
Counting, Adding, and Regular
Languages

by

Thomas Finn Lidbetter

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Thomas Finn Lidbetter 2018

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis contains content from two papers of which I, Thomas Finn Lidbetter, am a
co-author. The two papers are listed in the References section as [5, 6] and [11, 12]—the
conference proceeding version and unpublished extended version pairs. The content in
Sections 2.3, 2.5.7, and 2.4 is taken verbatim from [5] and [6]. The content of Section 3.1,
all of Section 3.2, and Section 3.3 can be found verbatim in [11, 12]. The abstract for this
thesis uses parts of the abstracts for the two aforementioned papers.

iii

Abstract

In this thesis we consider two mostly disjoint topics in formal language theory that
both involve the study and use of regular languages.

The first topic lies in the intersection of automata theory and additive number theory.
We introduce a method of producing results in additive number theory, relying on theorem-
proving software and an approximation technique. As an example of the method, we prove
that every natural number greater than 25 can be written as the sum of at most 3 natural
numbers whose canonical base-2 representations have an equal number of 0’s and 1’s. We
prove analogous results about similarly defined sets using the automata theory approach,
but also give proofs using more “traditional” approaches.

The second topic is the study languages defined by criteria involving the number of
occurrences of a particular pair of words within other words. That is, we consider languages
of words z defined with respect to words x, y where z has the same number of occurrences
(resp., fewer occurrences), (resp., fewer occurrences or the same number of occurrences) of
x as a subword of z and y as a subword of z. We give a necessary and sufficient condition
on when such languages are regular, and show how to check this condition efficiently.

We conclude by briefly considering ideas tying the two topics together.

iv

Acknowledgements

I would like to express my thanks to Jeffrey Shallit for supervising my research, espe-
cially for suggesting many interesting problems to think about and for providing valuable
feedback on my mathematical writing. I would also like to acknowledge my co-authors,
Jason Bell, Charles Colbourn, Ryan Dougherty, and Jeffrey Shallit, for their work and
ideas that went into the two papers serving as a basis for this thesis. Lastly, I would also
like to express my gratitude to Bin Ma and Éric Schost for their role as readers of this
thesis.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Words, Languages, and Automata . 2

1.2.1 Words and Languages . 2

2 Additive Number Theory and Formal Languages 4

2.1 Automatic Sequences and First-Order Logic 4

2.1.1 Automatic Sequences . 4

2.1.2 First-Order Logic . 6

2.1.3 Decidability and Walnut . 7

2.2 Additive Number Theory Background . 10

2.2.1 Introduction . 10

2.2.2 Languages as Additive Bases . 10

2.3 Additive Number Theory via Approximation by Regular Languages 12

2.3.1 Method . 12

2.3.2 Example of the Method: the Set S≥ 13

2.3.3 The Set S= . 16

vi

2.3.4 The Set S≤ . 19

2.3.5 The Set S< . 20

2.3.6 The Set S> . 21

2.3.7 The Set S 6= . 23

2.3.8 The Totally Balanced Numbers . 23

2.3.9 Prefixes of Totally Balanced Numbers 25

2.4 Limitations of the Method . 26

2.5 Alternative Methods and Generalizations 27

2.5.1 The Set S≥ . 28

2.5.2 The Set S= . 28

2.5.3 The Set S> . 29

2.5.4 The Set S< . 30

2.5.5 The Set S≤ . 31

2.5.6 The Set S6= . 31

2.5.7 Generalization to Other Bases . 32

2.5.8 Generalization to k-Context-Free Sets 34

2.6 N -State Automata Accepting Additive Basis Languages 35

2.7 Open Problems . 39

3 Counting Subwords 42

3.1 Preliminaries . 42

3.1.1 Introduction . 42

3.1.2 Bordered Words and Periodicity . 43

3.1.3 Pattern-Matching Automata . 44

3.1.4 Interlacing . 44

3.2 Regularity of Subword Count Comparison Languages 44

3.2.1 Deterministic Context-Freeness . 44

3.2.2 Regularity . 45

vii

3.2.3 Testing the Criteria . 49

3.2.4 Improving the Bound in Corollary 38 50

3.3 Finiteness . 59

3.4 Counting Subwords and Additive Bases . 60

3.5 Open Problems . 62

References 63

viii

List of Tables

2.1 The first 15 terms of the Thue-Morse sequence 5

2.2 Sets considered and their corresponding languages, as presented in [5, 6] . . 12

2.3 Number of consistentN -state automata according to criteria met for forming
an (asymptotic) additive basis . 36

2.4 Representations of n as the sum of at most 9 elements of S4 38

2.5 Number of consistent N -state automata according to the asymptotic addi-
tive basis orders of the corresponding sets 39

2.6 Number of consistent N -state automata according to the additive basis or-
ders of the corresponding sets . 39

3.1 Contradictions for each a1, b1, xn ∈ Σ and x1 = 0, where in each row x =
xi1a1b1x

j
n and i, j ≥ 0 and either i ≥ 1 or j ≥ 1. The contradictions rely on

the assumption that x is not a subword of y. 54

3.2 Contradictions for each valid u ∈ Σ+, v ∈ Σ∗, and x1 = 0, where in each
row x = x1(uv)i+1u for i ≥ 0. The contradictions rely on the assumption
that x is not a subword of y. 55

ix

List of Figures

2.1 A 2-DFAO, M , generating the Thue-Morse sequence 6

2.2 Automaton A2 accepting words w ∈ ((Σ2)
3)∗ with w(1) = x, w(2) = y, and

w(3) = z such that [x]2 + [y]2 = [z]2 . 8

2.3 Automaton E2 accepting words w ∈ (Σ2 ×Σ2)
∗ such that for x = w(1) and

y = w(2) we have x = y . 8

2.4 Automaton for 0∗R≥ . 14

2.5 Numbers having representations as sums of at most three numbers with
base-2 representations in R≥ . 15

2.6 Automaton for 0∗R= . 16

2.7 Automaton accepting those n that are the sum of at most three numbers
with base-2 representations in R= . 17

2.8 Automaton for 0∗ + 0∗R′= . 18

2.9 Automaton accepting base-2 representations of those n that are not the sum
of at most two numbers with base-2 representations in R′= 19

2.10 Automaton for 0∗(1 + 10)∗ . 20

2.11 Automaton for 0∗ + 0∗1(1 + 10 + 01)∗ . 21

2.12 Automaton for 0∗ + 0∗(10(01 + 10 + 0)∗0(01 + 10 + 0)∗) 22

2.13 Automaton accepting those numbers that are the sum of at most three
elements whose base-2 representations are in 10(01 + 10 + 0)∗0(01 + 10 + 0)∗ 22

2.14 Automaton for 0∗RTB . 24

2.15 Automaton accepting the base-2 representation of those n for which 2n =
x+ y + z with x, y, z having base-2 representations in RTB 25

x

2.16 Consistent automaton, M4, on 4 states with asymptotic additive basis order
greater than 6 . 37

2.17 Consistent 3-State automaton corresponding to a set with additive basis
order 10 . 41

3.1 A DFA recognizing L01=10 over Σ = {0, 1} 46

3.2 Matches of x against y0y, y1y, and y2y . 50

3.3 Positions of x in yt0y, yt1y, yt2y for Case (i) 57

3.4 Positions of x in yt0y, yt1y, yt2y for Case (ii) where t2[3] = c0 58

3.5 Automaton accepting 0∗R . 61

xi

Chapter 1

Introduction

1.1 Introduction

This thesis examines two mostly disjoint topics involving the study of regular languages
within the larger subject area of formal language and automata theory. In Chapter 2 we
introduce and apply a method for proving results in number theory, using regular languages
and automata theory. As an example of the method, we show that every natural number
greater than 25 can be written as the sum of at most three numbers that have an equal
number of 0’s and 1’s when written in their canonical base-2 representations. This chapter
is largely based upon the work in [5, 6], of which the author of this thesis is a coauthor. Note
that some of the content of Chapter 2 is copied verbatim from [5, 6]. See the Statement
of Contributions in the front matter, or the final paragraph of Section 2.2.2 for a more
detailed description of which parts of Chapter 2 appeared first in [5, 6].

