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Abstract

In this paper, we formulate the multi-pitch estimation problem and propose a number of methods to estimate the set of fundamental frequencies.
The proposed methods, based on the nonlinear least-squares (NLS),MUltiple SIgnal Classification (MUSIC) and the Capon principles, estimate
the multiple fundamental frequencies via a number of one-dimensional searches. We also propose an iterative method based on the Expectation
Maximization (EM) algorithm. The statistical properties of the methods are evaluated via Monte Carlo simulations for both the single- and
multi-pitch cases.
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1. Introduction

The problem of finding the fundamental frequency, or pitch,
of a periodic waveform occurs in many signal processing ap-
plications, for example in applications involving speech and
audio signals. For instance, in audio processing the fundamen-
tal frequency plays a key role in automatic transcription and
classification of music [1]. Due to the importance of the prob-
lem, a wide variety of fundamental frequency estimation meth-
ods have been developed in the literature, e.g., [2–14]. In most
cases, these methods are based on a model where only a single
set of harmonically related sinusoids are present at the same
time. Indeed, the multi-pitch estimation problem, i.e., the prob-
lem of estimating the fundamental frequencies of multiple pe-
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riodic waveforms, is a difficult one, and one that has received
much less attention than the single-pitch case, though notable
exceptions can be found in [15,1,16,17]. The multi-pitch sce-
nario occurs regularly in music signals, perhaps even more fre-
quently than the single-pitch case, and often also in speech
processing. Typically, the situation occurs whenever multiple
instruments or speakers are present at the same time or when
multiple tones are being played on a musical instrument. The
multi-pitch estimation problem can be defined as follows: con-
sider a signal consisting of several, sayK, sets of harmonics
(hereafter referred to as sources) with fundamental frequencies
ωk, for k = 1, . . . ,K, that is corrupted by an additive white
complex circularly symmetric Gaussian noise,w(n), having
varianceσ2, for n = 0, . . . , N − 1, i.e.,

x(n) =
K∑

k=1

L∑

l=1

ak,le
jωkln + w(n), (1)

whereak,l = Ak,le
jφk,l , with Ak,l > 0 andφk,l being the am-

plitude and the phase of thel’th harmonic of thek’th source,
respectively. The problem is then to estimate the fundamental
frequencies{ωk}, or the pitches, from a set ofN measured
samples,x(n). In the present work, we assume that the num-
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ber of sources,K, is known and that the number of harmonics,
L, of each source is also known and the same for all sources.
For the single-pitch case, the orderL is often also assumed
known in the literature concerned with parametric fundamental
frequency estimation (e.g., [6,2,18,15]). Even so, it may seem
like a restrictive assumption thatK andL are considered to be
known, but for many practical applications, it is not required
that the order be known precisely. Provided that the order does
not vary too much, it is often sufficient to simply assume an
average order. The role of an order estimate is mainly to avoid
ambiguities in the cost functions that may cause spurious esti-
mates atq/g times the true fundamental frequency (withq, g ∈
N) such as the well-known problems of halvings and doublings.
We note in passing that we here consider the amplitudes and
the phases{Ak,le

jφk,l} as nuisance parameters that are not of
interest. However, we see from (1) that the complex amplitudes
are linear parameters that are, in principle, much easier tofind
than the nonlinear fundamental frequencies{ωk}. Given the
fundamental frequencies{ωk}, the amplitudes and phases can
easily be found using one of the estimators proposed in [19].For
more on the topic of sinusoidal amplitude estimation, we refer
the interested reader to [19] and the references therein. Further-
more, we remark that also real valued signals can be written
using the complex model in (1) through the use of the (down-
sampled) discrete-time analytic signal [20], provided that there
are no harmonics in the real signal near0 and π relative to
N . Here, we have used the complex formulation because of its
notational simplicity and because it leads to computationally
simpler algorithms.

