substituting in the 

expression in Eq. (2.3) for the definition of the density operator) 

 

 < A >  =  Σ 〈s σ(t) r〉 〈r A s〉  . (A.2) 
                                                                 s, r 
 

The completeness theorem [150] states that 

 

 Σ  n〉  〈n   =  1 , (A.3) 
                                                              n 
 

and therefore Eq. (A.2) simplifies to 

 

  < A >  =  Σ 〈s σ(t) A s〉  . (A.4) 
                                                                        s 
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The right-hand side of Eq. (A.4) simply corresponds, as stated in Eq. (2.4), to the trace 

of the product of the matrix representation of the operator and the density matrix, 

i.e.,  

 

 < A >  =  Tr{ A σ(t) }  =  Tr{ σ(t) A } . (A.5) 

 

A.2 The Liouville-von Neumann Equation 

 

 The time-dependent Schrödinger equation, again using the expansion of ψ(t) 

in a complete set of orthonormal basis functions described by Eq. (2.1), is of the form 

 

 Σ 
dck(t)

dt    k〉   =  –i H(t) Σ ck(t)  k〉  . (A.6) 
 k   k 
 

Premultiplying by 〈s , Eq. (A.6) becomes 

 

 
dcs(t)

dt    =  –i  Σ 〈s H(t) k〉  ck(t) . (A.7) 
                                                                           k 
 

Similarly, 

 

 
dcr(t)*

dt    =  i  Σ ck(t)* 〈k H(t) r〉  . (A.8) 
                                                                          k 
 

 From the definition of the density operator in Eq. (2.3), 

 

 
dσsr(t)

dt    =  cs(t) 
dcr(t)*

dt   + 
dcs(t)

dt   cr(t)* . (A.9) 

 

(Although it is not explicitly stated, an ensemble average is assumed in Eq. (A.9).)  

Using Eqs. (A.7) and (A.8), Eq. (A.9) becomes 
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dσsr(t)

dt    =  i  Σ cs(t) ck(t)* 〈k H(t) r〉  – i Σ 〈s H(t) k〉  ck(t) cr(t)* . (A.10) 
   k  k 

 

Again using the definition of the density operator in Eq. (2.3), 

 
dσsr(t)

dt    =  i  Σ 〈s σ(t) k〉  〈k H(t) r〉  – i  Σ 〈s H(t) k〉  〈k σ(t) r〉   
                                            k                         k 

 

 =  i 〈s σ(t) H(t) r〉  – i 〈s H(t) σ(t) r〉   

  

 =  i 〈s ( σ(t) H(t) – H(t) σ(t) )  r〉  , (A.11) 

 

where the completeness theorem of Eq. (A.3) has again been used.  Thus, the 

Liouville-von Neumann equation, 

 

 
dσ(t)

dt    =  –i [ H(t), σ(t) ] , (A.12) 

 

is revealed. 
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Appendix B 
 
 
Matrix Representations of the  
 
Spin Angular Momentum Operators 
 

 

B.1 Spin I = 1/2 

 

 Ix  =  
1
2  









  

0 1
1 0     Iy  =  

i
2  









  

0 –1
1 0   Iz  =  

1
2  









  

1 0
0 –1   

 

B.2 Spin I = 3/2 

 

 

 

 

 Ix  =  
1
2  











  

0 3 0 0
3 0 2 0
0 2 0 3
0 0 3 0

   Iy  =  
i
2  











  

0 – 3 0 0
3 0 –2 0
0 2 0 – 3
0 0 3 0

    

 

 

 

 

 

Iz  =  
1
2  











  

3 0 0 0
0 1 0 0
0 0 –1 0
0 0 0 –3
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B.3 Spin I = 5/2 

 

 

 

 

Ix  =  
1
2  









  

0 5 0 0 0 0
5 0 8 0 0 0
0 8 0 3 0 0
0 0 3 0 8 0
0 0 0 8 0 5
0 0 0 0 5 0

   

 

 

 

 

 

 

 

Iy  =  
i
2  









  

0 – 5 0 0 0 0
5 0 – 8 0 0 0
0 8 0 –3 0 0
0 0 3 0 – 8 0
0 0 0 8 0 – 5
0 0 0 0 5 0

    

 

 

 

 

 

 

 

Iz  =  
1
2  









  

5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 –1 0 0
0 0 0 0 –3 0
0 0 0 0 0 –5
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Appendix C 
 
 
Larmor Frequencies 
 

 

 The table below gives the Larmor frequencies on the AC 300 (7.05 T), MSL 400 

(9.40 T), and MSL 500 (11.75T) spectrometers for the nuclei observed in this thesis 

(and also 1H for comparison).  Brackets indicate that spectra are not presented for a 

particular nucleus at a particular field strength.  

