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ABSTRACT 

 

A pavement management system (PMS) is a valuable tool and one of the critical elements of the 

highway transportation infrastructure. Since a vast amount of pavement data is frequently and 

continuously being collected, updated, and exchanged due to rapidly deteriorating road 

conditions, increased traffic loads, and shrinking funds, resulting in the rapid accumulation of a 

large pavement database, knowledge-based expert systems (KBESs) have therefore been 

developed to solve various transportation problems. This dissertation presents the development 

of theory and algorithm for a new decision tree induction method, called co-location-based 

decision tree (CL-DT.) This method will enhance the decision-making abilities of pavement 

maintenance personnel and their rehabilitation strategies. This idea stems from shortcomings in 

traditional decision tree induction algorithms, when applied in the pavement treatment strategies. 

The proposed algorithm utilizes the co-location (co-occurrence) characteristics of spatial 

attribute data in the pavement database. With the proposed algorithm, one distinct event 

occurrence can associate with two or multiple attribute values that occur simultaneously in 

spatial and temporal domains.  

 

This research dissertation describes the details of the proposed CL-DT algorithms and steps of 

realizing the proposed algorithm. First, the dissertation research describes the detailed co-

location mining algorithm, including spatial attribute data selection in pavement databases, the 

determination of candidate co-locations, the determination of table instances of candidate co-

locations, pruning the non-prevalent co-locations, and induction of co-location rules. In this step, 

a hybrid constraint, i.e., spatial geometric distance constraint condition and a distinct event-type 

constraint condition, is developed. The spatial geometric distance constraint condition is a 

neighborhood relationship-based spatial joins of table instances for many prevalent co-locations 

with one prevalent co-location; and the distance event-type constraint condition is a Euclidean 

distance between a set of attributes and its corresponding clusters center of attributes. The 
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dissertation research also developed the spatial feature pruning method using the multi-resolution 

pruning criterion. The cross-correlation criterion of spatial features is used to remove the non-

prevalent co-locations from the candidate prevalent co-location set under a given threshold. The 

dissertation research focused on the development of the co-location decision tree (CL-DT) 

algorithm, which includes the non-spatial attribute data selection in the pavement management 

database, co-location algorithm modeling, node merging criteria, and co-location decision tree 

induction. In this step, co-location mining rules are used to guide the decision tree generation and 

induce decision rules.  

 

For each step, this dissertation gives detailed flowcharts, such as flowchart of co-location 

decision tree induction, co-location/co-occurrence decision tree algorithm, algorithm of co-

location/co-occurrence decision tree (CL-DT), and outline of steps of SFS (Sequential Feature  

Selection) algorithm. Finally, this research used a pavement database covering four counties, 

which are provided by NCDOT (North Carolina Department of Transportation), to verify and 

test the proposed method. The comparison analyses of different rehabilitation treatments 

proposed by NCDOT, by the traditional DT induction algorithm and by the proposed new 

method are conducted. Findings and conclusions include: (1) traditional DT technology can 

make a consistent decision for road maintenance and rehabilitation strategy under the same road 

conditions, i.e., less interference from human factors; (2) the traditional DT technology can 

increase the speed of decision-making because the technology automatically generates a 

decision-tree and rules if the expert knowledge is given, which saves time and expenses for 

PMS; (3) integration of the DT and GIS can provide the PMS with the capabilities of graphically 

displaying treatment decisions, visualizing the attribute and non-attribute data, and linking data 

and information to the geographical coordinates. However, the traditional DT induction methods 

are not as quite intelligent as one’s expectations. Thus, post-processing and refinement is 

necessary. Moreover, traditional DT induction methods for pavement M&R strategies only used 

the non-spatial attribute data. It has been demonstrated from this dissertation research that the 

spatial data is very useful for the improvement of decision-making processes for pavement 

treatment strategies.  In addition, the decision trees are based on the knowledge acquired from 

pavement management engineers for strategy selection. Thus, different decision-trees can be 

built if the requirement changes.  
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This dissertation research has demonstrated the advantages of the proposed method on the basis 

of the experimental results and several comparison analyses including the induced decision tree 

parameters, the misclassified percentage, the computational time taken, support, confidence and 

capture for rule induction, and the quantity and location of each treatment strategy. It has been 

concluded that (1) the proposed CL-DT algorithm can make better decisions for pavement 

treatment strategies when compared to the traditional DT method; (2) the proposed CL-DT 

method misclassified from 61.2% to 9.7%, which implies that the training data can contribute to 

decision tree induction; (3) the proposed CL-DT algorithm saves the 20% computational time 

taken in tree growing, tree drawing, and rule generation; (4) the percentage of support, 

confidence and capture of the FDP treatment strategy for the proposal CL-DT algorithm 

increases from 71.6%, 55.6%, and 66.2% to  83.2%, 84.4% and 77.7%, respectively; (5) the 

quantity of each treatment strategy discovered by CL-DT is very close to those proposed by the 

ITRE(Institute for Transportation Research and Education (ITRE); and (6) the location of each 

treatment strategy proposed by CL-DT is also very close to those proposed by the ITRE.  
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1. INTRODUCTION 

 

1.1 Background 

 

The U.S. Department of Transportation (U.S. DOT) initiated the Commercial Remote Sensing 

and Spatial Information Technology Application to the transportation program in 1999 in 

collaboration with the National Aeronautics and Space Administration (NASA), in accordance 

with Section 5113 of the Transportation Equity Act for the 21st Century (DOT-NASA, 2003; 

2002). The collaborative program with NASA is administered by the U.S. Department of 

Transportation (U.S. DOT) Research and Special Programs Administration (RSPA). The 

program was intended to focus on unique and cost-effective application, of remote sensing and 

spatial information technologies for delivering smarter, more efficient and responsive 

transportation services with enhanced safety and security (DOT-NASA, 2003; 2002). The five 

(originally four) application areas within the program have been (DOT-NASA, 2002) (Figure 

1.1):  

1) Environmental assessment, integration, and streamlining for faster decision making at 

reduced costs;  

2) Transportation infrastructure management for improving maintenance service efficiency;  

3) Traffic surveillance, monitoring and management for monitoring and managing traffic 

and freight flow; 

4) Safety hazards and disaster assessment for unplanned disasters and security of critical 

transportation lifeline systems; and 

5) Highway and runway pavement construction, quality control and maintenance. 

 

The above four/five major priority areas of the collaborative program were deployed through 

national consortia, each of which consists of teams from leading institutions, industries and 

service providers. The major administrations from U.S. Department of Transportation are 

• Bureau of Transportation Statistics, 

• Federal Aviation Administration, 

• Federal Highway Administration, 

• Federal Motor Carrier Safety Administration, 



~ 2 ~ 
 

• Federal Railroad Administration, 

• Federal Transit Administration, 

• Maritime Administration, 

• National Highway Traffic Safety Administration, and 

• Research and Special Programs Administration.  

 

The research centers of NASA consist of  

• Ames Research Center, 

• Dryden Flight Research Center, 

• Glenn Research Center at Lewis Field, 

• Jet Propulsion Laboratory, 

• Johnson Space Center, 

• Kennedy Space Center, 

• Langley Research Center, 

• George C. Marshall Space Flight Center, 

• Goddard Space Flight Center, and 

• John C. Stennis Space Center. 

 

 
Figure 1.1:  Collaborative program between US DOT and NASA on remote sensing and 

geospatial information technologies application to transportation (Courtesy of DOT, 2003) 
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The leasing institutions, industries and service providers in the national consortia for the four 

major priority areas are (DOT-NASA, 2003): 

1) Area of the Environmental assessment, integration and streamlining. Leading by 

Mississippi State University (www.ncrste.msstate.edu), consisting of University of Alabama in 

Huntsville, University of Mississippi, Auburn University, U.S.RA, NASA Marshall Space Flight 

Center, Digital Globe, Intermap Technologies Corportion, Earth Data Technologies, LLC, 

ITRES Corporation, Virginia DOT, EarthData, ICF Consulting, Washington State DOT, and 

Veridian Systems Division. The focuses of this consortium are: 

• Developing new solutions for transportation relocation and corridor planning, 

• Developing algorithms for using raster and vector geospatial data in corridor planning, 

• Relocating the CSX railroad in the Mississippi coastal corridor, 

• Assessing urban growth in coastal corridors, 

• LIDAR applications for terrain mapping and hydrologic analysis, 

• LIDAR application for alignment optimization, 

• Hyper spectral image data for wetland vegetation mapping and analysis, 

• Geospatial data fusion application to transportation environmental assessment, 

• Analysis of transportation, development, and population growth impacts on urban 

watersheds, 

• LIDAR measurements of air pollutants and air quality modeling, 

• Assessing urban growth and transportation impacts on human and natural environments, 

• Developing computational mapping resources and geospatial data libraries for 

environmental assessment and transportation corridor planning, and 

• Assessing user needs for geospatial and remote sensing technologies in transportation.  

 

2) Area of the safety hazards and disaster assessment. Leading University of New Mexico 

(www.trans-dash.org), consisting of University of Utah, Oak Ridge National Laboratory, George 

Washington University, York University, Image Cat Inc., Digital Globe, and AERIS Inc. The 

focuses of this consortium are: 

• Integrating remote sensing technology for planning evacuations in emergencies, 

• Detecting damaged bridges for emergency response in southern California, 
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• Planning community evacuations for large populations, 

• Tools for managing highway bridges, 

• Transportation hazards consequence tool, 

• Accessing and delivering geospatial data and toolkits for transportation applications, 

• Protecting the critical infrastructure using Rational Mapper—a tool for processing high-

resolution images, 

• Assessing pipeline and airport safety using automated processing of LIDAR data, 

• Hyper spectral analysis of urban surface materials, 

• Lane-based evacuation routing tools to reduce evacuation times, 

• Detailed evacuation simulations for identifying communities that could be trapped in a 

bottleneck, 

• Mapping areas of potential damage to highways and pipelines due to land subsidence, 

• New remote sensing technologies for planning and maintaining pipeline corridors, 

• Managing rural roads in Indian reservations, 

• Calculating mileages for highway performance monitoring for FHWA, 

• Identifying glide path safety obstructions at the Santa Barbara Municipal Airport, 

• Weather-related road hazards assessment and monitoring system for real-time weather 

monitoring and rural road condition assessment, and 

• High-resolution satellite data updates E-911 road information.  

 

3) Area of the transportation infrastructure management for improving maintenance service 

efficiency. Leading University of California at Santa Barbara (www.ncgia.ucsb.edu/ncrst), 

consisting of University of Wisconsin-Madison, Iowa State University, University of Florida, 

Digital Geographic Research Corp., Geographic Paradigm Computing Inc., Florida DOT, 

University of Massachusetts, Orbital Imaging Corporation, and Tetra Tech, Inc. The focuses of 

this consortium are: 

• Responding to security threats, hazards and disasters, 

• Evacuating a small neighborhood: infrastructure adequacy, 

• Meeting the challenge of inventory assessment, 

• Urban hyper spectral sensing and road mapping, 
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• LIDAR applications for highway design and construction, 

• LIDAR for engineering design, 

• BridgeView – a tool for bridge inventory and assessment, 

• Security sitting of off-port inspection facilities, 

• Tools for managing highway bridges for the National Bridge Inventory, and 

• Aviation infrastructure planning and development support.  

 

4) Area of traffic surveillance, monitoring and management. Leading by the Ohio State 

University (www.ncrst.org), consisting of George Mason University, University of Arizona, 

GeoData Systems Inc., TerraMetrics Inc., Veridian Grafton Technologies, Technology Service 

Corp., and Bridgewater State College. The focuses of this consortium are: 

• Improving a real-time bus information system with image-based backdrops, 

• Applications for traffic operations, 

• Cheaper and more accurate traffic measures using satellite and airborne imagery, 

• Determining highway level of service using airborne imagery, 

• Improving freight flow management, 

• High resolution georeferencing from airborne images for traffic flow, 

• “Bird’s-eye” views of transportation networks for mitigating urban congestion, 

• Exploring LIDAR applications for traffic flow, 

• Pioneering traffic data collection from UAVs, 

• Automated vehicle tracking from airborne video, 

• UAV applications for multi-modal operations, and 

• Airborne data acquisition system (ADAS) for traffic surveillance.  

 

1.2 Relevant Efforts Under the Collaborative Program 

 

The collaborative program accomplishments have created a new model for R&D application by 

combining resources from U.S. DOT with NASA research capabilities in partnerships with 

universities and technology service providers (Usher and Truax, 2001). A detailed survey and 

analysis for the applications of land satellite remote sensing in transportation infrastructure and 
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systems engineering has been made by Zhou and Wei (2009a; 2008b and 2008c). The 

applications of commercial remote sensing and geospatial information technologies can briefly 

categorized by the following area:  

(1) Geospatial technology applied in transportation infrastructure, such as pavement 

construction and maintenance, and management, 

(2) Geospatial technology applied in transportation planning, 

(3) Geospatial technology applied in transportation safety analysis and monitoring, 

(4) Geospatial technology applied in transportation operation and analysis, and  

(5) Geospatial technology applied in transportation environmental analysis.  

 

The overview of relevant efforts in the above four fields has been made by Zhou et al. (2009a; 

and 2008b). This Chapter will highlight the relevant efforts on the geospatial technology applied 

in transportation infrastructure. 

 

Pavement construction is one of the most important aspects of transportation infrastructure. 

Pavement construction quality monitoring and evaluation for early scheduling of repair and 

maintenance are important in many areas of pavement engineering, especially in a pavement 

management system (Gilly et al., 1987). Remote sensing technologies using electromagnetic 

waves from various parts of the energy spectrum can acutely reflect the physical and chemical 

properties of pavement material changes, and thus can be used for monitoring and evaluating 

pavement construction (Usher and Truax, 2001). This program has been carried out for a couple 

of years in cooperation with NASA and a consortium of university research centers. Many 

successful examples sponsored from this program can be found in the recent published papers 

and symposiums, for instance, Reginald (2004); Karimi et al. (1999); Shauna et al. (2001); Zhou 

and Wang (2010a; 2010b; 2008a; 2008b); .  

 

Many current researchers applied hyper spectral images for pavement mapping (Herold et al., 

2005; 2004) or high-resolution satellite imagery (e.g., IKONOS 1.0 m resolution) (Noronha et 

al., 2002) for pavement quality management. This is because high-resolution multispectral/hyper 

spectral satellite images can clearly observe/monitor the road conditions, such as loss of oily 

components, hydrocarbon absorption, pavement condition deterioration, exposing rocky 
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components of the pavement, structural damages like cracking. The spectral signals for these 

pavement conditions can theoretically be reflected in high-resolution hyper spectral images 

(Herold et al., 2004; Cloutis, 1989). Lalitha (1989) and use an available enhancement technique 

to a Landsat TM (Thematic Mapper) urban scene to ascertain which technique is effective in 

improving the contrast of the road features in the image. Kelley (2002) used remote sensing 

technology for obtaining real-time pavement specific weather information, which was used as 

assistance for pavement. Moriyoshi (1999) described the infrared sensing analysis of asphaltic 

mixture and asphaltic pavement and presented the various application of infrared sensing 

analysis for civil engineering. Ayalew et al. (2003; 1998) identified spatial and spectral 

requirements for successful large-scale road feature extraction, and further examined the benefits 

of using hyper spectral imaging over traditional methods of roadway maintenance and 

rehabilitation for pavement management applications. Spagnolini and Rampa (1999) used 

monostatic ground penetrating radar (GPR) for pavement profiling, such as layer thickness. Guo 

et al. (2007) developed an algorithm for suburban road segmentation in high-resolution aerial 

images. Many researchers, such as Beaumont (1985) have demonstrated that information 

acquired from the interpretation of satellite imagery can play a significant role in the planning, 

management, and implementation of highway maintenance or rehabilitation. For example, Yoo, 

et al. (2005) used space-borne imagery of 1.0 meter high resolution with KOMPSAT-EOC to 

help road construction or repair planning. Lin et al. (2004) measured the concrete highway rough 

surface parameters by an X-Band scatterometer. To verify the test results, a laser profiler and a 

radar system were used to provide a direct measurement result. Irick and Hudson (1964) 

presented their research project, which contains principles and rules that can be used to design 

selected pavement sections and relate their behavior to similarly designed sections on the 

AASHO Road Test. In addition, they developed the guidelines to provide the basis for merging 

data of individual studies with data collected in the overall program, and provide means for 

translating road test findings to local conditions. Starks et al. (2002) used satellite image 

referencing algorithms to characterize asphaltic concrete mixtures. They demonstrated, from 

satellite imagery analysis that the corresponding mixture, the elasticity E depends on the 

frequency f in the range from 0.1 to 105 Hz. They measured the dependence of E on moderate 

frequencies f for different temperatures. Eckardt and White (1997) used Landsat thematic 
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mapper to assist analysis of coarse gravel overlying a silty substrate. The silty material, known as 

a stone pavement, is prone to erosion.   

 

Additionally, other research, such as Keaton and Brokish (2003), used IKONOS multispectral 

images to evaluate the evolving roads. Morain (2002) presented the application of image 

intelligence from space-based and aerial sensors for the critical infrastructure protection. He 

described “America's transportation systems are predicated on economic, social, and political 

stability. After the epiphany of September 11, and subsequent national alerts, however, all 

sectors of transportation, not just in the USA, but around the world have become keenly aware of 

the vulnerabilities inherent in such systems; and of the cascading consequences that can arise 

from attacks at critical nodes in any one or more of the transportation sectors.”  Liu et al. (2006) 

presented an algorithm for pavement cracking detection based on multi-scale space, since 

conventional human-visual and manual field pavement crack detection methods are very costly, 

time-consuming, dangerous, labor-intensive and subjective. A robust and high-efficient parallel 

pavement crack detection algorithm based on multi-scale space was presented. 

 

 

1.3 Overview of Pavement Management System 

 

A pavement management system (PMS) is a valuable tool and one of the critical elements of the 

highway transportation infrastructure (Tsai et al., 2004; Kulkarni et al., 2003). The earliest PMS 

concept can be traced back to the 1960s. With rapid increase of advanced information 

technology, many investigators have successfully integrated the Geographic Information System 

(GIS) into PMS for storing, retrieving, analyzing, and reporting information needed to support 

pavement-related decision making. Such an integration system is thus called G-PMS (Lee et al., 

1996). The main characteristic of a GIS system is that it links data/information to its 

geographical location (e.g., latitude/longitude or state plane coordinates) instead of the milepost 

or reference-point system traditionally used in transportation. Moreover, the GIS can describe 
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and analyze the topological relationship of the real world using the topological data structure and 

model (Goulias, 2002; Lee et al., 1996). GIS technology is also capable of rapidly retrieving data 

from a database and can automatically generate customized maps to meet specific needs such as 

identifying maintenance locations. Therefore, a G-PMS can be enhanced with features and 

functionality by using a geographic information system (GIS) to perform pavement management 

operations, create maps of pavement condition, provide cost analysis for the recommended 

maintenance strategies, and long-term pavement budget programming.  

 

With the increasing amount of pavement data collected, updated and exchanged due to 

deteriorating road conditions, increasing traffic loading, and shrinking funds, many knowledge-

based expert systems (KBESs) have been developed to solve various transportation problems 

(e.g., Abkowitz et al., 1990; Nassar, 2007; Spring and Hummer 1995; Zhang et al., 2001). A 

comprehensive survey of KBESs in transportation is summarized and discussed by Cohn and 

Harris (1992). However, only a few scholars have investigated applying data mining and 

knowledge discovery (DMKD) to PMSs. For example, Attoh-Okine (2002; 1997) presented 

application of Rough Set Theory (RST) to enhance the decision support of the pavement 

rehabilitation and maintenance. Prechaverakul and Hadipriono (1995) applied knowledge-based 

expert system and fuzzy logic for minor rehabilitation projects in Ohio. Wang et al. (2003) 

discussed the decision-making problem of pavement maintenance and rehabilitation. Leu et al. 

(2001) investigated the applicability of data mining in the prediction of tunnel support stability 

using an artificial neural networks (ANN) algorithm. Sarasua and Jia (1995) explored an 

integration of Geographic Information System Technology with knowledge discovery and expert 

system for pavement management. Ferreira et al. (2001) explored the application of probabilistic 
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segment-linked pavement management optimization model. Chan et al. (1994) applied the 

genetic algorithm for road maintenance planning. Amado et al. (2002) applied knowledge 

discovery for pavement condition evaluation. Soibelman et al. (2000) discussed the data 

preparation process for construction knowledge generation through knowledge discovery in 

databases, as well as construction knowledge generation and dissemination.  

 

1.4 Motivation 

 

Zhou et al., (2010a; 2008a; 2008b) has initially investigated the application of the decision tree 

induction method in the decision-making of pavement maintenance and rehabilitation strategies. 

It is found that: 

(1) The use of data mining and knowledge discovery methods for road maintenance and 

rehabilitation can largely increase the speed of decision-making, save time and money, 

and shorten the project period; 

(2) The use of data mining and knowledge discovery for pavement management can make a 

consistent decision for road-network treatment strategies, thus avoid any human factors 

for decision-making of treatment. 

(3) A decision tree is used to organize the obtained knowledge from experts in a logical 

order. Thus, decision trees can determine the technically feasible rehabilitation strategies 

for each road segment in a reasonable manner.  

 

However, many shortcomings of applying traditional decision tree induction method have been 

discovered (see Chapter 2.4). Thus, the motivation of this dissertation is to develop an innovative 

method for decision tree induction in order to overcome the shortcomings discovered, and to 

further enhance decision-making of the maintenance and rehabilitation strategies.  

 

On the other hand, the decision trees are based on the knowledge acquired from pavement 

management engineer for rehabilitation strategy selection. Thus, different decision trees can be 

built if the requirement changes. For example, the decision trees were based on severity levels of 
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individual distresses in this research. If the pavement layer thickness and material type are taken 

as knowledge, or work history, pavement type, and ride data are taken as knowledge for 

generating decision-trees, these decision-trees are different. This means the decision rules 

generated by different knowledge are different. Thus, motivation of this dissertation is to 

investigate and develop an “optimal” decision tree (decision rules) to largely enhance the 

decision-making of pavement treatment strategies.  

