
EVE: A Tool for Temporal Equilibrium Analysis?

Julian Gutierrez, Muhammad Najib(B), Giuseppe Perelli,
and Michael Wooldridge

Department of Computer Science, University of Oxford, UK
{julian.gutierrez,mnajib,giuseppe.perelli,michael.wooldridge}@cs.ox.ac.uk

Abstract. We present EVE (Equilibrium Verification Environment), a
formal verification tool for the automated analysis of temporal equilib-
rium properties of concurrent and multi-agent systems. In EVE, systems
are modelled using the Simple Reactive Module Language (SRML) as a
collection of independent system components (players/agents in a game)
and players’ goals are expressed using Linear Temporal Logic (LTL) for-
mulae. EVE can be used to automatically check the existence of pure
strategy Nash equilibria in such concurrent and multi-agent systems and
to verify which temporal logic properties are satisfied in the equilibria.

1 Introduction

We are interested in the verification of concurrent and multi-agent systems in
which system components are modelled as open systems using a game-theoretic
approach. In this approach, multi-agent/concurrent systems correspond to multi-
player games, agents/processes to (rational) players, computation runs to plays
of the game, and individual component behaviours to player strategies. Since the
classical notion of correctness is not appropriate in this multi-agent setting [21],
one needs different concepts to analyse such systems, and game theory provides
a natural set of mathematical tools and solution concepts for that [16]. Among
the proposed solution concepts, Nash equilibrium (NE) [17] is considered as the
most important in non-cooperative and multi-player settings. In our framework,
NE is characterised1 as follows: given a game G, with N = {1, . . . , n} the set of
players and ~a a strategy profile, ~a is a NE if for every player i ∈ N that does not
get her LTL goal formula satisfied in the play resulting from ~a, she cannot get
her goal satisfied by unilaterally changing her strategy.

In this paper, we present EVE (Equilibrium Verification Environment), which
can be used to solve three key decision problems in rational synthesis and verifi-
cation [9, 21]: Non-Emptiness, E-Nash, and A-Nash. These problems ask, re-
spectively, whether a multi-player game has at least one NE, whether an LTL [18]
formula holds on some NE, and whether an LTL formula holds on all NE. EVE
uses a technique based on parity games to check for the existence of NE in a
concurrent and multi-player game, and a model of strategies that is memoryful

? The authors acknowledge with gratitude the financial support of the ERC Advanced
Investigator Grant 291528 (“RACE”) at Oxford. Muhammad Najib is supported by
the Indonesian Endowment Fund for Education (LPDP).

1 We refer to [9, 21] for the formal characterisation of NE.

2

and bisimulation invariant. The latter property is a (desirable) key feature of
our modelling framework since bisimilarity is a fundamental equivalence in con-
currency which allows one to perform modular and compositional reasoning for
the semantic analysis of several concurrent, reactive, and distributed systems.

There are only a few of existing tools that can be used to reason about NE
in multi-player games; PRALINE [2] and MCMAS [20] are the most comparable
to EVE, and yet both are different from EVE in critical ways. PRALINE does
not support LTL goals and uses a model of strategies that is sensitive to bisim-
ilar transformations, meaning that in PRALINE two games on bisimilar systems
may have different sets of NE; cf., [7]. On the other hand, MCMAS can check
the existence of NE in memoryless strategies only and, like PRALINE, uses a
model of strategies that does not allow for bisimulation-invariant transforma-
tions, which are made, e.g., when using symbolic methods via OBDDs or some
model-minimisation techniques. Another tool is UPPAAL [15], which has been
used to study NE in wireless networks [3]. Unlike EVE, UPPAAL works in a quan-
titative setting, uses Statistical Model Checking, and computes approximate NE.

2 Tool Description

Modelling Language. Each system component (agent/player) in EVE is repre-
sented as a SRML module, which consists of an interface that defines the name
of the module and lists a non-empty set of Boolean variables controlled by the
module, and a set of guarded commands, which define the choices available to the
module at each state. There are two kinds of guarded commands: init, used for
initialising the variables, and update, used for updating variables subsequently;
we refer to [13] for further details on the semantics of SRML. In addition, we
associate each module with a goal, which is specified as an LTL formula.