In this paper, we propose and evaluate a number of estima-
tors for finding the fundamental frequencies{ωk} based on
well-founded principles from statistical signal processing. In
particular, we propose an approximate nonlinear least-squares
(NLS) method, a MUltiple SIgnal Classification (MUSIC)
based method as well as a Capon-based method. These meth-
ods have the following simple form:

{ω̂k} = arg max
{ωk}

K∑

k=1

J(ωk), (2)

where the functionJ(·) depends only on the sourcek. This
means that an estimate of the set of fundamental frequencies
can be obtained by evaluating a cost functionJ(ωk) for a coarse
grid of values and then picking theK highest peaks, i.e., costly
multi-dimensional searches are avoided. High-resolutionesti-
mates can then be found iteratively using the gradients, andin
one case also the Hessian, that are derived in this paper for the
various cost functions. Additionally, we propose an iterative
method based on the Expectation Maximization (EM) principle
that is demonstrated to overcome some problems of the NLS
method for the multi-pitch case, whereas for the single-pitch
case, it is identical to the NLS-based method. We note in pass-
ing that if the sources have different numbers of harmonics,the
problem becomes somewhat more complicated, but the meth-
ods considered here can still be applied. Specifically, the cost
functionJ(·) would have to be calculated for different number
of harmonics in order to determine the fundamental frequency,

but the fundamental frequencies could still be determined in-
dependently for the individual sources.

The rest of the paper is organized as follows: first, in Section
2, we introduce some notation and definitions. In Section 3,
we present the proposed multi-pitch estimators along with the
assumptions they are based on. Then, in Section 4, we analyze
the performance of the estimators using synthetic signals and
Monte Carlo simulations. Finally, we conclude the work in
Section 5.

2. Preliminaries

We begin by introducing some useful notation, defini-
tions and results. First, constructing a vector formed from
M consecutive samples of the observed signal asx(n) =
[ x(n) · · · x(n + M − 1) ]T with M ≤ N and w(n) =
[ w(n) · · · w(n+M−1) ]T , with (·)T denoting the transpose,
we note that the signal model in (1) can be written as

x(n) =

K∑

k=1

Zk





ejωk1n 0

. . .

0 ejωkLn




ak + w(n), (3)

where the matrixZk ∈ C
M×L has a Vandermonde structure,

being constructed fromL complex sinusoidal vectors as

Zk = [ z(ωk) · · · z(ωkL) ], (4)

with z(ω) = [ 1 ejω · · · ejω(M−1) ]T , andak = [ ak,1 · · · ak,L ]T .
We note that the constantM is chosen differently in the fol-
lowing sections depending on the method. Next, we define the
covariance matrix as

R = E
{
x(n)xH(n)

}
. (5)

Here,E {·} and(·)H denote the statistical expectation and the
conjugate transpose, respectively. In practice, the covariance
matrix is unknown and is replaced by the sample covariance
matrix defined as

R̂ =
1

N − M + 1

N−M∑

n=0

x(n)xH(n). (6)

Clearly, for R̂ to be invertible, we require thatM ≤ N
2 . In

the following, we will assume thatM is chosen accordingly
whenever the inverse of the covariance matrix is used. For a
single source and a high number of samples, i.e.,N ≫ 1,
the asymptotic Cramér-Rao lower bound (CRLB) for thek’th
source can be shown to be [8]

CRLBk =
6σ2

N3
∑L

l=1 A2
k,ll

2
. (7)

The CRLB can be seen to depend on the pseudo signal-to-noise
ratio (PSNR), defined as

PSNRk = 10 log10

∑L

l=1 A2
k,ll

2

σ2
[dB]. (8)

Under the assumption that the sources are independent and that
the harmonic frequencies are distinct, (7) can also be expected
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to hold approximately for the problem of estimating the funda-
mental frequencies in (1). However, for a low number of sam-
ples, the exact CRLB for a fundamental frequency will depend
on the parameters of other sources as well.

3. Some Estimators

3.1. Approximate NLS-based Method

The first estimator is based on the nonlinear least-squares
method. Under the assumption of white Gaussian noise, the
NLS method is equivalent to the maximum likelihood method
which is well-known to have excellent performance: it attains
the CRLB provided that the number of samples is sufficiently
high [21,22]. For the sinusoidal estimation problem, the NLS
method has been shown to achieve the asymptotic CRLB for
large N also in the colored Gaussian noise case [23], and,
therefore, the NLS can be expected to be robust to the color of
the noise.