 

 

1.5 Enhances of Decision-Making in PMS 

 

The highway transportation system is vital to the mobility of goods and people in USA and 

through worldwide. Pavements are an important component of the highway transportation 

infrastructure, accounting for the single largest share of the overall investment in highway 

infrastructure. Because of the large network of highways in each state, a tremendous amount of 

money is spent each year on the construction of new pavements and the maintenance and 

rehabilitation (M&R) of existing pavement. To maximize the benefits and minimize the overall 

costs associated with the process, a systematic and scientific approach is needed to manage the 

pavements. Many investigators have developed different system for effectively managing 

pavement and making reasonable decision in combination with GIS, data mining and knowledge 

discovery, artificial intelligences, etc. Thus, successful implementation of this dissertation 

research will significantly enhance the decision-support of pavement management, maximize the 

benefits and minimize the overall costs of pavement management, since the proposed research 

attempts to find knowledge hidden in the pavement database. 

 

On the other hand, a pavement management system is a planning tool that is able to model 

pavement and surface deterioration due to the effects of traffic and pavement ageing, and 

contains a series of decision units used to determine how and when to repair the roads surface. 

Pavement management decisions need to integrate diverse spatially referenced data for decision-

making. The data include geospatial data (e.g., XY coordinates, pavement width, number of 

lanes, width of lane, central line, etc), economic data (such as initial cost, total cost), pavement 

condition (such as skid resistance measurements, cracking, rutting, traffic counts, bridge 
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conditions, etc. ) and other data (such as construction history, sign inventories, and construction 

and maintenance records, etc.). Understanding the relationships between pavement condition 

data, street locations, and networks is very important for pavement management decision 

making. Thus, successful implementation of this dissertation research will largely increase our 

understanding to the relationship between these pavement condition data and the street location 

and networks, since the proposed methods attempts to combine the spatial data (e.g., XY 

coordinates, etc.) and non-spatial data (e.g., distress data) for inducing co-location decision 

tree.   

 

1.6 Organization of the Dissertation 

The organization of this dissertation is:  

(1) Data mining techniques applied in pavement management is overviewed in Chapter 2. 

(2) Spatial decision tree induction methods and their advantages and disadvantages are 

described in Chapter 3. 

(3) Development of theory and algorithm for co-location decision tree induction is presented 

in Chapter 4.  

(4) Data and experiment using traditional decision tree induction are presented in Chapter 5.  

(5) Experiment design and experimental result analyses using the developed co-location 

decision tree induction are described in Chapter 6.  

(6) Conclusion and future work are described in Chapter 7 and Chapter 8, respectively.  

A list of published papers related to this dissertation in the duration of Ph.D. period is described 

in the end of dissertation. 

 
Figure 1.2 Relationship of the chapters 
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2. LITERATURE REVIEW 

 

2.1 Pavement Management 

 

Pavement is one of the critical elements of the highway transportation infrastructure worldwide 

(Zhang et al. 2001). Although billions of dollars are spent annually on maintaining and 

rehabilitating pavements in the United States, deteriorating pavement conditions, increasing 

traffic loads, and limited funds present a complex challenge for pavement maintenance and 

rehabilitation activities (Zhang et al. 2001; Zhang et al. 1994). During the last several decades, 

Pavement Management Systems (PMS) have been developed to cope with these challenges in 

almost every state in order to identify maintenance needs, help to allocate funds, support cost-

effective decision making, reduce the cost of pavement maintenance and rehabilitating activities 

under the constraint of limited funds. 

 

The term “Pavement Management System” was first introduced to include the management of all 

aspects of pavement-related activities, including planning, design, maintenance, and 

rehabilitation of highway pavements (Zhang et al. 2001). Since introduction of the concept of 

pavement management system in 1960s, pavement management largely progressed in 

optimization of decision-making in the 1970s, and a significant accomplishment was 

implemented in the 1990s (Haas et al. 1994; AASHTO 2001). It is demonstrated that pavement 

management system (PMS) is a valuable tool, and can save money and maximize benefits for the 

highway system. It has become increasingly popular among local highway agencies, since many 

county and city government agencies have realized the benefits of having a decision-support 

system that helps them find cost-effective strategies for keeping their pavements in good 

condition (Fitch et al., 2001)), and maintain a highway system at an acceptable level of service 

that continues to support economic growth with a small amount of resources. (Tsai et al., 2004; 

Kulkarni et al., 2003; 1984) 

 

With a significant advance in implementation of PMS in the 1990s, FHWA (Federal Highway 

Administration) mandated the adoption of PMS by all state departments of transportation 

(DOTs) in 1993 (Tsai and Lai, 2002; 2001). The purposes of a PMS are to identify maintenance 
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needs, generate the pavement-rehabilitation plans, help to allocate funds, and maintain good 

pavement conditions under the constraint of limited funds, assist highway engineers and upper 

management in making consistent and cost-effective decisions related to maintenance and 

rehabilitation of pavements (Medina et al., 1999; Osman et al., 1994; Zhang et al., 1994). An 

effective PMS will therefore substantially save money and time, and maximize benefits for the 

highway management system.  

 

FHWA mandated the adoption of PMS by all state departments of transportation (DOTs) in 

1993. Several computer programs are available to help local communities develop their 

management systems. All roadway management problems are, to different degrees, geographical 

because they involve the spatial relations between objects and events. Road networks extend 

over a wide area and are affected by various land elements, such as rivers, mountains, buildings, 

and so forth. Since the required data always have a spatial component, the rational way to store 

and relate this information is through a spatial consistent-referencing system such as a 

geographic information system (GIS) (Hudson and Hass, 1995). Studies of linear reference 

systems (LRSs) provide ways to facilitate the information integration through a common spatial 

reference along the transportation network (Adams et al. 1998; Opiela 1997; Scarponcini 2001). 

Several studies (Hudson and Hass, 1995, pp. 102–103, 8–10) also mention the use of geographic 

information systems (GISs) to facilitate the transportation spatial information integration. Guo 

(2001, pp. 12–13) has further introduced the temporal reference for storing different pavement 

treatment methods applied to different pavement Chapters at different times along a common 

LRS. This allows DOTs to conduct the temporal analysis to study the interaction of different 

features, such as traffic accidents and pavement quality for providing better and more cost-

effective management of maintaining pavement performance. 

 

2.2 GIS Applied in Pavement Management 

 

2.2.1 Two Basic Data Types in Transportation GIS (T-GIS) 

GIS is defined as “a system of computer hardware, software and procedures designed to support 

the capture, management, manipulation, analysis, modeling, and display of spatially referenced 

data for solving complex planning and management problems.” (Chang, 2006; www. 
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disdevelopment.net/technology/gps/techgp0045c.htm) The main GIS characteristic is the 

potential of spatially linking information into its geographical location to (www.colorado.edu/ 

geography/gcraft/notes/intro/intro.html): 

• Manage geographically-referenced information by integrating a database and mapping 

software,  

• Provide the tools to analyze spatial relationships between events or phenomena, 

• Allow us to view, understand, question, interpret, and visualize data in many ways that 

reveal relationships, patterns, and trends in the form of maps, globes, reports, and charts, 

and 

• Be integrated into any enterprise information system framework. 

 

GIS deals with the two basic types of data, vector data types and raster data types, both of which 

refers the data to a geographical coordinate system (e.g., latitude/longitude or state plane 

coordinates) instead of the milepost or reference-point system traditionally used in 

transportation. We call this, geospatial data.  

 

A) Vector Data Types  

Vector data is composed of discrete coordinates that can be used as points or connected to create 

lines and polygons (see Figure 2.1): 

• Point: zero-dimensional objects, which have a position but no spatial extension. 

• Line: one-dimensional objects with length as the only measurable spatial extension. Line 

Objects are built up of connected line segments. 

• Polygon: two-dimensional or two and half-dimensional objects with area and perimeter 

as measurable spatial extension, which are composed of facet patches. 

• Body: three-dimensional objects with volume and surface area as measurable spatial 

extensions, which are bordered by facets. 

 

For the above four types of objects, Point is the basic geometric element. For example, a Point 

can present a point object, and also can be the start or end point of an Edge. The Edge is a line 

segment, which is an ordered connection between two points: begin point and end point. The 

Facet is the intermediate geometrical element. It is completely described by the ordered edges 
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that define the border of the facet. Entity is the highest level geometrical element, and it can 

carry shape information, body object and DTM object. Each facet is related to an image patch 

through a corresponding link. 

 

Corresponding to the above four types of vector data; they have examples in transportation have 

such as: 

• Point: The simplest geospatial element, point, in transportation might be used to represent 

such as accident sites, traffic posts, traffic signs, or branches of road, or road interaction 

in small scale.  

• Line: A line geospatial element, line, in transportation might be used to represent roads, 

transit routes, and so forth.  

• Area: A polygon geospatial element, area, in transportation might be used for boundary 

data, such as traffic analysis zones, engineer districts, city limits, and so forth. 

• Entity: A body geospatial element, entity, in transportation might be used for describing 

3D transportation characteristics, car itself, accident event 3D reconstruction, and so 

forth. 

 

 
Figure 2.1: Vector data structures are based on elemental points whose locations are known to 

arbitrary precision, in contrast to the raster or cellular data structures. 
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B) Raster Data Types  

Raster data represent features as a matrix of cells within rows and columns in continuous space. 

These cells are formed by pixels of a specific dimension size, and can be described as either 

"cell-based" or "image-based" data (see Figure 2.2): 

• Cell-based Data:  The cell size used for a raster layer depends on the requirement of the 

spatial analysis, map scale and the minimum mapping unit of the other GIS data. Using 

too large a cell size will cause some information to be lost. Using too small a cell size 

will significantly increase the storage space and processing time required, without adding 

precision to the map.  

• Image-based Data: Image data ranges from satellite images and aerial photographs, to 

scanned maps.  

• Grid Data: The grid provides the simplest way of dealing with the data. Grids speed the 

calculation time required for the computer to determine the location of the data points 

within the polygon. For example, elevation data are stored in this layer.  

 

 
Figure 2.2: Raster data represent features as a matrix of cells within rows and columns in 

continuous space. As compared with Figure 2.1, the same real-world can be represented by two 

data types. 
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2.2.2 Integration of GIS into Pavement Management System (PMS) 

 

With rapid increase of advanced information technology, many investigators have successfully 

integrated the GIS (Geographic Information System) into PMS for storing, retrieving, analyzing, 

and reporting information needed to support pavement-related decision making. Such an 

integration system is thus called G-PMS (Lee et al., 1996). In fact, a GIS system provides 

capabilities with which all aspects of the PMS process can be built and be enhanced, including 

data collection, data storage, data analysis, data interpretation, data visualization (spatial, and 

nonspatial data), system assessment, determination of strategies, project identification and 

development, and project implementation (Tsai et al., 2000; Zhang et al., 2001; Abkowitz et al., 

1990). The main characteristic of a GIS system is that it links data/information to its 

geographical location, i.e., geographical coordinate system (e.g., latitude/longitude or state plane 

coordinates) instead of the milepost or reference-point system traditionally used in 

transportation, which is fundamental when integrating separate databases (Medina et al., 1999). 

Moreover, GIS can describe and analyze topological relationship of real world using topological 

data structure and model, which relates the geographical elements and attributes by mathematical 

rules, concerned with contiguity, order, and relative position (Goulias, 2002; Goulias et al. 2000; 

Lee et al., 1996). GIS is also capable of rapidly retrieving data from database and automatically 

generating customized maps to meet specific needs such as identifying maintenance locations. 

The attribute data manipulated in GIS is basically the same as those used in any traditional 

pavement management database, e.g., width of roads, number of lanes, condition of pavement, 

and history of construction and maintenance. Thus, the attribute data in the pavement 

management system can be stored in the GIS database by location and attribute (Harter 1998). So 

a G-PMS can be enhanced with features and functionality by using a geographic information 

system (GIS) to perform pavement management operations, create maps of pavement condition, 

provide cost analysis for the recommended maintenance strategies, and long-term pavement 

budget programming. Zhou et al., (2010a; 2010b; 2009; 2008a) have initially investigated the 

application of decision tree method in the pavement maintenance and rehabilitation. It has been 

demonstrated that the decision tree induction method using only attribute data cannot completely 

make correct decisions for rehabilitation and maintenance strategies, thus it is suggested that the 

spatial data should be used as well in combination with non-spatial data. 
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2.3 Data Mining and Knowledge Discovery Applied in Pavement Management 

 

Several data mining techniques have been developed over the last decade in artificial intelligence 

community. Generally, the data mining techniques can be categorized in four categories, 

depending on their functionality: classification, clustering, numeric prediction, and association 

rules (Michalski, 1983; Tan et al., 2001).  

• Classification: Generates predictive models for analyzing an existing database to 

determine categorical divisions or patterns in the database. It is focused on identifying the 

characteristics of the group or class to which each record belongs in the database.  

• Clustering: Is to group or class the items that seem to fall naturally together in the 

database when there is no pre-identified class or group.  

• Numeric Prediction: A classification learning technique, whose outcome is a numeric 

value (numeric quantity) rather than a category (discrete class). Thus, the numeric values 

are used for prediction. 

• Association Rule: Association rule mining finds interesting associations and/or 

correlation relationships among large set of data items. Association rules shows attribute 

value conditions that occur frequently together in a given dataset.  Association rules 

provide information of this type in the form of "if-then" statements. These rules are 

computed from the data and, unlike the if-then rules of logic, association rules are 

probabilistic in nature.  

 

The main difference between the above techniques depends on the method that (algorithms and 

methods used) is used to extract knowledge and how the mined knowledge and discovery rules 

are expressed. Many inductive learning algorithms, which mainly come from the machine 

learning, have been presented, such as AQ11 (Michalski, et al., 1975), AQ15 (Michalski et al., 

1986 and Hong et al., 1995) and AQ19 (Kaufman et al., 1999), AE1 and AE9 (Hong, et al., 

1995), CLS (Concept Learning System) (Hunt et al., 1966), ID3, C4.5 and C5.0 (Quinlan, 1979; 

1987; 1993), and CN2 (Clark, 1989), and so on.  CLS (Hunt, 1966) used a heuristic look ahead 

method to construct decision trees. Quinlan extended CLS method by using information content 

in the heuristic function, called ID3. ID3 method adopts a strategy, called “divide and conquer”, 
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and selects classification attributes recursively on the basis of information entropy. Quinland 

(1993) further developed his method, called C4.5, which only dealt with strings of constant 

length. C4.5 not only can create a decision tree, but induce equivalent production rules as well, 

and deals with multi-class problems with continuous attributes. C5.0 is an upgraded version of 

C4.5. This method requires the training data, which are usually constructed by several tuples, 

each of which has several attributes. Obviously, if the records in the database are taken as tuples 

and fields as attributes, C5.0 algorithm is easily realized in a pavement database. Thus, the 

knowledge discovered by C5.0 algorithm is a group of classification rules and a default class, 

and with each rule, there is a confidence value (between 0 and 1). The main advantage of the 

C5.0 method is that it can generate a decision tree and associate rule. 

 

The application of DMKD technology in pavement management system would be able to 

discover any interesting patterns in the database by e.g., creating a decision tree or decision rules. 

Some knowledge is stored in a “shallow place of the database”, which can be obtained by 

traditional database query operation, such as maximum and minimum width of the roads; some 

knowledge is hidden a “deep place”, (e.g., pavement condition pattern), which cannot be 

obtained by simple operations, but can be mined by intelligent technology, such as data mining.  

 

With a vast amount of collected, and frequently and continuously updating and exchanging 

pavement database because of the rapid accumulation of large pavement database, meanwhile, 

with the technical advances in machine learning research, database, and visualization 

technologies (Lee et al., 1996; Simkowitz, 1990), many knowledge-based expert systems 

(KBESs) have been developed to solve various transportation problems (Jia, 2000; Richie and 

Prosser 1990; Prechaverakul and Hadipriono 1995; Nassar, 2007; Sarasua and Jia 1995; Spring 

and Hummer 1995). A comprehensive survey of KBESs applied in transportation is summarized 

and discussed by Cohn and Harris (1992). However, only a few scholars have conducted 

investigations of applying data mining and knowledge discovery for PMSs in order to discover 

any hidden rules of patterns stored within the databases. Attoh-Okine (2002; 1997; 1993) and 

Chang et al. (2006) presented application of Rough Set Theory (RST) to enhance the decision 

support of the pavement rehabilitation and maintenance. Prechaverakul and Hadipriono (1995) 

applied a knowledge-based expert system and fuzzy logic for minor rehabilitation projects in 
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Ohio. Wang et al. (2003) discussed the decision-making problem of pavement maintenance and 

rehabilitation. Leu et al. (2001) investigated the applicability of data mining in the prediction of 

tunnel support stability using an artificial neural networks (ANN) algorithm. Sarasua et al. 

(1995) explored an integration of GIS-T with knowledge discovery and expert system for 

pavement management. Ferreira et al. (2001) explored the application of probabilistic segment-

linked pavement management optimization model. Chan et al. (1994) applied the genetic 

algorithm for road maintenance planning. Amado et al. (2002) applied knowledge discovery for 

pavement condition evaluation. Soibelman et al. (2000) discussed the data preparation process 

for construction knowledge generation through knowledge discovery in databases, as well as 

construction knowledge generation and dissemination.  

 

2.4 Statement of Problems Pertaining to Data Mining Applied in Pavement Management 

 

Although many advantages, when applying the data mining and knowledge discovery (DMKD) 

in pavement management system, have been found (see Chapter 1.3), many shortcomings are 

also discovered on the basis of the initial experimental results (Zhou et al., 2010a; 2008a; 

2008b). These shortcomings can be briefly described as follows: 

(1) Post-processing: the DMKD method is not quite as smart as people’s imagine, since it is 

based on severity levels of individual distresses. Consequently, the induced decision rules 

for pavement treatment rehabilitation and maintenance are not completely correct. So, 

post-processing for verification is needed.  

(2) Many leaves and nodes, and decision rules: The current algorithms of decision tree 

induction, such as C4.5, produce many tree nodes and leaves, resulting in redundant 

individual decision rules. The organization of individual rules into a logically ordered 

decision rules is time-consuming, sometime, incorrect. 

(3) Attribute selection: The current algorithms of decision tree induction, such as C4.5, 

produce a decision tree through selecting attribute data. This implies that the algorithm 

does not consider relationship among the attribute data, such as co-location, co-

occurrence, and cross-correlation. 

(4) Spatial data: The data set of pavement database includes geospatial data in addition to 

the attribute data. As known, these geospatial elements basically have three 
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characteristics: attributes, geographical location, and topological relationship. The non-

spatial (attribute) data is basically the same as those used in any traditional database, e.g., 

condition of pavement, and history of construction and maintenance. Spatial data that 

links the geospatial elements to its geodetic position gives a map-based coordinate 

system, such as State Plane Coordinate System, to unify all data sets in the same 

reference. The topological data structure or topology relationship describes the spatial 

relationships between adjacent features, and uses x, y coordinates to identify the location 

of a particular point, line, or polygon. Using such data structures enforces planar 

relationships, and allows GIS specialists to discover relationships between data layers, to 

reduce artifacts from digitization, and to reduce the file size required for storing the 

topological data. Unfortunately, the two major characteristics of spatial data in current 

decision tree induction method have not been considered. 

 

2.5 Objectives of This Dissertation Research 

 

With the shortcomings above, the primary objectives of this dissertation research are as follows: 

1) Develop an advanced decision tree induction method to enhance the decision-making of 

rehabilitation and maintenance strategies, 

2) Exploit the combination between co-location mining algorithm and decision tree 

induction method, and pioneer its application in rehabilitation and maintenance treatment 

strategies, 

3) Integrate the pavement spatial data and non-spatial data into decision-making of 

rehabilitation and maintenance to minimize the cost and inconsistent decision of 

rehabilitation and maintenance strategies made by human, and 

4) Integrate data mining technology into GIS system to graphically display treatment 

decisions, visualize the attribute and non-attribute data and link the data and information 

to the geographic coordinates in order to enhance the pavement management decision. 
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3. SPATIAL DECISION TREE MODELING 

 

3.1 Data Mining 

 

3.1.1 Data Mining and Its Architecture 

Data mining is the process of automatically extracting hidden useful information from large data 

repositories in order to find novel and useful patterns that might remain unknown. The data 

mining has become a powerful technology and tools for (Tan et al., 2006): 

• Finding predictive information and pattern, future trends and behavior that experts may 

miss,  

• Allowing decision-maker to make proactive, knowledge-driven decisions,  

• Making prospective analyses and interpretability that are beyond the provision by 

retrospective tools, such as decision support systems, and 

• Answering those questions that traditionally were too laborious and time-consuming to 

resolve. 

 

Figure 3.1 illustrates a basic architecture of data mining including data collection, selection, 

transformation, mining and interpretation, and knowledge discovery. The starting point is a data 

warehouse, where the different types of attribute data and/or spatial data are collected and 

archived, and further managed in a variety of relational database systems. The data mining 

technology is integrated with the data warehouse to analyze these data using the data mining 

algorithms. The discovered knowledge in the last step is rendered to improve the whole process. 

Reporting, visualization, and other analysis tools can then be applied to plan the future actions 

and confirm the impact of those plans.  

 

As seen from Figure 3.1, the process of data mining technology consists of a series of trans-

formation steps, from data pre-processing to post-processing of data mining results. As 

mentioned in Tan et al. (2006), the input data can be in a variety of formats (e.g., flat files, 

spreadsheets, or relational tables), or be stored in a centralized data repository or be distributed 

across multiple sites connected by internet. The pre-processing includes fusing data from 

multiple sources, cleaning data to remove noise and duplicate observations, and selecting records 
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and features that are relevant to the data mining task so that the raw input data can be 

transformed into an appropriate format for subsequent data mining analysis. The post-processing 

step is required in order to eliminate spurious data mining results so that only valid and useful 

results are incorporated into the decision support system. The post-processing algorithm includes 

such as statistical measures, hypothesis testing methods, etc. (Tan et al., 2006). Such a "closing 

the loop" form can ensure the final decision will be optimal as possible, since the mined 

information from database can be recycled and refined recursively. 

 

 
Figure 3.1: The basic architecture of data mining 

 

3.1.2 Data Mining and Geographic Knowledge Discovery 

Knowledge Discovery (KD) is a process including data warehousing, target data selection, 

cleaning, preprocessing, transformation and reduction, data mining, model selection (or 

combination), evaluation and interpretation, and use of the extracted knowledge (Fayyad 1996). 