Implementation and Usage. EVE was developed in Python and is available
online from https://github.com/eve-mas/eve-parity. EVE takes as input a
concurrent and multi-agent system described in SRML, with player goals and a
property φ to be checked specified in LTL. For Non-Emptiness, EVE returns
“YES” (along with a set of winning players W) if the set of NE in the system is
not empty, and returns “NO” otherwise. For E-Nash (A-Nash), EVE returns
“YES” if φ holds on some (all) NE of the system, and “NO” otherwise. EVE
also returns a witness for each “YES” instance as a synthesised strategy profile.

3 Case Studies

We now present two examples from the literature of distributed systems to show
the practical usage of EVE. Among other things, these two examples differ in
the way they are modelled as a concurrent game. While the first one is played
in an arena implicitly given by the specification of the players in the game (as
done in [9]), the second one is played on a graph, e.g., as done in [1] with the use
of concurrent game structures. Both of these modelling approaches can be used
within our tool. We also use these two examples to evaluate EVE’s performance
in practice (and compare it against MCMAS and PRALINE) in Section 4.

EVE: A Tool for Temporal Equilibrium Analysis 3

Service

RM

RM RM

FE FE

gossip

query update

query update

Clients

Fig. 1: Gossip framework structure.

module RM1 controls s1

init

:: true ∼> s1’:=true;

update

:: s1 ∼> s1’:=false;

:: s1 ∼> s1’:=true;

:: !s1 and (!s2 or ... or !sn)

∼> s1’:=true;

goal

:: G F (!s1);

Fig. 2: SRML code modelling RM1.

Gossip Protocol. Gossip protocols mimic the way social networks disseminate
information and have been used to solve problems in many large-scale distributed
systems, such as peer-to-peer and cloud computing systems. Ladin et al. [14]
developed a framework to provide high availability services based on the gossip
approach first introduced in [4, 22]. The main feature of this framework is the
use of replica managers (RMs) which exchange “gossip” messages periodically to
keep the data updated. The architecture of such an approach is shown in Fig. 1.

We model each RM as follows: (1) When in servicing mode, an RM can choose
either to keep in servicing mode or to switch to gossiping mode; (2) If it is in
gossiping mode and there is at least another RM also in gossiping mode2, since
the information during gossip exchange is of (small) bounded size, it goes back
to servicing mode in the subsequent step. The goal of each RM is to be able to
gossip infinitely often. As shown in Fig. 2, the module RM1 controls a variable: s1.
Its value being true signifies that RM1 is in servicing mode; otherwise in gossiping
mode. Behaviour (1) is reflected in the first and second update commands, while
behaviour (2) is reflected in the third update command. The goal of RM1 is
specified with the LTL formula GF ¬ s1, which expresses that RM1’s goal is to
gossip infinitely often: “always” (G) “eventually” (F) gossip (¬s1).

Observe that with all RMs rationally pursuing their goals, they will adopt
any strategy which induces a run where each RM can gossip (with at least
one other RM) infinitely often. This kind of game-like modelling gives rise to a
powerful characteristic: on all runs sustained by a NE, the distributed system
is guaranteed to have two crucial non-starvation/liveness properties; RMs can
gossip infinitely often and clients are served infinitely often. These properties are
verified in the experiments; E-Nash: no NE sustains “all RMs forever gossiping”;
and with A-Nash: in all NE at least one RM is in servicing mode infinitely often.

Replica Control Protocol. Consensus is a fundamental issue in distributed
computing and multi-agent systems. Gifford [6] used a quorum-based voting
protocol to ensure data consistency in an information system by not allowing
more than one processes in the system to read or write the same data item
concurrently. To do this, each copy of a replicated data item is assigned a vote.

2 The core of the protocol involves (at least) pairwise interactions periodically.

4

q1

q2

qn−2

qn−1

qn

q0

Fig. 3: Gifford’s proto-
col modelled as a game.

