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a b s t r a c t

Measures for the accuracy assessment of Digital Elevation Models (DEMs) are discussed and
characteristics of DEMs derived from laser scanning and automated photogrammetry are presented. Such
DEMs are very dense and relatively accurate in open terrain. Built-up and wooded areas, however, need
automated filtering and classification in order to generate terrain (bare earth) data when Digital Terrain
Models (DTMs) have to be produced. Automated processing of the raw data is not always successful.
Systematic errors and many outliers at both methods (laser scanning and digital photogrammetry) may
therefore be present in the data sets. We discuss requirements for the reference data with respect
to accuracy and propose robust statistical methods as accuracy measures. Their use is illustrated by
application at four practical examples. It is concluded that measures such as median, normalized median
absolute deviation, and sample quantiles should be used in the accuracy assessment of such DEMs.
Furthermore, the question is discussed how large a sample size is needed in order to obtain sufficiently
precise estimates of the new accuracy measures and relevant formulae are presented.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

Digital Elevation Models are today produced by digital pho-
togrammetry or by laser scanning. Both methods are very efficient
and accurate; the density of the elevations is very high. However,
blunders may occur at both methods. From the raw data a Dig-
ital Terrain Model (DTM) and a Digital Surface Model (DSM) are
generated by means of filtering (for classifying into ground and off
terrain points) and interpolation (for filling gaps). Errors may also
occur during such a post-processing. The quality control should de-
tect errors and outliers in order to eliminate them. As a final step
it has to be checked, whether the edited DTM and DSM achieve
the accuracy of the specification. For this purpose, accurate ref-
erence values are required, and accuracy measures like the Root
Mean Square Error (RMSE), mean error and the standard deviation
have to be derived. The amount of data is huge, but the accuracy
assessment has to be made with few check points only as it is very
labour intensive to obtain them. However, the sample size should
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+45 9940 8361; fax: +45 9815 6541.
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Michael.Hoehle@stat.uni-muenchen.de (M. Höhle).

be large enough to guarantee reliable accuracy measures, which
are valid for thewholeDTMorDSM.Usually, the specification of ac-
curacy measures is based on the assumption that the errors follow
a Gaussian distribution and that no outliers exist. But all too often
this is not the case, because objects above the terrain like vegeta-
tion, buildings and unwanted objects (cars, people, animals, etc.)
are present, and the filtering program may not label all ground el-
evations correctly. Also system errors will occur: Photogrammetry
needs structure and texture in the images and not all of the image
parts fulfil this requirement. Laser light is not always reflected di-
rectly by the points to bemeasured and the position and altitude of
the sensor may be in error. Positional errors will cause vertical er-
rors at terrain with steep slopes and buildings. Altogether, editing
of the data has to detect and correct such errors, but even with the
most careful editing errors will remain. The number or percentage
of outliers should be documented, for example inmetadata, so that
one can judge whether the derived DTM is usable for the intended
application (‘‘fit for purpose’’).
The derivation of accuracymeasures has to adapt to the fact that

outliers may exist and that the distribution of the errors might not
be normal. There is thus a need for accuracy measures, which are
reliablewithout being influenced by outliers or a skew distribution
of the errors.
These facts are well known and mentioned in recently

published textbooks and manuals, for example in Li et al. (2005)
and Maune (2007). Recent publications, which deal in detail with
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accuracy assessment, are for example Carlisle (2005), Höhle and
Potuckova (2006), Fisher and Tate (2007), Aguilar et al. (2007a) and
Zandbergen (2008).
Our approach continues along these lines aswe focus on vertical

accuracy assessment in the light of outliers and non-normal
distributions. It is the objective of this article to advocate robust
statisticalmethods for the derivation of vertical accuracymeasures
for digital elevation models. Robust approaches handling outliers
and detaching accuracy measures from the assumption of an
underlying normal distribution have increasingly been suggested
in the literature (e.g. Atkinson et al., 2005 and Aguilar et al.,
2007b). It is a topic of discussion how national and international
standards for DEMs should cope with these matters. So far, only
the Lidar committee of the American Society for Photogrammetry
and Remote Sensing deals with it and requires non-parametric
accuracy measures for non-open terrain (ASPRS Lidar Committee,
2004). With this article focusing on robust estimation of variance
and the estimation of sample quantiles as measures for vertical
accuracy, we want to contribute to this discussion of DEMs
produced either by airborne laser scanning or automated digital
photogrammetry. In our approachwe interpret accuracymeasures
directly as quantities of the error distribution — alternatives are
more indirect measures such as e.g. the coefficient of variation of
the sample variance (Aguilar et al., 2007a).
When validating DEMs, accurate reference data have to be

available in a sufficiently large number. The question how many
check points are needed can be treated within the statistical
context of sample size computation. We show how required
sample sizes can be calculated for the suggested quantile approach
to accuracy.
The paper is organized as follows: Section 2 discusses accuracy

requirements for DEMs, Sections 3–5 deal with vertical errors
and provide ordinary and robust accuracy measures. Section 6
discusses how these can be used to asses fulfilment of a
specification using statistical tests, and Section 7 illustrates the
methods using four examples of DTM accuracy. A discussion of the
results completes the paper.