Data mining is an integral part of knowledge discovery in databases (KDD) (Tan et al. 2006, 

page 3). Data mining aims to develop algorithms for extracting new useful patterns from 

database in which experts may miss, while Knowledge Discovery aims to enable an information 

system to transform information to knowledge through hypothesis testing and theory formation 

(Tan et al. 2006).  



~ 38 ~ 
 

 

3.1.3 Data Mining with Other Disciplines 

A number of other disciplines have played key supporting roles to development of data mining. 

The germinative idea of data mining was from such as sampling, estimation, and hypothesis 

testing from statistics, and search algorithms, modeling techniques, and learning theories from 

artificial intelligence, pattern recognition, and machine learning (Tan et al., 2006). With the 

advanced technologies in other disciplines, such as optimization, evolutionary computing, 

information theory, signal processing, visualization, spatial database, genetic algorithm, and 

information retrieval, the data mining obtained a sustainable development. In particular, 

techniques from high performance (parallel) computing are often important in addressing the 

massive size of some data sets, such as database system for efficient storage, indexing, and query 

processing. Distributed techniques can also help address the issue of size and are essential when 

the data cannot be gathered in one location. The most commonly used techniques in data mining 

are:  

• Database technology, 

• Information science, 

• Statistics, 

• Machine learning, 

• Visualization, and 

• Others such as  

o Artificial neural networks,  

o Decision trees,  

o Genetic algorithms,  

o Classification, and 

o Rule induction. 

  

3.1.4 Data Mining Tasks 

Mennis and Guo (2009) have summarized the common tasks in the spatial data mining. These 

tasks include (1) spatial classification and prediction, (2) spatial association rule mining, (3) 

spatial clustering regionalization and point pattern analysis, and (4) geo-visualization. Generally 
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speaking, spatial data mining tasks are divided into two major categories (Tan et al., 2006): 

• Predictive tasks. Like data mining, the major task of spatial data mining is to predict the 

values and behaviors of attributes on the basis of mined knowledge and pattern.  

• Descriptive tasks. This task majorly describes the mined knowledge and spatial patterns, 

such as correlations, trends, neighbor, clusters, trajectories, co-location, co-occurrence, 

and anomalies.  

 

3.2 Spatial Data Mining in Pavement Database 

A pavement database is a type of spatial database, since the spatial data, such as XY coordinates, 

etc, are recorded for describing the pavement location. Thus, study of pavement management on 

the basis of pavement database should apply the spatial data mining technology. In fact, spatial 

data mining is a natural extension of data mining techniques applied to a spatial database. Spatial 

data mining is also used to extract the useful information and pattern in geography which is 

unknown and missed by exporters for offering great potential benefits for applied GIS-based 

decision-making. Thus, spatial data mining has the same objectives and goals as the data mining 

does, and even more. Many researchers in information technology (IT), digital mapping, remote 

sensing, geoinformatics, spatial science, and spatial databases have made tremendous efforts. 

These efforts include the development of theory, algorithm, methodology, and practice for the 

extraction of useful information and knowledge from geographically referenced spatial data and 

drive inductive approaches to geographical analysis and modeling (e.g., Andrienko and 

Andrienko, 1999; Chawla et al., 2000; Gahegan, 2003; Guo et al., 2008; Guo et al., 2006; Han et 

al., 1997; Keim et al., 2004; Knorr and Ng, 1996; Kulldorff, 1997; Mennis and Liu, 2005; Miller 

and Han, 2009; 2001; Openshaw et al., 1987; Shekhar et al., 2004; Yan et al, 2009; Yao and 

Thill, 2007; Zhang and Pazner, 2004; Huang et al., 2006; May and Savinor, 2002; Zhou et al., 

2010b). 

 

3.3 Comparison between Spatial Data Mining and Data Mining in Pavement Database 

The common points between spatial data mining and data mining are they can share common 

method, algorithm, theory and practice. The differences of the two branches can be briefly 

summarized as follows (Zhou et al., 2010a; 2010b): 



~ 40 ~ 
 

A) Spatial Data in Pavement Database 

Data describing an object in pavement database consist of spatial data and non-spatial data. So-

called spatial data generally consists of two basic properties, geometric and topological 

properties. The geometric properties can be spatial location (e.g., geodetic coordinates), area, 

perimeter, volume, etc. Meanwhile, the topological properties can be adjacency, inclusion, 

left/right hand side, clockwise/counter-clockwise, etc. In a traditional database, describing an 

object usually only uses non-spatial data, i.e., no spatial data. The non-spatial data can be stored 

and managed using a relational database where one attribute of an object has no spatial 

relationship (Aref and Samet, 1991). In pavement database, the object and event are described by 

spatial data simultaneously.  

 

In addition, geographic attributes used for describing an object often exhibit the properties of 

spatial dependency and spatial heterogeneity (Yuan, 1997; Gahegan, et al., at 

http://www.ucgis.org/ priorities/ research/ research _white/ 2000%20Papers/emerging/gkd.pdf). 

The former implies that the attributes at some locations in space are related with others, the latter 

implies that most geographic processes are unstable, so that global parameters do not represent 

well the process occurring at a particular location (e.g., Glymour et al., 1997; Han et al., 1993; 

Hornsby and Egenhofer, 2000; Lu et al., 1996; Ng et al., 2002).  

 

These distinct features present challenges and bring opportunities for mining useful information 

and spatial pattern from non-spatial and/or spatial properties of pavement treatment strategies. 

Thus, decision tree induction and decision rules induction for pavement management should 

consider both spatial data and non-spatial data simultaneously. Thus, if ignoring the properties of 

spatial dependency and spatial heterogeneity, the accuracy of pavement treatment strategies 

derived from data mining techniques will be affected.  

 

B) Spatial Database  

A pavement database is a type of spatial database. The primary methods for spatial data mining 

focus on the spatial database, which stores spatial objects represented by spatial data, non-spatial 

data, and spatial relationships (Han et al., 1993; Agrawal et al., 1993). In addition to extraction of 

hidden knowledge, spatial pattern, and information, spatial data mining, or knowledge discovery 
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is also the extraction of implicit spatial relations that are not explicitly stored in spatial databases 

(Koperski and Han, 1995). Also the most studies of spatial data mining focus on the relational 

and transactional databases. The methods strived to combine the already mature techniques in 

such as machine learning, databases and statistics (Han et al., 1993; Ng and Han, 2002).  

 

The fundamental idea of spatial data mining is on the basis of spatial data of pavement database, 

which has some characteristics and bring more challenging than the tradition data mining. 

Existing traditional data mining methods may not have been sufficient to deal effectively with 

geospatial data, since it can change in spatial and temporal domain. Thus this research considers 

the characteristics of spatial data’s co-location and co-occurrence.  

 

3.4 Decision Trees and Decision Rules 

 

3.4.1 Decision Tree Induction  

Decision tree (DT) induction is one of the most popular and powerful data mining techniques, 

and have thus widely applied in various pattern classifications (Chandra and Varghese, 2009; 

Witten and Frank, 2000). A decision tree can be understood as a type of classifier, which 

classifies the data set using a tree structure representation of the given decision problem (Osei-

Bryson, 2007), and is usually composed of three basic elements (Tan et al., 2006) (see Figure 

3.2): 

(1) A root node, which is also called decision node. It has no incoming edges and zero or 

more outgoing edges, 

(2) Internal nodes, which is also called edge, each of which has exactly one incoming edge 

and two or more outgoing edges, and 

(3) Leaf, which is also called terminal node or answer node, each of which has exactly one 

incoming edge and no outgoing edges. 

 

Over the past few decades, a lot of efforts have been made on how to construct an “optimal” DT. 

Dietterich (1990) discussed improvement to decision tree design methods, and provided a good 

background to these and more classical decision tree development methods. Lim, et al. (1998) 

compared several decision trees, such as statistical and neural network methods on a variety of 
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datasets. Both of these works showed that a wide range of speed and accuracies can be obtained 

from the different decision tree algorithms commonly used, and that the effectiveness of different 

algorithms varies greatly with the dataset. One of the most commonly ‘benchmark’ methods of 

inducting decision tree structure is ID3 (Interactive Dichotomizer 3) (Quinlan, 1986) and C4.5 

(Quinlan, 1993), which deals with datasets in which variables are continuous or integer, or where 

there is missing data, and CART (Classification And Regression Trees) algorithm (Breiman et 

al., 1984). These algorithms are typically called Top-Down Induction on Decision Trees 

(TDIDT), with which the knowledge obtained in the learning process is represented in a tree 

where each internal node contains a question about one particular attribute (corresponding 

decision variable) and each leaf is labeled with one of the possible classes (associated with a 

value of the target variable) (Osei-Bryson, 2007). The typical algorithm also includes; SLIQ 

(Mehta, et al. 1996), PUBLIC (Rastogi and Shim, 1998), SPRINT (Shafer et al., 1996), 

RAINFOREST (Gehrke et al., 2000), BOAT (Gehrke et al., 1999), MMDT (Chen et al., 2003), 

and TASC (Chen et al., 2006). In addition, Friedman et al. (1996) discussed the problems of 

constructing decision trees, and showed that the problem of constructing a decision becomes 

harder as one deals with larger and larger data sets, and with more and more variables. Fulton et 

al. (1996) analyzed the problems of generating decision trees capable of dealing with large, 

complex data sets, and showed that it is simpler to construct decision trees that can deal with a 

small subset of the original data set. Alsabti et al. (1998) discussed the problems of scaling 

decision trees up to large datasets, with the loss of accuracy that often occurs as a result. Mehta 

et al. (1996) emphasized the importance of classification in mining of large datasets, and also 

discussed the wide range of uses that classification can be put to in economic, medical and 

scientific situations. Garofalakis et al. (2000) discussed methods for constructing decision trees 

with user-defined constraints such as size limits or accuracy. These limits are often important for 

users to be able to understand or use the data sets adequately, or to avoid over-fitting the decision 

tree to the data that is available. Ankerst et al. (1999) used an interactive approach, with the user 

updating the decision tree through the use of a visualisation of the training data. This method 

resulted in a more intuitive decision tree and one that the user was capable of implementing 

according to their existing knowledge about the system in question. On the other hand, 

evolutionary computation for decision tree induction has been increasingly interested to many 

researchers. Li and Belford (2002) demonstrated that slight changes in the training set could 
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require dramatic changes in the tree topology, i.e., the instability inherent in decision tree 

classifications. Llorà and Garrell (2001), and Papagelis and Kalles (2001) showed that 

evolutionary methods, when used to develop classification decision trees, allowed both important 

and unimportant attributes and relationships to be developed and for unimportant factors to be 

recognized. Cantú-Paz and Kamath (2000) meanwhile discussed an evolutionary method 

specifically used to develop classification trees, while Turney (1995) used a definition of fitness 

for decision tree evolution that included not only error rates but also other costs, such as size. 

Endou and Zhao (2002) examined a decision tree implementation method that relied on 

evolution of the training data set used. The training data set was evolved to give the best 

coverage of the domain knowledge. Siegel (1994) discussed the implementation of competitively 

evolving decision trees as a method of enhancing evolutionary methods. 

 

Among these methods, one of the most common ‘benchmark’ methods, and also probably the 

most popular one is C4.5  algorithm developed by Quinlan (1986, 1993), which is based on the 

ID3 (Interactive Dichotomizer 3) method. Thus, this research will emphasize the analysis of the 

algorithm’s advantages and disadvantages in order to presents our new method in Chapter 4.   

 

3.4.2 Decision Tree Modeling 

In principle, there are exponentially many decision trees that can be constructed from a given set 

of attributes (Tan et al., 2006), but investigators in fact only endeavor to find a most appropriate 

decision tree through making a series of locally optimum decisions about which attribute to use 

for partitioning the data during growing a decision tree, since the optimal tree is computationally 

infeasible because of the exponential size of the search space (Olaru and Wehenkel, 2003). This 

most appropriate decision tree is believed to be reasonably highest accurate, albeit suboptimal, 

and a reasonable amount of time. No matter which algorithm employed, the basic process of a 

decision tree usually consists of two major phases: the growth phase and the pruning phase 

(Aptė and Weiss, 1997).  

 

3.4.2.1 Growth Phase 

The basic process of growth phase is: a decision tree is generated in a top-down by successive 

divisions of the training set where each division represents a question about an attribute value. 
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The initial state of a decision tree is the root node that is assigned all of the attributes from the 

training set. If all attributes belong to the same class, then no further decisions need to be made 

to partition the attributes, and the solution is complete. If attributes at this node belong to two or 

more classes, then a split attribute operation will be made by a test. The process is recursively 

repeated for each of the new intermediate nodes until a completely discriminating tree is 

obtained (Aptė and Weiss, 1997). With the generated decision tree, each leaf node is assigned a 

class label. The non-terminal nodes, which include the root and other internal nodes, contain 

attribute test conditions to separate records that have different characteristics.  

 

The above algorithm, i.e., starting from the root to the leaves, is called generic decision tree 

algorithm, which can be is briefly characterized by the following three properties (Elouedi et al., 

2001):  

(1) Attribute selection measure. How to choose an attribute is a critical issue because a most 

appropriate choosing will result in partitioning the training set in an optimized manner. 

When a decision node relative to this attribute is created after a test. This node becomes 

the root of the decision tree.  

(2) Partitioning strategy. How to partition the training set with a given criterion or multiple 

criteria is very important. It consists in decomposing the training set into many subsets. 

In order to “optimally” partition the attributes, many criteria have been presented before; 

meanwhile many new criteria have still been being proposed.  

(3) Stopping criteria. What criteria will be satisfied for stopping so that a training subset is 

declared as a leaf? This means that stopping criteria determines whether or not a training 

subset will be further divided. Some investigators applied the different steps recursively 

on the training subsets for verifying the stopping criteria.  

 

One of the above most important properties is the attribute selection measurement, which 

measures how to select the attribute which characterizes the root of the decision tree and those of 

the different sub-decision trees. Quinlan (1993) has defined a measure called information gain, 

and further developed a well-known popular decision tree modeling algorithm, called C4.5. The 

details of attribute selection measures will be described in Chapter 3.4.3. Briefly, the basic idea 

of this attribute selection measure is to compute the information gain of each attribute in order to 
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find how well each attribute alone classifies the training examples, and then one presenting the 

highest value will be chosen. In fact, this attribute generates a partition where the record classes 

are as homogeneous as possible within each subset created by the attribute.  

 

In order to explain this basic process, Figure 3.2 illustrates the data set and corresponding tuple-

table is listed in Table 3.1. The figure also shows the three axis parallel lines, one at height=4.2, 

the second line at height=6.3, and third line at volume=34. The three lines seems completely 

partition the training data set into three different sub-areas. 

 
Figure 3.2 Example of data set for decision tree generation 

 

Table 3.1:  Example of data set for decision tree generation 

ID Height Volume Class 

1 5.2 91.3  
2 0.85 84.4  
3 2.96 78.3  
4 6.99 75.5  
5 5.92 65.0  
6 1.87 62.2  
7 6.83 48.5  
8 1.79 45.6  
9 5.33 26.4  



~ 46 ~ 
 

10 7.55 19.2  
11 1.87 18.4  
12 8.99 8.9  
13 3.41 8.2  

 

Figure 3.2 illustrates the process of a decision tree growth phase for training set listed in Table 

3.1 and Figure 3.2. At first step, all attributes are assigned to the top level of the tree, i.e., root 

node, at which the classification process begins with a condition test for all examples at volume 

>34. Examples that satisfy this test conditions with TRUE are passed down to the left internal 

node, with FALSE are passed down to the right internal node. This means that the right edge 

from root node receives examples are not yet purely from one class so further testing is required 

at this intermediate node. The second test at this level for the left node (TRUE) is for height 

>4.2; and for the right node (FALSE) is for height >6.2. For the left node, examples that satisfy 

the test condition (height >4.2) are all in one class (MOUSE), and those that do not are all in 

another class (Cylinder). For the right node, examples that satisfy that test condition (height 

>6.2) are all in one class (DRUM), and those that do not are all in another class (CUBE). At this 

stage, both edges from this node lead to leaf nodes, i.e., no more tests are needed, thus the 

decision tree solution is complete. Note that this example illustrates a binary tree, where each 

intermediate node can split into at most two sub-trees. In fact, a decision tree may be non-binary 

tree, where each intermediate node may split into more than two sub-trees.  

 
 Figure 3.3 Process of tree growth phase 

  

3.4.2.2 Pruning Phase 

Due to noise and outliers in the training data, the generated decision tree at the above stage is 

potentially an over-fitted solution. The over fitting can heavily influence the classification 
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accuracy of new datasets. Thus, a second phase, called pruning, is required to eliminate sub-trees 

in order to minimize the real misclassification error produced in growth phase (Aptė and Weiss, 

1997). The actions of the pruning phase are often referred to as post-pruning in contrast to the 

pre-pruning that occurs during the growth phase. In order to create a  small and interpretable 

decision tree, numerous post-pruning methods have been proposed (e.g. Almuallim, 1996; 

Bohanec and Bratko, 1994; Fournier and Cremilleux, 2002; Li et al., 2001; Mingers, 1989; 1987; 

Niblet and Bratko, 1986; Quinlan, 1986; 1987; 1993; Mansour, 1997; Mitchell, 1997; Elouedi et 

al., 2000; Säuberlich, 2000; Witten and Frank, 2000). These methods can be grouped by (Osei-

Bryson, 2007) 

• Error-based method. Some post-pruning approaches attempted to identify a sub-tree that 

gives the smallest error on the validation dataset, such as Reduced Error Pruning method 

proposed by Quinlan (1987);  while others use an error estimation that is derived from 

training dataset only, such as Minimum Error Pruning method developed by Niblet and 

Bratko (1986);  

• Top-down or down-top method. Some researchers propose a top-down approach, such as 

Pessimistic Error Method (Quinlan, 1987); while some researchers take a bottom-up 

approach, such as Error-Based Pruning method (Quinlan, 1993).  

• Optimal or sub-optimal method. Some methods are sub-optimal heuristics (e.g. Mingers, 

1987); some methods proposed to produce optimal solutions (e.g. Almuallim, 1996; 

Bohanec and Bratko, 1994).  

• Criterion method. Some methods used signal criterion (e.g., Quinlan, 1987); some 

methods used a multi-criteria approach for evaluating the “best” DT in a set of generated 

DTs (e.g., Osei-Bryson, 2007; 2004).  

 

3.4.3 Measures for Selecting the Best Split 

Many measures have been developed to determine the best way to split the attributes based on 

the degree of impurity of the child nodes during growth phase of a decision tree. Most of these 

measures are defined in terms of the class distribution of the records before and after splitting. 

The smaller the degree of impurity, the more skewed the class distribution (Tan et al., 2006). The 

commonly used standard splitting measures are Entropy (Quinlan, 1986), Gain Ratio (Quinlan, 

1993) and Gini Index (Breiman et al., 1984). The first two measures will be used in this research.  
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3.4.3.1 Entropy 

In information theory, entropy is a measure of the uncertainty associated with a random variable. 

Also, the entropy is a measure of the average information content one is missing when one does 

not know the value of the random variable (http://en.wikipedia.org/wiki/Entropy (information 

_theory)). Entropy was first adopted in decision tree generation by Quinlan (1986) in his ID3 

algorithm as split measure. The formula is (Tan et al., 2006) 

p(i|t)p(i|t)Entropy(t)
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Where p(i|t) is the fraction of records belonging to class i at a given node t, and c is the number 

of classes. The ID3 algorithm utilized the entropy criteria for splitting nodes. The process is: 

Giving a node t, computing the splitting criterion, Entropy (t) = pi*log(pi), where pi is the 

probability of class i within node t. An attribute and split are selected that minimize entropy. 

Splitting a node produces two or more direct descendants. Each child has a measure of entropy. 

The sum of each child’s entropy is weighted by its percentage of the parent’s cases in computing 

the final weighted entropy used to decide the best split.  

 

3.4.3.2 Information Gain 

For a training set T on attribute A, information gain in information theory and machine learning 

is defined as (Elouedi et al., 2001)  
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where { }nCCC ,,, 11 L=Θ are the set of n mutually exclusive and exhaustive classes, 

),( TCfreq i denotes the number of objects in the set T that belong to the class Ci, and Tv is the 

subset of objects for which that attributes A has the values v. 

 

Theoretically, the best attribute is the one that maximizes Gain (T, A). Once the best attribute is 

allocated to a node, the training set T is split into several subsets. The procedure is then iterated 

for each subset. 

 

3.4.3.3 Gain Information Ratio 

Elouedi et al. (2001) demonstrated that the Gain Information has good results, but it is limited to 

those attributes with a large number of values over those with a small number of values. To 

overcome this drawback, Quinlan (1993) has proposed gain ratio criterion, which is 

mathematically defined by  

),( 
),(, 
ATInfoSplit

ATGainA)ratio(TGain =
                         

(3.4) 

Where ∑
∈

⋅−=
)(

2log),( 
ADv

vv

T
T

T
T

ATInfoSplit  measures the information in the attribute due to 

the partition of the training set T into |D(A)| training subsets. Split Info (T, A) is also the 

information due to the split of S on the basis of the value of the categorical attribute A. With gain 

ratio, the attributes with many values will be adjusted.  

 

In C4.5 algorithm (Quinlan, 1993), the attribute value that maximizes the Gain Ratio is chosen 

for the splitting attribute. The Gain Ratio is computed using attributes having Gain greater than 

Average Gain. This gain ratio expresses the proportion of information generated by a split that is 

helpful for developing the classification. The numerator (the information gain) in this ratio is the 

standard information entropy difference achieved at node t, expressed in Eq. 3.4. 

 

3.4.4 Decision Rule Induction 

Decision rules are directly induced by translating a decision tree either in a bottom-up specific-

to-general style, or in a top-down general-to-specific style (Aptė and Weiss, 1997). In other 
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words, the decision rules are constructed by forming a conjunct of every test that occurs on a 

path between the root node and a leaf node of a tree.  

 

Algorithms of inducing decision rules can be grouped into two categories: ordered rule sets, or 

un-ordered rule sets (Aptė and Weiss, 1997): 

(1) Ordered rule sets are induced by ordering all the classifications, and then using a fixed 

sequence, such as the smallest to the largest class, to combine them together. When this 

rule is applied to new data set, the new data example is required in exactly the same 

sequence as they were generated in the training data. Based on the example in Figure 3.3, 

the induced decision rules are depicted in Figure 3.4. 