We can model a (modified version of) Gifford’s
protocol as a game as follows. The set of players N =
{1, . . . , n} in the game is arranged in a request queue
represented by a sequence of states q1, . . . , qn, where
qi means that player i is requesting to read/write the
data item. At state qi, other players in N\{i} can then
vote whether to allow player i to read/write. If the ma-
jority of players in N vote “yes”, then the transition
goes to q0, i.e., player i is allowed to read/write, and
otherwise it goes to qi+1

3. The voting process then
restarts from q1. The protocol’s structure is shown in
Fig. 3. Notice that at the last state, qn, there is only
one outgoing arrow to q0. The goal of each player i is to visit q0 right after qi
infinitely often, so that the desired behaviour of the system is sustained on all
NE of the system: a data item is not accessed by two processes concurrently and
the data is updated in every round. The associated properties are verified in the
experiments in Section 4. With E-Nash: there is no Nash equlibrium in which
the data is never updated; with A-Nash: on all NE, each player is allowed to
request to read/write infinitely often. This example uses a (deterministic) mod-
ule, called “Environment”, modelling the underlying concurrent game structure,
shown in Fig. 3, where the game is played.

4 Experimental Evaluation and Conclusions

Experiments. In order to evaluate the practical preformance of our tool and
approach against MCMAS4 and PRALINE, we present results on the temporal
equilibrium analysis for the examples in Sec. 3. We ran the tools on the two
examples with different numbers of players (“P”), states (“S”), and edges (“E”).
The experiments were obtained on a PC with Intel i5-4690S CPU 3.20 GHz ma-
chine with 8 GB of RAM running Linux kernel version 4.12.14-300.fc26.x86 64.
We report the running time5 for solving Non-Emptiness (“ν”), E-Nash (“ε”),
and A-Nash (“α”). For the last two problems, since there is no direct support in
PRALINE and MCMAS, we used the reduction of E/A-Nash to Non-Emptiness
presented in [5]. Time-out (“TO”) was fixed to be 7200 seconds (2 hours).

From the experiments we observe that, in general, EVE has the best perfor-
mance, followed by PRALINE and MCMAS. Although PRALINE performed better
than MCMAS, both struggled (timed-out) with inputs with more than 100 edges,
while EVE could handle up to about 6000 edges (for Non-Emptiness).

3 We assume arithmetic modulo (|N| + 1) in this example.
4 The tool to automatically convert EVE’s input (SRML code) into MCMAS’s input

(ISPL code) is available online from https://github.com/eve-mas/sevia
5 To carry out a fairer comparison (since PRALINE accepts Büchi objectives), we added

to PRALINE’s running time, the time needed to convert LTL games into its input.
Translating parity games to PRALINE’s input is possible in our particular examples
since in those cases we can map the colours/priorities directly into Büchi condition.

EVE: A Tool for Temporal Equilibrium Analysis 5

Table 1: Gossip Protocol experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 4 9 0.02 0.24 0.08 0.02 1.71 1.73 0.01 0.01 0.01

3 8 27 0.09 0.43 0.26 0.33 26.74 27.85 0.02 0.06 0.06

4 16 81 0.42 3.51 1.41 0.76 547.97 548.82 760.65 3257.56 3272.57

5 32 243 2.30 35.80 25.77 10.06 TO TO TO TO TO

6 64 729 16.63 633.68 336.42 255.02 TO TO TO TO TO

7 128 2187 203.05 TO TO 5156.48 TO TO TO TO TO

8 256 6561 4697.49 TO TO TO TO TO TO TO TO

Table 2: Replica control experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 3 8 0.04 0.11 0.10 0.05 0.64 0.74 0.01 0.01 0.02

3 4 20 0.11 1.53 0.22 0.12 4.96 5.46 0.02 0.06 0.11

4 5 48 0.34 1.73 0.68 0.56 65.50 67.45 1.99 4.15 11.28

5 6 112 1.43 2.66 2.91 6.86 1546.90 1554.80 1728.73 6590.53 TO

6 7 256 5.87 13.69 16.03 94.39 TO TO TO TO TO

7 8 576 32.84 76.50 102.12 2159.88 TO TO TO TO TO

8 9 1280 166.60 485.99 746.55 TO TO TO TO TO TO

Conclusion. We have presented EVE, a tool to analyse temporal equilibrium
properties in concurrent games modelling multi-agent systems. Although there
are other tools to compute pure NE (e.g., PRALINE and MCMAS), they work
in different settings. Moreover, while EVE uses a richer (bisimulation-invariant)
model of strategies, it still performed better than the other two tools. In ad-
dition, this model of strategies is amenable to the use of powerful techniques
for symbolic reasoning and model minimisation. Another important feature is
that, in addition to Non-Emptiness, EVE has direct support for other problems
in the rational verification framework [8, 9, 21], namely E-Nash and A-Nash.
These two problems can be considered as counterparts to model checking in
game-theoretic settings, making them very relevant in the analysis of multi-
agent systems. We foresee many avenues for further work: games with imperfect
information [12], quantitative payoffs [11], or branching-time goals [19, 10].