2. Requirements regarding the reference data

Accuracy assessment of the DEM is carried out by means of
reference data called checkpoints. Because their position does not
coincide with the posts of the DEM, an interpolation is necessary.
For a DEMwith a grid structure a bilinear interpolation is normally
used. The accuracy of the checkpoints should be at least three times
more accurate than the DEM elevations being evaluated (Maune,
2007, pp. 407). By using the formula for error propagation the
influence on the DEM accuracy can be estimated:

σ 2DEM−REF = σ
2
DEM + σ

2
REF ≤ σ

2
DEM +

(
1
3
· σDEM

)2
=
10
9
· σ 2DEM. (1)

Hence, σDEM−REF ≤ 1.05 · σDEM. The derived DEM accuracy is then
incorrect by 5%, which is acceptable. For example, if the accuracy
of a DEM is specified with σ = 10 cm then the checkpoints should
have an accuracy of σ ≤ 3.3 cm. The DEM accuracy would then
amount to 10.5 cm only.
An important issue is the spatial distribution of the checkpoints:

they should be distributed randomly. If checkpoints are positioned
along break lines, at steep slopes, at positions of sudden slope
change, close to buildings, etc., large errors may be found. On the
other hand, the number of checkpoints (aka. sample size) should
be sufficiently large in order to obtain reliable accuracy measures.
In Section 6 we return to the issue of how to compute the sample
size in order to prove the compliance with accuracy specifications.

Fig. 1. Histogram of the errors 1h in metres. Superimposed on the histogram are
the expected counts from a normal distribution with mean and variance estimated
from the DEM data using non-robust estimators. For a better visualisation the
histogram is truncated at−2mand 2m. Themismatch between data and estimated
normal curve is due to heavy tails.

Fig. 2. Normal Q–Q-plot for the distribution of1h.

3. The distribution of errors

The distribution of errors can be visualized by a histogram of
the sampled errors, where the number of errors (frequency)within
certain predefined intervals is plotted. Such a histogram gives a
first impression of the normality of the error distribution. Fig. 1
depicts a histogram of the error distribution for photogrammetric
measurements compared with checkpoints. In order to compare
with normality, the figure contains a superimposed curve for a
normal distribution (Gaussian bell curve) obtained by ordinary
estimation ofmean error and variance. Because outliers are present
in the data, the estimated curve does not match the data very well.
Reasons could be that the errors are not originating from a normal
distribution, e.g. because a skew distribution exists which is not
symmetric around its mean or because the distribution is more
peaked around its mean than the normal distribution while having
heavier tails. The latter effect is measured by the kurtosis of the
distribution, which in this situation is bigger than zero.
A better diagnostic plot for checking a deviation from the

normal distribution is the so-called quantile–quantile (Q–Q) plot.
The quantiles of the empirical distribution function are plotted
against the theoretical quantiles of the normal distribution. If the
actual distribution is normal, the Q–Q plot should yield a straight
line. Fig. 2 shows theQ–Qplot for the distribution of1h in the same
example as Fig. 1. A strong deviation from a straight line is obvious,
which indicates that the distribution of the1h is not normal.
It is also possible to use statistical tests to investigate whether

data originate from a normal distribution, but these tests are often
rather sensitive in case of large data sets or outliers. We, therefore,
prefer the visual methods presented above. More details about
the mentioned statistical tests for normality can be taken from
e.g. D’Agostino et al. (1990), who also recommend visual methods
as a component of good data analysis for investigating normality.
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Table 1
Accuracy measures for DEMs presenting normal distribution of errors.

Root mean square error
∧

RMSE =
√
1
n

∑n
i=11h

2
i

Mean error µ̂ = 1
n

∑n
i=11hi

Standard deviation σ̂ =
√

1
(n−1)

∑n
i=1(1hi − µ̂)2

4. Accuracy measures for the normal distribution

If a normal distribution can be assumed and no outliers are
present in the data set, the following accuracy measures for DEMs
can be applied (cf. Table 1).
In the table1hi denotes the difference from reference data for a

point i, and n is the number of tested points in the sample (sample
size). When an underlying normal distribution of the errors can
be assumed, it is well known from the theory of errors that 68.3%
of the data will fall within the interval µ ± σ , where µ is the
systematic error (aka. bias) and σ is the standard deviation, see
e.g.Mikhail and Ackermann (1976). If the accuracymeasure should
be based on a 95% confidence level (aka. a 95% tolerance interval),
the interval isµ± 1.96 · σ instead. However, for DEMs derived by
laser scanning or digital photogrammetry a normal distribution
of the errors is seldom due to e.g. filtering and interpolation errors
in non-open terrain. In this work we describe and compare several
approaches how to deal with this situation.
One approach to deal with outliers is to remove them by

