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When a towed array of hydrophones is significantly nonlinear due to bending, ordinary linear array 
beamforming gives a biased estimate of the true source bearing. By processing the array as a sequence of 
smaller aperture subarrays and then computing the mean of the subarray bearings, the variation due to 
bending is reduced and a reasonably precise estimate is obtained if the average bending angle with respect 
to the nominal axis is small. The median and mean subarray bearings are analyzed for a theoretical statistical 
model and are tested using artificial data for various sinusoidal array geometries. 

Subject Classification: 60.20; 30.82. 

INTRODUCTION 

Towed hydrophone arrays have been extensively used 
in underwater acoustics research but have also been used 

to determine target bearing in certain military applica- 
tions. When the tow ship is moving slowly on a straight 
line, the array is essentially linear and is usually 
steered by simple delay-and-sum beamforming, which 
has a left-right ambiguity since the array geometry is 
linear. This ambiguity is resolved by changing the head- 
ing of the tow ship. Changing direction and speed causes 
the array to bend. For nontrivial tow ship speeds, the 
array geometry has a snakelike pattern which varies 
over time during the transient (Fig. 1). This paper pre- 
sents a signal-processing technique which mitigates the 
distortions due to array bending in the estimated bearing 
angle. 

Consider a horizontal "linear" array of K hydrophones 
which are electronically grouped into J subarrays. Sup- 
pose that the small aperture subarrays of adjacent hy- 
drophones have sufficient structural rigidity so that they 
are approximately linear. Assume that the vertical dis- 
placement of the hydrophones is in a constant density 
strata, and thus the array geometry can be treated as 
planar (two dimensional). By processing the array as a 
sequence of smaller aperture subarrays and then com- 
puting the mean subarray bearing, the variation due to 
bending is reduced and a reasonably precise estimate is 
obtained if the average inclination of the subarray is 
small. 

Before going into the subarray-processing method, it 
is necessary to briefly review the statistical model used 
to develop the optimal array processor. Given a finite 
record of simultaneous observed sensor outputs, we wish 
to estimate the bearing of a farfield source of interest 
which is radiating energy at frequency w0. In order to 
simplify the exposition, assume that the signal received 
at time t and location x on the array axis is a single- 
frequency plane wave (Fig. 2): 

s(t, x)= A exp[i(ooot - Kox - rh )] , (1) 

where K0 is the wavenumber. Letting 0 denote the di- 
rection of propagation of the wave (the source bearing if 
the medium is horizontally homogenous), then for 0 •< 0 
•< e, %= (OOo/V)cos0, where v is the phase velocity. The 
parameters A and qb are the amplitude and phase of the 
wave. For the general problem of a broad-band signal 

made up of a sum of overlapping plane waves, Hinich 
and Shaman z analyze the maximum likelihood signal pro- 
cessing of a fixed array. 

Suppose that we have a truly linear array. The output 
from the kth sensor located at point xk is p(t, xk)=s(t, xn) 
+ n(t, xn), where n(t, xn) is assumed to be complex Gauss- 
ian noise whose variance, denoted (r •', is the same at all 
sensors, i.e., the variances of the real and imaginary 
parts of the noise are equal to o2/2. Given a T6 second 
discrete record of the array output {where 6 denotes the 
sampling interval), the maximum likelihood estimator of 
0 is 

• = are cos(vw; t •), 
where k is the wavenumber which maximizes the fre- 

quency-wavenumber power spectrum 
T K 

S(g, OOo) = K 't • Y•p(t, xn)exp[i(gxk - w0t)] . (2) 

If pK is large, where p = TA•'/rr •' is the signal-to-noise 
ratio in the I/T5 Hz band centered at w0, then • is ap- 
proximately Gaussian with mean 0 and variance (in ra- 
dians) •' 

3 

cr•'(•) = 2KW•p (•r sinS)•' ' (3) 
where W is the aperture of the array as measured by the 
number of wavelengths, X = 2•rv/w0, and 

This result holds for small K if p goes to infinity, 3 but 
it is questionable whether the approximation is good when 
p is moderate and K small. However, as is shown in 
Appendix A, the inequality 

K > 8p 't (4) 

provides a useful heuristic to insure that there is suf- 
ficient sensor redundancy in an equally spaced array so 
that the wave will be detected with probability greater 
than 0.95. 

For incoherent Gaussian noise, the maximum likeli- 
hood technique is equivalent to delay-and-sum steering 
of the array in the direction which maximizes the total 
power over the observation period, after filtering at 

4 
•0' 

It would be useful here to present a numerical exam- 
ple. Suppose that each subarray has eight hydrophones 
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FIG. 1. Bent towed linear array. 

which are 5 m apart. If the signal's frequency is 150 
Hz, the wavelength is 10 m, using a speed of sound in 
the ocean of 1.5 km/sec, and thus W= 4. Note that the 
sensors are spaced one-half wavelength apart, and thus 
there is no spatial aliasing. 