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic.
J. ACM 49(5), 672–713 (Sep 2002)

2. Brenguier, R.: Praline: A tool for computing nash equilibria in concurrent games.
In: CAV. pp. 890–895. Springer, Berlin, Heidelberg (2013)

3. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Mikucionis, M.: Computing
nash equilibrium in wireless ad hoc networks: A simulation-based approach. In:

6

Proceedings Second International Workshop on Interactions, Games and Protocols,
IWIGP 2012, Tallinn, Estonia, 25th March 2012. pp. 1–14 (2012)

4. Fischer, M.J., Michael, A.: Sacrificing serializability to attain high availability of
data in an unreliable network. In: PODS. pp. 70–75. ACM, New York, USA (1982)

5. Gao, T., Gutierrez, J., Wooldridge, M.: Iterated boolean games for rational verifi-
cation. In: AAMAS. pp. 705–713. ACM, Sao Paulo, Brazil (2017)

6. Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the Seventh
ACM Symposium on Operating Systems Principles. pp. 150–162. SOSP ’79, ACM,
New York, NY, USA (1979)

7. Gutierrez, J., Harrenstein, P., Perelli, G., Wooldridge, M.: Nash equilibrium and
bisimulation invariance. In: CONCUR. LIPIcs, vol. 85, pp. 17:1–17:16. Schloss
Dagstuhl, Berlin, Germany (2017)

8. Gutierrez, J., Harrenstein, P., Wooldridge, M.: Iterated boolean games. Information
and Computation 242, 53–79 (2015)

9. Gutierrez, J., Harrenstein, P., Wooldridge, M.: From model checking to equilibrium
checking: Reactive modules for rational verification. Artificial Intelligence 248, 123–
157 (2017)

10. Gutierrez, J., Harrenstein, P., Wooldridge, M.: Reasoning about equilibria in game-
like concurrent systems. Ann. Pure Appl. Logic 168(2), 373–403 (2017)

11. Gutierrez, J., Murano, A., Perelli, G., Rubin, S., Wooldridge, M.: Nash equilibria in
concurrent games with lexicographic preferences. In: Sierra, C. (ed.) Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017. pp. 1067–1073. ijcai.org (2017)

12. Gutierrez, J., Perelli, G., Wooldridge, M.: Imperfect information in reactive mod-
ules games. Information and Computation 261, 650–675 (2018)

13. van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical
atl model checking. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems. pp. 201–208. AAMAS ’06, ACM,
New York, NY, USA (2006)

14. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using
lazy replication. ACM Trans. Comput. Syst. 10(4), 360–391 (Nov 1992)

15. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell (1997)
16. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Nisan,

N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory,
pp. 209–242 (2007)

17. Osborne, M.J., Rubinstein, A.: A Course in Game Theory (1994)
18. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57. IEEE, Rhode

Island, USA (1977)
19. Toumi, A., Gutierrez, J., Wooldridge, M.: A tool for the automated verification

of nash equilibria in concurrent games. In: ICTAC. LNCS, vol. 9399, pp. 583–594.
Springer, Cali, Colombia (2015)

20. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: Mcmas-slk: A model checker
for the verification of strategy logic specifications. In: CAV. pp. 525–532. Springer
(2014)

21. Wooldridge, M., Gutierrez, J., Harrenstein, P., Marchioni, E., Perelli, G., Toumi,
A.: Rational verification: From model checking to equilibrium checking. In: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA. pp. 4184–4191 (2016)

22. Wuu, G.T., Bernstein, A.J.: Efficient solutions to the replicated log and dictionary
problems. In: Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing. pp. 233–242. PODC ’84, ACM, New York, USA (1984)

