
Solving Black-Box Optimization Challenge
via Learning Search Space Partition

for Local Bayesian Optimization

Mikita Sazanovich∗

JetBrains Research
St Petersburg, Russia

mikita.sazanovich@jetbrains.com

Anastasiya Nikolskaya∗
JetBrains Research

St Petersburg, Russia
nastia.nikolskaya@gmail.com

Yury Belousov∗

JetBrains Research
St Petersburg, Russia

yury-belousov@outlook.com

Aleksei Shpilman
JetBrains Research

St Petersburg, Russia
alexey@shpilman.com

Abstract

In this paper, we describe our approach to solving the black-box optimization
challenge through learning search space partition for local Bayesian optimization.
We develop an algorithm for low budget optimization. We further optimize the
hyper-parameters of our algorithm using Bayesian optimization. Our approach
ranks 3rd in the competition.

1 Introduction

Optimization of hyper-parameters for machine learning models is a common practice. Sometimes, it
is done manually, but it could also be automated. Optimizing machine learning models while treating
them as a black-box function is a part of black-box optimization. It has been successfully used for
many different tasks such as hyper-parameter tuning for convolutional neural networks (Snoek et al.
[2012]), policy optimization in reinforcement learning (Wang et al. [2020]), neural architecture search
(Wang et al. [2019]).

The black-box optimization challenge focuses on the application of Bayesian optimization to tuning
the hyper-parameters of machine learning models. In this competition, the participants are asked
to optimize the hyper-parameters of an unknown objective function f . The algorithm is provided
with the hyper-parameter configuration space: the number of hyper-parameters, their types (integer,
real, categorical, or boolean), their spaces (linear, logarithmic, logit, or bi-logarithmic), and the lists
or the ranges of possible values. The algorithm runs for K = 16 iterations and suggests B = 8
hyper-parameter sets (or points) xk1, ..., xkB per iteration. It receives the value of the objective
function for each of them, i.e., yk1 = f(xk1), ..., ykB = f(xkB). The algorithm is expected to better
understand how the objective function value depends on the hyper-parameter values by using the
evaluation results from previous iterations. The final goal of the algorithm is to minimize the objective
function value f .

∗Equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Figure 1: An example space partition for a 3D hyper-parameter space. The red points lie outside the
selected region from the partition. The light green points are inside it but outside the region of the
local Bayesian optimization model. The dark green points are some of the points which could be
suggested next. In the end, the algorithm selects the black points for the next iteration.

2 Algorithm

2.1 High-level overview

To tackle this challenge, we develop the following method. The algorithm consists of several parts,
including the initial sampling method, local Bayesian optimization, and learning search space partition
for it.

First, we run the initial points generator to provide ninit points for our model to start. The ninit value
could depend on the number of hyper-parameters or be a predetermined number. The initialization
usually runs from 1 to 4 iterations. After the initialization, the space partitioning is built. The space
partitioning is rebuilt every nrebuild iterations after its first construction. When the space partitioning
is built or rebuilt, the local Bayesian optimization model runs in the space region with the lowest
average objective function value. It is initialized from all previously evaluated points in the region,
and it runs for nrebuild iterations. We set nrebuild to 4.

Furthermore, we reset the algorithm to its initial state (i.e., remove all accumulated points, its space
partitioning, and begin from the initialization) every nreset iterations if no progress has been made.
To measure the progress, we consider the minimum function objective before and after the last nreset

iterations. If the minimum value is the same, we say that no progress has been made and reset
our algorithm. It helps with getting out of the local minimum and making progress in the global
optimization task. We set nreset to 8.

2.2 Initial sampling method

One of the approaches for initial point generation is to generate them completely randomly. The
downside of this is that there is no guarantee that these points are spread well enough across all the
dimensions. Sampling methods such as Latin hypercube, Sobol, Halton, Hammersly (Greenhill et al.
[2020]) and MaxPro (Joseph et al. [2015]) take advantage of the fact that we know beforehand how
many random points we want to sample. Then the initial points can be sampled in a way that each
dimension is explored. We experiment with these methods in our algorithm.

2.3 Local Bayesian optimization

We use the trust region Bayesian optimization (TuRBO) algorithm from Eriksson et al. [2019] as
our local Bayesian optimization model. Considering the low budget for the number of iterations,
we modify it with a decay factor, which shrinks the trust region. The policy we use is to decay the

2



Table 1: Hyper-parameters of finals candidates.

Configuration Initial Sampling ninit Split model Split kernel Split regularization decay

Candidate 1 Latin hypercube 8 SVM rbf 0.002762 0.700
Candidate 2 Latin hypercube 24 SVM poly 745.322745 0.499
Candidate 3 Latin hypercube 24 SVM rbf 145.415497 0.416
Candidate 4 Latin hypercube 24 SVM rbf 165.066908 0.549
Candidate 5 Latin hypercube 24 SVM rbf 76.7041709 0.677

Table 2: Local and remote evaluation of finals candidates.