For convenience, we define a signal vector containing all
N samples of the observed signal asx = x(0) with M =
N . The NLS estimates are obtained as the set of fundamental
frequencies and ampltiudes that minimize the 2-norm of the
difference between this signal vector and the signal model,i.e.,

{ω̂k} = arg min
{ak},{ωk}

∥∥∥∥∥x −
K∑

k=1

Zkak

∥∥∥∥∥

2

2

, (9)

where‖·‖2 denotes the 2-norm. Assuming that all the frequen-
cies in{Zk} are distinct and well separated and thatN ≫ 1,
(9) can be well-approximated by finding the fundamental fre-
quency of the individual sources, i.e.,

ω̂k = arg min
ak,ωk

‖x − Zkak‖
2
2 . (10)

Minimizing (10) with respect to the complex amplitudesak

gives the estimateŝak =
(
ZH

k Zk

)−1
ZH

k x, which, when in-
serted in (10), yields

ω̂k = arg max
ωk

xHZk

(
ZH

k Zk

)−1
ZH

k x (11)

≈ arg max
ωk

xHZkZ
H
k x (12)

where the last line follows from the assumption thatN ≫ 1.
Cast in the framework of (2), the resulting cost function is

J(ωk) = ‖ZH
k x‖2

2, (13)

where the matrix productZH
k x can be implemented efficiently

for a linear grid search overωk using a fast Fourier transform
(FFT) algorithm. The NLS method can be extended to deal
with an unknown order for the single-pitch case and colored
Gaussian noise in a computationally efficient manner [24]. An
alternative interpretation of the approximate NLS estimator is
as follows: (13) can be written asJ(ωk) =

∑L

l=1 ‖z(ωkl)Hx‖2
2

which is the periodogram power spectral density estimate ofx

evaluated at and summed over the harmonic frequenciesωkl.
Furthermore, we note that the NLS cost function in (12) can
be written as

‖ZH
k x‖2

2 = Tr
[
ZH

k xxHZk

]
. (14)

As an alternative to using the deterministic cost function in
(14), we can instead take the expected value after replacingx

by the sub-vectorx(n), with M < N , in (14), i.e.,

E
{
‖ZH

k x(n)‖2
2

}
= Tr

[
ZH

k RZk

]
, (15)

resulting in the fundamental frequency estimator

ω̂k = arg max
ωk

Tr
[
ZH

k R̂Zk

]
, (16)

which instead of matching the signal model to a single snapshot
of x as in (14) matches it to the covariance matrix.

Considering only one source at the time, the gradient of the
cost function in (11) can be shown to be

∇J(ωk) ,
∂J(ωk)

∂ωk

= xH
[
Yk

(
ZH

k Zk

)−1
ZH

k

+ Zk

(
ZH

k Zk

)−1
YH

k

− Zk

(
ZH

k Zk

)−1
Wk

(
ZH

k Zk

)−1
ZH

k

]
x

(17)

with Yk ∈ C
N×L being the derivative of the Vandermonde ma-

trix with respect to the fundamental frequency whose elements
are defined as

[Yk]nl ,

[
∂

∂ω
Zk

]

nl

= j(n − 1)lejωkl(n−1). (18)

with [Yk]nl denoting the(n, l)’th element of the matrixYk.
Furthermore,Wk ∈ C

L×L is the derivative of the matrix
ZH

k Zk, i.e.,

[Wk]lm ,

[
∂

∂ωk

ZH
k Zk

]

lm

=
N−1∑

n=0

(j(l − m)n) ejωk(l−m)n.

(19)
The gradient in (17) can be used for finding refined estimates.
Here, we iteratively find such refined estimates of the funda-
mental frequency as4

ω̂
(i+1)
k = ω̂

(i)
k + δ∇J(ω̂

(i)
k ), (20)

with i being the iteration index andδ a small, positive constant
that is found adaptively using approximate line search [25]. For
the approximate solution in (12), the corresponding gradient is
the much simpler expression

∇J(ωk) ≈ 2Re
(
xHYkZ

H
k x
)
. (21)

with Re(·) denoting the real value.