 

 

 Nucleus   Larmor frequency/MHz  

   7.05 T  9.40 T  11.75 T 

 

 1H  (300.0)  (400.0)  (500.0) 

 17O  (40.7)  54.2  (67.8) 

 23Na  (79.4)  105.8  (132.3) 

 27Al  (78.2)  104.3  130.3 

 87Rb  98.2  130.9  163.6 
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Appendix D 
 
 
Matrix Representations of the  
 
Spherical Tensor Operators 
 

 

 This appendix presents the matrix representations of the spin I = 3/2 tensor 

operators relevant to the calculation in Section 3.1.  The matrix elements are 

normalised according to the convention of Müller et al. [151], which also presents the 

matrix representations of all spin I = 1/2, I = 1, and I = 3/2 tensor operators.  (The 

matrix representations of the spin I = 5/2 tensor operators can be found in Ref. 

[152].)  

 

 

T2,0  =  
1
2  











  

1 0 0 0
0 –1 0 0
0 0 –1 0
0 0 0 1

    

 

 
 

 

 T2,+1  =  
  

1
2

  











  

0 –1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

   T2,–1  =  
  

1
2

  











  

0 0 0 0
1 0 0 0
0 0 0 0
0 0 –1 0

    

 

 
 

 

 T2,+2  =  
  

1
2

  











  

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

   T2,–2  =  
  

1
2

  











  

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
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Appendix E 
 
 
Reduced Rotation Matrix Elements 

 

 

 This appendix lists the reduced rotation matrix elements relevant to the 

calculations in Chapter 3.  A comprehensive listing is given in Refs. [95, 153]. 
 
l  =  2 
 
d20,0(β)  =  (1/2) (3cos2β – 1) 
 
d20,–1(β)  =  d21,0(β)  =  –d20,1(β)  =  –d2–1,0(β)  =  –√(3/2) sinβ cosβ 
 
d20,2(β)  =  d22,0(β)  =  d20,–2(β)  =  d2–2,0(β)  =  √(3/8) sin2β 
 
l  =  4 
 
d40,0(β)  =  (1/8) (35cos4β – 30cos2β + 3) 
 
d40,2(β)  =  d40,–2(β)  =  –(√10/64) (7cos4β – 4cos2β – 3) 
 
d40,4(β)  =  d40,–4(β)  =  (√70/128) (cos4β – 4cos2β + 3) 
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Appendix F 
 
 
Shearing – An Analytical Study 
 
 
 An inhomogeneously-broadened lineshape is the sum of a very large number 

of homogeneous lineshapes with a distribution of resonance frequencies Ω [87].  

Analytically, this summation corresponds to evaluating the convolution integral of 

the two-dimensional lineshape and a function P(ω) describing the inhomogeneous 

distribution of frequencies. The form of P(ω) used here is the very simplest one – a 

constant amplitude function between limits –ΩL and +ΩL and zero everywhere else: 

 

 P(ω)  =  1  for –ΩL  ≤  ω  ≤  +ΩL     ;     P(ω)  =  0  elsewhere.  (F.1) 

 

Consider first the case where the inhomogeneous distribution lies along the ω1 = ω2 

axis.  Using the expression for an absorptive Lorentzian lineshape given in Eq. 