(2) Un-ordered rule sets are induced without a fixed sequence. Thus, when this rule is 

applied to new data, the new data example can be independent and more flexible. 

 

For the above basic process of decision rule induction, i.e., a tree generation first, and then 

translation of the tree into a set of rules, discovered some problems. For example, for certain data 

spaces, this nature of partitioning may not always be capable of producing appropriate/optimal 

solutions. On the other hand, if algorithms are employed that directly generate tree, it is possible 

to create rules. These rules essentially correspond to decision regions that overlap each other in 

the data space. Thus, some people suggested the techniques that directly generate rules from data 

are also available, which overcome some of the drawbacks of decision tree modeling.  

                                               
Figure 3.4: Decision rule induction 

3.4.5. Evaluation of the Performance of Decision Tree 

Once a decision tree and/or decision rule is induced, it can be used for estimating or predicting 

new data set. Many methods have been developed to evaluate the performance of a decision tree 

IF (volume > 34) 
THEN If (height > 4.2) 
        Then MOUSE 
        ELSE CYLINDER 

ELSE IF 
   IF (height > 6.3) 
          THEN DRUM 
           ELSE CUBE 
End 
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or decision rules. The most well-known criteria are accuracy, speed, and interpretability. In other 

words, decision tree and decision rules derived using different approaches can be compared in 

terms of their predictive accuracy on the new data set, on the computational cost, and the level of 

understanding and insight that is provided by the solution. Accuracy and speed vary from 

algorithm to algorithm, and in most instances these two issues are coupled, i.e., a high predictive 

accuracy tends to require increased computational effort (Aptė and Weiss, 1997). This research 

will use the following criteria to evaluate the performance of decision tree and decision rules. 

 

3.4.5.1 Accuracy of Performance 

The performance accuracy of a decision tree is defined as a ratio between the number of correct 

or incorrect classified instances. The mathematical formula is (Tan et al., 2006): 

spredictionofnumberTotal
spredictioncorrectofNumberAccuracy

   
   

=
                     

(3.5) 

The above classification accuracy gives a general assessment of the number of correctly 

classified examples in total.  

 

3.4.5.2 Two-Fold Cross-Validation 

Two-fold cross-validation will be applied in this research to evaluate the performance of decision 

tree and decision rules. The basic process is: the whole dataset is split into 2 parts, one part of the 

dataset being dedicated to the training and the other one for the test. The training set is used to 

learn the algorithm and generate the tree and rules, and the test set is used to estimate the 

generated decision tree and rules. This procedure is repeated after every part of the dataset is 

used for both training and testing, respectively. Afterwards, the overall accuracy parameters were 

calculated as means from the evaluation of the individual cross-validation subset. 

 

3.4.6 Problems of Decision Tree Induction for Spatial Data 

Decision tree induction is capable of extracting implicit, previously unknown, and potentially 

useful information from large databases, and has therefore been successfully and widely used in 

various domains, including data mining (Quinlan, 1986, 1993), text mining (Yang and Pedersen, 

1997), web intelligence (Cho et al., 2002; Zamir & Etzioni, 1998), and many other industrial and 
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business domains for credit evaluations (Piramuthu, 1999), fraud detection (Bonchi et al., 1999), 

and customer-relationship management (Berry and  Linoff, 2000). 

 

The decision tree induction method has several advantages over other data mining methods 

including, being human-interpretable, well-organized, computationally inexpensive, and capable 

of dealing with noisy data (Breiman et al., 1993; Brodley and Utgoff, 1995; Duda et al., 2001; 

Durkin, 1992; Fayyad and Irani, 1992; Li et al., 2001). 

 

However, the decision tree induction method entails the following drawbacks: 

(1) Up to until now, decision tree construction algorithms have usually assumed that the class 

labels were Boolean variables. This means that the algorithms operate under the 

assumption that the class labels are flat. In other words, decision tree construction take 

each attribute through one-by-one manner without considering the simultaneous 

occurrence of multiple attributes. In real-world applications, there are more complex 

class scenarios, where the classification labels to be predicted are co-occurrence. 

Unfortunately, existing research has paid little attention to the classification of data with 

co-occurrence class labels. To the best of our knowledge, no method has been developed 

to construct DTs directly from data with co-occurrence class labels. This research work 

intends to remedy this research gap. 

(2) Almost all of the decision tree generation methods did not consider the spatial features of 

geospatial data, such as geographic relationship and topological relationship. In other 

words, the spatial data contains objects which are characterized by a spatial location 

and/or extension as well as by several non-spatial attributes. Fig. 3.6 shows an example 

of spatial objects, which occur at a co-location pattern, i.e., CYLINDER always co-

occurs with MOUSE. In a real-world, some instances are often located in close to 

geographically to another instance, such as gasoline station and road. Thus, identification 

of such a classification pattern, associated with spatial relationship and topological 

relationship, needs to be studied.  
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Figure 3.5: Instance co-location pattern and non-linear classification 

 

(3) Mugambi et al. (2004) divided the decision trees into three main types on the basis of 

how they partition the feature space: 

• Uni-variate or axis-parallel decision tree. This type of decision trees carries out tests 

on a single variable at each non-leaf node, and split the attributes using axis-parallel 

hyperplanes in the feature space (see Figure 3.2). C4.5 algorithm (Quinlan, 1993) 

belongs to the axis-parallel class of decision trees. This type of tree is called Linear 

Decision Tree. 

• Multivariate linear or oblique. This type of decision trees carries out tests and split 

the attributes using an oblique orientation to the axis of the feature space 

geometrically. 

• Non-linear multivariate decision trees. This type of decision trees carries out tests 

using non-linear partitioning of the feature space (see Figure 3.5), such as 

polynomial-fuzzy decision tree (Mugambi et al., 2004). 

 

A linear decision tree is known to perform well in small and linear feature spaces but 

very poorly in large and non-linear ones. Theoretically, exploring information pattern 

using decision tree is based on a large database. In fact, in our pavement management 

database, the database is not large enough as expected in principle. This means that the 

pavement data mining only uses linear decision better than non-linear decision tree. 

However, the spatial features in the pavement database are not a linear mode in the real-
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world. Thus, this fact requires us to develop a robust linear decision tree method to 

handle small data with linear spatial feature.   
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4. SPATIAL CO-OCCURRENCE DECISION TREE MODELLING 

 

4.1 Introduction 

Chapter 3 introduced the fundamental theory of decision tree generation including tree 

construction, algorithm modeling, and attributes splitting criteria, pruning, and accuracy 

evaluation of decision tree performance. This Chapter will present an innovative method, called 

co-location spatial decision tree induction, which is to incorporate co-location (also called co-

occurrence) mining into the decision tree. This Chapter will describe the details of the co-

location decision tree construction, algorithm, modeling, decision rule, node splitting criterion, 

node merging criterion, and leaf stopping criteria, and then will give an example for illustrating 

the calculation process of the proposed co-location spatial decision tree induction algorithm. 

 

4.2 Co-Location Mining Algorithm 

Huang et al. (2004) presented the first general framework of mining spatial co-location patterns. 

Afterwards, Huang and her research team made further research and exploration on how mining 

co-location rules can be applied in spatial data analysis, spatial data pattern classification and 

spatial geographic knowledge discovery. For example, Huang et al. (2005; 2006) adjusted the 

measure to treat the case with rare events, and Huang (2008) used density ratios of different 

features to describe the neighborhood constraint together with a clustering approach. Xiao et al. 

(2008) presented a density-based algorithm for mining a spatial co-location pattern, and Xiong et 

al. (2004) presented a buffer-based model to describe the neighborhood constraint for dealing 

with extended spatial object such as lines and polygons.  

 

On the other hand, different researchers have made efforts to improve the efficiency of mining 

process of co-location. Yoo et al. (2004) proposed partial-join algorithm. Yoo et al. (2005, 2006) 

and Wang et al. (2008) proposed a join-less algorithm and N-most prevalent collocated event in 

2009 (Yoo et al., 2009). Complex spatial co-location patterns are presented by Munro et al. 

(2003) and Verhein et al (2007). Sheng et al. (2008) introduced the definition of influence 

function based on Gaussian kernel to describe the neighborhood constraint, in which the 

algorithm assumed a distribution of features on the global space. Hsiao et al. (2006) applied the 

spatial data mining of co-location pattern for support agriculture decision-making.  Zhang et al. 
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(2004) enhanced the algorithm proposed in Hunag et al. (2004) to mine special types of co-

location relationships in addition to cliques, namely; the spatial star, and generic patterns. Celik 

et al. (2006a) proposed the problem of mining mixed-drove spatial-temporal co-occurrence 

patterns (MDCOPs) which extends the co-location pattern mining to the scope of both time and 

space. Afterward, Celik et al. (2006b) further considered some constraints based on the result of 

MDCOP and the most top-k ranking issues, and Celik et al. (2007a; 2007b) partitioned a global 

space into small zones and applied the co-location mining algorithms on every zone for 

accumulated computation. Eick et al. (2008) also proposed to find regional co-location patterns 

based on clustering. Qian et al. (2005) presented spatial co-location patterns with dynamic 

neighborhood constrain, and further spatial-temporal co-occurrence over zones (Qian et al., 

2009). 

 

4.2.1 Some Definitions of Co-Location Mining Algorithm 

The basic concept of spatial co-location or called spatial co-occurrence implies the presence of 

two or more spatial objects at the same location or at significantly close distances from each 

other. Co-location patterns can indicate interesting associations among spatial data objects with 

respect to their non-spatial attributes. In these methods, the neighborhood constraint is described 

by a distance threshold which is the maximal distance allowed for two events to be neighbors. 

Mathematically, the co-location can be modeled by (Huang et al., 2004; Yoo et al., 2006): 

 

Given  

a) The training data is a set { }KsssS ,,, 21 L= . Each sample 

{ }Ni xxxs ,,, 21 L=  is a vector, representing example-id, spatial feature 

type, and location ∨ ,  where location ∈  spatial framework. The training 

data is augmented with a vector C = c1,c2,... where c1,c2,... represent the 

class to which each sample belongs. 

b) A neighbor relation ℜ  over 

examples in S .  

 

We have 
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a) A co-location, C is defined as a subset of Boolean spatial features, SC ⊆ , whose 

instances form a clique under a neighbor relationship ℜ . Usually, the neighbor 

relationship ℜ is a Euclidean distance metric. For example, if the two spatial 

objects satisfy the neighbor relationship, i.e., dss ji ≤),( distance , they are called 

neighbor. If an instance is co-location with another instance, the objects of all 

features forms a clique relationship in the co-location. 

b) Accompanying with co-location mining process, a co-location rule can be formed, 

and expressed as ),(21 cppcc ⇒ , where Sc ⊆1 , Tc ⊆2 , and Ωcc =∩ 21 . p is a 

number representing the prevalence measure, and cp is a number measuring 

conditional probability (Huang et al., 2004). 

 

With the modeling given above, it can be noted that an important part in the co-location is 

proximity neighborhood, which is expressed using neighbor relation, ℜ . This relationship is 

based on the semantics of the application domains for forming a clique (Huang et al., 2006). For 

this reason, many researchers have presented different methods and algorithms to mode the 

neighbor relationship, ℜ , such as: 

• Spatial relationships (e.g. connected, adjacent in GIS (Xiong et al. (2004)),  

• Metric relationships (e.g. Euclidean distance (Yoo et al., 2006)), 

• Combined relationship (e.g. shortest-path distance in a graph such as a road-map), and 

• Constrained relationship (e.g., Sheng et al. (2008), Qian et al. (2005)) 

 

It is also noted that the ℜ -proximity neighborhood concept is different from the neighborhood 

concept in topology, since some sets of a ℜ -proximity neighborhood may not qualify to be ℜ -

proximity neighborhoods (Huang et al., 2006). 

 

In order to describe the co-location algorithm, we first give several definitions (Huang et al., 

2004). 

 

A) Participation ratio  
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The participation ratio ),( iscpr for feature type is  in a size-k co-location { }Ksssc ,,, 21 L=  is the 

fraction of instances of feature is  ℜ -reachable to some row instance of co-location { }ifc − .  

 

 

B) Participation index  

The participation index )c(pi  of a co-location { }Ksssc ,,, 21 L=  is { })f,c(prmin i
k
i 11= . The 

participation index is used as the measure of prevalence of a co-location. The participation ratio 

can be computed as:  

                        |)(tan_|
))(tan_(

)(
i

s

fceinstable
cceinstable

cpi i
π

=
                          

(4.1) 

Where π is the relational projection operation with duplication elimination. 

 

C) Conditional Probability 

The conditional probability )cc(cp 21 ⇒ of a co-location rule 21 cc ⇒ is the fraction of row 

instances of 1c ℜ -reachable to some row instance of 2c . It is computed as: 

                                    

{ }
{ } |)cance(table_inst|

))cctance((table_insπ
cp

1

21c1 U
=

                        
(4.2) 

Where π  is the relational projection operation with duplication elimination.  

 

4.2.2 Steps of Co-location Mining Algorithm 

 

Different types of co-location mining algorithms have been proposed in the past several years, 

for instance,  Huang et al. (2004; 2005; 2006), Xiao et al. (2008), Xiong et al. (2004), Yoo et al. 

(2005, 2006), Verhein et al (2007). Sheng et al. (2008), Celik et al. (2006a; 2006b; 2007a; 

2007b), Qian et al. (2005; 2009). All of these proposed algorithms for mining co-location rules 

iteratively perform five basic tasks, namely (1) initialization, (2) determination of candidate co-

locations, (3) determination of table instances of candidate co-locations, (4) pruning, and (5) 

generation of co-location rules. These tasks are carried out inside a loop iterating over the size of 

the co-locations. 
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A. Initialization 

The task of initialization is to assign starting values to various data-structures. Obviously, the 

value of the participation index is 1 for all co-locations of size 1, i.e., there is no need for either 

the computation of a prevalence measure or prevalence-based filtering, since all co-locations are 

prevalent.  

 

B. Determination of Candidate Co-locations 

Determination of candidate co-location is usually realized using an approximately computation 

with rough threshold, so that a number of features with potential co-location can be found as 

much as possible. Huang et al. (2004) applied apriori_gen proposed by Agarwal (1994) to 

generate size k+1candidate co-locations from size k prevalent co-locations. This research will 

use only one geometric condition, spatial neighbor to generate candidate co-location. 

 

C. Determination of Table Instances of Candidate Co-locations 

The determination of table instances of candidate co-locations can be realized through join query 

from k+1 candidate co-location. The query takes the k+1 candidate co-location set, Ck+1 and k 

prevalent co-locations in table instances as arguments and works.   

 

In addition, during the join computation of generating table instances, Huang et al. (2004; 2006) 

presented three spatial neighbor relationship constraint conditions, geometric approach  

))tan. ,tan.( i.e.,( ℜ∈kk ceinsqceinsp  , a combinatorial distinct event-type constraint 

)tan.tan.,,tan.tan. i.e.,( 1111 −− == kk ceinsqceinspceinsqceinsp L , and hybrid constraint, which 

combine the spatial neighbor relation constrain and combinatorial distinct event-type constraint. 

This research will adopt the hybrid constraint, but a slight modification will be made as follow:  

• Geometric Constraint Condition: The geometric constraint condition will be 

neighborhood relationship-based spatial joins of table instances of prevalent co-locations 

of size k with table instance sets of prevalent co-locations of size 1. The spatial join 

operations consist of filter step and refinement. For these algorithms, Huang et al. (2004; 

2006) has given a detailed description. 

• Event-type Constraint Condition: The distinct event-type constraint is: 
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Let { }cvvvV ,,, 21 L=  is a set of corresponding clusters center of feature a1, a2, … ac,  the 

distinct event-type constrain is defined as: 

( )∑∑
= =

−=Γ
S

i

c

k
ki vf

1 1

2 
                                  

(4.3) 

Where ki vx − represents the Euclidean distance between if  and kv ; Γ  is a squared error 

clustering criterion. ckvk ,,2,1, L=∀ can be calculated by: 
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(4.4) 

So, if the Γ  is greater than a given threshold, θΓ , i-th instance is assumed the distinct 

event.  

 

D. Pruning 

The purpose of pruning is to remove the non-prevalent co-locations from the candidate prevalent 

co-location set using the given threshold θ on the prevalence measure. Huang et al. (2004) 

proposed two basic pruning methods, called prevalence-based pruning method, and multi-

resolution pruning. In this research, we will develop the spatial features pruning method. The 

multi-resolution pruning used criterion of the coarse participation index based on the coarse table 

instance to eliminate the co-location. If its coarse participation indexes fall below the threshold, 

the co-location will be eliminated. This research will use the autocorrelation criterion of spatial 

features to eliminate the co-location features. The basic idea is: 

 

For a training data set { }KsssS ,,, 21 L= , if the instance is , and js are co-

location, where Ssi ∈ , Ss j ∈ and { }Ni xxxS ,,, 21 L= ,  autocorrelation of the 

features vectors, ix , and jx , where ii Sx ∈ and jj Sx ∈ , is calculated by: 
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(4.5) 
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If the two feature vectors are strong cross-correlation when greater than a given 

threshold 
ij

Tρ in the training data, the co-location will be eliminated from the 

candidate co-location. Under this condition, a new neighbor relationship pℜ will 

have to be re-computed on the basis of the original relationship ℜ  so that any 

two instances from each of the two partitions are ℜ  neighbors. In this research, 

this computation is implemented under a local zone, i.e., not a global extend.  

 

E. Generating Co-location Rules 

Accompanying with the generation of co-location set, all the co-location rules with the user 

defined conditional probability threshold from the prevalent co-locations and their table 

instances can be generated (Huang et al., 2004). The conditional probability of a co-location rule 

)cc(cp 21 ⇒  in the event centric model is the probability of c1 reachable to a ℜ -proximity 

neighborhood containing all the features in c2. 

 

An overview of the co-location mining algorithm is depicted in Figure 4.1. 
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Figure 4.1: Overview of the co-location mining algorithm (modified from Huang et al., 2006) 

 

4.3 Co-Location Decision Tree (CL-DT) Algorithm 

 

The basic idea of the presented co-location decision tree (CL-DT) algorithm is depicted in Figure 

4.2. The co-location mining is used to induce the co-location rules. These induced co-location 

Find-Co-location Instance ()      /* function 
 
Input:  

(a) Spatial data set  
(b) Criteria, including Minimum prevalence threshold and other thresholds. 

 
Output:  

A set of co-locations rules 
 
Variables Setup:  

k :   co-location size ¢ 

kC :  set of candidate size- k  co-locations 

kT :  set of table instance of co-location in kC  
kP :  set of prevalent size 

kR :  set of co-location rules of size   

kCT _ : set of coarse-level table instances of size-k co-locations in kC   
 
Steps: 

Step 1:  Co-location size k  =1; 
Step 2:  IF (fmul=TRUE) THEN 
                   1_ CT =generate _table_instance( 1C ,multi_event); 
Step 3: While(not empty  kP and Kk < ) do { 
             generate candidate co_location; 

                    IF (fmul=TRUE) THEN 

           1+kC  = candidate size- k  co-locations 

               1+kT  = table instance of co-location in kC  
              1+kP :  = select prevalent colocation 

              1+kR :  = generate co-location rule   

              1+= kk ; 
             } 
Step 4:  return union 
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rules are used to guide the decision tree generation. The co-location mining algorithm has been 

described in Chapter 4.2. This Chapter will focus on how a co-location decision tree is induced.  

 
Figure 4.2: Flowchart of co-location decision tree induction 

 

4.3.1 CL-DT Algorithm Modeling 

Let each sample { }T
Ni xxxs ,,, 21 L=  in data set { }T

dsssS ,,, 21 L= be a vector, representing 

example-id, spatial feature type, and location Π ,  where d is the number of features, T is 

transpose, and the spatial location ∈  spatial framework. The training data is augmented with a 

vector { }KcccC ,,, 21 L= ,  where { }Kccc ,,, 21 L represent the class to which each sample belongs. 

In order to assign an example to one of the classes, { }KcccC ,,, 21 L=  ( 2≥K ), each internal 

node, im , carries out a decision or discriminant function, denoted by )(xg
im  for this purpose.  

 

The functional of )(xg
im varies due to various decision tree algorithms, such as univariate 

decision trees, linear multivariate decision tree, and nonlinear multivariate decision tree 

(Altincay, 2007). This Chapter first discuss the generation of univariate co-location decision 

trees, and the linear multivariate co-location will be discussed in Chapter 4.4 

 

As usual, the CL-DT also utilizes a divide-and-conquer strategy to partition the instance space 

into decision regions by generating internal or test nodes. During the generation of the univariate 

decision trees, each internal node uses only one attribute to define a decision or a model. The 

mathematical model can be expressed by: 

                                     ii mim bsxg +=)(                                    (4.6) 
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where 
imb  is a constant. The selection of the best attribute is , where Ssi ∈ , and corresponding 

imb  for the instance subset reaching at the node 
imb  are the main tasks in the generation of the 

decision function. 

 

As shown in Figure 4.3, the proposed algorithm for generating the CL-DT consists of a binary 

tree structure. At beginning, the root node “accepts” all of examples, { }T
dsssS ,,, 21 L= , the best 

feature is selected from input data set, and then splitting criterion is used for determining whether 

the root node will be split using binary decision, Yes and No, with which the two intermediate 

nodes, noted by im , and jm (i =1 and j = 2 in Figure 4.3). For each of intermediate nodes, im , 

and jm , splitting criterion will be used to determine whether the node (e.g., im or jm ) should be 

further split. If No, this node is considered as a leaf node, then one of class labels is assigned to 

this leaf node. If YES, this node will be split by selecting one “best” feature. Once this “best” 

attribute is selected, the co-location criterion will be used to determine whether the sample with 

the “best” feature is co-occurred with the sample with the previously selected features (see 

Figure 4.3). If YES, this node will be “merged” into the same classification as the co-location’s,  

and one new “best” attribute will be selected again, re-determine whether the selected “best” 

feature co-occurs with the last best attribute; If NO, the node will further be split into sub-set by 

repeating the above work. This selection process is repeated until a non-co-occurrence feature is 

found.  