In Chapter 3 we examine languages where membership of a word w in one of these
languages is defined by the relative number of occurrences of two words x, y within word
w. In particular, we prove necessary and sufficient conditions on when such languages are
regular. This chapter is largely based upon the work in [11, 12], of which the author of this
thesis is a coauthor. Note that most of the content of Chapter 3 is copied verbatim from
[11, 12]. See the Statement of Contributions in the front matter, or the final paragraph of
Section 3.1.1 for a more detailed description of which parts of Chapter 3 appeared first in
[11, 12].

We start with some preliminaries in the present chapter, where we discuss the back-
ground in formal language theory common to both topics. Here, some relevant conventions
are established for the remainder of the work.

1

1.2 Words, Languages, and Automata

1.2.1 Words and Languages

A fundamental construct for the topics included in this work is the word, which is also
known in the literature as a string. A word is a sequence of symbols, also called letters,
from some set of symbols referred to as an alphabet. For example, where Σ = {a, b, c, d} is
an alphabet with symbol elements a,b,c,d, the sequence of symbols w = bccab is a word
over Σ. A word is said to be finite if it is a finite sequence of symbols. The length of a
finite word w is the number of symbols in w and is denoted by |w|. For a symbol, a, we use
the notation |w|a to be the number of occurrences of symbol a in word w. For example,
for the word w = thesis we have |w| = 6, and |w|s = 2, and |w|e = 1, and |w|a = 0. We
denote the empty word, also called the empty string, by ε. The empty word is defined such
that |ε| = 0.

For two words u = u1u1 · · ·um and v = v1v2 · · · vn we can write their concatenations
as uv = u1u2 · · ·umv1v2 · · · vn and vu = v1v2 · · · vnu1u2 · · ·um. Additionally, for a word w
and a nonnegative integer n, we use the notation wn to mean w concatenated with itself n
times. That is, wn = ww · · ·w (n times). A word y is a subword, also known as a factor,
of w if there exist (possibly empty) words x and z such that w = xyz. The word y is a
prefix of w if there exists a word z such that w = yz, and y is a suffix of w if there exists
a word x such that w = xy. For a word w = w1w2 · · ·wn, where each of w1, . . . , wn is a
symbol, we use the notation w[i], where i is an integer satisfying 1 ≤ i ≤ n, to refer to the
ith symbol of w, i.e., w[i] = wi. Similarly, for w = w1w2 · · ·wn and integers 1 ≤ i ≤ j ≤ n,
we define w[i..j] to be the subword wiwi+1 · · ·wj.

Going forward, we assume a basic background in formal language theory. This back-
ground includes an understanding of regular languages, deterministic and non-deterministic
finite automata (DFAs and NFAs), regular expressions, context-free languages, and push-
down automata. For an introduction or refresher to these ideas see, for example, [40] or
[38]. However, before proceeding we establish a few conventions related to these concepts
that will be kept throughout this work.

A deterministic finite automaton M is a five-tuple M = (Q,Σ, δ, q0, F), consisting of
a finite nonempty set of states Q, a finite nonempty alphabet Σ, a transition function
δ : Q× Σ → Q, an initial state q0 ∈ Q, and a set of final or accepting states F ⊆ Q. The
definition of the transition function can be extended to take words in the second argument,
in place of lone symbols. That is, we can define δ∗ : Q×Σ∗ → Q inductively such that for
all q ∈ Q, u ∈ Σ∗, a ∈ Σ we have δ∗(q, ε) = q and δ∗(q, ua) = δ(δ∗(q, u), a). Since for all

2

q ∈ Q, a ∈ Σ we have δ∗(q, a) = δ(q, a), we will write δ in place of δ∗, thus assuming that
the definition of δ is extended to a function on a state, word pair.

A non-deterministic finite automatonN is also defined by a five-tupleM = (Q,Σ, δ, q0, F),
however, the transition function is given by δ : Q×Σ→ 2Q. We again extend the definition
of δ to the domain Q× Σ∗ in the obvious way.

It should be assumed that any transitions omitted in a state diagram for a finite au-
tomaton lead to a non-accepting dead state, from which no final state is reachable.

3

Chapter 2

Additive Number Theory and Formal
Languages

2.1 Automatic Sequences and First-Order Logic

Before defining the motivating problem for this chapter, we first build upon the background
terminology and definitions used in formal language theory stated in Chapter 1 by defin-
ing concepts relevant to topics in the intersection of additive number theory and formal
language theory considered in this thesis.

2.1.1 Automatic Sequences

Intuitively, an automatic sequence is a sequence of symbols given by a function that is
computed by a deterministic finite automaton that reads natural numbers expressed in
some fixed base. To make this idea formal, we first define a deterministic finite automaton
with output, or DFAO, as a six-tuple M = (Q,Σ, δ, q0,∆, τ). Here, we have that Q is a
finite nonempty set of states, Σ is a finite nonempty input alphabet, δ : Q × Σ → Q is a
transition function extended to δ : Q×Σ∗ → Q as in the case of DFAs, q0 is an initial state,
∆ is a finite nonempty output alphabet, and τ : Q → ∆ is the output function mapping
states to symbols from ∆. In contrast with a DFA, which either accepts or rejects an input
word x ∈ Σ∗, according to whether or not δ(q0, x) ∈ F , a DFAO outputs a symbol from
∆ on reading an input word. The output corresponding to input word x ∈ Σ∗ is given by
τ(δ(q0, x)). A DFAO is a generalization of the definition for a DFA M = (Q,Σ, δ, q0, F) in

4

the following sense. If we define output alphabet ∆ = {0, 1} and output function

τ(q) =

{
1, if q ∈ F ;

0, otherwise;

then for MO = (Q,Σ, δ, q0,∆, τ) we have L(M) = {x ∈ Σ∗ : τ(δ(q0, x)) = 1}.

For an integer k ≥ 1 we use the notation Σk to refer to the alphabet of the k smallest
natural numbers Σk = {0, 1, . . . , k− 1} and we say that a DFAO is a k-DFAO if the input
alphabet is Σk. Additionally, for a natural number n, we use the notation (n)k to mean
the canonical base-k representation of n and for a word w ∈ Σ∗k we use the notation [w]k to
refer to the number given by interpreting w as a base-k integer. This allows us to provide
a definition for a k-automatic sequence, as given in [2]. We say that the sequence (an)n≥0
over a finite alphabet ∆ is k-automatic if there exists a k-DFAO M = (Q,Σk, δ, q0,∆, τ)
such that an = τ(δ(q0, w)) for all n ≥ 0 and all w with [w]k = n. If there exists such an
M for the sequence (an)n≥0, then we say that M generates (an)n≥0. An important feature
of this definition is that the k-DFAO must generate the correct output independent of
the number of leading zeros in the input words. From this, we say that a set S ⊆ N is
k-automatic if the characteristic function

χS(n) =

{
1, if n ∈ S;

0, otherwise;

defines a k-automatic sequence.