(2.14a), the resulting two-dimensional lineshape is given by 

 L2DIAG(ω1, ω2)  =  
⌡

⌠

–ΩL

+ΩL

  
1

(R2 + (ω1 – Ω)2) (R2 + (ω2 – Ω)2)  dΩ  

 =  (A + B)/C , (F.2) 

 

where 
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A  =  (ω1 – ω2) 







tan–1






ΩL + ω1

R  + tan–1






ΩL – ω1

R  + tan–1






ΩL + ω2

R  + tan–1






ΩL – ω2

R   

 

 B  =  R ln






(R2 + (ΩL + ω1)2) (R2 + (ΩL – ω2)2)

(R2 + (ΩL – ω1)2) (R2 + (ΩL + ω2)2)   

 

 C  =  R (ω1 – ω2) (4R2 + (ω1 – ω2)2) . (F.3) 

 

 Performing a shearing transformation on the expression in Eq. (F.2) 

corresponds to making the change of variable: 

 

 ω1'  =  
ω1 – ω2

2   .  (F.4) 

 

In addition, it is necessary to include a factor of two corresponding to the different 

normalisation factor associated with the convolution.  The resulting sheared 

lineshape then becomes 

  

  L2SHEAR(ω1', ω2)  =  (A' + B')/C' , (F.5) 

 

where 

 

A'  =  2ω1' 







tan–1






ΩL + ω1*

R  + tan–1






ΩL – ω1*

R  + tan–1






ΩL + ω2

R  + tan–1






ΩL – ω2

R   

 

  B'  =  R ln






(R2 + (ΩL + ω1*)2) (R2 + (ΩL – ω2)2)

(R2 + (ΩL – ω1*)2) (R2 + (ΩL + ω2)2)   

 

  C'  =  4 R ω1' (R2 + ω1'2) , (F.6) 

 

with ω1* equal to 2ω1' + ω2. 
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 It is then necessary to derive the analogous expression for the case where the 

inhomogeneous distribution lies along the ω1 = 0 axis (i.e., the inhomogeneous 

broadening has been removed in ω1); the resulting two-dimensional lineshape is 

then given by 

 L2PAR(ω1, ω2)  =  
⌡

⌠

–ΩL

+ΩL

  
1

(R2 + ω12) (R2 + (ω2 – Ω)2)  dΩ  

 =  
1

R (R2 + ω12)  







tan–1






ΩL + ω2

R  + tan–1






ΩL – ω2

R   .  (F.7) 

 Inspection of Eqs. (F.6) and (F.7) reveals that the mathematical forms of the 

two lineshapes are not the same, and therefore shearing has distorted the lineshape.  

However, in the limit where ΩL >> R, ω1, ω2, i.e., when the inhomogeneous 

broadening is much larger than the homogeneous broadening, the two lineshapes 

are equivalent: 

 L2PAR(ω1, ω2 )  =  
π

R (R2 + ω12)      (F.8a) 

 L2SHEAR(ω1', ω2 )  =  
π

R (R2 + (ω1')2)  .    (F.8b) 
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Appendix G 
 
 
Determination of the Isotropic Shifts 
 

 

 Equations (7.4a) and (7.4b) described the dependence of the resonance 

frequencies in the F1 and F2 dimensions, υ1 and υ2, on the isotropic chemical and 

second-order quadrupolar shifts, Ωcs and ΩQ  
iso , for the quintuple-quantum phase-

modulated split-t1 experiment in Fig. 7.4.  This appendix then gives expressions for 

all the spin I = 3/2 and I = 5/2 MQMAS experiments presented in this thesis: 

 

G.1 Simple Amplitude-Modulated (unsheared spectrum)  

 

 Identical expressions are obtained for the z-filtered simple amplitude-

modulated experiment, the amplitude-modulated whole-echo experiment, and 

phase-modulated whole-echo experiments with p = –3 evolution during t1.  For 

phase-modulated whole-echo experiments with p = +3 evolution during t1, the sign 

of the υ1 frequency is reversed.  The observed υ1 frequencies after shearing are the 

same as those given in Section G.2 for the amplitude-modulated split-t1 experiments. 