3.2. MUSIC-based Method

We proceed to examine a subspace approach based on the
MUSIC orthogonality principle (see, e.g., [22,26,27]). In[7,8],
it was shown that high resolution fundamental frequency and
order estimates can be obtained using this principle, and in

4 Note that due to the complicated nature of the NLS and Capon-based
cost functions, we only use the first order derivative for these, while for the
MUSIC cost function, we also derive the Hessian.
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[28], the approach was generalized to the multi-pitch estimation
problem. We will here briefly review these ideas in the context
of this paper, i.e., for the case of known order and number
of sources. Assuming that the phases of the harmonics are
independent and uniformly distributed on the interval(−π, π],
the covariance matrix and its eigenvalue decomposition (EVD)
can be written as

R = UΛUH =

K∑

k=1

ZkPkZ
H
k + σ2I, (22)

whereU is formed from theM orthonormal eigenvectors of
R, i.e.,U = [ u1 · · · uM ], Λ is a diagonal matrix containing
the eigenvaluesλk and

Pk = diag
([

A2
k,1 · · · A2

k,L

])
. (23)

Let G be the noise subspace formed from the eigenvectors
corresponding to theM −KL least significant eigenvalues and
note that

rank

(
K∑

k=1

ZkPkZ
H
k

)
= KL. (24)

Then, it can be shown that the noise subspace spanned by
G is orthogonal to all Vandermonde matrices{Zk} that span
the signal subspace formed by the eigenvectors corresponding
to theKL most significant eigenvalues. Therefore, the set of
fundamental frequencies can be found as [28]

{ω̂k} = arg min
{ωk}

K∑

k=1

∥∥ZH
k G

∥∥2

F
, (25)

where‖ · ‖F denotes the Frobenius norm andG is found from
the EVD of sample covariance matrix̂R. Finally, we define the
cost function to be maximized for each individual source as5

J(ωk) = −
∥∥ZH

k G
∥∥2

F
, (26)

which can be evaluated efficiently by calculating the FFT of
the noise subspace eigenvectors for each segment (see [8] for
further details). The gradient of the cost function (26) canbe
shown to be

∇J(ωk) = −2Re
(
Tr
{
ZH

k GGHYk

})
, (27)

with Yk ∈ C
M×L having elements defined as in (18). Due

to the simplicity of the MUSIC cost function, the Hessian is
readily derived as

∇2J(ωk) ,
∂2J(ωk)

∂ω2
k

= −2Re
(
Tr
{
ZH

k GGHVk + YH
k GGHYk

})

(28)

with Vk ∈ C
M×L being the second order derivative ofZk, i.e.,

[Vk]nl ,

[
∂2

∂ω2
k

Zk

]

nl

= −(n − 1)2l2ejωkl(n−1). (29)

5 This form is preferred over the more common reciprocal expression due
to the ensuing simplicity of the gradient and Hessian.

The gradient and the Hessian can be used for finding refined
estimates using Newton’s method, i.e.,

ω̂
(i+1)
k = ω̂

(i)
k − δ

∇J(ω̂
(i)
k )

∇2J(ω̂
(i)
k )

, (30)

The method is initialized fori = 0 using the coarse fundamental
frequency estimate obtained from (26).

Note that while the NLS method is based on an asymptotic
assumption that facilitates finding individual fundamental fre-
quencies independently, there is no such approximation in the
MUSIC approach. The covariance matrix decomposition in the
MUSIC approach, however, is dependent on the distribution
of the phases and the whiteness but not the probabilty density
function of the noise. The NLS approach, on the other hand,
depends on the noise being Gaussian but it is still asymptoti-
cally efficient for colored noise. It should also be noted that,
unlike the Capon and NLS approaches, the MUSIC approach
requires a priori knowledge about the number of sources for
the evaluation of the cost function.