If the channels are sampled at the Nyquist rate (every 
3 « msec) for a 1-sec period, then T =300. Consequent- 
ly, if (•= 10A, then p= 3 and the approximate rms error 
for 0 is then (16•r] sin01) 'l. Obviously, K=8 is three 
times greater than 8p 'l and thus the signal is very likely 
to be detected. The error is about 1.1 ø for O = 90 ø and 

is 2.2 ø for 8=30 ø . 

Now suppose the array is bent but is processed as if 
it were linear. Then the true position of the kth sensor 
is generally different from the assumed position on the 
nominal axis. Equation 2 becomes 

T K Ip . S(K, w0)=K'l I T 'l •-'• p(t, x•, +dk)exp[i(trx•, -w0t)] , t=l k=l 

where d• is the displacement due to the projection of the 
array on the nominal axis. For • = •o, the frequency- 
wavenumber spectrum can be written 

K 

S(tro, Wo) = I A exp(iO )K 'l/ • • exp(- itrod•) 
K 

where the real and imaginary parts of N• are uncorre- 
lated Gaussian N(0, (f'/2T) random variables (for details 
see Hinich and Shaman •). 

If the array is truly linear, each dk= 0, and thus 
Kq/•'•-• exp(iKod•)=K•/•'o In order to show the degrada- 
tion due to bending, consider an example where the odd 
d• are zero but the even ones are equal to >,/2, i.e., 
•0d•/•.- •. Thus for even K, 

K 

• = • K 1/Z K q/•' exp(- ig0d•) - • 

which means that the effective sensor redundancy is K/4 
in the inequality, Eq. 4. Of course, such a pattern of 
d•'s is unrealistic, but the example indicates the type of 
effect which is observed in the artificial data results 

presented later. The exp(-itrd•) terms in the frequency- 
wavenumber spectrum equation cause the wave's energy 
peak to shift away from 

It is possible to reduce the distortion and degradation 
due to bending by processing the array as a set of 
smaller aperture subarrays. In many applications, the 
array aperture is so large and the sensor redundancy is 
sufficiently great to produce very narrow beams with 

high array-processing gain, provided the array is lin- 
ear, the signal is coherent across the array, and the 
noise is incoherent. When the array is bending, the idea 
is to trade off aperture for a reduction in the bending 
bias in order to obtain a bearing which is not wildly 
fluctuating over time. A pencil thin beam is not essen- 
tial in many operational situations. The statistical tech- 
nique for bearing estimation using subarrays is pre- 
sented in Sec. I. 

I. SUBARRAY PROCESSING 

Suppose that the array is grouped into J subarrays of 
adjacent hydrophones. Let 3• denote the bearing esti- 
mate obtained from jth subarray.. Since the nonlinear 
distortion is less for a section of the array, assume that 
there is enough structural rigidity in the subarrays so 
that the maximum likelihood procedure can be used to 

obtain •j, and that the subarray has sufficient sensor re- 
dundancy (or T is sufficiently large) so that the error in 
• due to noise is not large. Let b• denote the inclina- 
tion of the jth subarray with respect to the axis during 
the TS-sec observation period. Then 

•= 8+bs+ e• , 

where ½j is the noise component in the bearing estimate. 
In order to obtain the theoretical error bounds for the 

robust procedure, let us model the bending by assuming 
that •f-lb•=0. Further, assume that ½•, .o., ½• are in- 
dependent identically distributed random errors whose 
variance is given by Eq. 3. This assumption is true if 
the noise is incoherent, but even if there is some spatial 
coherence in the noise, the statistical model should yield 
useful approximations for the empirical properties of the 
simple estimators we now propose. 

Given the subarray estimates compute the mean 

.f--1 

Since the errors ½j are uncorrelated, the variance of 0 
is simply J'•, where • is the variance of the ½•. As- 
suming that T is sufficiently large relative to A/a so 
that the approximation, Eq. 3, holds for •, then 

(6) 

if all the subarrays have K/J sensors. Thus the sub- 

FIG. 2. Incident plane wave detected by array. 
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array processing is inferior to the standard processing 
if the array is truly linear. However, for the sinusoidal 
patterns which were used in the artificial data study 
which is discussed in Sec. II., the mean 0 outperformed 
the whole array estimator •. 

Since we have J independent but noisy estimates of the 
true 0, we can extract some information about the mag- 
nitude of the array nonlinearity by computing some other 
statistics using the •, and we can protest ourselves 
against some highly spurious subarray bearings. 

In contrast to the mean, the median of the •'s is fair- 
ly insensitive to large errors in the bearings obtained 
from some subarrays. 5 The median is superior to the 
mean when some of the subarray estimates are poor due 
to local ambient noise or hydrophone failure. Nonethe- 
less, the mean was generally better than the median in 
our artificial data runs. However, we used a noise 
model which was consistent with stationary and incoher- 
ent Gaussian ambient noise. In a real application, the 
median is worth looking at. A significant difference be- 
tween the mean and the median could be due to a second 

source which is being detected by one part of the array, 
or it would be due to a malfunction of part of the array. 