As an example of a 2-automatic sequence, consider the Thue-Morse sequence t =
(tn)n≥0, where the nth term, tn, is given by tn = |(n)2|1 mod 2, the number of 1’s (mod 2)
in the base-2 representation of n. The first 15 terms are given in Table 2.1. We can see
that this sequence is 2-automatic by observing that it is generated by the 2-DFAO, M , in
Figure 2.1. In M , an odd number of 1’s read from input corresponds to state q1, whereas
an even number of 1’s read corresponds to state q0.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(n)2 ε 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110
tn 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1

Table 2.1: The first 15 terms of the Thue-Morse sequence

5

q0/0 q1/1

1

0

1

0

Figure 2.1: A 2-DFAO, M , generating the Thue-Morse sequence

A survey of results related to the Thue-Morse sequence can be found in [1], and further
examples of automatic sequences are given in [2], for example.

2.1.2 First-Order Logic

To automate the proofs of the main results of this chapter, we use an approach where the
statements that we wish to prove are written as first-order logic sentences. In this section
we define the relevant notions in first-order logic and discuss the mechanism through which
automata can be used to decide statements written in the first-order logical theory of the
natural numbers with addition and indexing into automatic sequences.

In this work we are interested in working with the structure 〈N,+〉, describing the
valid first-order logic formulae. To define a formula in 〈N,+〉, we first define a term in
〈N,+〉 as any variable x over N or any summation x + y of variables x, y over N. Using
the existential (∃) and universal (∀) quantifiers, equality comparison (=), and the logical
operators of negation (¬), conjunction (∧), and disjunction (∨), we can give the following
recursive definition of a first-order logic formula.

1. For any term t and variable z over N, we have that t = z is a formula.

2. For formulae ϕ, ψ, we have ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ are all formulae.

3. For a formula ϕ and a variable x, we have that (∀x)ϕ and (∃x)ϕ are both formulae.
In both cases, we say that variable x is quantified in ϕ.

In a formula, ϕ, variables which are not quantified are said to be free variables. A
formula is a sentence if there are no free variables. All such formulae evaluate to either
true or false. The set of all first-order sentences in 〈N,+〉 that evaluate to true is called the
first-order theory of 〈N,+〉 and is written Th(〈N,+〉). A sentence is said to be decidable if

6

there is an algorithm that determines the truth value of the sentence. A first-order theory
Th(S) is decidable if every first-order sentence in S is decidable.

Within this structure of 〈N,+〉 we can define relations beyond just the additive relation
x + y = z. For example, for variables x, z over N we can define the ‘less than’ relation
x < y with the formula (∀z)¬(y + z = x). From this, we can create a simple definition for
the assignment of a variable, x, to the constant 0 with the formula (∀y)(x < y) ∨ (x = y).
This idea can be extended to define any constant c ∈ N. Given that constants and the
comparison relations <,≤, >,≥, 6= can each be defined by formulae in 〈N,+〉, we will use
these symbols in first-order logic formulae in 〈N,+〉 for notational convenience. The same
goes for other logical connectives ⇒,≡ that are definable using ∨,∧,¬.

The first-order logical theory of the natural numbers with addition, Th(〈N,+〉), was
first proven to be decidable by Presburger in [32, 33]. For this, it is also known as Presburger
arithmetic. Later, alternative proofs using finite automata were given by Büchi [7, 8], Elgot
[15], and Hodgson [22]. It is this automaton-based approach to deciding first-order logic
statements that will be used to obtain the main results of this chapter. The following
section describes how automata can be used to decide first-order logic statements. It also
introduces the software implementation of this method, Walnut [29], used to produce and
verify our results.

2.1.3 Decidability and Walnut

To work towards proving the decidability of Th(〈N,+〉), the idea is to use automata
Ak and Ek, where Ak recognizes triples of words x, y, z over Σk, where x, y, z have the
same length and [x]k + [y]k = [z]k, and Ek recognizes pairs of words x, y over Σk where
|x| = |y| and [x]k = [y]k, i.e., x = y. This is achieved by defining Ak and Ek over the
alphabets Σk × Σk × Σk and Σk × Σk, respectively. In order to refer to the sequence
of symbols in Σk, in some common index of tuples in (Σk)m concatenated to form a
word w = [a1,1, a1,2, . . . , a1,m][a2,1, a2,2, . . . , a2,m] · · · [an,1, an,2, . . . , an,m] in ((Σk)m)∗, define
w(i) = a1,ia2,i · · · an,i. This work is mostly restricted to using base 2. Hence, we take k = 2
for the remainder of this discussion. The automaton A2 is given in Figure 2.2 and E2 is
given in Figure 2.3.

In automata A2 and E2, each index of the tuples in the input alphabets corresponds
to a non-quantified variable in formulae x + y = z and x = y respectively. By performing
automaton operations on A2 and E2, we can construct an automaton accepting words
corresponding to valid assignments of variables to values in N for some first-order logic
formula ϕ in 〈N,+〉. We now give an outline of these operations on automata and how
they correspond to operations used in first-order formulae.

7

q0 q1

[0, 0, 0],
[1, 0, 1],
[0, 1, 1]

[0, 0, 1]

[1, 1, 1],
[1, 0, 0],
[0, 1, 0]

[1, 1, 0]

Figure 2.2: Automaton A2 accepting words w ∈ ((Σ2)
3)∗ with w(1) = x, w(2) = y, and

w(3) = z such that [x]2 + [y]2 = [z]2

q0 q1

[0, 1],
[1, 0]

[0, 0],
[1, 1]

[0, 0], [0, 1],
[1, 0], [1, 1]

Figure 2.3: Automaton E2 accepting words w ∈ (Σ2 × Σ2)
∗ such that for x = w(1) and

y = w(2) we have x = y

Define the function A mapping first-order formulae to their corresponding automata.
For example, for ϕ := (x + y = z) and ψ := (x = y) we have A(ϕ) = A2 and A(ψ) = E2.
Observe that A2 and E2 correspond to the two possible types of formula defined in item 1 of
the recursive definition for a first-order logic formula. Given a formula ϕ with corresponding
automaton A(ϕ) = M , we can define an automaton A(¬ϕ) by completing the automaton
M (possibly requiring the introduction of an explicit dead state), and then switching the
roles of final and non-final states in M .

To obtain an automaton corresponding to the conjunction or disjunction of formula ϕ
with free variables x1, . . . , xm and formula ψ with free variables y1, . . . , yn it is necessary to
first transform A(ϕ) and A(ψ) such that they are defined with respect to the same ordered
set of variables. This may require extending the alphabets of the automata, reordering
the indices of the tuples corresponding to variables, and redefining the transition function
accordingly. The details of this transformation are described, for example, in [37, Section
3.2] and [29, Section 4.1]. After applying the transformation, A(ϕ ∧ ψ) and A(ϕ ∨ ψ) are

8

given by the intersection and union, respectively, of the transformed automata.

To complete the demonstration of how to construct an automaton corresponding to
any formula ϕ, it is sufficient to show how to construct an automaton for (∃x)ϕ given an
automaton A(ϕ). This is because if we are able to construct an automaton for (∃x)ϕ, then
we can construct an automaton for (∀x)ϕ by defining A((∀x)ϕ) = A(¬((∃x)¬ϕ)). So let
A(ϕ) = Mϕ = (Qϕ, (Σ2)

m, δϕ, qϕ, Fϕ) and suppose that ϕ has free variables x1, . . . , xm. If
x is not a free variable in ϕ, then A((∃x)ϕ) = A(ϕ). So suppose that x is a free variable
in ϕ, with x = xi for some i with 1 ≤ i ≤ m. If m = 1 then define

A((∃x)ϕ) =

{
({q0},Σ2, δ, q0, {q0}), if there is a word w ∈ Σ∗2 with δϕ(qϕ, w) ∈ Fϕ;

({q0},Σ2, δ, q0, ∅), otherwise.