 

The above process continues recursively until all vectors are classified correctly. Finally, 

termination criterion is satisfied; all leaf nodes are reached, and the class labels are assigned to 

each of the leaf node.  
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Figure 4.3: Co-location/Co-occurrence decision tree 

 

The outline of the algorithm is depicted in Figure 4.4. The input to this algorithm consists of the 

training records { }T
dsssS ,,, 21 L=  and the attribute set { }T

Ni xxxs ,,, 21 L= . The algorithm works 

by recursively selecting the best attribute to split the data and expanding the intermediate nodes 

of the tree, and checking whether or not the attributes co-occur until the stopping criterion is met.  



~ 73 ~ 
 

                                   

 
Figure 4.4: Outline of algorithm of co-location/co-occurrence decision tree (CL-DT) 

 

4.3.2 Attribute Selection  

A pavement management database in fact contains many attributes, which are used to describe 

different pavement characteristics for various applications. This means that some of attributes in 

Input: 
Training dataset D, 
Splitting criterion, 
Co-location threshold and criterion 
Terminal node threshold 

 
Output: 

A LC-DT decision tree with multiple condition attributes. 
 
Process: 

Step 1. Co-location mining 
Step 2. Co-location rules 
Step 3. Build an initial tree 
Step 4. Starting with a single node, root. The root node includes all the rules and 

attributes. 
Step 5. For each non-leaf node, e.g., mi 

• Perform label assignment test to determine if there are any labels that can 
be assigned. 

• Take all the unused attributes in node mi, and choose an attribute 
according to splitting criterion to further split mi.  
o If the selected attribute satisfy the splitting criterion, partition the node 

into subsets. 
o If terminal condition is satisfied, stop splitting and assign mi as a leaf 

node. 
Step 6. For each of two non-leaf nodes in the same layer, e.g., mi, and mj  

• Apply co-occurrence algorithm, and test if the two nodes satisfy the co-
occurrence criterion. If yes, merging two neighbor nodes; If no, please go 
head Step 5.  

Step 7. Apply the algorithm recursively to each of the not-yet-stopped nodes, and 
update the bottom nodes in the tree built in step2.  

Step 8. Generate decision rule by collecting decisions driven in individual nodes. 
Step 9. The decision rules generated in Step 6 are used as initialization of co-location 

mining rule, and apply the algorithm of co-location mining rule to generate 
new associate rules. 

Step 10. Re-organize the input data set, and repeat Step 2 through Step 7, until the 
classified results by the co-location mining rule and decision tree (rules) is 
consistent. 
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the pavement management database do not in fact contribute to pavement rehabilitation-decision, 

i.e., these attributes may be irrelevant to pavement decision-making of maintenance and 

rehabilitation. Applications of these irrelevant attributes may causes negative influences to the 

pavement decision support, or cause the decision tree to be over-fitted. Thus, to reduce the post-

processing for obtaining an accurate and interpretable decision tree, these irrelevant attributes 

must be eliminated. Schetinin and Schult (2005) proposed a called  Sequential  Feature  

Selection (SFS)  algorithms  based  on  a  greedy heuristic  to  eliminate  the  irrelevant  

attributes. The basic idea of this method is a bottom up search method, starting with one 

attribute, and then iteratively adding the new attributes until a specified stopping criterion is met. 

The basic steps of the sequential feature selection are described in Figure 4.5. 

 

 
Figure 4.5: The outline of steps of SFS algorithm 

 

4.3.3 Co-Location Mining Rule 

With the above co-location pattern mining operation, the co-location rules are traditionally 

generated with the user defined conditional probability threshold from the prevalent co-locations 

and their table instances. The conditional probability of a co-location has been given in Chapter 

4.2.1, i.e. 

                                    

{ }
{ } |)cance(table_inst|

))cctance((table_insπ
cp

1

21c1 U
=

                        
(4.7) 

Where π  is the relational projection operation with duplication elimination.  

 

However, this automatic method encountered problems, since conditional probability 

computation is time-consuming. Thus, this research manually forms the co-location rules by 

organizing individual decision-making. 

Find_Best_Attribute ()      /* function 
Step 1.  Initiation with Set i = 1, Fb = Fi= F1         /* Wb stands for the best feature  
Step 2.  Find the best attribute Fb 

• Run the weighted linear tests F1, F2, …, FT with the single attribute 
• Select the test attribute Fk, Tk ∈  
• Find the best test Fk , Tk ∈ , if the test Fk  is better than Fb, then Fb = Fk  

Step 3.  if the stopping criterion is met, then stop and return Fb.  
             otherwise, i := i+1, and go to Step 2. 
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4.3.4 Node Merging Criteria 

 

As mentioned above, in the pavement management database, some attributes are co-occurrence 

in geography. For example, a co-occurrence attributes, {car accident, traffic jam, police} means 

when a car gets into an accident, the traffic jam will accompany occurrence, further police will 

arrive the accident site for cleaning up. So the three attributes co-occur frequently in a nearby 

region. If the three attributes are sequentially selected to generate the decision tree, the generated 

tree will be over-fitted. Thus, during the generation of the decision tree, the three nodes should 

be merged into one, or the other two nodes should be pruned. 

 

One of the most major characteristics for the co-occurrence in spatial database is that the 

attributes occur in nearby regions in geography for an event. For this reason, this research 

developed the following algorithm to “prune” the nodes. 

 

For a spatial data set S, let { }T
kfffF ,,, 21 L=  be a set of spatial attributes. Let { }T

niiiI ,,, 21 L=  

be a set of n instances in S, where each instance is a vector instance-id, location, spatial features. 

The spatial attribute if  , Ffi ⊂ of instance i is denoted by i. f . We assume that the spatial 

attributes of an instance are from F and the location is within the spatial framework of the spatial 

database. Furthermore, we assume that there exists a neighbor relationship ℜ  in S. In addition, 

let, V = {v1, v2, . . . , vc} is a set of corresponding clusters center in the data set S, where C is the 

number of clusters of spatial features, i.e., C ك F.  To capture the concept of “nearby,” the 

criterion of co-occurrence is defined as 

( )2
1 1

ki

C

i

N

k
ikm vxu −=Π ∑∑

= =

 

where ki vx − represents the Euclidean distance between ix  and kv ; mΠ  is a squared error 

clustering criterion; { } CkCiuU ik ,,2,1 ;,,2,1 , LL ===  c is a matrix, and satisfy the following 

conditions: 

[ ]1,0∈iku ,    Ni ,2,1 L=∀ ,   Cj ,2,1 L=∀                     (4.8) 

1
1

=∑
=

C

k
iku ,    Ni ,2,1 L=∀ ,   Cj ,2,1 L=∀                      (4.9) 
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So, if the mΠ  is less than a given threshold, the two nodes are considered as co-occurrence, and 

thus should be merged.  

 

4.3.5 Decision Rule Induction from CL-DT 

After the co-location decision tree is generated, decision rules will be created by translating a 

decision tree into semantic expressions. Since a decision tree essentially partitions a data space 

into distinct disjoint regions via axis parallel surfaces created by its top-down sequence of 

decisions, decision rules will collect the individual decisions in each node through either top-

down or down-up search.  

 

Decision trees present a clear, logical model that can be understood easily by people who are not 

mathematically inclined. 

 

4.4 Linear Multivariate CL-DT Algorithm 

 

The above discussion is for univariate decision tree. In fact, the CL-DT algorithm can easily be 

extended to linear multivariate and/or multi-class trees. For a linear multivariate tree, the 

decision is based on weighted linear combination of the features can be expressed by (Altincay, 

2007)  

           
m

d

i
imim bxwxg +=∑

=1
)(                         (4.10) 

Similar to the univariate decision tree, the linear function at each node generates linear decision 

hyperplanes in the input space and separates the input space into two or multiple regions. For 

example, if a data set is partitioned into size-C classes, a maximum of C sub-nodes can be split, 

and up to C(C-1)/2 linear multivariate functions are constructed in each node. Correspondingly, 

C(C-1)/2 linear hyperplanes are constructed, thus separating each class from one another. It is 

also noted that an arbitrary hyperplane generated by a linear multivariate node is more powerful 

compared to the univariate case producing a hyperplane orthogonal to a particular axis (Altincay, 

2007). This process continues recursively until all vectors are classified correctly, and a leaf node 

is reached.  
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4.5 Example Analysis 

 

This Chapter explains the details of proposed algorithm, and makes a comparison analysis 

between the proposed method and C4.5 algorithm. Table 4.1 shows a data set of an extend 

example on the basis of the example adopted in Kervahut and Potvin (1996), where each instance 

is a member of class cl, c2 or c3, and is described with four discrete attributes, namely a1 with 

values f11, fl2, fl3; a2 with values f21 , f22, f23; a3 with values f31 , f32, f33, f35, f36; and a4 with values 

f41 , f42, f43 , f45 , f46 (see Table 4.1).  

 

Table 4.1 Data set of examples for generating a decision tree and co-location decision tree 

Example 

Non-spatial 

attributes 
Spatial attributes Class results 

a1 a2 a3 C4.5 algorithm Our algorithm

s1 f11 f21 f31 c1 c1 

s2 f11 f22 f32 c2 c4 

s3 f12 f22 f33 c2 c2 

s4 f12 f23 f32 c1 c4 

s5 f13 f21 f35 c3 c3 

s6 f13 f22 f36 c3 c3 

 

In this example, we have 

{ }654321 ,,,,, ssssssS =
 

{ }321 ,, aaaA =  

{ }321 ,, cccc =  

 

4.5.1 Decision Tree and Decision Rules Induction using C4.5 Algorithm 

The C4.5 algorithm builds decision trees from a data set of training data in the same way as ID3 

(Agarwal and Srikant, 1994). At each node of the tree, C4.5 chooses one attribute of the data that 

most effectively splits its set of instances into subsets enriched in one class or the other. Its 

criterion is the normalized information gain (difference in entropy) that results from choosing an 
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attribute for splitting the data. The attribute with the highest normalized information gain is 

chosen to make the decision. The C4.5 algorithm then repeats recursively the work on the 

smaller sub-lists. For the given example, the details are as follows: 

 

Step 1:  Starting with the root as the current node, where the entire set of instance belongs to. 

Step 2: Select one attribute, evaluate the entropy of each subset of examples produced by 

splitting the set of examples at the current node along all possible attribute values. 

Then, combine these entropy values into a global entropy value. For example, if we 

evaluate the entropy of attribute ai, the set of examples S is partitioned into subsets 

Si,j, Each subset Si,j contains the instances in S that share the same value fi,j for feature 

fi. Then, the entropy values of the subsets Si,j are combined to provide a single global 

value associated with attribute fi, namely: 

                                         ( ) 4321        ,)(),( ,,,ifSESEfSGain ii =∀−=             (4.11)
 Where:  

( )ij
af

ij
i SE

S
S

fSE
iij

×
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∑

∀

),( ,  and 

( )∑
∈

=
Cc

cScS
k

kk
PPSE )(log)( |2|  

Where:  

S = the set of examples at the current node, 

       |S| = the cardinality of set S,  

C = the set of classes, and 

kcSP |  = the proportion of examples in set S belonging to class kc . 

 

So, we have 

0.6934        
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So, 2313.04621.06934.0),( =−=ixSGain  

 

Similarly, we can calculate the information gain for a2,  

 

0.5698        

)0.0log0.0333.0log333.05.0log5.0 (
6
1)0.0log0.0          

6667.0log6667.00.0log0.0(
6
3)0.1log0.10.0log0.05.0log5.0(

6
2        

)(
6
1)(

6
3)(

6
2),(

2222

22222

2322212

=

−−−+−

−−+−−−=

++= SESESEaSE

 
 

 So, 6133.03698.098306.0),( =−=ixSGain  

 

0.5698        

)(
6
1)(

6
3)(

6
2),( 2322213

=

++= SESESEaSE

 
0.5698        

)(
6
1)(

6
3)(

6
2),( 2322214

=

++= SESESEaSE

 
Based on the above computation of entropy, attribute a1 is selected and the children of the 

root are created accordingly.  

  

Step 3: Recursively apply this procedure to the children of the current node. The procedure 

stops at a given node, when the node is homogeneous, or when all attributes have 

been used along the path to this node. As shown in Figure 4.6, one child is 
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homogeneous at 131 fa = , and no more processing is needed. The two other children 

are not homogeneous, and the procedure is recursively applied to each one of them, 

using the remaining attribute a2.  

 

Step 4:  The stopping criterion is applied to check whether the procedure should be stopped. 

For this example, the final full decision tree can be created, and illustrated in Figure 

4.6. 

         
Figure 4.6 Decision tree induced by C4.5 algorithm 

 

Step 5: With the generated decision tree above, this decision tree encodes the following 

decision rules (see Figure 4.7): 

                          
Figure 4.7 decision rules induced by C4.5 algorithm 

 

4.5.2 Our Algorithm 

Here, detailed steps for our algorithm would be presented. The proposed algorithm majorly 

includes two major steps, co-location mining rule induction and decision tree induction. The co-

location mining rule induction majorly considers the spatial data and their characteristics, and 

decision tree induction majorly considers the non-spatial data. Integration of two data sets using 

two data mining technologies is for being complimentary to the individual technology’s 

shortcoming. The steps of our algorithms are: 

 

IF (f1 = a1) THEN c3 
IF ((f1 = a12 and f2 = a22) OR (f1 = a13 and f2 =a22)) THEN c2 
IF ((f1 = a12 and f2 = a23) OR (f1 = a13 and f2 =a21)) THEN c1 
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4.5.2.1 Co-Location Mining Rule Induction 

We first generate a co-location rule to discover which instances are “nearby”, i.e., having 

neighborhood relationship. To this end, we follow up the steps described in Chapter 4.2.2 as 

follows. 

 

Step 1: Initialization: The purpose of initialization is to set up each variable and assign the 

memory size for each participation variable.  

 

Step 2: Determination of Candidate Co-locations: The candidate instances with co-location 

relationship will be determined using the spatial neighborhood criterion with a given 

threshold, θD . In this particular example, the spatial neighborhoods for six instances 

is computed by: 

6      )( 2
33, ∈−= ji,ffDist jiji             

(4.12)
 

 

With the given data set, the spatial distances of any one pair in this data set can form 

the following matrix: 
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With the given values of instances S2 and S4, the matrix can be rewritten as follows: 
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With the above computation, instance S2 and S4 probably are co-location, since their 

spatial distance is equal to zero. Thus, S2 and S4 are listed as candidate co-locations. 
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Step 3: Determination of Table Instances of Candidate Co-locations: Based on the above 

generated potential co-location instances, the determination of table instances of 

candidate co-locations will be implemented using a combination approach, i.e., 

spatial neighbor relationship constraint conditions (geometric approach), and distinct 

event-type constrain. The spatial geometric constrain is expressed below:  

                                     6,,2,1,   ,, L=∀⊆≤ ijiji DistdDd θ                   (4.13) 

                  where θD is given threshold for spatial distance.  

 

With the given example, the distinct event-type constraint is: 
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where ki vx − represents the Euclidean distance between if  and kv ;  { }21,vvV =  is a 

set of corresponding clusters center of feature a1 and a2; Γ  is a squared error 

clustering criterion. 2,1, =∀kvk can be calculated by: 
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So, if the Γ  is greater than a given threshold, θΓ , i-th instance is assumed the distinct 

event.  

 

Step 4: Pruning: As mentioned, this research used cross-correlation of the features vectors, 

if , and jf , to prune the candidate co-location. Since the features in this example have 

no correlation, thus the pruning is unnecessary.  

 

Step 5: Generating Co-location Rules: Based on the above co-location mining approach, the 

co-location rules from the prevalent co-locations and their table instances can be 

generated. They are depicted in Figure 4.8. 
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Figure 4.8: Co-location mining rule 

 

4.5.2.2 Co-Location Decision Tree Induction 

With the above co-location mining rule, decision tree induction will be carried out on the basis of 

the induced co-location mining. Thus, during the generation of decision tree at this time, the co-

location mining rule will constrain the process of decision tree induction. The steps are as 

follows:  

Step 1:  Starting with the root as the current node, where the entire set of instance belongs to. 

Step 2: With the similar computation of the entropy of each subset of instances produced by 

splitting the set of instances at the root node, attribute a1 is selected.  

Step 3: With the selected attribute, a1, split the instances along the path to this node. As 

noted, one child is homogeneous at 131 fa = , which implies that no further processing 

is needed. The two other children are not homogeneous, and the procedure is 

recursively applied to each one of them, using the remaining attribute a2.  

Step 4:  During the recursive procedures to attribute a2, the process will automatically recall 

the co-location mining rule, i.e., instances, s2 and s4, are co-located, i.e., co-occurred. 

Thus, the s2 and s4 must be the same class.  

Step 5:  The stopping criterion is applied to check whether the procedure should be stopped. 

For this example, the final full decision tree can be created, and illustrated in Figure 

4.9. 

              
Figure 4.9 Decision tree induced by our algorithm 

IF )( , θDd ji ≤  THEN si and sj potential co-location 

IF )( , θDd ji ≤  and θT ≤Γ ) THEN si and sj co-location 
IF (si and sj are co-location) THEN c2 

OTHERWISE, c1 
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Step 6: With the generated decision tree above, this decision tree encodes the following 

decision rules (Figure 4.10): 

                          
Figure 4.10 Decision rules induced by our algorithm 

 

4.6 Discussion and Analysis of CL-DT 

 

As observed from above the two examples, the C4.5 algorithm is very sensitive to the entropy 

formula. If we selected attribute f2 before f1, a different tree may be created in the example. 

Therefore, it can be imagined that many different decision trees may be generated when 

modifying the entropy formula (Tan et al., 2006). On the other hand, one major weakness of 

C4.5 algorithm is that a node is created for each value of a given attribute. As mentioned before, 

a few attributes are co-occurrence of one another, i.e., only a single attribute can get a good 

global evaluation in some cases, even if its entropy is good only for a few values among all its 

possible values (Kervahut and Potvin; 1996), where the entropy of an attribute is computed as a 

linear weighted sum over all values. 

 

The CL-DT uses a co-location mining technology to first classify the co-location attributes. This 

is in fact equivalently to pruning the nodes whose attributes co-occur with the previous 

attributes. Consequently, this proposed CL-DT overcomes the weakness of C4.5 algorithm, 

which creates a node for each value of a given attribute. Obviously, the proposed CL-DT has 

capability of handling rare event, which may arise naturally in the original data set because of the 

lower probability of occurrence of certain classes, or the shortage of data for certain classes. 

Obviously, the CL-DT inherits all the advantages from regular decision trees, such as recursive 

divide-and-conquer approach, and efficient tree structure for rule extraction. Moreover, the 

proposed CL-DT allows it to solve classification problems with co-location, and co-occurrence 

classes, making it more robust in real-world situations. 

 

IF ((s2, s4 )=co-location) THEN c4 
IF (a1 = f13) THEN c3 
IF (a1 = f11 and a2 = f21) THEN c1 
IF ((a1 = f12 and a2 = f22) THEN c2 
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The quality of a decision tree is based on both its accuracy and complexity. The accuracy is 

assessed by testing the induced decision tree and/or decision rules to new data set, and then 

comparing the predicted classes with the real classes. The complexity is related to the shape and 

size of the tree. Obviously, the proposed CL-DT has capable of creating a simple and high-

accurate decision tree because this algorithm has used co-occurrence mining rule as initialization 

to induce the decision tree and decision rule. However, most classification algorithms sought for 

the models that attained the highest accuracy, or equivalently, the lowest error rate, but complex 

tree and rules. For the same accuracy, simple trees are preferred over complex ones.  

 

Traditionally, most of the decision tree induction algorithms have not been capable of producing 

compact solutions, i.e., free expansion during generation of decision tree, despite pruning 

adoption. On the other hand, since the decision tree is freely is expanded, the decision rules are 

freely expanded as well because the decision rules directly capture individual decision of each 

node. These rules essentially correspond to decision regions that overlap each other in the data 

space. The proposed CL-DT is capable of create a compact solutions for decision tree and 

decision rules. 
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5. INITIAL EXPERIMENTS USING SPATIAL DECISION TREE MODELING1 

 

5.1 Data Sources 

 

In 1983, the Institute for Transportation Research and Education (ITRE) of North Carolina State 

University began working with the Division of Highways of the North Carolina Department of 

Transportation (NCDOT) to develop and implement a Pavement Management System for its 

60,000 miles of paved state highways. At the request of several municipalities, NCDOT has 

made this Pavement Management System available for North Carolina municipalities. The ITRE 

modified this system for municipal streets in more than 100 municipalities in North and South 

Carolina. The data sources for this experiment are provided by ITRE of North Carolina State 

University. They conducted pavement distress surveys for several counties since January 2007 to 

determine whether or not the activity (rehabilitation treatment) for pavement needs to be carried 

out. This survey assessment was performed following the guidelines provided in the Pavement 

Condition Rating Manual (AASHTO, 2001; 1990).  The collected 1285 records to be utilized in 

this empirical study a network-level survey, covering several-county roads including USA 

highway 1, and the rural road network. The provided pavement database is a spatial-based 

rational database, i.e., an ArcGIS software compatible database. In this database, 89 attributes 

including geospatial attributes (e.g., X,Y coordinates, central line, width of lane, etc.) and 

pavement condition attributes (e.g., cracking, rutting, etc.), and traffic attributes (e.g., shoulder, 

lane number, etc.), and economic attributes (e.g., initial cost, total cost) are recorded by 

engineers, who were carrying these surveys by walking or driving and recording the distress 

information and their corresponding maintenance and repair (M&R) strategy. Then, the data is 

integrated into database, as shown in Figure 5.1. The first through 19th column recorded road 

name, type, class, owner, etc. attributes; and the 31st through 43rd column recorded the pavement 

condition (distress) attributes; the 44th through 50th column recorded the different types of cost; 

others including the proposed activities, etc. As an initial experimental study, this Chapter will 

                                                 
1 This Chapter is based on the paper, Integration of GIS and Data Mining Technology to Enhance the Pavement 
Management Decision Making, published in Journal of Transportation Engineering, vol. 136, no. 4, pp. 332-341, 
April 2010. 
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first explore the decision tree and decision rules induction using the following nine common 

types of distresses, which are listed in Table 5.1 (Zhou et al., 2010a):  

• Alligator Cracking,  

• Block Cracking,  

• Transverse Cracking,  

• Bleeding ,  

• Rutting,  

• Utility Cut Patching,  

• Patching Deterioration,  

• Raveling.  