3.3. Capon-based Method

We proceed to introduce an estimator based on the Capon
approach (see, e.g., [22,29]), which relies on the design ofa
set of filters that pass power undistorted at specific frequencies,
here the harmonic frequencies, while minimizing the power
at all other frequencies. Defining the filter bank matrixHH

k ,
consisting ofL filters of lengthM , the filter design problem
can be stated as the optimization problem:

min
Hk

Tr
[
HH

k R̂Hk

]
subject to HH

k Zk = I, (31)

whereI is theL×L identity matrix. The filter bank matrixHk

solving (31) is given by (see, e.g., [22])

Hk = R̂−1Zk

(
ZH

k R̂−1Zk

)−1

. (32)

This data and frequency dependent filter bank can then be used
to estimate the fundamental frequencies by maximizing the

power of the filter’s output, i.e.,Tr
[
HH

k R̂Hk

]
. Inserting (32)

into this expression yields

ω̂k = arg max
ωk

Tr

[(
ZH

k R̂−1Zk

)−1
]

. (33)

The cost function can be evaluated for differentωk as

J(ωk) = Tr

[(
ZH

k R̂−1Zk

)−1
]

. (34)

Similarly to the MUSIC-based method, the computational com-
plexity of the Capon method can be reduced somewhat by cal-
culating ZH

k R̂−1Zk using FFTs. The gradient of the Capon
cost function in (34) can be found to be

∇J(ωk) = −2Re
(

Tr
{(

ZH
k R̂−1Zk

)−1

×
(
ZH

k R̂−1Yk

)(
ZH

k R̂−1Zk

)−1 })
.

(35)

The matrixYk ∈ C
M×L is constructed as in Section 3.1, i.e.,

having elements defined as in (18). As in the previous cases, we
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iteratively find a refined estimates of the fundamental frequency
as

ω̂
(i+1)
k = ω̂

(i)
k + δ∇J(ω̂

(i)
k ). (36)

Alternatively, the filter bank design in (31) can be formulated
as the design of a single filter which is subject toL constraints,
one for each harmonic. Interestingly, such an approach has
some conceptual similarities with the comb-filtering approach
of [18].

3.4. EM-based Method

Finally, we propose an estimator based on the Expectation
Maximization (EM) algorithm [30] (see also [31]). The EM
algorithm is an iterative method for maximum likelihood esti-
mation. The method presented here is a special case of [32],
which dealt with the estimation of the parameters of superim-
posed signals. In our case, the superimposed signals are the
harmonic sources. We use here the notation of [32]. First, we
write the observed signal model in (3) as a sum ofK sources
in white additive Gaussian noise, i.e.,

x =
K∑

k=1

yk (37)

where the individual sources are given as

yk = Zkak + βkw, (38)

with the noise source being arbitrarily decomposed intoK
sources asβkw whereβk ≥ 0 is chosen so that

∑K

k=1 βk = 1.
In the EM algorithm, the set of vectorsy = {yk} is referred
to as the complete data while the observed datax is referred
to as the incomplete data. The complete and incomplete data
are related through a many-to-one mapping. The EM algorithm
consists of two steps. The first, termed the expectation- or E-
step, is the calculation of the conditional expectation of the
log-likelihood of the complete data, i.e.,

U(θ,θ(i)) =

∫
(ln py(y;θ)) p(y|x;θ(i))dy, (39)

whereθ
(i) is a vector containing thei’th iteration estimates

of the parameters in (3) andθ is the unknown parameter vec-
tor that parameterizes the likelihood function. In the following
superscript(i) denotes iteration number. Then, updated param-
eters are found in the so-called maximization- or M-step by
maximizing the above function, i.e.,

θ
(i+1) = arg max

θ

U(θ,θ(i)). (40)

For the problem at hand, the two steps of the EM algorithm
become particularly simple due to the noise term being Gaus-
sian and white. For details, we refer to [32] and the references
therein. Essentially, the E-step reduces to the following where
an estimate of thek’th source in noise is obtained based on the
parameters of the previous iteration:

ŷ
(i)
k = Ẑ

(i)
k â

(i)
k + βk

(
x −

K∑

k=1

Ẑ
(i)
k â

(i)
k

)
, (41)
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Fig. 1. Example of cost functions (scaled for convenience) for two synthetic
sources having five harmonics each and true fundamental frequencies of
ω1 = 0.1650 andω2 = 0.3937 for N = 160 andPSNR = 40 dB.