 

G.1.1 Spin I = 3/2 

 

 υ1  =  3 Ωcs + 
6
5  ΩQ  

iso   (G.1a) 

 

 υ2  =  Ωcs – 
2
5  ΩQ  

iso  . (G.1b) 
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G.1.2 Spin I = 5/2 Triple-Quantum 

 

 υ1  =  3 Ωcs – 
4
5  ΩQ  

iso   (G.2a) 

 

 υ2  =  Ωcs – 
16
15  ΩQ  

iso  . (G.2b) 

 

G.1.3 Spin I = 5/2 Quintuple-Quantum 

 

 υ1  =  5 Ωcs + 
20
3   ΩQ  

iso   (G.3a) 

 

 υ2  =  Ωcs – 
16
15  ΩQ  

iso  . (G.3b) 

 

G.2 Split-t1 Experiments 
 
 The expressions given here are for the phase-modulated split-t1 experiments 

with p = +3 evolution during t1.  For amplitude-modulated experiments, the sign of 

the υ1 frequency is simply reversed. 

 

G.2.1 Spin I = 3/2 

 

 υ1  =  – 
17
8   Ωcs – 

1
2  ΩQ  

iso   (G.4a) 

 

 υ2  =  Ωcs – 
2
5  ΩQ  

iso  . (G.4b) 

 

 

G.2.2 Spin I = 5/2 Triple-Quantum 

 

 υ1  =  – 
17
31  Ωcs – 

32
93  ΩQ  

iso   (G.5a) 

 

 υ2  =  Ωcs – 
16
15  ΩQ  

iso  . (G.5b) 
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G.2.3 Spin I = 5/2 Quintuple-Quantum 

 

 υ1  =  – 
85
37  Ωcs – 

160
111  ΩQ  

iso   (G.6a) 

 

 υ2  =  Ωcs – 
16
15  ΩQ  

iso  . (G.6b) 
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Appendix H 
 
 
Phase Cycling 
 

 

 This appendix lists phase cycles for all the MQMAS experiments described in 

this thesis.  The design of a phase cycle to select a desired coherence transfer 

pathway (or pathways) is simplified by the following two rules [86]: 

 

 (i)  If the phase of a pulse or group of pulses is shifted by φ, then a coherence 

undergoing a change in coherence order of ∆p = p' – p experiences a phase shift of –

φ∆p, as detected by the receiver. 

 

 (ii)  If a phase cycle uses steps of 360°/N, then, along with the desired 

pathway ∆p, pathways ∆p ± nN, where n = 1, 2, 3, ..., will also be selected.  All other 

pathways will be suppressed. 
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TABLE H1 
 

Examples of phase cycles for experiments in Figs. 5.1a and 5.11 
 

 
 
Simple Echo Experiment (Spin I = 3/2) (Fig. 5.1a) 
 
 φ1  : 0°   30°   60°   90°   120°   150°   180°   210°   240°   270°   300°   330°    
 φ2  : 0° 
 Rx : 0°   90°   180°   270° 

 
 
Simple Antiecho Experiment (Spin I = 3/2) (Fig. 5.1a) 
 
 φ1  : 0°   30°   60°   90°   120°   150°   180°   210°   240°   270°   300°   330°    
 φ2  : 0° 
 Rx : 0°   270°   180°   90° 

 
 
Simple Amplitude-Modulated Experiment (Fig. 5.1a) 
 
 φ1  : 0°   60°   120°   180°   240°   300°   90°   150°   210°   270°   330°   30° 
  180°   240°   300°   0°   60°   120°   270°   330°   30°   90°   150°   210° 
 φ2  : 6 ( 90° )   6 ( 180° )   6 ( 270° )   6 ( 0° ) 
 Rx : 3 ( 0°   180° )   3 ( 90°   270° )   3 ( 180°   0° )   3 ( 270°   90° ) 

 
 
Simple Amplitude-Modulated Experiment with z-filter (Fig. 5.11) 
 
 φ1  : 0°   60°   120°   180°   240°   300°    
 φ2  : 0° 
 φ3  : 6 ( 0° )   6 ( 90° )   6 ( 180° )   6 ( 270° ) 
 Rx : 3 ( 0°   180° )   3 ( 90°   270° )   3 ( 180°   0° )   3 ( 270°   90° ) 
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TABLE H2 
 

Examples of phase cycles for experiments in Fig. 5.1b 
 

 
 
Shifted-Echo Experiment (Spin I = 3/2)  
 