 

Table 5.1: Nine common types of distresses for this study 

Distress Rating 

Alligator Cracking Alligator None (AN) Percentages of 1 = 10%, 2 = 

20%, 3 = 30%, up to 10 = 100% 

indicate None, Light, Moderate, 

and Severe, respectively 

Alligator Light (AL) 

Alligator Moderate (AM) 

Alligator Severe (AS)  

Block/Transverse 

Cracking (BK) 

This indicates the overall condition of the section as follows: 

   •  N-None      • L-Light      • M-Moderate     • S-Severe 

Reflective Cracking (RF) The same manner as BK 

Rutting (RT) The same manner as BK 

Raveling (RV) The same manner as BK 

Bleeding (BL) The same manner as BK 

Patching (PA) The same manner as BK 

Utility Cut Patching,  The same manner as BK 

Ride Quality (RQ) The condition is designated as follows: 

     • L−Average      • M−Slightly Rough     • S−Rough 
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Figure 5.1: The spatial-based pavement database 

 

5.2 Distress Rating 

 

Experiments, accompanying with all the analyses and pavement condition evaluations presented 

in this Chapter, are based on the pavement performance measures. A common acceptable 

pavement performance measure is the Pavement Condition Index (PCI), which was first defined 

by the US Army (see Figure 5.2). In the PCI, the pavement condition is related to the factors 

such as structural integrity, structural capacity, roughness, skid resistance, and rate of distress. 

These factors are quantified in the evaluation worksheet that field inspectors use to assess and 

express the local pavement condition and damage severity. Mostly, inspectors use their own 

judgment to assess the distress condition. Usually, the PCI is quantified into 7 levels, 

corresponding to from Excellent (over 85) to Failed 0 (see Figure 1). Thus, PCI is an important 

index for maintenance and repair determination in which the overall conditions of the observed 

road surface are evaluated.  
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Figure 5.2:  Pavement Condition Index standard and custom rating scales (Courtesy of Greene, J. 

and M. Shahin, 2010). 

 

Table 5.1 presents the eight types of distresses that are evaluated for asphaltic concrete 

pavements. In Table 5.1, the severity of distress is rated in four categories, ranging from very 

slight to very severe. Extent (or density) is classified in five categories, ranging from few (less 

than 10 percent) to throughout (more than 80 percent). The identification and description of 

distress types, severity, and density are: 

• The road conditions of the Alligator Cracking are rated as a percentage of the section that 

falls under the categories of None, Light, Moderate, and Severe.  Percentages are shown 

as 1 = 10%, 2 = 20%, 3 = 30%, up to 10 = 100%.  The appropriate percentages should be 

placed under None, Light, Moderate, and Severe.  These percentages should always add 

up to 100%. 

• The severity levels of distresses, Block Cracking, Transverse Cracking, Bleeding, 

Rutting, Utility Cut Patching, Patching Deterioration, and Raveling are rated 4 levels: 

None (N), Light (L), Moderate (M), and Severe (S), respectively. 

• The severity levels of ride quality are classified: Average (L), Slightly Rough (M), and 

Rough (S). 
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5.3 Potential Rehabilitation Strategies 

 

Based on the knowledge gained from experts, we have classified rehabilitation treatments for 

flexible pavements into three main categories according to the type of the problem to be 

corrected: cracking, surface defect problems, and structural problems. These problems can be 

treated using crack treatment, surface treatment, and nonstructural overlay (one- and two-course 

overlay), respectively.  

 

In order to select an appropriate treatment for rehabilitation and maintenance to a specific road, 

seven potential rehabilitation and maintenance strategies have been proposed by the North 

Carolina Department of Transportation (NCDOT) (Table 5.2). Which treatment strategies will be 

carried out for a pavement segment is dependent on the comprehensive evaluation of all 

distresses. This used to be created by experts or a pavement engineer at North Carolina 

Department of Transportation. This research will experiment and test whether the decision tree 

and decision rule can produce an appropriate decision for M&R strategy using data mining 

technology, and then compare the differences of decisions made by manual method and data 

mining. 

 

Table 5.2: Potential Rehabilitation Strategies 

ID Rehabilitation Strategies 

0 Nothing 

1 Crack Pouring (CP) 

2 Full-Depth Patch (FDP) 

3 1" Plant Mix Resurfacing (PM1) 

5 2" Plant Mix Resurfacing (PM2) 

6 Skin Patch (SKP) 

7 Short Overlay (SO) 
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5.4. Decision Tree Induction-Based Maintenance and Repair (M&R) 

 

5.4.1 Steps of Decision Tree Induction for Pavement M&R 

 

Steps of decision tree-based decision-making usually involve the following five basic steps: 

problem identification, knowledge acquisition, knowledge representation, implementation and 

validation, and extension. For the first step, we have been much clear about what problem should 

be solved in this research, i.e., reveal the rule hidden in the pavement database in order to predict 

potential pavement condition and plan the rehabilitation. For Phase 2, we have obtained much 

knowledge from engineers, such as distress rating, PCI rating, and potential rehabilitation 

strategies. For Phase 3, the decision tree and decision rules to be induced by using traditional 

C5.0 algorithm are for knowledge representation. The theory part of decision tree and decision 

rules have been described in Chapter 3, and the experimental results will be presented in this 

Chapter, i.e., Chapter 5.4.1.1 will describe Step 4 (i.e., Implementation) and Chapter 5.4.1.2 will 

describe Step 5 (i.e., Validation). 

 

5.4.1.1 Experiment of Decision Tree Induction 

We used the CTree for Excel tool (Saha, 2003) to create the Decision Tree. This tool is based on 

the C5 algorithm, which lets user build a Tree-based Classification Model. The Classification 

Tree can generate the decision rules. The steps include 

 

Step 1: Load Pavement Database 

We first load the pavement database into the Data worksheet. The observations should be in rows 

and the variables should be in columns. In this data worksheet, each column, choose appropriate 

Type (Omit, Class, Cont, and Cat) 

• Omit = To drop a column from model 

• Cat = To treat a column as categorical predictor 

• Cont = To treat a column as continuous Predictor  

• Output = To treat a column as Class variable 
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Because any non-number in the Cont column is treated as missing value in CTree tool, we have 

to quantify the N, L, M and S into 100, 75, 50, and 25, manually. In this tool, the maximum 

predictor variables are 50, only a class variable is allowed. Application will treat the Class 

variable as categorical, and each of categorical predictors (including Class variable) is limited 

20. After this data is uploaded, we need make sure that Class variable and data does not have 

blank rows or blank columns, which are treated as missing values. 

    

Step 2: Data Inputs 

This tool requires inputting some parameters to optimize the processes of decision tree 

generation. These parameters include: 

(1) Adjust for # categories of a categorical predictor: While growing the tree, child nodes 

are created by splitting parent nodes. Which is a predictor to use for this split is decided 

by a certain criterion. Because this criterion has an inherent bias towards choosing 

predictors with more categories, thus, input of adjust factor will be able to adjust this 

bias. 

(2) Minimum Node Size Criterion: While growing the tree, whether to stop splitting a node 

and declare the node as a leaf node will be determined by some criteria that we need 

choose. These criteria are: 

• Minimum Node Size: A valid minimum node size is between 0 and 100. 

• Maximum Purity: An effective values is between 0 and 100. Higher the value of this, 

LARGER will be the tree. Stop splitting a node if its purity is 95% or more, (e.g. 

Purity is 90% means). Also, stop splitting a node if  number of  records in that node is 

1% or less of total number of records. 

• Maximum Depth: a valid maximum depth is greater than 1 and less than 20. Higher 

the value of this, LARGER will be the tree. Stop splitting a node if its depth is 6 or 

more (Depth of root node is 1. Any node's depth is it's parent's depth + 1,) 

(3) Pruning Option: This option allows us whether or not to prune the tree when tree is 

growing, which can help us to study the effect of pruning.      

(4) Training and Test data: In this research, we used a subset of data to build the model and 

the rest to study the performance of the model. Also, we required the tool to randomly 

select the test set at a ratio of 10%. 
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5.4.1.2 Initial Experimental Results 

 

1) Decision Tree 

With the above data input, a decision tree is generated, as shown in Figure 5.3. Figure 5.3 

displays the corresponding generated tree information, including the misclassified data 

percentage, the amount of time taken, total number of nodes, number of leaf nodes, and number 

of levels is listed in Table 5.3. The generated tree model is listed in Table 5.4. An example for a 

finally generated class, CP, and their predictor attribute values is listed in Table 5.5. 

 
Figure 5.3: The decision tree created by C5.0 algorithm 

 

Table 5.3: The decision tree model 

Tree Information % Misclassified Time Taken (Second) 

Total Number of Nodes 72 Training Data 61.2% Data Processing 1 

Number of Leaf Nodes 37 Test Data 60.0% Tree Growing 6 

Number of Levels 20   Tree Pruning 1 

    Tree Drawing 10 

    Classification using 

final tree 1 

    Rule Generation 35 
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Table 5.4: The decision tree analysis 

Decision Tree Model 

Number of Predictors 9 

Class Variable Activity

Number of Classes 6 

Majority Class PDK 

 

Table 5.5: An example for a finally generated class, CP, and their predictor attribute values  

Predictors Values 

AN 2 

AL 1 

AM 2 

AS 5 

BK 100 

RF 100 

RT 60 

RV 100 

RQ 60 

 

2) Node View and Statistical Analysis 

The statistical analysis of class distribution for any node can be overviewed from NodeView 

Sheet. An example, node_ID=23, is depicted in Figure 5.4, in which the class ID,  node size, 

majority class, missed classified percentate,  class proportion can be overviewed. 
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Figure 5.4: The detailed tree information at node 23 

 

3) Rule Generation 

 

After the tree is grown, the tree is further processed to generate decision rules. The decision rules 

are directly induced in this research by translating a decision tree in a top-down general-to-

specific style. In other words, the decision rules are constructed by forming a conjunct of every 

test that occurs on a path between the root node and a leaf node of a tree. Thus, the decision rules 

are first induced by ordering all the classifications, and then using a fixed sequence, from the 

smallest to the largest class, to combine them together. When this rule is applied to new data set, 

the new data example is required in exactly the same sequence as they were generated in the 

training data. In total, 72 rules are generated and part of the rules is depicted in Figure 5.5., and 

the summary of induced rules with support, confidence, and capture is listed in Table 5.6.  

Rule 0:  

Activity = so 

 

Rule 1:  

IF AM >= 3 

THEN Activity = pm2 

 

Rule 2 

IF AS >= 3 

THEN Activity = cp 
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Rule 3 

IF AS >= 2 

THEN Activity = cp 

 

Rule 4 

IF RT < 60 

THEN Activity = pm1 

 

Rule 5 

IF BK < 80 

THEN Activity = pm1 

 

Rule 6 

IF AM >= 2 

THEN Activity = pm2 

... ... ... ... ... ... ... ... 

Figure 5.5: The original rules induced by C5.0 algorithm at each node 

 

Table 5.6: Support, confidence and capture for each generated rules 

Rule ID Classes Support Confidence Capture 

0 NO 100.0% 86.7% 93.0% 

1 CP 60.7% 100.0% 75.6% 

2 SKP 60.5% 66.7% 82.5% 

3 FDP 71.6% 55.6% 66.2% 

4 PM2 80.2% 100.0% 73.1% 

5 PM1 81.3% 71.4% 85.3% 

6 SO 81.6% 66.7% 73.5% 
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5.4.1.3 M&R Rules Verification 

 

The generated decision tree organizes the obtained knowledge in a logical order. Whether or not 

the tree can provides a useful methodology for selecting a feasible and effective rehabilitation 

strategy from the 7 predetermined strategies. Thus, after the prototype of rules is generated using 

the algorithm above, it will have to be tested and validated, and then modified or extended, if 

necessary. In our study, 7 rules have been created to handle operations involved in the spatial 

knowledge of the pavement management system. With carefully checking the rules, these rules 

are all completely correct. For this reason, we used AIRA for Excel v1.3.3 tool to verify this 

rules. This tool is an add-in for MS-Excel and allows user to extract the 'hidden information' (i.e. 

discover rules) right from spreadsheets from small-/mid-range database files.  

 

After successful operation of the AIRA tool, 41 rules are generated, part of which are listed in 

Figure 5.6. Obviously, so many rules will result in misclassification, thus have to be merged or 

deleted. To this end, the following schemes are suggested in this research:  

(1) If the attribute values simultaneously match the condition of the rules induced by both 

C5.0 decision tree method and AIRA reasoning method, this rule would be retained;  

(2) If attribute values simultaneously match the conditions of several rules, those rules with 

the maximum confidence will be kept;  

(3) If attribute values simultaneously matching several rules with the same confidence 

values, those rules with the maximum coverage of learning samples will be kept; and  

(4) If attribute values do not match any rule, this class of attribute is defined as the rule, 

nothing treatment. 
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Figure 5.6: The decision rules induced by AIAR algorithm 

 

With the schemes proposed above for decision rules reduction, 14 rules are still retained. 

However, only seven rehabilitation strategies in the study area were suggested by the ITRE. 

Thus, the following method is suggested to future reduce the number of rules:  

(1) Reduce the attribute data sets from Alligator Cracking family through : 

{ }][ ],[ ],[ ],[ ASAMALANAC =  
(2) Reduce the attribute data through checking the PCI values. The principle is, e.g.,  

• If SMAC or    = ,  reduce other attributes; and 

• If SRT   = , reduce other attributes 

 

With the aforementioned reduction methods, the seven rules is finally refined (see Figure 5.7). 
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Figure 5.7: The final rules after verification and post-processing 

 

5.4.2 Mapping of Decision Rules-based Decision of M&R 

With the rules induced above, the rehabilitation strategies can be predicted and decided for each 

road segment in the database using the rules. In other words, the operation using data mining and 

knowledge discovery (DMKD) only occurs in the database, and thus the results cannot be 

visualized and displayed on either map or screen. However, GIS system is capable of rapidly 

retrieving data from database and automatically generating customized maps to meet specific 

needs such as identifying maintenance locations, visualizing spatial and nonspatial data, linking 

data/information to its geographical location. Thus, this research employed ArcGIS software in 

combination with the above induced results to create the map of decision-making for 

maintenance and rehabilitation. The basic operation is: taking the above each rule as a logic 

query in ArcGIS software, and then queried results are displayed in the ArcGIS layout map. The 

results are listed in Figure 5.8 through Figure 5.13, corresponding to each preset rehabilitation 

Rule 1: 
IF (AN" >=7 AND "AS_" =0 AND "BK" ='M' AND "RF" ='N' AND "RT"='L' OR  "RT"='N' AND "RV"='N' AND 

"RQ"='L' AND "RATING" > '67' ) 
 THEN Treatment is CP 
 
Rule 2: 

IF ("AN" >=4 AND "AS_" >=1 AND "BK" ='N' AND "RF" ='N' AND "RV"='N' OR "RV"='L' AND "RQ"='L' OR 
"RQ"='M' AND "RATING" >= '48')  
THEN Treatment is FDP 
 

Rule 3: 
IF ("AN" >=3 AND "AN" <= 7 AND "AS_" >=0  AND "BK" ='N' AND "RF" ='N' AND "RV"='N' AND "RQ"='L' AND 

"RATING" >= '35' AND "RATING" <= '70'). 
THEN Treatment is PM1 

 
Rule 4: 

IF ("AN" >=2 AND "AN" <= 6 AND "AS_" >=0  AND "BK" ='N' AND "RF" ='N' AND "RV"='N' AND "RQ"='L' AND 
"RATING" >= '1' AND "RATING" < '35') 

 THEN Treatment is PM2 
 
Rule 5: 

IF "AN" >4 AND "AM" >1 AND "AS_" =0  AND "RF"='N'  AND "RV"='N' OR "RV"='L' AND "RQ"='L' AND 
"RATING" >= '68' AND "RATING" < '94') 

THEN Treatment is SKP 
 
Rule 6: 

IF "AN" >=8 AND "AM" =0 AND "AS_" =0  AND "BK"='N' AND "RF"='N'  AND "RV"='N' OR "RV"='L' AND 
"RQ"='L' AND "RATING" >= '68' AND "RATING" <= '80') 

THEN Treatment is SO 
 
Rule 7: 

IF "AN" >=9 AND "RATING" <= '95') 
THEN Treatment is Nothing 



~ 103 ~ 
 

strategies, respectively. The rehabilitations suggested by engineers at the ITRE of North Carolina 

State University are superimposed with the decisions made at this research. As seen from Figure 

5.8 through Figure 5.13, each rehabilitation strategy derived in this research can be located with 

its geographical coordinates, and visualized with its spatial, non-spatial data and different colors. 

 
Figure 5.8: Comparison for the CP road rehabilitation made by the proposed method and by 

NCDOT (ITRC) 

 
Figure 5.9: Comparison for the FDP road rehabilitation made by the proposed method and by 

NCDOT (ITRC) 
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Figure 5.10: Comparison for the PM1 road rehabilitation made by the proposed method and by 

NCDOT (ITRC) 

 
Figure 5.11: Comparison for the PM2 road rehabilitation made by the proposed method and by 

NCDOT (ITRC) 
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Figure 5.12: Comparison for the SKP road rehabilitation made by the proposed method and by 

NCDOT (ITRC) 

 
Figure 5.13: Comparison for the SO road rehabilitation made by the proposed method and by 

NCDOT (ITRC) 
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5.5. Comparison Analysis and Discussion 

 

5.5.1 Comparison Analysis 

In order to verify the correction of the proposed method for the decision-making of road 

maintenance and rehabilitation, the pavement segment treatments produced in this research were 

compared with those suggested by engineers at the ITRE at the NCDOT. All pavement 

treatments derived by this research and by NCDOT are displayed in Figure 5.14. A comparison 

analysis for both the quantity and the location of each treatment strategy derived by this research 

and by NCDOT in the study area is listed in Table 5.7 and Table 5.8. As seen from Table 5.7 and 

Table 5.8, the number of the crack pouring treatments derived by this research and by NCDOT is 

the same, i.e., 3, but the location of the three roads is not the same, i.e., the location of one road 

derived by this research is different from one derived by NCDOT. The number of the full-depth 

patch (FDP) treatments suggested by NCDOT is 34, but 29 by this research. The difference 

between 2 methods is 5. Moreover, the location of three road segments for FDP treatment is 

different for two methods.  In the 1" plant mix resurfacing (PM1) strategy, NCDOT suggested 

six roads for PM1 treatment, but this research induced seven roads using decision method. 

Moreover, a road location is different for two methods. For the skin patch (SKP) rehabilitation 

strategy, 65 roads are suggested by NCDOT for treatment, but 56 roads by this research. 

Moreover 13 road locations are different between two methods. For the short overlay 

rehabilitation strategy, three roads are suggested for treatment, but 5 roads by this research, with 

which locations of two roads are different between two methods.     
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Figure 5.14: All decisions for the road rehabilitation made by ours and by NCDOT 

 

 

Table 5.7: Comparison analysis of accuracy on the quantity of M&R decided by our method and 

by NCDOT 

ID Proposed Treatment 

Strategies 

From Number Difference in 

number 

1 
Crack Pouring (CP) 

NCDOT 3 
0 

This research 3 

2 
Full-Depth Patch (FDP) 

NCDOT 34 
5 

This research 29 

3 1" Plant Mix Resurfacing 

(PM1) 

NCDOT 6 
1 

This research 7 

4 2" Plant Mix Resurfacing 

(PM2) 

NCDOT 3 
1 

This research 4 
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5 
Skin Patch (SKP) 

NCDOT 65 
9 

This research 56 

6 
Short Overlay (SO) 

NCDOT 3 
2 

This research 5 

 

 

Table 5.8: Comparison analysis of accuracy on the location of M&R decided by our method and 

by NCDOT 

ID Proposed Treatment 

Strategies 

From Number Difference in location 

1 
Crack Pouring (CP) 

NCDOT 3 
1 

This research 3 

2 
Full-Depth Patch (FDP) 

NCDOT 34 
3 

This research 29 

3 1" Plant Mix Resurfacing 

(PM1) 

NCDOT 6 
1 

This research 7 

4 2" Plant Mix Resurfacing 

(PM2) 

NCDOT 3 
1 

This research 4 

5 
Skin Patch (SKP) 

NCDOT 65 
13 

This research 56 

6 
Short Overlay (SO) 

NCDOT 3 
2 

This research 5 

 

5.5.2 Discussion 

The decision-trees are based on the knowledge acquired from pavement management engineer 

for rehabilitation strategy selection. A decision-tree is in fact to organize the obtained knowledge 

in a logical order. Thus, the decision-trees can determine the technically feasible rehabilitation 

strategies for each road segment. On the other hand, different decision-trees can be built if the 

acknowledge changes. For example, the decision-tree in this research was based on severity 

levels of individual distresses. If the pavement layer thickness and material type are taken as 

knowledge, or work history, pavement type, and ride data are taken as knowledge for generating 
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decision-tree, these decision-trees are different. This means that the decision rules induced by 

different knowledge are various. 

 

On the other hand, our experiment has demonstrated that the decision rules induced from the 

decision-tree are inexact; and the decision-trees and rules generated by different tools (e.g., 

ACRT, CHIAD) are incompletely the same. Therefore, the post-processing for verification of 

rules is required.  

 

5.6 Some Remarks 

 

This Chapter conducts an initial research and analysis of applying the decision tree technology in 

pavement treatment strategies. The main purpose of the research is to utilize decision tree 

techniques to find some interesting knowledge hidden in the pavement database. The C 5.0 

algorithm has been employed to generate decision-trees and rules. The induced rules have been 

used to predict which maintenance and rehabilitation strategy should be selected for each road 

segment. A pavement database covering four counties, which are provided by the ITRC at 

NCDOT, has been used to test the proposed method. The comparison of two decisions for 

rehabilitation treatment suggested by NCDOT and by the methodology presented in this research 

has been conducted. From the experimental results, it was found that the rehabilitation strategies 

derived by the rules, i.e., C5.0 method, are different from those suggested by NCDOT. After 

combining other technologies, e.g., AIRA method, and post-processing, seven rules are finally 

refined. Using the final rules, mapping for different types of pavement rehabilitation strategies is 

created using ArcGIS v. 9.3. When compared with the results from NCDOT, the quantity and 

location of the suggested road rehabilitations are different. The maximum error for the number of 

the suggested road rehabilitations is 9, and for the location is 13 out of 65 (see Table 5.7 and 

Table 5.8). 