where Ẑ
(i)
k is the Vandermonde matrix constructed from the

fundamental frequency estimatêω
(i)
k . The problem of estimat-

ing the fundamental frequencies then becomes

ω̂
(i+1)
k = arg max

ω
(i+1)

k

ŷ
(i)H
k Zk

(
ZH

k Zk

)−1
ZH

k ŷ
(i)
k (42)

≈ arg max
ω

(i+1)

k

ŷ
(i)H
k ZkZ

H
k ŷ

(i)
k , (43)

and the amplitudes that are needed to form the sources estimates
in (41) can be found as

â
(i+1)
k =

(
Ẑ

(i+1)H
k Ẑ

(i+1)
k

)−1

Ẑ
(i+1)H
k ŷ

(i)
k . (44)

The M-step in (43) can be seen to be identical to the NLS,
with the exception that (43) operates on the estimated source
ŷ

(i)
k rather than the observed signalx. Accordingly, refined

estimates can be obtained in this framework using a gradient
reminiscent of the one in Section 3.1. The E-step in (41) and the
M-step (43) are then repeated until some convergence criterion
is met. As can be seen, the EM algorithm splits the difficult joint
estimation problem into a number of much simpler estimation
problems by estimating the individual sources. In each iteration
of the algorithm, the log-likelihood of the observed data is
increased and the algorithm is guaranteed to converge, at least
to a local maximum, under mild conditions. The main difficulty
in using the EM algorithm is in obtaining the initial parameter
estimates required to estimate the individual sources in (41). We
here obtain the initial parameters from the approximate NLS.

4. Numerical Results

In this section, we evaluate the performance of the introduced
estimators. First we provide an illustrative example basedon
synthetic signals. Figure 1 shows the cost functions of the pro-
posed estimators, except for the EM-based solution, for a sig-
nal of lengthN = 160 consisting ofK = 2 sources having
five unit amplitude harmonics each withPSNR = 40 dB. The
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Fig. 2. Example of the proposed methods applied to voiced speech signals. First source (a) and its cost functions (b). Second source (c) and its cost functions
(d). Mixture of the two sources (e) and the corresponding cost functions (f).
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two sources have fundamental frequencies 0.1650 and 0.3937,
respectively. Note that here we show the more traditional recip-
rocal form of the MUSIC cost function, i.e.,1/

∥∥ZH
k G

∥∥2

F
. For

the MUSIC-based method, we chooseM = ⌊N/2⌋ while for
the Capon-based method we usedM = ⌊2N/5⌋. These values
were found empirically to result in good performance and will
be used in all the experiments reported here6 . It can be seen
that the cost functions have distinct peaks close to the truefre-
quencies with the MUSIC- and Capon-based methods having
narrower peaks than the approximate NLS method. Also worth
noting is the multi-modal nature of the cost functions with a
number of fairly sharp false peaks. Indeed, the multitude oflo-
cal maxima shows why the fundamental frequency estimation
problem is a difficult one. At first sight, this appears to be less
of an issue for the MUSIC-based approach, but upon closer in-
spection, it can be observed that MUSIC generally suffers from
this problem too.

The next example is based on two real voiced speech signals
sampled at 8 kHz. We have plotted the time signals of the two
sources withN = 500 in Figures 2(a) and Figures 2(c) and
the sum of these sources in Figure 2(e) with the figure showing
a more complicated signal. The corresponding cost functions
are depicted in Figures 2(b), 2(d) and 2(f). It can be seen, that
all the methods correctly identify the fundamental frequencies
of the individual sources. But it can also be seen that the cost
functions contain a number of spurious peaks. In Figure 2(f),
the cost functions are even more complicated, but the methods
are still able to find the fundamental frequencies of the two
sources.