Otherwise, define non-deterministic automaton M ′
ϕ = (Qϕ, (Σ2)

m−1, δ′ϕ, Fϕ) where δ′ϕ :
Qϕ × (Σ2)

m−1 → 2Qϕ is defined by

δ′ϕ(q, [a1, . . . , ai−1, ai+1, . . . , am]) ={δϕ(q, [a1, . . . , ai−1, 0, ai+1, . . . , am]),

δϕ(q, [a1, . . . , ai−1, 1, ai+1, . . . , am])}.

It then remains to determinize M ′
ϕ and perform an additional correcting step to ensure

that if the word 0kw is accepted by M ′
ϕ for some k ≥ 0 then the word 0`w is accepted for

all ` ≥ 0. The details of this additional step and an example of when this is necessary can
be found in [29, Section 4.2]. Due to this determinization step, this operation can have a
worst case asymptotic complexity of O(2n), where n is the number of states of M ′

ϕ.

A further advantage of working with automata corresponding to first-order formulae
is that it gives rise to a set of functions that can be added to the structure 〈N,+〉 while
maintaining decidability. Namely, any function f : Σ∗2 → {0, 1} where 0 corresponds to
False, and 1 corresponds to True and f = τ(δ(q0, w)) for some τ, δ defined in a 2-DFAO
Mf = (Q,Σ2, δ, q0, {0, 1}, τ). Let F be the set of all such functions. Then for all functions
f ∈ F and every variable x over N, we have that f(x) = 1 is a formula in 〈N,+,F〉.

We can construct an automaton corresponding to a formula ϕ of the form f(x) =
1 by taking the 2-DFAO Mf = (Q,Σ2, δ, q0, {0, 1}, τ) and defining automaton Mϕ =
(Q,Σ2, δ, q0, Fϕ) where Fϕ = {q ∈ Q : τ(q) = 1}. Then the decidability of Th(〈N,+,F〉)
follows from the argument for the decidability of Th(〈N,+〉) as given above.

All of these operations, and some others that are definable with those described above,
are implemented in the software package Walnut, developed by Hamoon Mousavi [29].
For a more complete description of the implementation details of Walnut and the syn-
tactic translation of statements in first-order logic to commands that can be parsed by
Walnut, refer to [29] and the code repository publicly available at https://github.com/

hamousavi/Walnut at the time of this writing.

9

https://github.com/hamousavi/Walnut
https://github.com/hamousavi/Walnut

2.2 Additive Number Theory Background

2.2.1 Introduction

The principal problem in additive number theory, as stated in [30], is that of determining
whether for some set S ⊂ N there exists a constant h such that every natural number, or
every sufficiently large natural number, can be written as the sum of at most h elements
of S. If such an h exists, then we are interested in finding the smallest such value for h.
A famous example of a problem in additive number theory is given in Lagrange’s four-
square theorem, which states that every natural number is the sum of at most four square
numbers. We say that set S ⊂ N is an additive basis of order h if every natural number
can be written as the sum of at most h elements of S, whereas S is an asymptotic additive
basis of order h if there exists M ∈ N such that every integer n ≥M can be written as the
sum of at most h elements of S. Lagrange’s four-square theorem then states that the set
of square numbers is an additive basis of order 4.

Some classical problems in additive number theory concern generalizations of La-
grange’s theorem to other sets of kth powers and other sets of k-gonal numbers. For a fixed
integer k ≥ 3, the nth k-gonal number is given by the formula 1

2
((k − 2)n2 − (k − 4)n). It

was stated by Fermat in 1638 and later proved by Cauchy [9] in 1813 that for all k ≥ 3 the
set of k-gonal numbers form an additive basis of order k. The generalization of Lagrange’s
theorem to other sets of kth powers, however, remains unsolved for almost all values of k
greater than 2, in the sense that it is known that for each k ≥ 1 there exists a constant
h(k) such that every natural number is the sum of at most h(k) kth powers [21], but the
smallest value for h(k) is not known. The problem of determining exact values for g(k)
(resp., G(k)), the least integer such that the set of kth powers forms an additive basis
of order g(k) (resp., an asymptotic additive basis of order G(k)), is known as Waring’s
problem. A survey of results on Waring’s problem can be found in [41].

Another problem of note, that is perhaps the most famous unsolved problem in additive
number theory, is Goldbach’s conjecture. The conjecture has a strong and a weak form.
The weak form states that every integer greater than 5 can be written as the sum of 3
primes, whereas the strong formulation states that every even integer greater than 2 can
be written as the sum of 2 primes.

2.2.2 Languages as Additive Bases

Recently, there has been some interest in considering sets of numbers whose base-k expan-
sions match some particular pattern for the aforementioned principal problem in additive

10

number theory. For example, the word analogue of Waring’s problem has been considered
in [24] and [27]. To frame Waring’s problem in a language-theoretic setting, define a base-b
kth power to be k consecutive identical blocks of digits over Σb without leading 0’s. In [24],
Kane, Sanna, and Shallit prove that for all k ≥ 2 there exists a constant W (k) such that
every sufficiently large multiple of Ek := gcd(2k − 1, k) is the sum of at most W (k) binary
kth powers. Madhusudan, Nowotka, Rajasekaran, and Shallit [27] prove the analogue of
Lagrange’s theorem for binary squares; every sufficiently large natural number is the sum
of at most 4 binary squares and 3 binary square summands is not sufficient.

Another example is the sets of base-k palindromes. A word w is a palindrome if the
reversal of w is equal to w itself. The additive number theory problem for base-k palin-
dromes was first considered by Banks in [3], where it was shown that every natural number
can be expressed as the sum of at most 49 decimal palindromes. This number of required
summands was reduced to just 3 and generalized to all bases b ≥ 5 by Cilleruelo, Luca, and
Baxter in [10]. Optimal results for the remaining bases were then given by Rajasekaran,
Shallit, and Smith in [34], using an approach involving an automaton A accepting the
representation of certain sums of palindromes and a decision procedure characterizing the
language accepted by A. Section 2.3 will describe and apply a similar method of using
automata and a decision procedure to show that certain sets form additive bases of some
(optimal) finite order.

Much like the sets of base-k palindromes and base-b kth powers, the sets considered
in this work have a natural definition from a language-theoretic perspective. Specifically,
we will work with the sets given in Table 2.2, defined by the relationships between the
number of 0’s and the number of 1’s in the binary expansions of natural numbers. The
OEIS column refers to the corresponding entry in the On-Line Encyclopedia of Integer
Sequences [16].

It is important to note that all of the languages in Table 2.2 are context-free languages
and not regular languages. The significance of this point is made apparent in Section 2.3.1.

The content that follows in Sections 2.3, 2.5.7, and 2.4 is taken verbatim from [5] and
[6], the conference proceedings and unpublished extended versions of a paper for which
the author of this thesis is a coauthor. Section 2.3.1 describes the method used to achieve
the additive number theory results for the sets listed in Table 2.2, and Sections 2.3.2–2.3.7
describe how the method is applied to each of the sets. Section 2.5 discusses how these same
results can be achieved using more “traditional” approaches, and Section 2.4 discusses the
limitations of the method, particularly as it relates to classical problems in additive number
theory. We conclude the chapter with an examination of data on all N -state automata
that accept languages over Σ2 that are base-2 representations of sets forming (asymptotic)
additive bases for small N in Section 2.6.