 

Through this initial exploration on the decision tree applied in decision-making of pavement 

treatment strategies, it has been concluded that (Zhou et al., 2010a; 2010b; 2008): 
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(1) The use of data mining and knowledge discovery method for road maintenance and 

rehabilitation can largely increase the speed of decision-making, saving time and money, 

and shorten the project period. 

(2) The use of data mining and knowledge discovery method for pavement management can 

make a consistent decision for road-network treatment strategies, avoiding any human 

factors for decision-making of treatment. 

(3) A decision tree is used to organize the obtained knowledge from experts in a logical 

order. Thus, decision trees can determine the technically feasible rehabilitation strategies 

for each road segment at a reasonable manner.  

 

On the other hand, application of decision tree in decision-making of pavement treatment 

strategies also discovered many shortcomings as follows:  

(1) Post-processing: the DMKD method is not quite as smart as people imagine, since it is 

based on severity levels of individual distresses. Consequently, the induced decision rules 

for pavement treatment rehabilitation and maintenance are not completely correct. So, 

post-processing for verification is quite needed.  

(2) Many leaves and nodes, and decision rules: The current algorithms of decision tree 

induction produce many tree nodes and leaves, resulting in redundant individual decision 

rules. The organization of individual rules into a logically ordered decision rules is time-

consuming, sometime is incorrect. 

(3) Attribute selection: The current algorithms of decision tree induction, such as C4.5, 

produce a decision tree through selecting each of attribute data. This implies that the 

algorithm does not consider relationship among the attribute data, such as co-location, co-

occurrence, and cross-correlation. 

(4) Spatial data: The data set of pavement database includes geospatial data in addition to 

the attribute data. As known, these geospatial elements basically have three 

characteristics: attributes, geographical location, and topological relationship. The non-

spatial (attribute) data is basically the same as those used in any traditional database, e.g., 

condition of pavement, and history of construction and maintenance. Spatial data that link 

the geospatial elements to its geodetic position in a give map-based coordinate system, 

such as State Plane Coordinate System, to uniform all data sets in the same reference. 
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The topological data structure or topology relationship describes the spatial relationships 

between adjacent features, and uses x, y coordinates to identify the location of a 

particular point, line, or polygon. Using such data structures enforces planar 

relationships, and allows GIS specialists to discover relationships between data layers, to 

reduce artifacts from digitization, and to reduce the file size required for storing the 

topological data. Unfortunately, the two major characteristics of spatial data in current 

decision tree induction methods have not been considered. 
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6. IMPROVED EXPERIMENTS USING CO-LOCATION DECISION TREE 

MODELING 

 

6.1 Experimental Design 

 

6.1.1 Flowchart of Experimental Design 

The Co-location decision tree consists of two major steps, co-location mining and decision tree 

induction. Non-spatial data used for decision trees is the same as those used in Chapter 5, and 

maintenance and rehabilitation strategies are the same as those used in Chapter 5. A flowchart is 

depicted in Figure 6.1, in which the data selection, including spatial data, is the first step, and co-

location mining is critical. 

 
Figure 6.1: Flowchart of experimental design 

 

6.1.2 Data Selection 

As mentioned above, the provided pavement database is a geospatial rational database, i.e., an 

ArcGIS software compatible database. In this database, 89 attributes are collected including 

geospatial data (e.g., X, Y coordinates, central line, width of lane, etc.), pavement condition data 
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(e.g., cracking, rutting, etc.), traffic data (e.g., shoulder, lane number, etc.), and economic data 

(e.g., initial cost, total cost). The data was recorded in different columns. The 31st through 43rd 

columns recorded the pavement condition; the proposed activities are recorded in 42nd column, 

and spatial data are recorded in different columns. Traditionally, only non-spatial attribute data 

was considered for this purpose. However, as mentioned early, it is incorrect for decision-making 

without considering spatial data. Thus, two types of data sets, spatial data and non-spatial data, 

should be considered simultaneously for computer to automatically make decisions for pavement 

maintenance and rehabilitation. 

 

6.1.3 Non-Spatial Attribute Data Selection 

 

In order to keep a consistent comparison with the results in Chapter 5, this research would select 

eight pre-defined common types of distress, and ride quality, which were proposed by experts for 

experimental analysis to be conducted in this Chapter. The data sets are exactly the same as the 

ones considered in Chapter 5 (see Table 6.1), i.e., 

• Alligator Cracking,  

• Block Cracking,  

• Transverse Cracking,  

• Bleeding ,  

• Rutting,  

• Utility Cut Patching,  

• Patching Deterioration,  

• Raveling, and 

• Ride quality (RQ). 

 

Table 6.1: Eight common types of distresses plus ride quality for this study 

# Distress Rating 

1 

Alligator Cracking (four 

types of rates are given) 

Alligator None (AN) Percentages of 1 = 10%, 2 = 20%, 

3 = 30%, up to 10 = 100% 

indicate None, Light, Moderate, 

and Severe, respectively 

Alligator Light (AL) 

Alligator Moderate (AM) 

Alligator Severe (AS)  
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2 
Block/Transverse 

Cracking (BK) 

This indicates the overall condition of the section as follows: 

   •  N-None      • L-Light      • M-Moderate     • S-Severe 

3 Reflective Cracking (RF) The same rating as BK’s  

4 Rutting (RT) The same rating as BK’s 

5 Raveling (RV) The same rating as BK’s  

6 Bleeding (BL) The same rating as BK’s  

7 Patching (PA) The same rating as BK’s  

8 Utility Cut Patching The same rating as BK’s  

9 
Ride Quality (RQ) The condition is designated as follows: 

     • L−Average      • M−Slightly Rough     • S−Rough 

 

6.1.4 Spatial Attribute Data Selection 

 

The spatial data in the database includes X,Y coordinates, central line, width of lane, number of 

travel lanes, length of street segment, first-left, to-left, first-right, to-right, etc. This research only 

considers the following two spatial attribute data sets. The metadata of two spatial data are 

explained in Table 6.2  

 

Table 6.2: Selected spatial data for this study 

Attributes Explanation 

• X coordinate 

• Y coordinate 

Datum:  NAD_1983_StatePlane_North_Carolina_FIPS_3200_Feet 

Coordinate system name: GCS_North_American_1983 

Map Projection Name: Lambert Conformal Conic 

Standard Parallel: 34.333333 

Standard Parallel: 36.166667 

Longitude of Central Meridian: -79.000000 

Latitude of Projection Origin: 33.750000 

False Easting: 2000000.002617 

False Northing: 0.000000 

Length GIS length of street segment (in feet) 

 



~ 116 ~ 
 

 

6.2 Maintenance and Rehabilitation (M&R) Strategies 

 

Also, in order to keep the consistent comparison with the results derived in Chapter 5, seven 

potential rehabilitation and maintenance strategies proposed by the North Carolina Department 

of Transportation (NCDOT) (see Table 6.3) are selected. These treatments include crack 

treatment, surface treatment, and nonstructural overlay (one- and two-course overlay), which 

correspond to the cracking, surface defect problems, and structural problems, respectively. 

 

This Chapter will test how the proposed co-location decision tree method described in Chapter 4 

can be used to select a M&R strategy for a pavement segment, which is traditionally dependent 

on the comprehensive evaluation of all distresses by experts. A comparison analysis with respect 

to those proposed by experts at NCDOT will be conducted. 

  

Table 6.3: Potential Rehabilitation Strategies 

# Rehabilitation Strategies 

0 Nothing 

1 Crack Pouring (CP) 

2 Full-Depth Patch (FDP) 

3 1" Plant Mix Resurfacing (PM1) 

4 2" Plant Mix Resurfacing (PM2) 

5 Skin Patch (SKP) 

6 Short Overlay (SO) 

 

6.3 Induction of Co-Location Mining Rules 

 

6.3.1 Determination of Candidate Co-Locations 

As proposed in Chapter 4, the candidate instances with co-location relationship will be 

determined using the spatial neighborhood criterion with a given threshold, θD . In this research, 

the spatial neighborhoods for all instances are computed by: 
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Where X amd Y is the spatial data of the pavement database. With the given database at a 

dimension of 1285 instances, the spatial distances of any two instances produce a matrix with the 

dimension of 1285 x 1285, i.e.,  
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With the given database, a statistic analysis, including average and standard deviation, for the 

length of street segment is conducted. It is found that the length with approximately 25000 feet is 

appropriate as threshold. Thus, the threshold of spatial distance of two instances is selected 

25000=θD  (feet). Combining the generated spatial neighborhood matrix (Eq. 6.2) and 

threshold, the elements of spatial neighborhood matrix, 
12851285×

Dist , is re-calculated by: 
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With the above filtering, the potential of co-location instances can be determined by the spatial 

neighborhood matrix, which is a spare matrix. 

 

6.3.2 Determination of Table Instances of Candidate Co-Locations 

 

6.3.2.1 Determination of Distinct Events 

In addition to the above geospatial distance constraint, another constraint condition for the 

determination of candidate co-location is the distinct event-type constraint. This implies that if 

two instances are co-located, they must be distinct event. The constraint condition of distinct 

event is mathematically expressed by: 
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where ki vx − represents the Euclidean distance between if  and kv ;  { }kvvvV ,,, 21 L=  is a set of 

corresponding clusters center of attributes, { }kaaa ,,, 21 L ; Γ  is a squared error clustering 

criterion; and K is number of event. Kkvk L,2 ,1, =∀ can be calculated by: 
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So, the distinct event can be determined by: 
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where θΓ  is threshold. If the iΓ  is greater than a given threshold, i-th instance is assumed the 

distinct event.  

 

For the given database, only one attribute, ride quality (RQ) is selected for evaluating the distinct 

event, with which the clusters center of attributes of ride quality, v  is 85, which is calculated by 

Eq. 6.5.  

 

Eq. 6.4 can be rewritten by:
 

     ∑
=

−=Γ
K

i
ii f

1

2)85(                               (6.7) 

With Eq. 6.7, the values of iΓ for 1285 instances is depicted Figure 6.2. Further, the distinct 

events can be determined by Eq. 6.6. 

 
Figure 6.2: Determination of distinct events using ride quality (RQ) 
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The computational process of the above two constrain conditions can be illustrated by Table 6.4. 

For example, for a given distinct event, PM1, the geosptial distance criterion first produces 11 

instances, which are co-located with PM1. With the second criterion condition of distinct event, 

only 7 instances are co-located with PM1 event, since the other 4 instances have no records of 

rating of ride quality. Figure 6.3 depicts the distributions from the original 1285 instances 

(Figure 6.3a) to 946 instances (Figure 6.3b) after two constraint conditions are used. Finally, a 

total of 946 distinct events are found. 

 

Table 6.4: The process of co-location mining using both the geospatial distance criterion and 

distinct event criterion  

# X Y Activity Rating

1 2049671.1 691641.5 PM1 69 

2 2049518.9 691461.1  98 

3 2049600.3 691368.6  90 

4 2049673.2 690247.2 CP 68 

5 2049643.1 697413.1  100 

6 2049600.3 691368.6 90 

7 2049646.1 690634.4  88 

8 2049632.7 702497.6   

9 2049615.2 699440.8   

10 2049660.7 693303.0   

11 2049652.9 692671.9   
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(a) 

 
(b) 

Figure 6.3: Spatial distributions of the 1285 original instances (a) and 946 instances (b) after co-

location algorithm 

 

6.3.2.2 Co-Location Mining for Individual Rehabilitation and Maintenance Strategy 

As mentioned earlier, seven potential rehabilitation and maintenance strategies have been 

proposed by the North Carolina Department of Transportation (NCDOT). In order to find the co-
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location events for each R&M strategy, we take each strategy as a distinct-event, and then find 

the co-location using co-location mining algorithm, which has been described above, 

respectively. For each of R&M treatment strategy, the results of co-locating mining are as 

follows. 

 

A) Crack Pouring (CP) 

The ITRC at the NCDOT indicated three crack pouring (CP) treatment strategies. Two of them 

are chosen to illustrate the results of the proposed co-location mining method. As seen in Figure 

6.4a and Figure 6.4b, 5 instances are clustered with the first CP event (Figure 6.4a), and three 

instances are clustered with another CP event (Figure 6.4b). Other events are not clustered due to 

far distances. 

 

 
Figure 6.4: Spatial distributions of CP instances after initial determination of co-location 

algorithm 

 

B) Full-Depth Patch (FDP) 

The ITRC at the NCDOT indicated 34 full-depth patch (FDP) treatment strategies. Four of them 

are chosen to illustrate the results of the proposed co-location mining algorithm. As seen in 

Figure 6.5a and Figure 6.5d, no instances are clustered around the two FDP events, but there are 

clusters in Figure 6.5b and 6.5c for the other two FDP events. 
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Figure 6.5: Spatial distributions of FDP instances after initial determination of co-location 

algorithm 

 

C) 1" Plant Mix Resurfacing (PM1) 

The ITRC at the NCDOT indicate six 1" plant mix (PM1) treatment strategies. All of them are 

chosen to illustrate the results of the proposed co-location mining algorithm. As seen from 

Figure 6.6a, Figure 6.6c, Figure 6.6d and Figure 6.6f, no instances are clustered with the four 

PM1 events, but there are clusters for the two PM1 events in Figure 6.6b and 6.5e. 
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Figure 6.6: Spatial distributions of PM1 instances after initial determination of co-location 

algorithm 

 

D) 2" Plant Mix Resurfacing (PM2) 

The ITRC at the NCDOT indicated three 2" plant mix (PM2) treatment strategies. All of them 

are chosen to illustrate the results of the proposed co-location mining algorithm on the basis of 

event of PM2 treatment strategy. As seen in Figure 6.7a, and Figure 6.7b, no instances are 

clustered with the two PM2 events, but there is a cluster for another PM2 event in Figure 6.7c. 
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Figure 6.7: Spatial distributions of PM2 instances after initial determination of co-location 

algorithm 

 

E) Skin Patch (SKP) 

The ITRC at the NCDOT indicated 56 skin patch (SKP) treatment strategies. 9 representatives of 

them are chosen to illustrate the results of the proposed co-location mining method with each 

SKP treatment strategy. As seen in Figure 6.8a through Figure 6.8d, Figure 6.8f, and Figure 6.8g 

through Figure 6.8i, several candidate events are clustered surrounding the individual SKP 

treatment event, but no candidate event is clustered surrounding one SKP treatment event in 

Figure 6.8e. 
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Figure 6.8: Spatial distributions of SKP instances after initial determination of co-location 

algorithm 
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F) Short Overlay (SO) 

The ITRC at the NCDOT indicated three short overlay (SO) treatment strategies. All of them are 

chosen to illustrate the results of the proposed co-location mining algorithm for each SO 

treatment strategy. As seen in Figure 6.9a and Figure 6.9b, there are clusters surrounding the SO 

treatment, but no cluster surrounding another SO treatment in Figure 6.9c. 

 

 
Figure 6.9: Spatial distributions of SO instances after initial determination of co-location 

algorithm 

 

6.3.2.3 Pruning 

The above generated candidates of co-location events for each treatment strategy may include 

incorrect determination. The purpose of pruning is to remove the non-prevalent co-locations 

from the candidate prevalent co-location set so that the further co-location mining rule induction 

is reliable. To this end, cross-correlation criterion of spatial attributes is applied to eliminate 

those non-prevalent co-location instances. The computation of cross-correlation is modeled in 

Eq. 4.5, with which we have co-correlation matrix as follows: 
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With observation to the coefficient of cross-correlation matrix, cross-correlation coefficients 

threshold is set at 0.95, i.e.,  

                  ∑
×

⊆
⎩
⎨
⎧

>
≤−

=
946946

,
ji,

ji,
,                 

95.0d if                       correlated
95.0p if             correlatednon

jiji dp            (6.9) 

With the above given threshold, all of candidates prevalent co-location events are kept without 

pruning. 

 

6.3.3 Generating Co-location Rules 

Accompanying with the generation of co-location set, the co-location rules with the user defined 

constrain conditions (threshold) from the prevalent co-locations and their table instances can be 

generated (see Figure 6.10), i.e., 

                             

 
Figure 6.10: Generated co-location rules 

 

6.4 Experiment of Co-Location Decision Tree (CL-DT) Induction 

 

6.4.1 Basic Steps of CL-DT Induction 

With the above generated prevalent co-location events, the CTree for Excel tool is applied to 

create the decision tree. The steps include (Zhou et al., 2010a; 2010b): 

 

Step 1: Load Pavement Database 

As described in Chapter 5.2 and Chapter 5.3, pavement database has to be first loaded into the 

software. In this experiment, the loaded data is a prevalent co-location database, i.e., they have 

IF ( Dist_ij <= 25000 AND Gramma <=85 AND cross-correlation<=0.95 ) Co-location 
ELSE Non_Co-location 
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been “pre-processed” using co-location mining algorithm. Similarly, the distress data (non-

spatial data) in the database, such as N, L, M and S, will be quantified into 100, 75, 50, and 25.  

    

Step 2: Data Inputs 

Similarly, some parameters to optimize the processes of decision tree generation will be input. 

These parameters include: 

(1) Adjust factor of categorical predictor: While growing the tree, child nodes are created by 

splitting parent nodes. Which is a predictor to use for this split is decided by certain 

criterion. Because this criterion has an inherent bias towards choosing predictors with 

more categories, thus, input of adjust factor will be able to adjust this bias. 

(2) Minimum node size criterion: While growing the tree, whether to stop splitting a node 

and declare the node as a leaf node will be determined by some criteria that we need 

choose. These criteria are the same as those adopted in Chapter 5, i.e.: 

a. Minimum node size: A valid minimum node size is between 0 and 100. 

b. Maximum purity: An effective value is between 0 and 100. Stop splitting a node if 

its purity is 95% or more. Also, stop splitting a node if  number of  records in that 

node is 1% or less of total number of records. 

c. Maximum depth: a valid maximum depth is greater than 1 and less than 20. Stop 

splitting a node if its depth is 6 or more. 

(3) Pruning option: This option allows us to decide whether or not to prune the tree when 

tree is growing, which can help us to study the effect of pruning.    

  

(4) Training and test data: In this research, a subset of data is used to build the model and 

the rest to study the performance of the model. Also, a random selection of the test set at 

a ratio of 10% is adopted. 

 

6.4.2 Experimental Results 

 

A) Induced Decision Tree 
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With the above data input, a decision tree is generated. The corresponding information for 

decision tree, including misclassified data percentage, time taken, total number of nodes, number 

of leaf nodes, and number of levels is listed in Table 6.5. 

 

Table 6.5: Information of the induced decision tree using CL-DT algorithm 

Tree Information % Misclassified Time Taken (Second) 

Total Number of Nodes 22 Training Data 21.7% Data Processing 1 

Number of Leaf Nodes 14 Test Data 15.3% Tree Growing 2 

Number of Levels 13   Tree Pruning 1 

    Tree Drawing 5 

    Classification using final tree 1 

    Rule Generation 19 

 

B) Induced Decision Rules 

After the decision tree is induced, the tree is further processed to induce decision rules. The 

decision rules are directly induced in this research by forming a conjunct of every test that occurs 

on a path between the root node and a leaf node of a tree, i.e., top-to-bottom mode. Thus, the 

decision rules are first induced by ordering all the classifications, and then using a fixed 

sequence to combine them together. After the above processing, 12 rules are generated. Finally 6 

rules are induced and depicted in Figure 6.11. The quality of the individual rules is measured by 

Support, Confidence, and Capture (see Table 6.6).  

Table 6.6: Support, confidence and capture for each generated rules 

Rule ID Classes Support Confidence Capture 

0 NO 100.0% 89.2% 92.2% 

1 CP 80.0% 95.0% 79.9% 

2 SKP 79.2% 83.6% 83.8% 

3 FDP 83.2% 84.4% 77.7% 

4 PM2 83.5% 94.1% 79.2% 

5 PM1 89.0% 88.8% 90.2% 

6 SO 83.3% 76.3% 89.5% 
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Figure 6.11: The final rules after verification and post-processing 

 

6.5 Mapping of CL-DT-based Decision of M&R 

 

With the rules induced above, the M&R strategies can be predicted and decided for each road 

segment in the database using the rules. In other words, the operation using the co-location 

decision tree only occurs in the database, and thus the results cannot be visualized and displayed 

on either map or screen. Thus, this research employed ArcGIS software in combination with the 

above induced results to create the map of decision-making for maintenance and rehabilitation. 

The basic operation is the same as that described in Chapter 5, i.e., taking the above each rule as 

a logic query in ArcGIS software, and then queried results are displayed in the ArcGIS layout 

map. In order to compare the results, the rehabilitations suggested by engineers at the ITRE of 

North Carolina State University are superimposed with the decisions made at this research. As 

Rule 1: 
IF (AN" >=5 AND "AS_" =0 AND "BK" ='50' AND "RF" ='100' AND "RT"='75' OR  "RT"='100' AND "RV"='100' AND 

"RQ"='75' AND "RATING" > '73' ) 
 THEN CP 
 
Rule 2: 

IF ("AN" >=3 AND "AS_" >=1 AND "BK" ='100' AND "RF" ='100' AND "RV"='100' OR "RV"='75' AND "RQ"='75' 
OR "RQ"='50' AND "RATING" >= '43')  
THEN FDP 
 

Rule 3: 
IF ("AN" >=2 AND "AN" <= 6 AND "AS_" >=0  AND "BK" ='100' AND "RF" ='100' AND "RV"='100' AND "RQ"='75' 

AND "RATING" >= '45' AND "RATING" <= '65'). 
THEN PM1 

 
Rule 4: 

IF ("AN" >=2 AND "AN" <= 6 AND "AS_" >=0  AND "BK" ='100' AND "RF" ='100' AND "RV"='100' AND "RQ"='75' 
AND "RATING" >=1 '1' AND "RATING" < '45') 

 THEN PM2 
 
Rule 5: 

IF "AN" >3 AND "AM" >1 AND "AS_" =0  AND "RF"='100'  AND "RV"='100' OR "RV"='75' AND "RQ"='75' AND 
"RATING" >= '63' AND "RATING" < '90') 

THEN SKP 
 
Rule 6: 

IF "AN" >=6 AND "AM" =0 AND "AS_" =0  AND "BK"='100' AND "RF"='100'  AND "RV"='100' OR "RV"='75' AND 
"RQ"='75' AND "RATING" >= '60' AND "RATING" <= '75') 

THEN SO 
 
Rule 7: 

IF "AN" >=9 AND "RATING" <= '100') 
THEN Nothing 
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seen from Figure 6.12 through Figure 6.17, each rehabilitation strategy derived in this research 

can be located with its geographical coordinates, and visualized with its spatial, non-spatial data 

and different colors. 