Another statistic which is useful to look at is the nor- 

realized range of variation of the • bearings. It is com- 
puted as follows. Order the residuals U/= •j- median •j 
(j = 1, ... , J) from the largest to the smallest (includ- 
ing sign). Then compute 

o. 

where U0. v•. is the residual U•= •- median •, which is 
the 72% largest U• and U0.•.s is the 28% largest. • For ex- 
ample, if J= 100, U0.• is the 72rid largest U•. If there 
is no integer which divides the ordered residuals exactly 
as prescribed, use an average of two consecutively or- 
dered U• around the 72% and 28% break point. For ex- 
ample, if J= 101, use the average of the 72rid and 73rd 
largest, and similarly for U0.•.s. If the • are normally 
distributed with variance •, then 2 is a consistent es- 
timator of (r, as j- % and is less subject to distortion 
than the usual estimator due to some highly spurious 
values of the subarray bearings. The artificial data re- 
sults show that the greater the amplitude of the sinus- 
oidal bending, the larger the • scale estimates. This is 
not surprising since a large amount of bending will 
cause the O• estimates to have a large range. 

In Sec. II, we present artificial data analysis of the 
mean, median, and the scale } when the d• and thus the 
b• biases are derived from an array which has a sinus- 
oidal geometry. 

FIG. 3. Sine wave with amplitude equal to 2. 

FIG. 4. Damped sine wave. 

II. SIMULATION TESTS OF THE BEARING 
ESTIMATORS 

Simulation of array processing using digital computer 
methods is relatively straightforward. Let x= (x•,x2) 
denote a point on the horizontal plane containing the ar- 
ray. The plane-wave signal at x is 

s(t, x)=A exp[- i(coot- K•x• - •.•. - 4))] , 

where • = (coo/v) cos0 and •2= (co0/v) sin0. Since the pro- 
cessor computes the real and imaginary parts of the 
Fourier transform of s(t,x) and the bearing estimate is 
the same for all values of the unknown phase •, the sim- 
ulations were made with •b= 0 but the processing was 
done as if 4) was unknown. Phase velocity v is assumed 
to be one, and frequency coo= 2•r. 

The signal-to-noise ratio in the simulations was var- 
ied by fixing the amplitude A = 1 and multiplying the real 
and imaginary components of n by a scaling factor (•/2. 
We used cr=l, 0.5, and0.1. 

The signal is then 

s(t, x)= exp(- i2•t)exp[i(•x• + •2)] . 

The signal is considered to have been filtered in a 
narrow band about coo, and thus the t index is dropped for 
the remainder of this discussion. The components (K•, 
•.) of the wavenumber • are now 

•x = 2•r cosO, •.= 2v sinO, 

where 0 = 30 ø, 60 ø, and 90 ø were used. Given the fre- 
i 

quency coo = 2•r, the sensor separation d is set at • in or- 
der to avoid aliasing problems, i.e., 

d•<•k=• . 

The noise component of the signal is complex and 
Gaussian with 

E[n(xt)•(x•)] = 0 • , for j = k , 

=0 , forj•k , 

where •(xt) and •(x•) represent the noise components re- 
ceived at the jth and kth sensors, respectively. 

The model as simulated thus specifies the signal re- 
ceived at sensor k as 

p (x•) = exp[2•i(x• cosO+ x•.• sinS)] + n(x•) , 

where xx• and x2• specify the location of the kth sensor 
with respect to the coordinate system moving with the 
array (refer back to Fig. 2). 

Two types of sinusoidal array patterns were used in 
our simulations- a sine wave of 3« half-cycle length and 
a damped sine wave of 3« half-cycles (see Figs. 3 and 
4). In all cases, the sensor-to-sensor segments were 
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FIG. 5. Random bent array. 

made linear with a between sensor separation of «, and 
consequently the patterns are only approximately sinus- 
oidal. Fifty sensors were used. 

In addition, we tried a random bending pattern which 
was constructed by fixing an endpoint and setting each 

I 

successive sensor position • unit along a ray from the 
previous sensor. The angle of this ray with respect to 
the axis was drawn from a uniform density on the inter- 
val (- 5 ø, 5ø), independently of the other angles. Thus 
the maximum angular deflection at each node is +5 ø . 
The pattern which resulted from this process and which 
was used in the simulation is shown in Fig. 5. It can be 
seen that most sensors were on one side of the axis and 

that the maximum displacement of the array was 0. 25, 
which is one-half of the between-sensor spacing. 

The undamped sine wave pattern was used with four 
' 1 2, and 3. Even in different amplitudes, namely, •, , 

the least bending model (when the maximum deviation 
from the axis was equal to the sensor spacing of «) the 
average bearing computed from the 50-element array 
was significantly different from the true bearing. The 

1 

terminal amplitude of the damped sine wave were •, 1, 
2, and 3. Note that we biased the pattern against our 
subarray processing method by having more sensors on 
one side of the nominal axis than the other. We also 

tried sinusoidal patterns which had two full cycles and 
thus had a symmetric distribution of sensors about the 
nominal axis. The results using these patterns were 
similar to the ones reported. 