11

Set Language Entry in OEIS
S= = {n ∈ N : |(n)2|0 = |(n)2|1 } L= = (S=)2 A031443

S< = {n ∈ N : |(n)2|0 < |(n)2|1 } L< = (S<)2 A072600

S≤ = {n ∈ N : |(n)2|0 ≤ |(n)2|1 } L≤ = (S≤)2 A072601

S> = {n ∈ N : |(n)2|0 > |(n)2|1 } L> = (S>)2 A072603

S≥ = {n ∈ N : |(n)2|0 ≥ |(n)2|1 } L≥ = (S≥)2 A072602

S 6= = {n ∈ N : |(n)2|0 6= |(n)2|1 } L 6= = (S6=)2 A044951

Table 2.2: Sets considered and their corresponding languages, as presented in [5, 6]

2.3 Additive Number Theory via Approximation by

Regular Languages

2.3.1 Method

Suppose we want to show that a given set S of natural numbers forms an additive basis
(resp., asymptotic additive basis) of order m. Instead of considering S, we consider a
subset S ′ of S for which the set of base-k representations of its elements forms a regular
language. Such a subset is necessarily k-automatic. We then show, perhaps with some
small number of exceptions that typically can be handled in some other way, that S ′ forms
an additive basis (resp., asymptotic additive basis) of order m′. Since S ′ ⊆ S, we know
that m′ ≥ m. We hope that if S ′ is chosen appropriately, then in fact m = m′. This is
regular underapproximation.

Analogously, consider a superset S ′′ of S (that is, a set for which S ⊆ S ′′) for which
the set of base-k representations forms a regular language. We then compute the set of
numbers not representable as a sum of m′′ elements of S ′′. If this set is nonempty (resp.,
infinite), then S ′′, and hence S, cannot be an additive basis (resp., an asymptotic additive
basis) of order m′′. We hope that if S ′′ is chosen appropriately, then m = m′′ + 1. This is
regular overapproximation.

We call these two techniques together the method of regular approximation, and we
apply it to a number of different sets that have been previously studied. In each case we
are able to find the smallest m such that the set forms an additive basis (or asymptotic
additive basis) of order m.

12

http://oeis.org/A031443
http://oeis.org/A072600
http://oeis.org/A072601
http://oeis.org/A072603
http://oeis.org/A072602
http://oeis.org/A044951

As discussed in [4], if S is a k-automatic set, then the set of representations of numbers
that are the sum of m elements of S is also k-automatic. Furthermore, there is a pair of
simple criteria for deciding, given a k-automatic set, whether it forms an additive basis
of finite order (resp., an asymptotic additive basis) [4]. Namely, the greatest common
divisor of the elements of the k-automatic set must be 1, and the k-automatic set must
not be sparse. A set S is said to be sparse if there is not constant d such that the
function πS(n) = |{x ≤ n : x ∈ S}| is O((log n)d). If these criteria are satisfied, there
is an algorithm for determining the least m for which it forms an additive basis (resp.,
an asymptotic additive basis) of order m. The advantage to this approach is that all (or
almost all) of the computation amounts to manipulation of automata, and hence can be
computed using existing software tools. In obtaining our results, we made extensive use
of two software packages: Grail, for turning regular expressions into automata [36], and
Walnut, for deciding whether a given k-automatic set forms an additive basis of order m
[29] (and more generally, answering first-order queries about the elements of a k-automatic
set).

2.3.2 Example of the Method: the Set S≥

We start with a very simple example of our method, discussing the additive properties of
those numbers with at least as many 0’s as 1’s in their base-2 expansion. The first few
such numbers are

0, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 35, 36, 37, 38, 40,

Theorem 1. Every natural number except 1, 3, 5, 7 is the sum of at most three elements
of S≥.

While this result can be proved with a more “conventional” approach—see Section 2.5.1—
the argument requires several special cases. Here we offer an alternative approach using
our method of regular approximation.

We start by finding a regular language that is both (a) sufficiently dense and whose
representations form (b) a subset of S≥. After a bit of experimentation, we choose the
language, R≥ = 1(01 + 0)∗ − (10)∗1 = (10)(10)∗(0(0 + 10)∗(1 + ε) + ε) and prove the
stronger result stated in Theorem 2.

Theorem 2. Every natural number except 1, 3, 5, 7 is the sum of at most three natural
numbers whose base-2 representations lie in the regular language R≥ = 1(01+0)∗−(10)∗1 =
(10)(10)∗(0(0 + 10)∗(1 + ε) + ε).

13

Proof. First, use the Grail command

echo ’0*+0*10(10)*(0(0+10)*(1+"")+"")’ | retofm | fmdeterm | fmmin

| fmcomp | fmrenum > ge1

to create an automaton ge1 accepting 0∗+0∗R≥. Here "" is Grail’s way of representing the
empty word ε. Note that every element of R≥ has at least as many 0’s as 1’s. Also, we added
0∗ in two places to get all representations with leading zeros, including all representations
of 0. This produces the automaton given in Figure 2.4 below.

0

0

11 20
1

30

0

41
0

Figure 2.4: Automaton for 0∗R≥

Next, we create the corresponding automaton GE in Walnut, and we use the Walnut com-
mand

eval geq "E x,y,z (n=x+y+z)&(GE[x]=@1)&(GE[y]=@1)&(GE[z]=@1)":

giving us the automaton in Figure 2.5.

14

0

0

11

2
0

3
1 4

0

5

1

0

1

0,1

0,1

Figure 2.5: Numbers having representations as sums of at most three numbers with base-2
representations in R≥

By inspection we easily see that this latter automaton accepts the base-2 representation
of all numbers except 1, 3, 5, 7. This completes the proof of Theorem 2, which immediately
implies Theorem 1.

We now show that the bound of 3 is optimal.

Theorem 3. The set S≥ does not form an asymptotic additive basis of order 2.

Proof. We prove that numbers of the form 2n − 1, n ≥ 1, have no representation as sums
of one or two elements of S≥. For one element it is clear. Suppose 2n − 1 = x + y where
x, y ∈ S≥. If both x and y have less than n − 1 bits, then their sum is at most 2n − 2,
a contradiction. Similarly, if both x and y have n bits, then their sum is at least 2n, a
contradiction. So without loss of generality x has n bits and y has m < n bits. Since
(x)2 6∈ 1+, we can write (x)2 = 1i0t for i ≥ 1 and some word t of length j = n − i − 1.
Then (y)2 = 1t. Since y ∈ S≥ we must have that t contains at least (j + 1)/2 zeros. Then
t contains at most (j− 1)/2 zeros. Then (x)2 contains at most (j+ 1)/2 ≤ (n− i)/2 zeros.
Since i ≥ 1, this shows x 6∈ S≥, a contradiction.

One advantage to our method of approximation by regular languages is that it can
work in cases where a conventional argument is rather complicated, as in the next section.
Furthermore, the method also gives an O(log n)-time algorithm to find a representation
of any given n as a sum of terms of the set, although the implied constant can be rather
large.

15

Remark 4. We can also prove that Theorem 1 holds even when the summands are required
to be distinct. We can prove this using the Walnut command

eval geq2 "E x,y,z ((n=x)|(n=x+y)|(n=x+y+z))&(x<y)&(y<z)&

(GE[x]=@1)&(GE[y]=@1)&(GE[z]=@1)":

2.3.3 The Set S=

In this section, we discuss those numbers having an equal number of 0’s and 1’s in their
base-2 expansion. Such numbers are sometimes called “digitally balanced”.

Theorem 5. Every natural number, except 1, 3, 5, 7, 8, 15, 17, 25, is the sum of at most
three elements of S=.