applying a threshold. For example, the threshold can be selected
from an initial calculation of the accuracy measures. In the DEM
tests described in Höhle and Potuckova (2006), the threshold for
eliminating outliers was selected as three times the Root Mean
Square Error (RMSE), i.e. an errorwas classified as outlier if |1hi| >
3 · RMSE. Another approach is to use 3 · σ as the threshold for
the outlier detection (aka. 3 sigma rule), where σ is the specified
vertical accuracy or a preliminary value for the standard deviation
which is derived from the original data set (Daniel and Tennant,
2001). But not all of the outliers can be detected in thisway, and the
DEM accuracy measures (mean error and standard deviation) will
therefore be wrong or inaccurate. Furthermore, it can be shown
that even the bestmethods basedonoutlier removal donot achieve
the performance of robust methods, because the latter are able to
apply a more smooth transition between accepting and rejecting
an observation (Atkinson et al., 2005). Robust methods for the
derivation of accuracy measures should therefore be applied for
the assessment of DEM accuracy.

5. Robust accuracy measures suited for non-normal error
distributions

If the histogram of the errors reveals skewness, kurtosis or
an excessive amount of outliers, another approach for deriving
accuracy measures has to be taken. Such an approach has to
be resistant to outliers, and the probability assumptions to be
made should not assume normality of the error distribution. Our
suggestion in this case is to use the sample quantiles of the error
distribution.
The quantile of a distribution is defined by the inverse of its

cumulative distribution function (CDF), F , i.e.

Q (p) = F−1(p)

for 0 < p < 1. For example, the 50% quantile,Q (0.5), is themedian
of the distribution. An alternative definition using the minimum is
necessary in cases where F is a step function and thus no unique
definition of the inverse exists:

Q (p) = min{x : F(x) ≥ p}.

Sample quantiles are non-parametric estimators of the distri-
butional counterparts based on a sample of independent obser-
vations {x1, . . . , xn} from the distribution. We use the so-called
order statistic of the sample {x(1), . . . , x(n)}, where x(1) denotes the
minimum and x(n) the maximum of {x1, . . . , xn}. Thus, for a sam-
ple {0.1,−0.3,−0.5, 0.4, 0.1} of size n = 5, the order statistic is
{−0.5,−0.3, 0.1, 0.1, 0.4}.
A simple definition of the sample quantile is now Q̂ (p) = x(j)

where j = dp · ne and dp · ne denotes rounding up to the smallest
integer not less than p · n.
If an interest exists in the 10%, 20%, 50% and 90% quantile, the

following values for j are obtained:

j = d0.1 · 5e = 1, j = d0.2 · 5e = 1, j = d0.5 · 5e = 3,
j = d0.9 · 5e = 5.

The corresponding sample quantiles of the distribution are then:

Q̂ (0.1) = x(1) = −0.5, Q̂ (0.2) = x(1) = −0.5,

Q̂ (0.5) = x(3) = 0.1, and Q̂ (0.9) = x(5) = 0.4.

In otherwords, the 50% quantile ormedian of this sample is 0.1 and
the 90% quantile equals 0.4.
An often desired property of Q̂ (p) is that it should be a

continuous function of p. To obtain this and other desirable
properties, one can extend the above definition by using a
linear interpolation between the two relevant successive data
points (Hyndman and Fan, 1996). The calculation for the practical
examples of Section 6 will be carried out by the software ‘‘R’’— a
free software environment for statistical computing and graphics
(R Development Core Team, 2008).
With respect to the application of accuracy measures of DEMs

weuse thedistribution of1h and |1h|. One robust qualitymeasure
is the median Q̂1h(0.5), also denoted m1h, which is a robust
estimator for a systematic shift of the DEM. It is less sensitive to
outliers in the data than the mean error and provides a better
distributional summary for skew distributions.
A robust and distribution free description of the measurement

accuracy is obtained by reporting sample quantiles of the
distribution of the absolute differences, i.e. of |1h|. Absolute errors
are used, because we are interested in the magnitude of the errors
and not their sign. Furthermore, absolute errors allow us to make
probability statements without having to assume a symmetric
distribution.
For example, the 95% sample quantile of |1h| literally means

that 95% of the errors have a magnitude within the interval
[0, Q̂|1h|(0.95)]. The remaining 5% of the errors can be of any
value making the measure robust against up to 5% blunders. Such
probability statements about a certain proportion of the errors
falling within a given range are usually obtained by assuming a
normal distribution. For example, one assumes that the symmetric
interval of ±1.96 · σ̂ (where σ̂ is the estimated standard
deviation) contains 95% of the errors (assuming no systematic
error). Equivalently, this means that 95% of the absolute errors are
within [0, 1.96 · σ̂ ]. Thus, if the distribution of1h is really normal
then Q̂|1h|(0.95) converges to the estimator of 1.96 · σ̂ .
If the problem is the heavy tails of the error distribution due to

a large amount of outliers, an alternative approach to estimate the
scale of the1h distribution is to use a robust scale estimator such
as the Normalized Median Absolute Deviation (NMAD):

NMAD = 1.4826 ·medianj(|1hj −m1h|), (2)

where 1hj denotes the individual errors j = 1, . . . , n and
m1h is the median of the errors. The NMAD is thus proportional
to the median of the absolute differences between errors and
the median error. It can be considered as an estimate for the
standard deviation more resilient to outliers in the dataset. In
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Table 2
Proposed accuracy measures for DEMs.