Configuration Local scores mean Local scores stddev Remote scores mean Remote scores stddev

Candidate 1 98.239 0.609 96.939 0.300
Candidate 2 98.960 0.305 97.557 0.281
Candidate 3 98.733 0.423 97.451 0.257
Candidate 4 98.828 0.599 97.345 0.167
Candidate 5 98.711 0.338 97.505 0.117

region side lengths by a constant factor decay with each iteration if we have already used half of our
iterations budget, i.e., past 8 iterations.

2.4 Learning search space partition

We intend on learning the space partition into regions with high/low objective function values, similar
to Wang et al. [2020]. Using the space partition, we then select the region with the lowest average
objective function value and run the local Bayesian optimization algorithm described above. Fig. 1
shows an example of such a space partition during a run of the algorithm.

More formally, when we construct a space partitioning at an iteration t (from 1 to K), we have a
dataset Dt which consists of previously evaluated points (x1, y1), ..., (xnt , ynt), where nt = t ∗B.
We recursively split the current set of points into a left and a right sub-tree. The split is built as
follows:

1. We run the KMeans algorithm to group the points into 2 clusters based on their objective
function values yi. The left sub-tree is formed from a set of points with a lower average
function objective value.

2. Using KMeans algorithm labels as ground-truth labels, we train a split model to predict
whether a set of hyper-parameters would fall into the first or the second cluster. We consider
SVM with different kernels and k-nearest neighbors algorithm for the split model.

3. The split model filters the current set of points so that only the points which are predicted to
be in the left sub-tree remain.

We continue to split the set of points until we reach the maximum depth maxdepth = 5, or the new
set of points is not large enough for the initialization of the local Bayesian optimization model.

2.5 Optimization

To set the right in the context of the competition hyper-parameters for our algorithm, we use the multi-
task Bayesian optimization method from Letham and Bakshy [2019] to build a multi-task Gaussian
process to combine the local and remote evaluation results. Using it, we generate 5 candidates for the
pool of finals candidates. Table 1 shows the hyper-parameters of the generated set of candidates.

3



3 Results

3.1 Metric

The score given to a run of an algorithm on an objective function is the minimum value received by
an algorithm normalized by the expected minimum and maximum objective function values. The
score is then multiplied by 100. More formally, let fa be a minimum value received by an algorithm,
fmin be the expected minimum and fmax the expected maximum values. The score is computed as
follows: sa = 100 ∗ (1.0− fa−fmin

fmax−fmin
) = 100 ∗ fmax−fa

fmax−fmin
.

3.2 Local evaluation

We evaluate the set of candidates from Sec. 2.5 on a number of tasks locally. We follow the suggestion
from the competition authors and run experiments using bayesmark library2. The left side of Table 2
shows the results. We run each candidate locally 19 times.

3.3 Remote evaluation

We send the same set of candidates from Sec. 2.5 to a remote evaluation server. The right side of
Table 2 presents the results. We evaluate each candidate remotely 3 times.

3.4 Competition finals

We select Candidate 2 for the competition finals based on the evaluation scores from all runs using
the Wilcoxon signed-rank test with p-value less than 0.05. Our approach scores 92.509 in the finals
and ranks 3rd overall.

4 Conclusion

In this paper, we present our approach to the black-box optimization challenge. The algorithm
includes local Bayesian optimization and learning search space partition. We optimize the hyper-
parameters of our algorithm by using a black-box optimization algorithm. Our selected algorithm
ranks 3rd in the competition finals.

References
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine

learning algorithms. In Advances in Neural Information Processing Systems, volume 25, pages
2951–2959, 2012.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
optimization using monte carlo tree search. ArXiv, abs/2007.00708, 2020.

Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. Sample-efficient neural
architecture search by learning action space. ArXiv, abs/1906.06832, 2019.

Stewart Greenhill, S. Rana, Sunil Gupta, Pratibha Vellanki, and S. Venkatesh. Bayesian optimization
for adaptive experimental design: A review. IEEE Access, 8:13937–13948, 2020.

V. Joseph, E. Gul, and S. Ba. Maximum projection designs for computer experiments. Biometrika,
102:371–380, 2015.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Benjamin Letham and Eytan Bakshy. Bayesian optimization for policy search via online-offline
experimentation. Journal of Machine Learning Research, 20(145):1–30, 2019.
2https://github.com/uber/bayesmark

4

https://github.com/uber/bayesmark

	Introduction
	Algorithm
	High-level overview
	Initial sampling method
	Local Bayesian optimization
	Learning search space partition
	Optimization

	Results
	Metric
	Local evaluation
	Remote evaluation
	Competition finals

	Conclusion