To prove this we prove the following stronger result.

Theorem 6. Every natural number, except 1, 3, 5, 7, 8, 15, 17, 25, 67, is the sum of at most
three natural numbers whose base-2 representations lie in the regular language R= = 10(10+
01 + 1100 + 0011)∗ + 1(10 + 01)∗0 + ε.

Proof. We used the Grail command

echo ’0*10(10+01+1100+0011)*+0*1(10+01)*0+0*’ | retofm | fmdeterm | fmmin

| fmcomp | fmrenum > e1

to find the 16-state automaton below in Figure 2.6.

0

(0)

1(1)

2

(0)

3

(1)

4
(0)

5
(1)

6
(0)

7

(0)
8

(1)

(0)

9

(1)

(1) 10(0)

11(1)

(0) 12
(1)

(0)

(1)

(1)

(0)
13(1)

14

(0)
(0)

Figure 2.6: Automaton for 0∗R=

16

We then built the corresponding automatic sequence QQ in Walnut and issued the
command

eval eqq "E x,y,z (n=x+y+z)&(QQ[x]=@1)&(QQ[y]=@1)&(QQ[z]=@1)":

which produced the 12-state automaton in Figure 2.7.

0

0

11

2

0

3

1

40

5

1

60

7

1

8

0

9

1

0,1

1

10

0

1 0

1

110 0,1

1
0

0
1

Figure 2.7: Automaton accepting those n that are the sum of at most three numbers with
base-2 representations in R=

The total amount of computation time here was 226497 ms, and involved the deter-
minization of an NFA of 1790 states, so this was quite a nontrivial computation for Walnut.
By inspection we easily see that this automaton accepts the base-2 representations of all
integers except 1, 3, 5, 7, 8, 15, 17, 25, 67.

Proof of Theorem 5. We see that 10(10 + 01 + 1100 + 0011)∗ + 0∗1(10 + 01)∗0 is a reg-
ular underapproximation of L=. Except for 67, the automaton we obtained matches the
statement of the theorem. However, 67 has the representation 67 = 56 + 9 + 2 in terms of
elements of S=. This concludes the proof.

We now show that the bound of 3 is optimal:

Theorem 7. There are infinitely many natural numbers that are not the sum of one or
two members of S=.

17

Proof. We use the method of overapproximation. Consider

S = {n ∈ N : |(n)2| is even but n is not of the form 2k − 1 }.

Then it is easy to see that S= ⊂ S. Furthermore (S)2 is regular, and represented by the
regular language

R′= = 1(11)∗(0 + 100 + 101)(00 + 01 + 10 + 11)∗.

We use Grail on the command

echo ’0*+0*1(11)*(0+100+101)(00+01+10+11)*’ | retofm | fmdeterm | fmmin |

fmcomp | fmrenum > ov1

giving us the automaton in Figure 2.8.

0

0

11

2
0

3

1
4

0,1

1
0
0,1

Figure 2.8: Automaton for 0∗ + 0∗R′=

Then we ask Walnut to give us the base-2 representations of all number that are not
the sum of two members of S. This gives us the automaton in Figure 2.9.

18

0

0

11

2

0

3

1

41

0

5

1
0

61

01

Figure 2.9: Automaton accepting base-2 representations of those n that are not the sum
of at most two numbers with base-2 representations in R′=

By inspection we easily see that numbers with base-2 representation 111(11)∗ and
111(11)∗0 have no representation. Since this set is infinite, we know that S and hence
S= does not form an asymptotic additive basis of order 2.

2.3.4 The Set S≤

Theorem 8. Every natural number is the sum of at most 2 elements of S≤. The 2 is
optimal.

We prove this by means of

Theorem 9. Every natural number is the sum of at most two natural numbers with canon-
ical base-2 representation in (1 + 10)∗.

Proof. We used the Grail command

echo ’0*(1+10)*’ | retofm | fmdeterm | fmmin | fmcomp | fmrenum > le1

obtaining the automaton below in Figure 2.10.

19

0

0

11

1

20
1

Figure 2.10: Automaton for 0∗(1 + 10)∗

We then built the corresponding automatic sequence LE in Walnut and issued the
command

eval leq "E x,y (n=x+y)&(LE[x]=@1)&(LE[y]=@1)":

which produces a 1-state automaton accepting everything. This concludes the proof.

2.3.5 The Set S<

Theorem 10. Every natural number is the sum of at most 2 elements of S<. The 2 is
optimal.

We prove this by means of

Theorem 11. Every natural number is the sum of at most two natural numbers whose
base-2 representations lie in 1(1 + 10 + 01)∗.

Proof. We use the Grail command

echo ’0*+0*1(1+10+01)*’ | retofm | fmdeterm | fmmin | fmcomp | fmrenum >

lt1

which gives the automaton below in Figure 2.11.

20

0

0

11

20

3

1

1

0

1

Figure 2.11: Automaton for 0∗ + 0∗1(1 + 10 + 01)∗

Next, we use the Walnut command
eval lt "E x,y (n=x+y)&(LT[x]=@1)&(LT[y]=@1)":

which produces a 1-state automaton accepting everything. This concludes the proof.

2.3.6 The Set S>

Theorem 12. Every natural number, except 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 19, 23, 27, 31,
47, 63, is the sum of at most 3 elements of S>. The 3 is optimal.

We prove this by means of

Theorem 13. Every natural number, except 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 19, 23, 27, 31,
47, 63, 79, is the sum of at most 3 numbers whose base-2 representation is given by
10(01 + 10 + 0)∗0(01 + 10 + 0)∗.

Proof. We use the grail command

echo ’0*+0*10(01+10+0)*0(01+10+0)*’ | retofm | fmdeterm | fmmin | fmcomp

| fmrenum > gt1

giving us the automaton in Figure 2.12.

21

0

(0)

1(1) 2(0)
(1)

3(0)
(1)

4(0)

(0)

5(1)
(0)

6(1)
(0)

Figure 2.12: Automaton for 0∗ + 0∗(10(01 + 10 + 0)∗0(01 + 10 + 0)∗)

Then we use the Walnut command

eval grt "E x,y,z (n=x+y+z)&(GT[x]=@1)&(GT[y]=@1)&(GT[z]=@1)":

giving the automaton in Figure 2.13.

0

0

11

2
0

3
1

4

0

5

1

1

6

0

7

0

81

1

90

0
101

0,1

0

11

1

0,1

0
1

0

12

1
0

1

Figure 2.13: Automaton accepting those numbers that are the sum of at most three ele-
ments whose base-2 representations are in 10(01 + 10 + 0)∗0(01 + 10 + 0)∗

Proof of Theorem 12. After noting that 79 has the representation 79 = 4 + 8 + 67 in terms
of elements of S>, Theorem 13 implies the first result. To see that two summands do not

22

suffice, note that every element of S> is an element of S≥, and we already proved above
that two summands do not suffice for S≥.

2.3.7 The Set S 6=

Theorem 14. Every natural number is the sum of at most two elements of S6=.

Proof. We have that every natural number is the sum of at most two elements of S< by
Theorem 10 and S< ⊂ S. This implies the result.

2.3.8 The Totally Balanced Numbers

We say that a word x ∈ {0, 1}∗ is totally balanced if

(a) |x|1 = |x|0; and

(b) |x′|1 ≥ |x′|0 for all prefixes x′ of x.

In other words, such a word is a recoding of a word consisting of balanced parentheses,
where 1 represents a left parenthesis and 0 represents a right parenthesis. Given a totally
balanced word x, we can define its nesting level `(x) recursively as follows:

(a) `(ε) = 0;

(b) If x = 1y0z, where both y and z are totally balanced, then `(x) = max(`(y)+1, `(z)).