Accuracy measure Error type Notational expression

Median (50% quantile) 1h Q̂1h(0.5) = m1h
Normalized median
absolute
deviation

1h NMAD = 1.4826 ·medianj (|1hj −m1h|)

68.3% quantile |1h| Q̂|1h|(0.683)
95% quantile |1h| Q̂|1h|(0.95)

case of an underlying normal distribution this value is equivalent
to the standard deviation if the number of checkpoints (i.e. n) is
sufficiently large. More details about such robust estimation can
be taken from Hoaglin et al. (1983).
In summary, as a robust anddistribution free approachhandling

outliers and non-normal distribution we suggest the following
accuracy measures given in Table 2.
One could furthermore assess non-normality using estimators

for the skewness and kurtosis of the distribution. However, to
be consistent, robust estimators such as the Bowley coefficient of
skewness and a standardized kurtosismeasure suggested byMoors
(1988) should be used. However, we will in this text use the more
intuitive visual inspection using QQ-plots and histograms.
In a statistical context all estimates of population quantities

should be supplied by measures quantifying the uncertainty of
the estimator due to estimation from a finite sample. One way to
achieve this is to supply with each point estimator a confidence
interval (CI) with a certain coverage probability. For example, a
95% CI [c1, c2] for the sample median says that in 95% of the errors
the interval [c1, c2] contains the true but unknown median of the
error distribution.
Using the bootstrap is one approach to assess the uncertainty

of the above sample quantiles as estimators of the true quantiles
of the underlying distribution (Davison and Hinkley, 1997). Here
one draws a sample of size n with replacement from the available
data {x1, . . . , xn} and then uses this new sample to compute
the desired Q̂ (p). This procedure is repeated a sufficiently large
number of m times; in our case we choose m = 999, which yields
999 values Q̂ 1(p), . . . , Q̂ 999(p). A bootstrap based 95% confidence
interval of Q (p) can then be obtained as the interval from the
2.5% to the 97.5% sample quantiles of the 1000 available values
{Q̂ (p), Q̂ 1(p), . . . , Q̂ 999(p)}.
We prefer such a bootstrap approach over classical large sample

arguments to construct confidence intervals (as e.g. in Desu and
Raghavarao (2003)), because the bootstrap is more robust to the
small number of check points used and can be extended to handle
autocorrelated data.
So far all calculations in our work are based on the assumption

that errors are independent and identically distributed. However,
as Fig. 7 shows, there is substantial spatial autocorrelation present
in the data, which will make the proposed bootstrap estimated
confidence intervals too narrow. One approach to treat this
problem is to modify the above bootstrap procedure to take the
dependence of data into account using e.g. a block bootstrap
(Lahiri, 2003). Another approach would be dividing data into a
number of terrain classes and compute sample quantiles within
each class. A statistical framework for this task is quantile
regression (Koenker, 2005). In its simplest form a quantile
regression model for the pth quantile of the absolute error
distribution is

|1hi| = β0 + εi,

where the εi are independent realisations of a random variable
having a CDF F which is completely unspecified having the only
requirement that F(0) = p. The value ofβ0 depends on the quantile
p, but for ease of expositionwehave omitted this from thenotation.

It is then possible to show that with this formulation we have
β0 = Q (p). An estimator for β0 is obtained from the n observed
absolute errors by solving the following minimization problem:

β̂0 = arg min
β0

n∑
i=1

ρp(|1hi| − β0)

where ρp(u) is the so-called check function for the pth quantile
defined as ρp(u) = u · (p − I(u < 0)) with I(u < 0) being one
if u < 0 and zero otherwise. The above minimization problem can
be solved by linear programming and is implemented in the R add-
on package quantreg, see Koenker (2005). It can be shown that β̂0
is equivalent to the previous definition of the pth sample quantile,
i.e. β̂0 = Q̂ (p).
General quantile regression for a specific quantile p proceeds

by replacing the single parameter model Q (p) = β0 with a linear
predictor Q (p) = xTi β as in ordinary linear regression. This allows
e.g. modelling the p-quantile as a function of terrain classes as in
Carlisle (2005), who used ordinary least squares regression for this
task. Modelling autocorrelation in an even better way would be to
model the pth quantile as a function of the (x, y) position in the
plane, i.e. Q (p) = f (x, y), where the function f could for example
be a tensor product of univariate basis functions or a triogram
function as described in Koenker and Mizera (2004). In both
cases, penalization is used to ensure an appropriate smoothness
of the function. Using the Koenker and Mizera (2004) approach a
continuous, piecewise linear function over an adaptively selected
triangulation over the (x, y) plane for e.g. the 95% quantile of the
absolute error distribution can thus be obtained.