 φ1  : 0°   30°   60°   90°   120°   150°   180°   210°   240°   270°   300°   330°    
 φ2  : 0° 
 φ3  : 12 ( 0° )   12 ( 45° )   12 ( 90° )   12 ( 135° )    
  12 ( 180° )   12 ( 225° )   12 ( 270° )   12 ( 315° ) 
 Rx : 3 ( 0°   90°   180°   270° )   3 ( 90°   180°   270°   0° )   
  3 ( 180°   270°   0°   90° )   3 ( 270°   0°   90°   180° )     

 
 
Shifted-Antiecho Experiment (Spin I = 3/2)  
 
 φ1  : 0°   30°   60°   90°   120°   150°   180°   210°   240°   270°   300°   330°    
 φ2  : 0° 
 φ3  : 12 ( 0° )   12 ( 45° )   12 ( 90° )   12 ( 135° )    
  12 ( 180° )   12 ( 225° )   12 ( 270° )   12 ( 315° ) 
 Rx : 3 ( 0°   270°   180°   90° )   3 ( 90°   0°   270°   180° )   
  3 ( 180°   90°   0°   270° )   3 ( 270°   180°   90°   0° )     

 
 
Amplitude-Modulated Whole-Echo Experiment  
 
 φ1  : 0°   60°   120°   180°   240°   300°    
 φ2  : 0° 
 φ3  : 6 ( 90° )   6 ( 135° )   6 ( 180° )   6 ( 225° )    
  6 ( 270° )   6 ( 315° )   6 ( 0° )   6 ( 45° )    
 Rx : 3 ( 0°   180° )   3 ( 90°   270° )   3 ( 180°   0° )   3 ( 270°   90° ) 
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TABLE H3 
 

Examples of phase cycles for experiments in Figs. 6.3 and 6.10a 
 

 
 
Amplitude-Modulated Split-t1 Experiment with z filter (Spin I = 3/2)  (Fig. 6.3a) 
 
 φ1  : 0°   60°   120°   180°   240°   300°   
 φ2  : 24 ( 0° )   24 ( 90° )   24 ( 180° )   24 ( 270° ) 
 φ3  : 0° 
 φ4  : 6 ( 0° )   6 ( 90° )   6 ( 180° )   6 ( 270° ) 
 Rx : 3 ( 0°   180° )   3 ( 90°   270° )   3 ( 180°   0° )   3 ( 270°   90° ) 
  3 ( 180°   0° )   3 ( 270°   90° )   3 ( 0°   180° )   3 ( 90°   270° ) 

 
 
Amplitude-Modulated Split-t1 Experiment (Spin I = 3/2)  (Fig. 6.3b) 
 
 φ1  : 4 ( 0°   60°   120°   180°   240°   300° )  4 ( 90°   150°   210°   270°   330°   30° ) 
  4 ( 180°   240°   300°   0°   60°   120° )   4 ( 270°   330°   30°   90°   150°   210° ) 
 φ2  : 6 ( 0° )   6 ( 90° )   6 ( 180° )   6 ( 270° )   6 ( 90° )   6 ( 180° )   6 ( 270° )   6 ( 0° ) 
  6 ( 180° )   6 ( 270° )   6 ( 0° )   6 ( 90° )   6 ( 270° )   6 ( 0° )   6 ( 90° )   6 ( 180° ) 
 φ3  : 24 ( 90° )   24 ( 180° )   24 ( 270° )   24 ( 0° ) 
 Rx : 3 ( 0°   180° )   3 ( 180°   0° )   3 ( 0°   180° )   3 ( 180°   0° ) 
  3 ( 90°   270° )   3 ( 270°   90° )   3 ( 90°   270° )   3 ( 270°   90° ) 
  3 ( 180°   0° )   3 ( 0°   180° )   3 ( 180°   0° )   3 ( 0°   180° ) 
  3 ( 270°   90° )   3 ( 90°   270° )   3 ( 270°   90° )   3 ( 90°   270° ) 

 
 
Amplitude-Modulated Split-t1 Experiment (Spin I = 5/2)  (Fig. 6.10a) 
 