Independent random N(0, 1) deviates were generated in 
pairs using the Box and Muller transformation, v 

N• = (- 2 lnU•) •/•' cos2• U•., N•. = (- 2 lnU•) •/•' sin2• U•., 

where U1 .and Us are independent uniform ( 0, 1) variates. 
These uniform variates, in turn, were generated using 
the power residue method. s The N(0, 1) deviates were 
then scaled to display the desired variance. 

The subarray methods used 12 nonoverlapping four- 
sensor arrays plus two end arrays which overlapped in 
order to use all the 50 sensors, and six nonoverlapping 
eight-sensor arrays plus two overlapping end arrays. 
We also tried successively overlapped subarray patterns, 
but the results were essentially the same. Subarray 
bearing estimates are made by augmenting the subar- 
ray's sensors' outputs with zeroes and taking the fast 
Fourier transform of the augmented subarray of complex 
sensor outputs. After transformation, the subarray 
bearing estimate is selected corresponding to the wave- 
number • which maximizes the amplitude of the subar- 
ray power spectrum. 

The FFT routine used required an odd number of in- 
put points. In the tradeoff between speed and accuracy, 
it was decided to apply the FFT to records of 101 points 
length obtained by augmenting the four- or eight-subarray 

points with zeroes. The maximum quantization error 
thus introduced in } is +2•r/101 d, which translated into 
an err•or in • of about 0.6 ø. This error is larger than 
the (•(0) due to the noise. 

Two methods were used in determining the final bear- 
ing estimate. The first was the median of the subarray 
estimates; and the second was the mean of the subarray 
estimates. In addition, the scale estimate • was calcu- 
lated as previously discussed. 

This process was repeated 100 times for a given true 
bearing angle and noise variance with the generation of 
new noise components for the signals received at each 
sensor. Averages of the median-derived and mean-de- 
rived bearing estimates were calculated as well as for 
the scale estimate. In addition, rms errors about the 
true bearing angle were calculated for each bearing es- 
timate method. Our results are presented in Tables I 
and II. 

The results of the simulations were somewhat equiv- 
ocal in determining the estimator of choice vis-a-vis 
the median- or mean-derived estimators. It is clear, 
however, that under a broad variety of array patterns 
and signal-to-noise environments, the subarray process- 
ing is superior to the full array technique. 

The effect of deflection bias on the full-array estimate 
is generally quite significant, even under very favorable 
circumstances. Consider the case of the full-array es- 

1 

timator using the undamped wave with an amplitude of •, 
o= 0. 5, and 0= 90 ø. In this case, the variance of the 
100 estimates is 20.7 and the bias is 6.7. The estimated 

standard error of the mean is 0.455 and, hence the bias 
is 14.7 times the standard error of the mean. Thus 

even under relatively favorable conditions the mean esti- 
mated bearing angle is very significantly different from 
the true bearing angle. It should also be noted that as 
the signal-to-noise ratio increases, the variance tends 
to zero.while the bias tends to increase with the effect 

that the full-array mean estimates diverge from the true 
bearing with increasing significance. 

With respect to the undamped sine pattern, there is a 
marked superiority in terms of rms error in the median- 
derived estimates for true bearing angles of 60 ø and 90 ø . 
At the 30 ø bearing angle, we observe results which are 
somewhat mixed though they tend to favor the mean-de- 
rived estimator. For most applications, the four-ele- 
ment subarray estimator seems to be superior at larger 
bearing angles, and the eight-element subarray estima- 
tor appears better at the smaller bearing angle. 

The results show a shift in the estimator of choice 

from the eight-element to the four-element subarray 
processing as the true bearing angle increases. More- 
over, the mean-derived estimator seems most accurate 
in most applications. 
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TABLE I. Results for undamped sinusoidal bending. 