6. Statistical tests and sample size calculations

It becomes obvious from the confidence intervals of the
preceding section that an important issue in the above quality
control is the question of how large a sample size is needed in
order to obtain sufficiently precise estimates of σ̂ and the sample
quantiles. One approach to this problem is to solve it by means
of a sample size methodology for statistical tests, which will be
described in the following for the case where errors are assumed
to have no autocorrelation.
Considering a normal distribution of the errors, a typical

specification would be to demand σ < σspec with e.g. σspec =
10 cm, i.e. the true (but unknown) standard deviation of the error
distribution is smaller than 10 cm. Thus, we may formulate a
statistical test with null hypothesis H0 : σ 2 = σ 2spec and an
alternative hypothesis HA : σ 2 < σ 2spec. A sample of size n is now
drawn and the hope is to be able to reject the null hypothesis (thus
proving the desired specification). This is done (see e.g. Desu and
Raghavarao (1990)) if

σ̂ 2 <
σ 2spec · χ

2
α,n−1

n− 1
, (3)

where α is the pre-specified type I error probability, i.e. the
probability of erroneously rejecting H0 when σ = σspec and χ2α,n−1
denotes the α quantile of the χ2 distribution with n − 1 degrees
of freedom. The parameter α is also called the level of the test —
in our work we shall use α = 0.05. In other words: To check if
the DEM specification σ < 10 cm is fulfilled we specify that at
the extreme setting where the specification is not fulfilled, i.e. at
σ = 10 cm, we want to detect this lack of compliance based on (3)
with a probability of 95%.
Let σ1 < σspec and β be two predefined constants, for example

σ1 = 7.5 cm and β = 0.05. If we require that the probability
of correctly rejecting H0 when σ = σ1 is equal to 1 − β , the
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Fig. 3. Power of the discussed variance test for the normal distribution as a function
of sample size n. In all cases a significance level of α = 0.05 is used.

necessary sample size is found as the positive smallest integer n,
which satisfies

σ 2specχ
2
α,n−1 − σ

2
1 χ

2
1−β,n−1 ≥ 0.

Here, we say that the test has a power of 1 − β at σ1, i.e. β is
the probability of erroneously keeping H0 even though σ = σ1
and thus H1 applies because σ < σspec. For the above selection
of values for σspec, σ1, α and β we obtain n = 68. Fig. 3 shows
the involved quantities and how different sample sizes n lead to
different powers at σ1. With n = 68 the desired power of 0.95 is
achieved.
Because (10 cm)2 · χ20.05,67/67 = 73.38 cm2 we have that

σ̂ 2 < 73.38 cm2 in 95% of the cases when σ̂ 2 is computed from
68 normally distributed random variables having σ = 10 cm.
Similarly, at σ = 7.5 cm, where the specification is fulfilled, we
want to be sure to detect this compliance based on (3) with a
probability of 95% — for σ greater than 7.5 cm this probability will
be smaller as shown in Fig. 3.
For comparison, the American Society of Photogrammetry

and Remote Sensing (ASPRS) recommends a minimum of 20
checkpoints in each of the major land cover categories. In the case
of three landcover classes (e.g. open terrain, forested areas, and
urban areas) a minimum of n = 60 checkpoints are required
(ASPRS Lidar Committee, 2004).
The above test is, however, very sensitive to deviations from

the normal distribution. Here our suggestion was to use the
quantiles of the absolute error distribution. Similarly, we suggest
proving compliance with a specification using statistical tests for
the quantiles of the error distribution. To test whether the 68.3%
quantile of the absolute error distribution is below 10 cm, for each
observation 1hi a zero-one variable Yi = I(|1hi| < 10 cm)
is created, where I(|1hi| < 10 cm) is one if |1hi| < 10 cm
and zero otherwise. Assuming that Yi is Bernoulli distributed
with parameter p we thus want to test if H0: p = p0 against
the alternative HA: p > p0. In our example of the 68.3% quantile
p0 = 0.683, i.e. we want to investigate if more than 68.3% of the
absolute errors are smaller than 10 cm. If so, the desired accuracy
specification is fulfilled. The H0 is rejected if Y > c , where Y =∑n
i=1 Yi and the constant c is found as the smallest integer so that

1− F(c − 1; n, p0) ≤ α,

with F(c − 1; n, p0) =
∑c−1
x=0

( n
x

)
px0(1 − p0)

n−x being the CDF at
c − 1 of a binomially distributed variable with size n and success
probability p0.
Again the sample size methodology can be used to compute the

necessary sample size for such a Bernoulli test. A mathematical
derivation can be found in Desu and Raghavarao (1990). The final
approximate formula for the sample size is:

n =


(

zα + zβ
2
(
arcsin

(√
p1
)
− arcsin

(√
p0
)))2

 ,

where zα denotes the α quantile of the standard normal
distribution and p1 denotes the CDF value F (10 cm) of the absolute
error distribution at which we want to achieve the desired power
1− β .
With a comparable formulation as used in the normal setting,

i.e. p1 = 0.818, α = 0.05 and β = 0.05 one obtains a required
sample size of n = 110 to prove that the 68.3% quantile of the error
distribution is below10 cm.Here, the p1 valuewas computed as the
CDF of |X | at 10 cmwhen X is normal withmean zero and variance
(7.5 cm)2. Because no distributional assumptions are made, this
number is higher than in the case of a normal distribution. In this
binomial setting H0 is rejected if Y > 84.