 φ1  : 0°   60°   120°   180°   240°   300°   
 φ2  : 24 ( 0° )   24 ( 45° )   24 ( 90° )   24 ( 135° )    
  24 ( 180° )   24 ( 225° )   24 ( 270° )   24 ( 315° )    
 φ3  : 0° 
 φ4  : 6 ( 0° )   6 ( 90° )   6 ( 180° )   6 ( 270° ) 
 Rx : 3 ( 0°   180° )   3 ( 90°   270° )   3 ( 180°   0° )   3 ( 270°   90° ) 
  3 ( 180°   0° )   3 ( 270°   90° )   3 ( 0°   180° )   3 ( 90°   270° ) 
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TABLE H4 
 

Examples of phase cycles for quintuple-quantum experiments 
 

 
 
Simple Amplitude-Modulated Experiment with z-filter  
 
 φ1  : 0°   36°   72°   108°   144°   180°   216°   252°   288°   324°    
 φ2  : 0° 
 φ3  : 10 ( 0° )   10 ( 90° )   10 ( 180° )   10 ( 270° ) 
 Rx : 5 ( 0°   180° )   5 ( 90°   270° )   5 ( 180°   0° )   5 ( 270°   90° ) 

 
 
Phase-Modulated Split-t1 Experiment (Fig. 7.4) 
 
 φ1  : 0°   18°   36°   54°   72°   90°   108°   126°   144°   162°    
  180°   198°   216°   234°   252°   270°   288°   306°   324°   342°    
 φ2  : 0° 
 φ3  : 20( 0° )   20 ( 45° )   20 ( 90° )   20 ( 135° )    
  20 ( 180° )   20 ( 225° )   20 ( 270° )   20 ( 315° ) 
 Rx : 5 ( 0°   270°   180°   90° )   5 ( 90°   0°   270°   180° )   
  5 ( 180°   90°   0°   270° )   5 ( 270°   180°   90°   0° )     
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Appendix I 
 
 
Further Effects of Sample Rotation 
 

 

 The removal of second-rank anisotropic broadening by MAS is an integral 

part of the MQMAS experiment, and the effect of MAS on one-dimensional spectra 

was discussed at length in Chapter 3.  The purpose of this Appendix is to discuss 

two further effects of MAS. 

 

I.1 Spinning Sidebands in F1  

 

 An obvious feature of many of the MQMAS spectra presented in this thesis 

(e.g., Figs. 5.10, 6.2, 6.6, 6.8, 6.11, 6.12, and 7.9b) is the extensive spinning sideband 

manifold in F1.  In particular, it is found that the F1 spinning sidebands extend 

significantly further than those in F2.  Marinelli and Frydman [78] have recently 

presented an explanation for this phenomenon.  They have shown that the observed 

patterns can be explained solely in terms of a first-order approximation for the 

quadrupolar contribution to the energy levels.  In this case, there is no evolution of 

the central transition during either t1 or t2.  Instead, spinning sidebands arise as a 

consequence of the dependence of the excitation of multiple-quantum coherence and 

its subsequent reconversion to single-quantum coherence on the instantaneous 

orientation of a crystallite with respect to the B0 magnetic field.   

 

 The origin of extensive spinning sidebands in F1 can be understood in the 

following way.  Unless the duration of a t1 evolution period is an integral number of 

rotor periods, each crystallite is at a different orientation, described by the angle (ξ – 

ωrt) in Eq. (3.21), at the start and end of the evolution period.  This difference in 
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orientation gives rise to different values of ωQ, which govern the efficiency of 

excitation and reconversion of multiple-quantum coherence.  Moreover, this 

difference in ωQ (which is a function of the spinning speed) is modulated as t1 is 

incremented, hence explaining the existence of spinning sidebands in F1.  The 

dependence of this mechanism on first-order rather than second-order quadrupolar 

terms in the Hamiltonian (as shown in Chapter 3, the latter determine the 

appearance of the spinning sideband manifold in F2) explains the greater 

preponderance of spinning sidebands in F1.  It is interesting to note that a similar 

mechanism has been proposed by Spiess and co-workers [119] to explain the 

observed F1 spinning sidebands in double-quantum filtered MAS spectra of dipolar-

coupled abundant spin I = 1/2 nuclei. 