Consider the set of numbers STB whose base-2 representation is totally balanced; note
that all such numbers are even. The elements of STB form sequence A014486 in the OEIS
[16].

Theorem 15. Every even number except 8, 18, 28, 38, 40, 82, 166 is the sum of at most 3
elements of STB. There are infinitely many even numbers that are not the sum of at most
2 elements of STB.

We prove the first part of Theorem 15 using the following.

23

http://oeis.org/A014486

Theorem 16. Consider

RTB = {x ∈ {0, 1}∗ : x is totally balanced and `(x) ≤ 3}.

Then every even number except 8, 18, 28, 38, 40, 82, 166 is the sum of at most 3 natural
numbers whose binary representation is contained in RTB.

Proof. The language RTB is accepted by the following automaton.

0

0

11

2
0

3

1

1

0 41
0

Figure 2.14: Automaton for 0∗RTB

Using the Walnut command
eval bp2 "E x,y,z (2*n=x+y+z)&(TB[x]=@1)&(TB[y]=@1)&(TB[z]=@1)":

we get an automaton accepting all n for which 2n is representable.

24

0

0

11

2
0

3

1

40

5
1

6

0

7

1

0

8

1

1

90

0,1

1

100

0

1

0

1

0,1

Figure 2.15: Automaton accepting the base-2 representation of those n for which 2n =
x+ y + z with x, y, z having base-2 representations in RTB

By inspection is now easy to verify that the only n not accepted are 4, 9, 14, 19, 20, 41, 83.

Proof of Theorem 15. Clearly RTB is a subset of LTB.

To see the second part of the theorem, note that by the proof of Theorem 7 there are
infinitely many even numbers (for example, those with base-2 representation 111(11)∗0)
not representable as the sum of two elements of S=, and S= is an overapproximation of
STB.

2.3.9 Prefixes of Totally Balanced Numbers

At the suggestion of Georg Zetzsche, in a personal communication with Jeffrey Shallit
passed on to the author of this thesis, we can also consider the set, SPB, of numbers whose
base-2 representations are prefixes of totally balanced words, as in Section 2.3.8. That is,
the base-2 representations are the words x ∈ {0, 1}∗ such that |x′|1 ≥ |x′|0 for all prefixes
x′ of x. The elements of SPB form sequence A061854 in the OEIS [16].

Theorem 17. Every natural number is the sum of at most 2 elements of SPB.

25

http://oeis.org/A061854

Proof. Let LPB = (SPB)2 and observe that LPB is a subset of the language given by the
regular expression 1(1+10+01)∗ as used in Theorem 11. The proof of Theorem 11 implies
the result.

2.4 Limitations of the Method

It is natural to wonder whether more “traditional” problems in additive number theory
can be handled by our technique. For example, suppose we try to approach Goldbach’s
conjecture (i.e., every even number ≥ 4 is the sum of two primes) using a regular un-
derapproximation of the language of primes in base 2. Unfortunately, this technique is
guaranteed to fail, because a classical result of Hartmanis and Shank [20] shows that every
regular subset of the prime numbers is finite.

Similarly, recent results on the additive properties of palindromes (discussed in Sec-
tion 2.2.2) cannot be achieved by regular approximation, because every regular language
consisting solely of palindromes is slender: it contains at most a constant number of words
of each length [23].

We could also consider Waring’s problem, as discussed in Section 2.2.1, which concerns
the additive properties of ordinary integer powers. However, our approach also cannot
work here due to the result of Theorem 18, as proved by a co-author of [5, 6], Jason Bell.
Before we can state the theorem we first recall that the k-kernel of a set S ⊆ N is defined
to be the number of distinct subsets of the form

Se,j = {n ∈ N : ken+ j ∈ S for e ≥ 0 and 0 ≤ j < ke}.

Theorem 18. Let k ≥ 2 be a natural number, and let S be a k-automatic subset of P :=
{nj : n, j ≥ 2}. Then there is a finite set of integers T such that S ⊆ {ckj : c ∈ T, j ≥ 0}.
Moreover, if the size of the k-kernel of S is d, then we can take T to be a subset of
{0, 1, . . . , kd − 1}.

Proof. Let S be a k-automatic subset of P := {nj : n, j ≥ 2}. We claim that for every
natural number m, the set

S(m) := {n ∈ S : n 6≡ 0 (mod km)}

is finite. To see this, suppose that there is some m such that S(m) is infinite. Then since
S(m) is k-automatic, by the pumping lemma it contains a set of elements of the form

26

{[xyjz]k : j ≥ 0}. Let r, s, and t denote the lengths of x, y, and z respectively. We let
X = [x]k, Y = [y]k, and Z = [z]k. Then

[xynz]k = Z + kt(Y + ksY + · · ·+ ks(n−1)Y) + ksn+tX

= ksn
(
ktX +

ktY

ks − 1

)
+

(
Z − ktY

ks − 1

)
.

Then un := [xynz] satisfies the two-term linear recurrence un = r1un−1 + r2un−2 with
r1 = (ks + 1)un−1 and r2 = −ksun−1. In particular, r21 + 4r22 6= 0, and since ks and 1 are
nonzero and not roots of unity, we have that the recurrence is non-degenerate as long as
ktX + Y kt/(ks − 1) and Z − ktY/(ks − 1) are nonzero. But since un = [xynz]k → ∞ as
n→∞, we see that ktX + ktY/(ks − 1) must be nonzero; since un 6≡ 0 (mod km), we see
that Z−ktY/(ks−1) is nonzero. Then, by [39, Theorem 2] we deduce that P ∩{un : n ≥ 0}
is finite, a contradiction. It follows that S(m) is finite for every m ≥ 1.

We now finish the proof. Let d denote the size of the k-kernel of S and let T = S(d)∪{0}.
Then T is a finite set. We claim that S ⊆ S0 := {ckj : c ∈ T, j ≥ 0}. To see this, suppose
that this is not the case. Then there is some ` ∈ S \ S0. Pick the smallest natural number
` 6∈ S \ S0. Since 0 ∈ T , we have that ` is positive. Also since T ⊆ S0, we have ` 6∈ T ,
and so ` must be divisible by kd (since if it were not, it would be in T). Thus kd | `. The
k-kernel of S has size d, and so there exist i, j ∈ {0, 1, . . . , d} with i < j such that

{n ∈ N : kin ∈ S} = {n ∈ N : kjn ∈ S}.

In particular, if kj divides n and kjn is in S, then ki−jn ∈ S. Then, since kd | `, we see
that ki−j` ∈ S; furthermore ki−j` < ` since ` is positive. Thus, by minimality of `, we have
ki−j` ∈ S0, and since S0 is closed under multiplication by k, we get that ` = ki−j`kj−i is
also in S0, a contradiction. The result follows.

Thus, every k-automatic subset of P = {nj : n, j ≥ 2} is necessarily sparse, violating
the criterion given in Theorem 1.1 of [4] for k-automatic sets forming additive bases.

2.5 Alternative Methods and Generalizations

This section describes alternative methods for proving the same results for the sets in
Table 2.2. It is worth noting that while these arguments give further insight into why these
sets form additive bases, the arguments themselves require a lot of case-based reasoning.
This is in contrast to the automaton-based approach presented in Section 2.3, where the
proofs are straightforward and have the same structure for each of the sets.

27

2.5.1 The Set S≥

Theorem 1. Every natural number except 1, 3, 5, 7 is the sum of at most three elements
of S≥.