7. Results of four examples of DTM accuracy

This section illustrates the robust methods from Section 5
through four practical examples. The DTMs are derived by digital
photogrammetry and laser scanning. Reference data were derived
by ground surveying using GPS/RTK. In addition, the DTM derived
by digital photogrammetry was directly compared with the DTM
derived by laser scanning. Because the sample size is very different
in these three examples special attention has to be paid to the
calculated confidence intervals, which illustrate the uncertainty of
the obtained estimators.

7.1. Test of the photogrammetrically derived DEM by means of
GPS/RTK data

In the examples the checkpoints were distributed over the
whole area with a low density or a small area with a high density.
The accuracy measures were determined for both cases (large
sample area or small sample area).
Images of suburbs of the city of Aalborg, Denmark, were taken

by the digital large-format frame camera UltraCam D from an
altitude of 640 m. One stereopair was used to derive a DEM by the
software package ‘Image Station Automatic Elevations’, v. 5.1, of Z/I
Imaging. Editing and filtering of the data were not applied.

7.1.1. Small sample area
The sample area is a fraction of the photogrammetric model

(about 370m2) and the checkpoints have a relatively high density,
which leads to a relatively large sample size. The test area ismainly
covered by grass, trees and a few large houses. The results of the
DEM evaluation assuming a normal distribution of the errors are
summarized in Table 3.
It is obvious fromTable 3 that the outliers have a great influence

on the estimated standard deviation. The value dropped from
20 cm to 15 cm. A histogram and a Q–Q plot shown in Figs. 4 and 5
illustrate that the distribution of the errors is non-normal.
The histogram shows that the kurtosis of the error distribution

is slightly positive, i.e. the distribution has a more acute peak
around the mean than the normal distribution and fatter tails.
The Q–Q plot deviates from the straight line and shows more
extreme positive outliers than negative ones. Table 4 summarizes
the results of the robust methods.
The NMAD value and the 68.3% quantile are about the same.

These values are somewhat smaller than the standard deviation of
Table 3 (σ̂ ∗ = 15 cm) and the 95% confidence interval is relatively
narrow at this large sample size (n = 587). Note also, that the
estimated 95% quantile is greater than two times the 68% quantile,
which clearly indicates non-normality and is caused by the acute
peak and fat tails of the distribution.
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Fig. 4. Histogram of the errors1h at a large sample size (n = 587). Superimposed
on the histogram are the expected counts from a normal distribution with mean
and standard deviation estimated from all data.

Fig. 5. Q–Q plot for the distribution of1h at a large sample size (n = 587).

Table 3
Result of a DEM evaluation with the assumption of normal distribution at n = 587
checkpoints of which 13 are classified as outliers by the 3 · RMSE threshold.

Accuracy measures Value (cm)

RMSE 20
Mean (µ̂) 1
Standard deviation (σ̂ ) 20
Mean (after removal of outliers) (µ̂∗) 1
Standard deviation (after removal of outliers) (σ̂ ∗) 15

Table 4
Accuracy measures of the robust methods for the large sample size (n = 587).

Accuracy measure Error
type

Value
(cm)

95% confidence
interval (cm)

50% quantile (median) 1h 1 [1, 4]
NMAD 1h 12 [10, 13]
68.3% quantile |1h| 13 [12, 16]
95% quantile |1h| 41 [36, 53]

7.1.2. Large sample area
This example is a photogrammetric model (about 0.19 km2)

and the checkpoints were distributed over the whole area of the
same photogrammetric model as in Section 7.1.1. The sample size
is, however, very small (n = 19). The used checkpoints were
well defined regarding their elevation. Results for this example are
given in Tables 5 and 6.
One outlier was present which leads to large values for all

standard accuracymeasures (RMSE,µ,σ ).Moreover, the RMSE and
the standard deviation have the same value although the sample
mean is not zero. After removal of the outlier the results for the
mean and the standard deviation are about the same as in the
previous example (cf. Table 3). When using a robust method the
following accuracy measures are obtained (cf. Table 6).
The accuracymeasuresNMADand68.3% quantile differ slightly,

but there is again a smaller value for the 68.3% quantile, namely
8 cm instead of 14 cm when a normal distribution is assumed.
Confidence intervals are relatively large at such a small sample

Table 5
Result of a DEM evaluation with the assumption of normal distribution bymeans of
n = 19 checkpoints of which one is classified as outlier by the 3 · RMSE threshold.