30 ø 

A cr K med rms 3 mean rms med 

60 ø 90 ø 

rms } mean rms reed rms } mean rms 

1.0 50 32.8 7.4 N/A 32.8 7.4 
8 33.0 4.7 9.5 35,9 10.8 

4 40.5 14.2 17.9 56.3 29.0 

0.5 50 33.2 7.3 N/A 33.2 7,3 
8 31.9 2.4 9.5 29.9 1,2 

4 32.7 4.0 9.2 36.4 9.5 

0.1 50 36.7 6.9 N/A 36.7 6.9 
8 32.0 2.0 9.6 30.0 0.2 

4 30.7 1.1 10.8 29.5 0.7 

1.0 50 32.7 21,7 N/A 32.7 21,7 
8 41.6 13.1 18.8 48.7 24.0 

4 50.2 24.5 24.9 64,5 37,5 

0.5 50 31.2 1.7.6 N/A 31.2 17.6 
8 38,7 9.6 18.2 40,3 15.4 

4 42.5 13.6 !8.2 54,2 28,0 

0.1 50 31.5 17.8 N/A 31,5 17.8 
8 35.9 6.0 19.6 31.3 2,6 

4 37.6 9.0 19.8 39.4 14.3 

1.0 50 32,5 29,5 N/A 32.5 29,5 
8 53.8 28.9 29.8 56,0 30,5 

4 65.8 37.9 30.8 71.3 43, 8 

0.5 50 1.5.2 19.3 N/A 15,2 19.3 
8 48.2 22,0 31.9 47.4 19.6 

4 55.9 27.8 29.2 57.1 30.2 

0.1 50 11.5 1.8.5 N/A 11.5 18,5 
8 47.3 19.0 31.1 44.2 14, 6 

4 39.2 9.2 30.3 41.9 11,9 

1.0 50 63.5 45.5 N/A 63.5 45.5 
8 73.1 47.2 32.9 70.5 41.6 

4 74,3 47.2 31.8 71.8 42.5 

0.5 50 59.7 42.1 N/A 59,7 42,1 
8 74,9 47,5 35.4 69.2 39,7 

4 65. ! 36.0 34.7 66.2 36.3 

0.1 50 50.9 33.4 N/A 50,9 33.4 
8 70.9 42,0 34,9 67,9 38.0 

4 61,1 31.1 33,8 65,3 35,3 

63.6 

62.6 

63.6 

66.3 

62.4 

61.2 

68.9 

62.6 

61,2 

64, 8 

66.1 

66.2 

73,5 

66.0 

63,5 

79,6 

65, 8 

62, 8 

61,7 

80.5 

86,7 

59.9 

75.7 

83.5 

52.8 

80,7 

68,4 

111.0 

113.0 

112,5 

114, 2 

121.6 

121.3 

128.5 

124, 2 

101,7 

8.1 N/A 63.6 8.1 94.7 8.5 N/A 94.7 8, 5 
4.3 9.6 62.7 5.6 92.4 3.8 9.4 91.4 4.4 

5.4 11.8 67.4 9.8 91.0 3.8 11.6 89.4 5.4 

8.6 N/A 66.3 8.6 96.7 8. ! N/A 96.7 8. ! 
2.6 9.2 60.8 0.9 92.8 2.9 9.2 91.2 1.3 

2,3 9.4 60.2 1.2 91.9 2.5 9.9 90.6 1.2 

8,9 N/A 68.9 8.9 98.0 8.0 N/A 98.0 8.0 
2.6 9,1 60.8 0.8 92.8 2.8 9.2 91.1 1,1 

1.3 10.7 60.3 0.4 91.5 1.6 10.7 90.6 0.6 

17,4 N/A 64.8 17.4 100.2 19.1 N/A 100.2 19.1 
9.2 19.3 64.5 8.0 92.1 8.8 20.2 90.8 5.6 

9,5 19,1 66, 9 9.6 91.1 8.0 20.2 89.5 5.6 

18, 9 N/A 73.5 18.9 107.3 20.2 N/A 107.3 20.2 
6,3 19,1 62,1 2.3 95.5 6.3 19.3 92.1 2.4 

4.1 20.5 60.9 1.4 93.3 3.9 21,3 91.4 1.8 

19.6 N/A 79.6 19.6 111.1 21.1 N/A 111.1 21.1 
5.8 19. ! 62.0 2,0 95.7 5.8 19. ! 92.2 2,2 

2.8 21,9 60,9 1,0 93.0 3.0 21.9 91.3 1.3 

42,7 N/A 61.7 42.7 113,2 41.9 N/A 113.2 41.9 
27,5 39.0 74.4 20.0 97.7 20.3 41.2 93.5 10.0 

29, 9 34.3 82, 9 25,9 93.0 16.7 41. ! 90.6 7,2 

41.5 N/A 59.9 41.5 130.2 43.8 N/A 130, 2 43.8 
21.5 42.5 66.5 9.2 106.5 21.1 45.5 95.1 6.4 

26.3 38.3 75.3 19, 0 98.5 9.3 47.5 93.1 3.5 

36, 9 N/A 52.8 36.9 136.0 16.0 N/A 136.0 46.0 
22.5 43.3 66.8 7.2 116.9 26.9 47.0 96.7 6.7 

8,6 48.5 62.6 2,9 97.8 7.8 48.4 93.3 3.3 

72.2 N/A 111.0 72.2 163,3 84.3 N/A 163.3 84.3 
57.7 52.1 95.4 39.1 110.8 43.4 70.3 97.2 18.0 

55.5 41, 5 100.5 42.6 94.5 32.6 64.4 91.2 13.4 

67.5 N/A 114,2 67.5 1.78,3 88.5 N/A 178.3 88.5 
62,9 59.7 94,1 36, 9 140.2 57.1 81.8 104.5 17.0 

62.1 50.4 99.0 41.3 104.1 38.6 78,4 92.8 9.6 

68,5 N/A 128.5 68.5 179,9 89.9 N/A 179.9 89,9 
65,1 65,7 92, 6 34, 6 156, 6 66.6 81, 5 109.9 19, 9 