 

   
Figure 6.12: Comparison analysis of the CP decision of road rehabilitation made by DT 

(described in Chapter 5) and the proposed CL-DT (described in Chapter 6), both of which are 

compared to the CP decision made (provided) by the ITRC at the NCDOT 
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Figure 6.13: Comparison analysis of the FDP decision of road rehabilitation made by DT 

(described in Chapter 5) and the proposed CL-DT (described in Chapter 6), both of which are 

compared to the FDP decision made (provided) by the ITRC at the NCDOT 
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Figure 6.14: Comparison analysis of the PM1 decision of road rehabilitation made by DT 

(described in Chapter 5) and the proposed CL-DT (described in Chapter 6), both of which are 

compared to the PM1 decision made (provided) by the ITRC at the NCDOT 
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Figure 6.15: Comparison analysis of the PM2 decision of road rehabilitation made by DT 

(described in Chapter 5) and the proposed CL-DT (described in Chapter 6), both of which are 

compared to the PM2 decision made (provided) by the ITRC at the NCDOT 
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Figure 6.16: Comparison analysis of the SKP decision of road rehabilitation made by DT 

(described in Chapter 5) and the proposed CL-DT (described in Chapter 6), both of which are 

compared to the SKP decision made (provided) by the ITRC at the NCDOT 
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Figure 6.17: Comparison analysis of the SO decision of road rehabilitation made by DT 

(described in Chapter 5) and the proposed CL-DT (described in Chapter 6), both of which are 

compared to the SO decision made (provided) by the ITRC at the NCDOT 
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6.6 Comparison Analysis and Discussion 

 

6.6.1 Comparison Analysis for the Induced Decision Tree Parameter  

The proposed co-location decision tree (CL-DT) method should have many advantages over the 

traditional decision tree method in the effectiveness and accuracy of decision tree (decision 

rules) generation when applied in the decision-making of road maintenance and repair. In order 

to validate this conclusion, we compare the tree induction information for the two methods and 

the results are listed in Table 6.7. As seen in Table 6.7, the total number of nodes, number of leaf 

nodes, and number of levels decreases 51%, 62% and 35%, respectively. Thus, computational 

time will largely decrease. Accuracy of decision tree increases. 

 

Table 6.7: Comparison of tree information parameters between DT and CL-DT algorithm 

Tree Information Methods Decreasing 

percentage DT CL-DT 

Total Number of Nodes 72 35 51% 

Number of Leaf Nodes 37 14 62% 

Number of Levels 20 13 35% 

 

6.6.2 Comparison Analysis for the Misclassified Percentage 

Also, we check the misclassified percentage, and the results are listed in Table 6.8. As seen in 

Table 6.8, the misclassified percentage for the training data decreases from 61.2% to 9.7%. This 

is probably caused by the fact that we used co-location mining technology to delete any non-

prevalent candidate co-location instances. As a result, the training data contributed to the 

decision tree induction.  

 

Table 6.8: Comparison of misclassified percentage between DT and CL-DT algorithm 

Misclassified 

percentage 

Methods 

DT CL-DT 

Training Data 61.2% 9.7% 

Test Data 60.0% 8.3% 
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6.6.3 Comparison Analysis for the Computational Time  

 

Theoretically, the proposed CL-DT method should save much computational time, since the 

“pre-processing” method uses co-location mining technology, which deletes the non-prevalent 

co-location events. In order to verify this conclusion, we retrieved the computational time of data 

processing, tree growing, tree pruning, tree drawing, classification using final tree, and rule 

generation from the computer for the two methods. The results are listed in Table 6.9. As 

observed in Table 6.9, the time taken for the tree growing, tree drawing and rule generation is 

largely decreased. The time taken for rule generation decreases by 20%.  

 

Table 6.9: Comparison of the computation time between DT and CL-DT algorithm 

Items 
Time taken for two methods (second) 

% decreasing 
DT CL-DT 

Data Processing 1 1 Rounded to 1" 

Tree Growing 6 2 66% 

Tree Pruning 1 1 Rounded to 1" 

Tree Drawing 10 4 60% 

Classification using final tree 1 1 Rounded to 1" 

Rule Generation 35 15 20% 

 

6.6.4 Comparison Analysis of Support, Confidence and Capture for Rule Induction 

 

Another comparison analysis is for support, confidence and capture of training data when 

inducing the decision rules. The results for the two methods are listed in Table 6.10. As observed 

in Table 6.10, the percentage of support, confidence and capture for training data in FDP 

treatment strategy increase from 71.6%, 55.6% and 66.2% to 83.2% , 84.4% and 77.7%, 

respectively. This means that most of training data actively contributes the decision rule 

induction, which demonstrates that the co-location mining method can largely increase the 

effectiveness of decision tree/rules induction. 
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Table 6.10: Comparison for support, confidence and capture for two methods in each generated 

rules 

Rule ID Strategies 
Support Confidence Capture 

DT CL-DT DT CL-DT DT CL-DT 

0 NO 100.0% 100.0% 86.7% 89.2% 93.0% 92.2% 

1 CP 60.7% 80.0% 100.0% 95.0% 75.6% 79.9% 

2 SKP 60.5% 79.2% 66.7% 83.6% 82.5% 83.8% 

3 FDP 71.6% 83.2% 55.6% 84.4% 66.2% 77.7% 

4 PM2 80.2% 83.5% 100.0% 94.1% 73.1% 79.2% 

5 PM1 81.3% 89.0% 71.4% 88.8% 85.3% 90.2% 

6 SO 81.6% 83.3% 66.7% 76.3% 73.5% 89.5% 

 

 

6.6.5 Verification of the Quantity of Each Treatment Strategy  

 

As mentioned earlier, the ITRC at the NCDOT has indicated quantity of six treatment strategies 

at different road segments in the study area (four counties at North Carolina). Theoretically, the 

proposed CL-DT method should find the same quantity and location of each treatment strategy 

as those proposed by the ITRC at the NCDOT, since the proposed CL-DT applied the expert’s 

knowledge from the ITRC. In order to verify this result, Table 6.11 lists the comparison for each 

treatment strategy proposed by ITRC at the NCDOT, and discovered by the proposed CL-DT 

method. Meanwhile, the quantity of each treatment strategy discovered by DL method (Zhou et 

al., 2010a) is also listed in Table 6.11. 

 

As observed in Table 6.11, the quantity discovered by CL-DT is very close to those proposed by 

the ITRC for each treatment strategy. Thus, the traditional decision tree method mines 56 skin 

patch (SKP) strategies, which is 9 differences from those proposed by the ITRC, while the CL-

DT method mined 62 SKP treatments, which is only 3 differences from those proposed by the 

ITRC. 
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Table 6.11: Quantity comparison of different treatment strategies made by three methods 

ID Proposed Treatment Strategies Methods Quantity Differences in quantity 

referred to NCDOT 

1 Crack Pouring (CP) 

NCDOT 3  

DT 3 0 

CL-DT 3 0 

2 Full-Depth Patch (FDP) 

NCDOT 34  

DT 29 5 

CL-DT 32 2 

3 1" Plant Mix Resurfacing (PM1) 

NCDOT 6  

DT 7 1 

CL-DT 6 0 

4 2" Plant Mix Resurfacing (PM2) 

NCDOT 3  

DT 4 1 

CL-DT 5 2 

5 Skin Patch (SKP) 

NCDOT 65  

DT 56 9 

CL-DT 62 3 

6 Short Overlay (SO) 

NCDOT 3  

DT 5 2 

CL-DT 4 1 

 

 

6.6.6 Verification of the Location of Each Treatment Strategy  

 

Also, the ITRC at the NCDOT has indicated locations of 6 treatment strategies at different road 

segments in the study area (four counties at North Carolina). Theoretically, the proposed CL-DT 

method should find the same location for each treatment strategy as those proposed by the ITRC 

at the NCDOT, since the proposed CL-DT applied the expert’s knowledge (distress for each road 

segment) from the ITRC. In order to verify this conclusion, Table 6.12 lists the comparison for 

each treatment strategy proposed by ITRC at the NCDOT, and discovered by the proposed CL-



~ 141 ~ 
 

DT method. Meanwhile, the locations of each treatment strategy discovered by DL method 

(Zhou et al., 2010a) are also listed in Table 6.12. 

 

As observed in Table 6.12, the location differences referred to those proposed by CL-DT for skin 

patch (SKP) strategies is significant. In other words, 13 road segments for SKP strategy are 

different from those proposed by the traditional decision tree method, but only 3 differences by 

CL-DT method, when referred to those by the ITRC (also see Figure 6.16a and 6.16b).  

 

Table 6.12: Location comparison of different treatment strategies made by three methods 

ID Proposed Treatment 

Strategies 

From Number Difference in location 

referred to NDCOT 

1 

Crack Pouring (CP) 

NCDOT 3  

DT 3 1 

CL-DT 3 1 

2 
Full-Depth Patch 

(FDP) 

NCDOT 34  

DT 29 3 

CL-DT 32 1 

3 
1" Plant Mix 

Resurfacing (PM1) 

NCDOT 6  

DT 7 1 

CL-DT 6 0 

4 
2" Plant Mix 

Resurfacing (PM2) 

NCDOT 3  

DT 4 1 

CL-DT 5 1 

5 

Skin Patch (SKP) 

NCDOT 65  

DT 56 13 

CL-DT 62 3 

6 

Short Overlay (SO) 

NCDOT 3  

DT 5 2 

CL-DT 4 1 

 

 



~ 142 ~ 
 

6.7 Discussion and Remarks for Co-Location Decision Tree Algorithm 

 

With the existing shortcomings of the decision tree induction method discovered in Chapter 5, 

this chapter presented the theory and algorithm of a new decision tree induction, called co-

location decision tree (CL-DT). The main purpose of the proposed algorithm is to utilize the 

characteristics of attribute co-location (co-occurrence) to find the co-occurrence rules. These 

rules are used to enhance the traditional decision tree induction algorithm.  

 

With the above experimental results and comparison analysis, it can be concluded that the 

proposed CL-DT algorithm can better make a decision for pavement treatment maintenance and 

rehabilitation when compared to the traditional decision tree method (e.g., C5.0 algorithm), since 

the new proposed method considers the co-occurrence distinct events. This Chapter especially 

makes a comparison analysis for the induced decision tree parameter, the misclassified 

percentage, the computational time taken, support, confidence and capture for rule induction. 

This chapter also verified the quantity and location of each treatment strategy referred to those 

proposed by the ITRC at the NCDOT. 

 

With the above experimental results and comparison analyses, it can be concluded that: 

(1) The proposed CL-DT method has many advantages over the traditional decision tree 

method in the effectiveness and accuracy of decision tree (decision rules) generation, 

when applied in the decision-making of road maintenance and repair. With comparing the 

analyses of two methods, DT and CL-DT, it is concluded that the total number of nodes, 

number of leaf nodes, and number of levels decrease 51%, 62% and 35%, respectively. 

(2) With comparison analysis of two methods, DT and CL-DT, it is concluded that the 

misclassified percentage for the training data decrease from 61.2% to 9.7%, which 

demonstrated that the training data can be fully played roles in contribution to decision 

tree induction.  

(3) With the comparison of the two methods, DT and CL-DT, it is concluded that the time 

taken by data processing, tree growing, tree pruning, tree drawing, classification using 

final tree, and rule generation is largely decreased, which can achieve 20% for rule 

generation.  
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(4) With the comparison of two methods, it is concluded that the percentage of support, 

confidence and capture for the FDP treatment strategy increase from 71.6%, 55.6% and 

66.2% to 83.2% , 84.4% and 77.7%, respectively. This means that most of training data 

contributes the decision rule induction. 

(5) With comparison of the quantity of six treatment strategies proposed by the ITRC at 

different road segments in the study area and by CL-DT method, it is concluded that that 

the quantity discovered by CL-DT is much close to those proposed by the ITRC for each 

treatment strategy. For example, 56 skin patch (SKP) strategies were mined by the 

traditional decision tree method, which is 9 differences from those proposed by the ITRC, 

while only 3 differences for the proposed CL-DT method when compared to those 

proposed by the ITRC. 

(6) With comparison of the locations of six treatment strategies at different road segments in 

the study area proposed by CL-DT method and by the ITRC at the NCDOT, it is found 

that there are 13 road segments for SKP strategy different from those proposed by the 

traditional decision tree method, but only 3 differences from CL-DT method, when 

compared to those by the ITRC.  

 

References for Chapter 6 

Zhou, G., and L. Wang (2010a). GIS and Data Mining to enhance pavement rehabilitation 
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pp. 332-341. 

Zhou, G., L. Wang (2010b). Co-location decision tree for enhancing decision-making of 

pavement maintenance and rehabilitation, submitted to Transportation Research Part C, 

Revised November 2010. 
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7. CONCLUSIONS 

 

A) Main Contributions 

The main contribution of this research is the development of the theory and algorithm of a new 

decision tree induction algorithm, called co-location-based decision tree (CL-DT). This idea 

stems from the fact that the shortcomings of the existing traditional decision tree induction 

algorithm have been discovered by Chapter 5 when applied in the decision-making of pavement 

treatment strategies. The proposed algorithm utilizes the co-location (co-occurrence) 

characteristics of spatial attribute data of the pavement database, i.e., one distinct event 

occurrence can associate two or multiple attribute value changes simultaneously in spatial and 

temporal domains. That is, 

• In the spatial domains: This implies that the presence of two or more spatial objects is at 

the same location or at significantly close distances from each other. Co-location patterns 

indicate interesting associations among spatial data objects with respect to their non-

spatial attributes. 

• In the temporal domains: The event occurrence should be distinct, thus is called distinct 

event-type.  

 

This research dissertation has given the detailed descriptions of algorithms and steps of realizing 

the proposed algorithm. First, the research gave the detailed co-location mining algorithm, 

including spatial attribute selection in pavement database, determination of candidate co-

locations, determination of table instances of candidate co-locations, pruning the non-prevalent 

co-locations, and co-location rule induction. In this step, a hybrid constraint, i.e., spatial 

geometric distance constraint condition and distinct event-type constrain condition is developed. 

The spatial geometric distance constraint condition is a neighborhood relationship-based spatial 

joining of table instances of many prevalent co-locations with one prevalent co-location; and the 

distinct event-type constraint condition is a Euclidean distance between a set of attributes and its 

corresponding clusters center of attributes. This research dissertation also developed the spatial 

features pruning method using the multi-resolution pruning criterion, i.e., the cross-correlation 
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criterion of spatial features is used to remove the non-prevalent co-locations from the candidate 

prevalent co-location set with a given threshold.  

  

This research dissertation is especially focused on the development of the co-location decision 

tree (CL-DT) algorithm, which includes the attribute (non-spatial) data selection of the pavement 

database, co-location algorithm modeling, node merging criteria, and co-location decision tree 

induction. In this step, co-location mining rules are used to guide the decision tree generation and 

induce decision rules.  

 

For each step, this research dissertation gave the detailed flowchart or outline, such as flowchart 

of co-location decision tree induction, co-location/co-occurrence decision tree algorithm, co-

location/co-occurrence decision tree (CL-DT) algorithm, and outline of steps of SFS algorithm. 

Finally, this research used a pavement database covering four counties, which are provided by 

NCDOT, to verify and test the proposed method. The comparison analyses of different 

rehabilitation treatment decisions proposed by ITRC at the NCDOT, by the traditional decision 

tree induction algorithm and by the proposed new method were conducted. Some conclusions are 

drawn up and some findings are found (see the descriptions below). 

 

B) Conclusions through This Research 

Through this research, the following conclusions can be drawn.  

 

(1) Advantages of applying traditional DT method for pavement M&R strategy decision-making 

are: 

a) The DT technology can make a consistent decision for a pavement M&R strategy under 

the same road conditions, i.e., less interference from human factors.  

b) The DT technology can greatly increase the speed of decision-making because the 

technology automatically generates decision-tree and decision rules if the expert 

knowledge is given, thus, saving time and cost of pavement management.  

c) Integration of the DT and GIS can provide the PMS with the capabilities of graphically 

displaying treatment decisions; visualize the attribute and non-attribute data, and link data 

and information to the geographical coordinates.  
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(2) Disadvantages of applying traditional DT method for pavement M&R strategy decision-

making are  

a) Traditional DT induction methods are not as quite intelligent as people’s expectation. In 

other words, the DT inducted by DMKD are not completely exact, thus, the post-

processing and refinement are necessary. 

b) Traditional DT induction methods for pavement M&R strategy decision-making only 

used the non-spatial attribute data. It has been demonstrated that the spatial data is very 

useful for enhancing decision-making of pavement treatment strategies.   

c) A DT induction method is based on the knowledge acquired from pavement management 

engineer for strategy selection. A decision tree is used to organize the obtained 

knowledge in a logical order. Thus, decision trees can determine the technically feasible 

rehabilitation strategies for each road segment.  

 

(3) Significances of the proposed CL-DT method for pavement M&R strategy decision-making 

Since the DT induction methods are based on the knowledge acquired from pavement 

management engineer for rehabilitation strategy selection, different decision-trees can 

therefore be built if the knowledge changes. For example, the decision-trees were based on 

severity levels of individual distresses in this research. If the pavement layer thickness, 

and/or material type, is taken as knowledge, these decision-trees are different. This means the 

decision rules generated by different knowledge are different. Thus, successful 

implementation of this proposed CL-DT method is able to develop an “optimal” decision tree 

(decision rules), which greatly enhance the decision-making in pavement treatment 

strategies.  

 

This research dissertation has verified the advantages through the experimental results and 

several comparison analyses including the induced decision tree parameters, the misclassified 

percentage, the computational time taken, support, confidence and capture for rule induction, 

the quantity and location of each treatment strategy. It can be concluded that: 

a) The proposed CL-DT algorithm can make a good decision for pavement M&R 

strategy when compared to the traditional decision tree method (e.g., C5.0 algorithm); 
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since the new proposed method considers the co-location (co-occurrence) distinct 

events of spatial data in the pavement database.  

b) The proposed CL-DT method has higher accuracy and effectiveness than the 

traditional decision tree method does. With comparison of the tree induction 

information, the total number of nodes, number of leaf nodes, and number of levels 

decrease to 51%, 62% and 35%, respectively. 

c) With comparison of the misclassified percentage, it is found that the misclassified 

percentage for the training data using CL-DT method decreased from 61.2% to 9.7%. 

As a result, the training data can play roles in contribution to decision tree induction.  

d) With the comparison of the computational time taken, it is concluded that the 

computational time taken for the tree growing, tree drawing and rule generation is 

largely decreased for CL-DT method, especially, computational time taken for the 

rule generation decreased to 20%.  

e) The percentages of support, confidence and capture of the FDP treatment strategy 

increased from 71.6%, 55.6% and 66.2% to 83.2%, 84.4% and 77.7%, respectively. 

This means that most of training data actively contributes the decision rule induction. 

f) With comparison of the quantity of six treatment strategies proposed by the ITRC and 

by CL-DT method at different road segments in the study area, it is concluded that the 

quantity discovered by CL-DT is much close to those proposed by the ITRC for each 

treatment strategy. For example, the traditional DT method mines 56 skin patch 

(SKP) strategies, which is 9 differences from those proposed by the ITRC; while the 

CL-DT method mined 62 SKP treatments, within which only 3 treatments are 

different from those proposed by the ITRC. 

g) With comparison of the locations of six treatment strategies proposed by CL-DT 

method and by the ITRC at different road segments in the study area, it is concluded 

that 13 road segments for SKP strategy are different from those proposed by the 

traditional DT method, but only 3 differences by CL-DT method.  
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8.  FUTURE WORK 

  

With the initial effort in and obtained accomplishments from this research, future work may 

place the emphases on the following fields: 

 

A) Assessment of Sensitivity of various Attributes 

The decision-making of treatment strategies for a given pavement database in this research 

selected eight attributes and three geometric data. How to choose an attribute is a critical issue 

because a most appropriate choosing will result in partitioning the training set in an optimized 

manner. When a decision node relative to this attribute is created after a test, this node becomes 

the root of the decision tree. This means that the sensitivity of selecting various attributes is 

significant on decision making.  Thus, the future research work is recommended on the Attribute 

selection. A rigorous model should be developed to optimally select attribute data and geometric 

data, i.e., considering the relationship such as co-location, co-occurrence, and cross-correlation. 

In addition, when selecting an attribute, the attribute selection measure should be developed as 

well, such as the existing measure of “information gain”. 

 

B) Pavement knowledge discovery using diverse data types 

This research only uses ride quality (RQ) data as a control for distinct event occurrence. In fact, 

the pavement management treatment strategies used other distress data, such as  alligator 

cracking (alligator none (AN), alligator light (AL), alligator moderate (AM), and alligator severe 

(AS) ), block/transverse cracking (BK), reflective cracking (RF), rutting (RT), raveling (RV), 

bleeding (BL), patching (PA), and utility cut patching. Thus, future work should consider all of 

these distress data for distinct-event types. 

 

On the other hand, the research in this dissertation only considers geographic coordinates of 

event, i.e., XY coordinates. Other spatial data such as pavement width of the section measured in 

feet from edge of pavement to edge of pavement, and the number of through travel lanes that 

exist on the section, etc. should be considered. Thus, the future work will consider these spatial 

data simultaneously. 
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C) Better spatio-temporal representations in geographic knowledge discovery 

The current knowledge discovery (GKD) techniques for pavement treatment strategies generally 

use very simple representations of distress data and spatial relationships. The future work in the 

pavement decision tree techniques should recognize more complex geographic objects (lines and 

polygons) and relationships (non-Euclidean distances, direction, connectivity and interaction 

through attributed geographic space such as terrain). On the other hand, the time dimension will 

also need to be more fully integrated into these geographic representations and relationships. 

 

D) User interfaces for geographic knowledge discover 

The research in this dissertation has combined GIS, decision-tree, co-location (co-occurrence). 

However, the data mining and knowledge discovery needs to move beyond technically-oriented 

research to the broader GIScience and pavement management fields. Lastly, we need to build 

discovered pavement knowledge into GIS and spatial analysis, and require effective 

representations of discovered pavement knowledge that are suitable for GIS and spatial analysis. 

This may include GIS interfaces and intelligent tools for guiding pavement knowledge discovery 

and GIS spatial analysis. 
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