Accuracy measures Value (cm)

RMSE 389
Mean (µ̂) 88
Standard deviation (σ̂ ) 389
Mean (after removal of outliers) (µ̂∗) −1
Standard deviation (after removal of outliers) (σ̂ ∗) 14

Table 6
Accuracy measures of the robust methods for a small sample size (n = 19).

Robust accuracy
measures

Error
type

Value
(cm)

95% confidence
interval (cm)

Median (50% quantile) 1h −4 [−5,−1]
NMAD 1h 4 [3, 11]
68.3% quantile |1h| 8 [7, 31]
95% quantile |1h| 205 [34, 1694]

Table 7
Accuracy measures of a DEM derived by laser scanning by means of n = 41
checkpoints of which 1 is classified as outlier by the 3 · RMSE-threshold.

Accuracy measures Value (cm)

RMSE 33
Mean (µ̂) −4
Standard deviation (σ̂ ) 33
Mean (after removal of outliers) (µ̂∗) 1
Standard deviation (after removal of outliers) (σ̂ ∗) 7

Table 8
Accuracy measures of the robust methods for the sample of size n = 41.

Accuracy measure Error
type

Value
(cm)

95% confidence
interval (cm)

50% quantile (median) 1h −2 [−2, 1]
NMAD 1h 6 [6, 12]
68.3% quantile |1h| 7 [6, 10]
95% quantile |1h| 14 [13, 150]

size. Note also the extreme value of the estimated 95% quantile:
the computations are robust against 5% outliers, but with one out
of 19 points being an outlier this value enters the calculations.

7.2. Test of the DTM derived by laser scanning

In this section the test area is identical with the one described
in Section 7.1.2. Elevations of the checkpoints were derived by
ground surveying and of the DTM derived by laser scanning. The
checkpoints are randomly distributed. For reasons of space we do
not report histograms and Q–Q plots for this example, but refer to
Tables 7 and 8 for the results.
The standard deviation after removal of one outlier is much

lower as with the outlier included.
The NMAD value and the 68.3% quantile are nearly the same

(6 and 7 cm, respectively). The achieved standard deviation (after
removal of outliers) is 15/7 = 2.1 times better than at the DEM
derived by digital photogrammetry.
The same improvement can be found at the NMAD value and

the 68.3% quantile. The condition of a three times higher accuracy
is not completely fulfilled but nevertheless we will use the DTM
of the whole model area as reference data for the DEM derived by
photogrammetry (cf. next section). The derived accuracymeasures
are then relative errors.

7.3. Test of photogrammetric data by means of laser scanned data

The availability of an accurate and very dense DTM, which
was derived from airborne laser scanning (ALS) and automatic
labelling of ground points, gives the possibility of checking the
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Fig. 6. Histogram of the error distribution. For better visualisation the histogram for the 200 classes is given in three separate plots:−18 m to−2 m and+2 m to+18 m
with different scaling of the y-axis.

Table 9
Accuracy measures of a DEM derived by digital photogrammetry and checked by a
dense point cloud derived from laser scanning (126559 checkpoints of which 2052
are classified as outliers by the 3 · RMSE threshold).

Accuracy measures Value (cm)

RMSE 106
Mean (µ̂) 13
Standard deviation (σ̂ ) 105
Mean (after removal of outliers) (µ̂∗) 2
Standard deviation (after removal of outliers) (σ̂ ∗) 34

elevations of automated photogrammetry thoroughly. The applied
filter is the two step approach described by Axelsson (2000),
where a temporary TIN model is created first and then densified
with new points by checking distance and angle parameters.
Both DEMs were determined with a high density (grid spacing
= 3 m for photogrammetry, grid spacing ≈ 2 m for ALS); the
sample size is therefore very high. No editing occurred at the
photogrammetrically derived DEM and new elevation values were
calculated by bilinear interpolation at the position of a point
(footprint) from laser scanning. The differences between the two
elevations were evaluated with the accuracy measures assuming a
normal distribution (cf. Table 9).
1.6% of the differences are outliers. After removal of the outliers

the standard deviation is considerably reduced (from 105 cm to
34 cm) and the accuracy at 95% confidence level amounts to 67 cm.
Again, the histogram shown in Fig. 6 reveals that other approaches
have to be taken in order to obtain reliable accuracy measures for
the DEM. The histograms depicted in Fig. 6 show heavy positive
tails of the distribution, which are caused by a large amount of
outliers at the 2–18 m range.
The median of the differences is 2 cm which is a value for

the systematic shift between the two DEMs. The robust estimator
(NMAD) of the standard deviation is 12 cm. Quantiles of the
distribution of absolute differences (|1h|) are: 13 cm (68.3%) and
68 cm (95%) as given in Table 10. These values are not influenced
by outliers or non-normality of the error distribution.
The NMAD value and the 68.3% quantile agree well with each

other. In comparison with the quality measures when a normal
distribution is assumed, considerable differences can be observed.
The sample mean (13 cm) and median (2 cm) differ by 11 cm
while the standard deviation (105 cm) and the 68.3% quantile
(13 cm) differ by 92 cm. Even the standard deviation after removal
of outliers (34 cm) differs substantially from the 68.3% quantile
(13 cm), which illustrates the problems of a 3·RMSE based removal

Table 10
Accuracy measures of the robust methods for the sample of size n = 126 559.