45,9 70,4 77.3 18.5 90,4 0.9 81.4 89,4 0.8 

It is not surprising that the four-element subarray 
gives poorer results than the eight-element configura- 
tion when 0= 30 ø. The greater sidelobes of the smaller 
aperture configuration results in a sidelobe induced vari- 
ance for targets whose position is near endfire which 
more than outweighs the greater reduction of the bending 
deflection due to averaging more smaller subarrays. 
For the parameters selected in this experiment, the 
trade-off between subarray aperture and deflection bias 
is in favor of the eight element length for 0 = 30 ø. 

For the broadside case (0= 90ø), however, the situa- 
tion is reversed. The four element array average is 

1 

better except for the or= 1 case in the A = • patterns. 

Examining the results for the undamped and damped 
sine patterns, one point is especially clear: Among all 
estimators at all signal-to-noise ratios and at all bear- 
ing angles, the full array estimator is almost universally 
the poorest estimator of true bearing angle. To be sure, 
there are some instances in Tables I and II in which the 

full-array estimate shows the smallest deflection, but 
in only isolated and evidently unsystematic instances 

does the full-array estimator demonstrate lowest rms 
error. As a case in point consider the undamped sine 
wave of amplitude 2 and unit error with a true bearing 
angle of 30 ø. The average of 100 full-array bearing es- 
timates is 32.5 ø. However the rms error is 29.5 ø, 
which yields a standard deviation of 29.4 ø. Thus the 
standard error of the mean is 2.94ø, making the deflec- 
tion statistically insignificant. 

The choice of recommended estimator, then, is be- 
tween the eight- and four-element subarray estimators, 
and between the median- and mean-derived estimators. 

The theoretical sensitivity of the mean to large devia- 
tions would seem to argue in favor of the median-de- 
rived estimator. However, the results of the simula- 
tions, particularly using the damped sine wave pattern, 
do not unequivocally affirm this sensitivity of the mean. 

The choice among subarray size and processing com- 
binations is one which would probably be made in a par- 
ticular application according to the extent of bending ex- 
pected and to signal-to-noise ratios anticipated. 
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TABLE Ii. Results for damped sinusoidal bending. 

30 ø 

A (y K med rms 3 mean rms med rms 

60 ø 90 ø 

3 mean rms med rms • mean rms 

1.0 50 29.7 1.2 N/A 29.7 1.2 59.6 3.4 
8 31.4 2.9 5.1 34.5 8.3 61.4 2.4 

4 36.8 9.4 15.0 50.4 23.3 62.5 4.1 

0.5 50 29.7 1.2 N/A 29.7 1.2 59.3 2.0 
8 30.5 1.4 3.4 30.8 1.]. 61.3 1.5 

4 30.8 2.2 5.7 31.0 4.0 60.9 1.6 

0.1 50 30.1 1.0 N/A 30.1 1.0 59.8 0.5 
8 30,9 1.0 2.4 30.9 1.0 61.8 1.8 

4 29.7 0.9 3.7 30.4 0.5 60.1 0.5 

1.0 50 29.9 14.7 N/A 29.9 14.7 61o7 5.6 
8 33.9 5.7 9.]. 38.4 12.8 63.5 4.7 
4 40.3 12.0 16.9 53.6 25.9 64.6 6.5 