We proceed to evaluate the proposed estimators using Monte
Carlo simulations by generating signals according to the model
(1) with the phases and the noise being randomized over real-
izations. For all combinations of parameters 100 Monte Carlo
trials are run. The estimators are evaluated for two sourceshav-
ing fundamental frequencies,ω1 = 0.1580 andω2 = 0.6364,
and withL = 3, and for one harmonic source of 0.6364. Note
that this case is somewhat more difficult that that shown in Fig-
ure 1 due to the near-intereger relation between the two funda-
mental frequencies. We compare the root mean square estima-
tion error (RMSE) of the estimators and the asymptotic CRLB
given in (7). Here, the RMSE is defined as

RMSE =

√√√√ 1

SK

K∑

k=1

S∑

s=1

(
ω̂

(s)
k − ωk

)2

, (45)

with ωk andω̂
(s)
k being the true fundamental frequency and the

estimate, respectively, and withS being the number of Monte
Carlo trials. The RMSE is calculated jointly for both sources.
We test two different cases for the amplitudes, namely one
where all amplitudes are set to unity, i.e.,Ak,l = 1, ∀k, l, and
one where the amplitudes of each source are decaying, as could
be expected for natural spectra, here exemplified byAk,l =
1/l. The fundamental frequency estimates are obtained in each
Monte Carlo simulation as follows: First, the cost functions

6 The reason for having different values ofM for the two methods is that
they exhibit different sensitivity to the choice ofM .

(13), (26), and (34) are evaluated on a coarse grid. Then, these
coarse estimates are used to initialize the gradient-basedmeth-
ods that are used to obtain refined estimates. For the MUSIC-
and Capon-based methods, the gradients of (26) and (34) are
used, whereas for NLS method, the gradient for the approxi-
mate cost function (13) was found not to produce high resolu-
tion estimates. Instead, the gradient was derived for this case
based on (11). For the EM algorithm, we used initial parameter
estimates from the NLS estimator to form the source estimates
with βk = 1

K
, ∀k. Then, the NLS estimator is applied to each

of these sources using the approximate NLS cost function in
(13) and to initialize the gradient-based method. A mere 10 it-
erations of the EM algorithm were found to be sufficient for
the application at hand. We note that the NLS cost function in
(11) is approximate, being based on neglecting the inner prod-
ucts between the sources. Also, for one harmonic source, the
NLS method is exact, meaning that there is no approximation
in the estimate (11). Moreover, the NLS and the EM methods
are identical for the single-pitch case.

We start out by presenting the results for the unit amplitude
case. The RMSEs are shown in Figures 3(a) and 3(b) as a func-
tion of N for one and two sources, respectively. Similarly, in
Figures 3(c) and 3(d), the RMSEs are shown as a function of
thePSNR for one and two sources. It can be seen that for the
case of one harmonic source, all estimators perform well, for
all tested PSNRs with NLS having the best performance. For
two sources, however, the RMSE of the NLS method performs
poorly while both the MUSIC- and Capon-based methods fol-
low the CRLB closely. The EM algorithm can be seen to have
excellent performance attaining the CRLB. It can also be ob-
served that all methods exhibit thresholding effects below10
dB while the NLS method appears to saturate at PSNRs above
20 dB.

Next, we consider the case where the sinusoidal amplitudes
are decaying. It is not clear from the theoretical derivations how
this should affect the performance of the estimators. Therefore
this is investigated in simulations similar to those in the pre-
vious section. The results are shown in Figures 3(a) and 3(b)
as the RMSE as a function ofN for one and two sources, re-
spectively. Similarly, in Figures 3(c) and 3(d), the RMSEs are
shown as a function of thePSNR for one and two sources.
The general conclusions that can be drawn from these figures
are the same as those from Figure 3. However, comparing Fig-
ures 3 and 4, a number of peculiarities can be noted. First of
all, the decaying amplitudes appear to cause a larger gap be-
tween the RMSE and the CRLB for the methods that are based
on the covariance matrix, namely MUSIC and Capon, while
the performance of the NLS and EM methods is unaffected by
this. More importantly, the threshold below which the RMSEs
differ from the CRLB by an order of magnitude can now be
seen from Figure 4(d) to be different for the various methods.
It now appears that the MUSIC-based method is more sensitive
to noise than the Capon and EM methods.