Accuracy measure Error
type

Value
(cm)

95% confidence
interval (cm)

50% quantile (median) 1h 2 [1, 2]
NMAD 1h 12 [12, 13]
68.3% quantile |1h| 13 [13, 14]
95% quantile |1h| 68 [62, 88]

of blunders in case the underlying distribution differs substantially
from a normal distribution.
A spatial visualisation of the deviations may give hints where

outliers have occurred.
The plot in Fig. 7 shows the spatial distribution of the differ-

ences between the DTM derived by laser scanning including fil-
tering and the DTM/DSM derived by photogrammetry. Elevations
for laser points were derived through bilinear interpolation with
the dense net of photogrammetrically derived points. Blunders are
concentrated especially at the top right corner of the figure. The
large amount of blunders in the data is due to the fact that no edit-
ing of the photogrammetrically derived DEM occurred.
Finally, Fig. 8 shows a contour plot of the 95% quantile of

the absolute error distribution as a function of location using the
Koenker and Mizera (2004) approach, i.e. a quantile regression
usingQ (0.95) = f (x, y). For computational reasons the plot is only
based on a subset of 12,000 points. The plot provides an overview
for direct accuracy checking using quantiles, which better takes
autocorrelation into account.

7.4. Summarizing results with the proposed accuracy measures

Several examples of DEM quality control were presented with
different numbers of outliers and checkpoints. The presented
histograms revealed skewness and kurtosis, which should be
taken into account when deriving accuracy measures. In order to
derive reliable values for the systematic error and the standard
deviation three different approaches have been used: Estimation
using all data, blunders removed using a RMSE based threshold,
and estimation of location and scale using a robust method. Fig. 9
depicts the differences between the different approaches for the
example of Section 7.3.
From the graph it is obvious that the robust approach fits the

histogram best. The removal of outliers by a threshold (T ≥ 3 ·
RMSE) does not eliminate all of the outliers. Therefore, the use of
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Fig. 7. Spatial distribution of differences between elevations from laser scanning and automated photogrammetry. The coloured areas have differences above 1m (≈3 times
standard deviation). The white areas are large buildings and elevations have been removed there by a filter program.

Fig. 8. Contour plot of the triogram surface describing the 95% quantile of the absolute error distribution. The iso-lines illustrate how the 95% quantile differs as a function
of measurement location.

Fig. 9. Histogram of the differences 1h between two DEMs in metres truncated
to the range [−2 m, 2 m]. Superimposed on the histogram are the corresponding
normal distribution curves when estimating parameters ‘mean’ and ‘variance’
through one of the three approaches.

new qualitymeasures (median, NMAD) ismore adequate for DEMs
derived by means of digital photogrammetry or laser scanning.
A distribution-free and non-parametric alternative is the use of
quantiles, therefore, we suggest computing the 68.3% and 95%

quantile of the absolute errors additionally. The use of histogram
and Q–Q plot provide a visual tool to help decide which accuracy
measures are more appropriate for the tested DEM.

8. Discussion

The accuracy measures (systematic shift and standard devia-
tion) should not be influenced from outliers and non-normality of
the error distribution. Therefore, we suggest applying robust sta-
tistical methods in the assessment of DEM accuracy. Confidence
intervals for the various quantiles are only small if the number of
checkpoints is large. It is possible to treat the issue of sample size
within a statistical context. Guidelines on how large the sample
should be are given in Section 7.
Quality control by means of visual inspection and photogram-

metric measurements has to detect as many outliers as possible
and to remove them. Stereo measurements and other editing by
an operator may have to be added. The DTM is then cleaner, but
some of the outliers may remain undetected. Use of robust meth-
ods is, therefore, highly recommended for DEMs derived by digital
photogrammetry or laser scanning.
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Our method for accuracy assessment can be summarized as
follows: Compute vertical errors with all points in the sample.
Then generate histograms and Q–Q plots to visualize the error
distribution and to assess non-normality. Thereafter, compute
mean error and standard deviation as well as median and NMAD
together with confidence intervals. In case of big discrepancies
assess whether outliers in the data are an issue. Also compute
the 68.3% quantile and compare it with the NMAD value. In case
of discrepancy decide (based on the histogram and Q–Q plot) if
non-normality is an issue. If non-normality is an issue use the
more robust and conservative quantile measures supplemented
by a quantile surface plot. In case compliance with a specification
has to be proven, use the appropriate statistical test procedure as
described in Section 6.
The proposed methodology adapts to the specialities of laser

scanning and digital photogrammetry, where blunders and non-
normal distribution are often present, especially in non-open
terrain. DEM standards have to take this into account and non-
parametric and distribution free methods should be calculated in
the assessment of accuracy.
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