0.5 50 28.4 1.7 N/A 28.4 1.7 62.3 2.8 
8 32,7 3.0 6.1 32.6 2.8 63.2 3.4 

4 33,2 4.1 8.3 37.8 10.6 61.7 2.4 

0.1 50 28.4 1.6 N/A 28.4 1.6 62.6 2.6 
8 33.1 3.1 5.5 32.6 2.6 63.7 3.7 

4 29.9 0.8 7.0 31.6 1.7 60.4 0.7 

1.0 50 35.8 37.7 N/A 35.8 37.7 64.2 17.5 
8 42.8 15.4 19.5 51.9 24.7 66.3 9.6 

4 50.7 23.0 24.8 64.5 36.6 67.6 10.3 

0.5 50 26,4 22.6 N/A 26.4 22.6 65,7 11.3 
8 40,3 11.5 17.5 47.9 20.9 65.9 6.4 
4 39.8 11.0 17.1 49.0 21.1 63.7 4.5 

0.1 50 19.9 10.1 N/A 19.9 10.1 71.3 11.3 
8 39.9 10.7 16.7 45.9 19.3 66.8 6.8 
4 37,6 8,5 16.7 45.1 17.7 63.5 3.5 

1.0 50 27.0 27.4 N/A 27.0 27.4 58.1 28.8 
8 50.7 24.8 29.6 54.4 27.9 71.2 16.5 

4 60.5 32.2 29.1 69.2 41.2 76,1 19.6 

0.5 50 13.1 19.6 N/A 13.1 19.6 56.5 21.7 
8 41.1 13.7 29.7 45.6 17.3 68.3 8.6 

4 51.3 22.2 24.5 57.1 29.4 73.7 i4.7 

0.1 50 11.5 18.5 N/A 11.5 18.5 51.0 10.4 
8 37.1 7.1 28.9 42.5 12.5 67.6 7.6 

4 46.7 17.6 23.3 47.4 19.4 71.9 11.9 

N/A 59.6 3.4 90.3 3.8 N/A 90.3 3.8 
4.3 62.8 5.2 91.6 2.2 4.6 91.5 4.6 
7.9 67.3 9.3 91..3 3.3 7.8 90.8 5.5 

N/A 59.3 2, 0 89.2 3.4 N/A 89, 2 3.4 
2.8 61..5 1.6 91.6 1.7 2.8 91.8 1.8 

4.2 61.0 1.4 91.3 1.7 4.2 91.3 1.5 

N/A 59, 8 0.5 87.8 3,0 N/A 87.8 3.0 
2.4 61.6 1.6 91.7 1.7 2.2 91.8 1.8 

3.4 61.0 1.0 90.4 0.6 3.4 91.3 1.3 

N/A 61.7 5.6 92.4 6.3 N/A 92.4 6.3 
7.6 64.8 6.7 93.0 4.2 8.3 93.4 6.3 

10.9 68.3 10,2 91.9 4,7 11.0 91.4 6.0 

N/A 62.3 2.8 92.1 2.4 N/A 92.1 2.4 
5,4 63.3 3.4 93,7 3.8 5.4 93,7 3.7 
7.8 62.3 2.6 91.8 2.4 7.7 92.6 2.9 

N/A 62.6 2.6 92.3 2.3 N/A 92.3 2.3 
4.9 63.4 3.4 93.9 4.0 5.0 93.7 3.7 

6.7 62.4 2.4 90.6 0.7 6,8 92.7 2.7 

N/A 64.2 17.5 94.5 17.2 N/A 94.5 17.2 
17.3 68.5 10.6 94.7 7.6 17.6 96.2 8ø0 

18.1 70.3 12.2 93.2 6.8 19.0 93.7 6.7 

N/A 65.7 11.3 93.0 9.3 N/A 93.0 9.3 
14.7 67.4 7.5 95.9 6.6 14.7 97.5 7.7 
15.1 65.2 5.5 93.9 4.4 15.0 95.9 6.0 

N/A 71.3 11.3 90.1 1.3 N/A 90.1 1.3 
13.4 67.3 7.3 96.9 6.9 13.2 97,4 7.4 

14.2 65.4 5.4 93.6 3.7 14.1 95.8 5.8 

N/A 58.1 28.8 104.0 32.7 N/A 104.0 32.7 
28.5 72.4 14.8 98.4 13.8 29.2 98.8 11.6 

25.9 76.7 19.0 96.9 10.9 27.7 95,4 8.6 

N/A 56,5 21.7 109.5 30.7 N/A 109.5 30.7 
31.3 70.5 10.7 99.5 9.9 33.1 100.5 10.7 

23.6 71.3 12,5 101.7 12.0 23.5 98.7 8.8 

N/A 51.0 10.4 112.3 22,3 N/A 112.3 22.3 
30.6 70.8 10.8 97.9 8.0 37.1 98.9 8.9 

22.9 68.3 8, 3 102, 0 12.0 22.6 98.7 8.7 

The existence of bending deflection is clear in the 
tables. In several instances, in fact, the rms error is 
entirely bias with essentially zero variance as in the 
eight-element mean estimator using a damped wave with 
amplitude 1, •= 0.1, and 0 = 30 ø. 

The results for the randomly bent array is given in 
Table Hi. We tried more values for •. The slight dis- 
placement from the nominal axis produced a slight de- 
flection bias for the full array method. The deflection 
is 1.1 ø for 0=90 ø , 0.7 ø for 0=30 ø, and is at most 0.6 ø 
for 0= 60 ø. Part of this small bias is due to interaction 

with the quantization error induced by using only 101 
values for the FFT. However, we did not have enough 
computer time to add more zeroes in order to reduce 
the quantization error since each simulation set ran al- 
most thirty minutes on our IBM 360-50. 