In a final experiment, the RMSE is studied as a function
of the difference between the fundamental frequencies of two
harmonic sources, i.e.,∆ = |ω1 − ω2|, for a PSNR of40 dB
andN = 160 . The results are shown in Figures 5(a) and 5(b)
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Fig. 3. Estimated RMSEs for unit amplitudes. RMSE as a functionof N for PSNR = 40 dB for one (a) and two (b) sources. RMSE as a function of
PSNR for N = 400 for one (c) and two (d) sources.

for unit and decaying amplitudes, respectively. It can be seen
that the EM algorithm performs the best for closely spaced
harmonics and that the approximate NLS method performs the
worst. The Capon-based approach can be observed to be slightly
worse than the EM algorithm for unit amplitudes but it still
outperforms the MUSIC-based method. For this experiment,
we used 100 iterations in the EM algorithm. The decaying
amplitudes can be seen to cause a degradation of performance
of the methods compared to the unit amplitudes.

At first sight, the conditions of the simulations reported here
may seem overly simplisitic. Indeed, one would expect speech
and audio signals to contain many sources and many harmonics.
However, for more and more sources and harmonics the exper-
iments will be become increasingly complicated and difficult
to analyze and make sense of. As the number of sources grow,
the interaction effects between the different sources willonly
become worse, thereby degrading performance of the estima-
tors. As we have seen it is, though, still possible to make some

interesting and useful observations from the results presented
here. For example, some important properties of the estimators
can be determined like efficiency and consistency. Also, our
experiments show that the proposed estimators exhibit differ-
ent sensitivities to differences in frequency, the amplitude dis-
tribution and different thresholding effects. These are all very
useful observations. Specifically, it appears that the EM and
Capon methods are the most robust and are better able to re-
solve closely spaced harmonic sets.

When making a choice between the various estimators, the
complexity should also be taken into consideration. The Capon-
and MUSIC-based approaches both have complexityO(N3)
(sinceM is proportional toN ) due to the matrix inversions,
the matrix products and the EVD. On the other hand, the NLS
approximation based on the FFT, and thus also the EM algo-
rithm, has complexityO(N log N) assuming that the FFT size
is chosen proportionally toN . However, the NLS gradient that
was used has complexityO(N3) due to the matrix inversions,
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Fig. 4. Estimated RMSEs for decaying amplitudes. RMSE as a function of N for PSNR = 40 dB for one (a) and two (b) sources. RMSE as a function of
PSNR for N = 400 for one (c) and two (d) sources.

as does the expression in (11). If refined estimates are not de-
sired, this seems to favor the EM-based estimator for com-
plexity constrained situations such as real-time processing of
speech and audio signals. Also, considering that the noise may
very well be colored in some applications and that the NLS,
and thus also the EM algorithm, is still asymptotically efficient
for colored noise, this is yet another argument that favors the
EM algorithm.

5. Conclusions

We have considered the problem of estimating the fundamen-
tal frequencies of superpositions of periodic waveforms, also
known as the multi-pitch estimation problem. We have pro-
posed a number of estimators that are based on one-dimensional
evaluations of cost functions, namely the approximate non-
linear least-squares (NLS), MUSIC- and Capon-based tech-
niques. Additionally, we have also proposed an iterative method

based on the expectation maximization (EM) algorithm, which
is identical to the NLS method for the single pitch case, and
consists of a number of independent NLS estimators for the
multi-pitch case. The basic assumptions for these methods to
work for the multi-pitch estimation problem have been outlined
and their finite sample performance has been evaluated using
Monte Carlo simulations. It has been found that the MUSIC-
and Capon-based methods have good statistical performancefor
both the multi- and single-pitch cases, following the Cramér-
Rao lower bound (CRLB) closely. As expected, the approxi-
mate NLS has excellent performance for the single-pitch case
but does not perform well for the multi-pitch case. The EM al-
gorithm is able to mitigate the shortcomings of the NLS for the
multi-pitch case as it was found to have excellent performance
attaining the CRLB for the number of observations considered
here. For closely spaced fundamental frequencies and decaying
amplitudes, the Capon approach has been found to have a per-
formance superior to that of the MUSIC method and the EM
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Fig. 5. RMSE versus the difference between the fundamental frequencies of two sources withN = 160 and PSNR = 40 dB for unit amplitudes (a) and
decaying amplitudes (b).

algorithm once again outperformed the other estimators.
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