 

 For the experiments presented in Chapter 5, where only triple-quantum 

evolution occurs during t1, spinning sidebands are predicted to appear at integer 

multiples of the spinning speed.  However, in some spectra (e.g., Figs. 5.10, 6.2, 6.6, 

and 6.11), additional anomalous peaks are observed.  As an example, Fig. I.1 presents 

the F1 projection for the octahedral site in γ-alumina (taken from Fig. 5.10b).  In 

addition to the genuine spinning sidebands (indicated by *) at the spinning speed, 

 

† * * †

 
Figure I.1.  The F1 projection of the part of the spectrum in Fig. 5.10b corresponding to the octahedral site in γ-

alumina.  The displayed spectral width equals 50 kHz.  The positions of genuine spinning sidebands, at the 

spinning speed (8.9 kHz), are labelled by *.  TPPI artefacts are labelled by †. 
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8.9 kHz, two peaks are observed either side of the centreband at 16.5 kHz (indicated 

by †).  Further work showed that the position of these anomalous peaks in this and 

other spectra was independent of the spinning speed.  These peaks have only been 

observed for amplitude-modulated experiments recorded using TPPI, and are 

believed to arise as a consequence of a systematic error in the way the spectrometer 

implements the TPPI phase shift. 

 

 For split-t1 experiments where the single-quantum part of the t1 evolution 

period is separated from the acquisition period by a pulse or group of pulses, two 

sets of F1 spinning sidebands corresponding to single- and multiple-quantum 

evolution are expected to arise.  This is indeed observed in Figs. 6.2c, 6.6c, 6.8, and 

6.11c.  (Care must be taken in the interpretation of Fig. 6.2c, since the position of the 

first pair of single-quantum spinning sidebands corresponds to the position of the 

TPPI artefacts in Fig. 6.2b.)  For the optimum spin I = 5/2 phase-modulated triple-

quantum split-t1 experiment, the single-quantum part of the t1 evolution period 

follows the final pulse, and hence only triple-quantum spinning sidebands are 

observed in F1 (see Figs. 6.12 and 7.9b). 

 

I.2 Rotor-Synchronised Spin Echoes 

 

 For whole-echo experiments, care must be taken to ensure that the spin-echo 

interval, τ, is an integral number of rotor periods [43, 53].  (The length of the 

reduced-power central transition inversion pulse must also be taken into account.)  

Otherwise, a reduction in sensitivity is observed.  This can be seen in Fig. I.2 

(overleaf), which presents plots of the observed signal as a function of the spin-echo 

interval τ for the simple spin-echo (Fig. 2.3a) and the triple-quantum spin I = 3/2 

shifted-antiecho (solid pathway in Fig. 3.1b) experiments.  Maximum sensitivity is 

observed for τ equals 330 µs (one rotor period) in Figs. I.2a and I.2b, and τ equals 

4950 µs (15 rotor periods) in Fig. I.2c.   
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Figure I.2.  Experimental 87Rb (130.2 MHz) results for RbNO3 showing how the frequency-domain signal 

intensity varies as a function of the spin-echo interval, τ, for (a) the simple spin-echo experiment in Fig. 2.3a, 

and (b) and (c) the triple-quantum spin I = 3/2 shifted-antiecho (solid pathway in Fig. 3.1b) experiments.  In all 

plots, the vertical scale is linear, with the origin corresponding to zero.  In all experiments, the spinning speed 

was 3.032 kHz, corresponding to a rotor period of 330 µs.  The following experimental conditions were used: 

the spectral width was 50 kHz in (a) and (b) and 29.4 kHz in (c), 32 in (a) and 96 in (b) and (c) transients 

(consisting of 512 points) were averaged, the relaxation interval was 100 ms.  In (a), the first pulse was of 

duration 1.2 µs, while the triple-quantum excitation and p = +3 to p = +1 conversion pulses in (b) and (c) were 

of duration 7 and 1.2 µs, respectively.  In each case, the central transition inversion pulse was of duration 40 µs, 

with the radiofrequency field strength, ω1/2π, being reduced to 6 kHz.   
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