An alternative to processing adjacent fixed aperture 
subarrays is to form subarrays by combining two or 
four sensors from each end of the array, effectively in- 
troducing a set of closing aperture subarrays. We at- 

tempted this alternative method with relatively poor re- 
sults. Under the most favorable conditions, the closing 
aperture technique yielded results inferior to fixed aper- 
ture processing. Specifically, using the undamped sinu- 
soid with an amplitude of « and a bearing angle of 90 ø 
the closing aperture technique yielded rms values for 
both the median- and mean-derived estimators which 

were greater than for fixed aperture processing using 
the same number of subarray elements. The observed 
rms values for the two techniques showed a tendency to 
converge as the signal-to-noise ratio increased, but in 
all instances the errors using the closing aperture pro- 
cedure exceeded those of the fixed aperture procedure. 
Thus for our simulations, the closing aperture technique 
is inferior to the fixed aperture, adjacent subarray-av- 
eraging method. 
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TABLE HI. Results for random bending pattern. 

30 ø 

cr K meal rms • mean rms med rms 

60 ø 90 ø 

• mean rms med rms • mean rms 

50 30.6 0.8 N/A 30.6 0.8 60.6 0.9 
1.0 8 30.4 1.2 3.7 33.6 5.8 60.6 0.9 

4 35.9 6.9 15.1 50.9 22.3 61.9 2.4 

50 30.7 0.7 N/A 30.7 0.7 60.6 0.9 
0.75 8 30.3 0.9 2.5 30.0 1.0 60.5 0.8 

4 31.5 2.2 7.2 38.3 10.0 60.8 1.2 

50 30.7 0.7 N/A 30.7 0.7 60.3 0.7 
0.5 8 30.5 0.8 1.6 29.8 0.3 60.5 0.8 

4 30.0 1.2 4.6 30.2 1.2 60.6 0.9 

50 30.7 0.7 N/A 30.7 0.7 60.1 0.4 
0.25 8 30.6 0.7 1.3 29.8 0.2 60.6 0.9 

4 30.2 0.9 2.3 29.7 0.3 60.4 0.7 

50 30.7 0.7 N/A 30.7 0.7 60.0 0.0 
0.1 8 30.7 0.7 1.2 29.9 0.2 60.5 0.8 

4 30.7 0.7 1.4 29.8 0.2 60.6 0.9 

N/A 60.6 0.9 91.1 1.1 N/A 91.1 1.1 
2.2 62.0 3.4 90.8 1.0 2.2 90.6 3.4 
6.9 67.3 8.2 90.7 1.6 6.1 90.1 3.2 

N/A 60.6 0.9 91.1 1.1 N/A 91.1 1.1 
1.6 60.5 0.6 90.8 1.0 1.5 90.8 1.1 
4.4 63.0 4.0 90.8 1.1 3.9 90.7 2.0 

N/A 60.3 0.7 91.1 1.1 N/A 91.1 1.1 
1.1 60.4 0.4 91.0 1.1 1.1 90.7 0.7 

2.8 60.4 0.6 90.8 1.0 2.5 90.7 0.8 

N/A 60.1 0.4 91.1 1.1 N/A 91.1 1.1 
0.8 60.4 0.4 91.1 1.1 0.8 90.7 0.7 

1.7 60.4 0.5 91.0 1.1 1.7 90.8 0.8 

N/A 60.0 0.0 91.1 1.1 N/A 91.1 1.1 
0.8 60.4 0.4 91.1 1.1 0.7 90.7 0.7 

1.0 60.5 0.5 91.1 1.1 1.2 90.8 0.8 
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APPENDIX A. 

Consider an equally spaced linear array of K sensors. 
The spatial noise field is assumed to be constant, inde- 
pendent of •. For •0 = (co0/v)cos•, the frequency-wave- 
number spectrum is 

S(go, COo)= K '• IKA exp/•b + • Nk expigxk 12 , 
/•=1 

where ReN• and ImN• are independent, Gaussian N(0, 
2T) random variables. Define 

•=• (A1) 
K 

k=l 

which are independent, Gaussian N(0, o•/2T) variables. 
If • • •', ZR(•), and ZR(•') are uncorrelated for large K, 
and similarly for Z•. 

For g = 

S(K0, COo) = KAY'+ 2Kt/•'A (g• cos•) + g• sin•))+ g• + g• . 
(A2) 

The third term (g•+g•)in Eq. A2 is (oZ/2T)xi, where 
X• is a chi-squared random variable, and is of the order 
0(1), whereas the first term is 0(K) and the second 
0(K•/•-). 

The variable Z = Z• cos•b + Z• sin•b is Gaussian N(0, 
2T). Thus 

KAY+ 2Kt /2AZ >KA • _ 4Kt / =A(•(2T ) '• /•' , 

with probabiliby 0.97 (the probabiliby of being greater 
than two standard deviations below the mean for a Gauss- 

ian distribution). Consequently if K >8/p where p= TA2/ 
(• the first •vo terms in Eq. A2 are significantly pos- 
itive and dominate the other ((•2/2T)x• spectrum levels 
for • •0, and thus the maximum of the frequency-wave- 
number spectrum will occur at a • near •0, i.e.,}= •0. 
The error in • will then be due to the interpolation error 
resulting from the finiteness of the aperture. In other 
words, if K >8p 't, the array has sufficient redundancy 
to resolve the signal given the signal-to-noise level. 
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