Proof. Given N we want to represent, let n1 (resp., n2, n3) be the integer formed by taking
every 3rd 1, starting with the first 1 (resp., second 1, third 1), in the base-2 representation
of N . Provided there are at least four 1’s in (N)2, every 1 in (ni)2, for 1 ≤ i ≤ 3, is
associated with at least two following zeros, except possibly the very last 1, and hence
ni ∈ S≥.

This construction can fail on odd numbers whose base-2 representation has three 1’s or
fewer, so we must treat those as special cases.

For numbers of the form N = 2i + 1 with i ≥ 3, we can take n1 = 2i + 1, n2 = n3 = 0.

For numbers with binary representation 10i10j1, we can take n1 = [10i+j+11]2, n2 =
[10j+1]2, n3 = 0. This works provided i+ j + 1 ≥ 2 and j + 1 ≥ 1.

This covers all cases except N = 1, 3, 5, 7.

An argument for the optimality of this result not using the method of overapproximation
has already been given in Section 2.3.2.

2.5.2 The Set S=

For an alternative proof of the fact that S= forms an asymptotic additive basis of order 3,
as in Theorem 5, we first observe that for any n ∈ S= with n 6= 0 we have 4n + 1 ∈ S=

and 4n+ 2 ∈ S=. This allows for the following inductive argument.

Lemma 19. Every natural number greater than or equal to 45 is the sum of 3 non-zero
elements of S=.

Proof. We prove this result by induction. For the base cases, one can verify that each
integer n satisfying 45 ≤ n ≤ 182 can be written as the sum of 3 non-zero elements of S=.
Now assume that for all integers m satisfying 45 ≤ m < n, we have that m can be written
as the sum of 3 non-zero elements of S=. To show that n can be written as the sum of 3
non-zero elements of S= we consider four cases, noting that the cases for 45 ≤ n ≤ 182
have already been resolved.

28

Case 1: n ≡ 0 (mod 4). For n > 182 and m = n−4
4

we have that 45 ≤ m < n. So by
the inductive hypothesis we know that m can be written as the sum of 3 non-zero integers
a, b, c ∈ S=. Now consider (4a+ 1) + (4b+ 1) + (4c+ 2) = 4(a+ b+ c) + 4 = 4m+ 4 = n.
Giving n as the 3 non-zero elements of S=.

Case 2: n ≡ 1 (mod 4). Choosing m = n−5
4

we have 45 ≤ m < n. This means we can
write m = a+ b+ c for non-zero integers a, b, c ∈ S=. Then the sum (4a+ 1) + (4b+ 2) +
(4c+ 2) = 4m+ 5 = n gives n as the sum of 3 non-zero integers in S=.

Case 3: n ≡ 2 (mod 4). Choosing m = n−6
4

we have 45 ≤ m < n. This means we can
write m = a+ b+ c for non-zero integers a, b, c ∈ S=. Then the sum (4a+ 2) + (4b+ 2) +
(4c+ 2) = 4m+ 6 = n gives n as the sum of 3 non-zero integers in S=.

Case 4: n ≡ 3 (mod 4). Choosing m = n−3
4

we have 45 ≤ m < n. This means we can
write m = a+ b+ c for non-zero integers a, b, c ∈ S=. Then the sum (4a+ 1) + (4b+ 1) +
(4c+ 1) = 4m+ 3 = n gives n as the sum of 3 non-zero integers in S=.

Theorem 5. Every natural number, except 1, 3, 5, 7, 8, 15, 17, 25, is the sum of at most
three elements of S=.

Proof. By Lemma 19 we can write every natural number greater than or equal to 45 as
the sum of three elements of S=. For those natural numbers 0 ≤ n ≤ 44 one can easily
verify by brute force that every n except n ∈ {1, 3, 5, 7, 8, 15, 17, 25} can be written as the
sum of at most three elements of S=.

Similarly, we can prove the optimality of this result without the automaton-based ap-
proach.

Theorem 7. There are infinitely many natural numbers that are not the sum of one or
two members of S=.

Proof. ConsiderN = 22k+1 for some integer k ≥ 1. Observe that the largest natural number
less than or equal to N in S= is 2k(2k+1− 1), the number with base-2 representation given
by k 1’s followed by k 0’s. Then since 2 ·2k(2k−1) = 2k+1(2k−1) = 22k+1−2k+1 < 22k+1 we
can conclude that 22k+1 cannot be written as the sum of 2 elements of S= for all k ≥ 1.

2.5.3 The Set S>

Theorem 12. Every natural number, except 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 19, 23, 27, 31,
47, 63, is the sum of at most 3 elements of S>. The 3 is optimal.

29

Proof. We can use the same idea as used in the proof of Theorem 1 in Section 2.5.1.
Given N we want to represent, let n1 (resp., n2, n3) be the integer formed by taking every
3rd 1, starting with the first 1 (resp., second 1, third 1), in the base-2 representation of
N . Provided that there are at least seven 1’s in (N)2, we have that n1, n2, n3 ∈ S> and
n1 + n2 + n3 = N .

If N ≥ 212 and |(N)2|1 < 7 then we have N ∈ S>, giving N trivially as the sum of at
most 3 elements of S>.

For each N < 212 with |(N)2|1 < 7 that is not included in the list of exceptions in
the statement of the theorem we can show by brute force that N can be written as the
sum of at most 3 elements of S>. This can be done, for example, by computing the values
obtained by summing all possible triples n1, n2, n3 of integers in S> ∩ {0, 1, 2, . . . , 212 − 1}
and observing that the only integers less than 212 that cannot be attained with such a sum
is exactly the set of exceptions in the statement of the theorem.

The optimality of this result follows from the argument for the optimality of 3 sum-
mands in Theorem 3.

2.5.4 The Set S<

Lemma 20. For any natural number N , let n be the least integer such that N < 2n. If
N 6= 2n−1 where n is even, then for AN = {s ∈ N : N ≤ s ≤ N+2d

n
2
e−2}, the intersection

of S< and AN is nonempty.

Proof. Suppose N 6= 2n−1 for all even n, and let m = dn
2
e. We consider values in AN

modulo 2m. By the pigeonhole principle there is some integer s ∈ AN such that either
s ≡ 2m − 1 (mod 2m) or s ≡ 2m − 2 (mod 2m).

Case 1: Suppose that there is some s ∈ AN such that s ≡ 2m − 1 (mod 2m). Let
w be the canonical base-2 representation of s. Then the m least significant digits of w
must all be 1’s. If s < 2m then s = 2m − 1 and clearly s ∈ S<. If s ≥ 2m we know that
|w|1 ≥ m + 1, as the most significant digit of w must be a 1. Furthermore, since N < 2n

and s ≡ 2m − 1 (mod 2m) we know that s ≤ 2n − 1. This means that |w| ≤ n, giving
|w|0 ≤ n− (m+ 1) < m+ 1 ≤ |w|1. Therefore s ∈ S<.

Case 2: If there is no such s satisfying the condition on Case 1 then there exists some
s ∈ AN such that s ≡ 2m−2 (mod 2m). Again, let w be the canonical base-2 representation
of s. Then all but one of the m least significant digits of w are 1’s. If s < 2m then s = 2m−2,
giving s ∈ S<. If s ≥ 2m then the most significant digit of w is 1 and this leading digit is
not one of the m− 1 many 1’s in the m least significant digits of w. This gives |w|1 ≥ m.

30

Next, since N < 2n and s ≡ 2m − 2 (mod 2m) and there is no s satisfying the condition
on Case 1, we get s ≤ 2n − 2. So |w| ≤ n and |w|0 ≤ |w| −m ≤ m ≤ |w|1. The only case
when |w| −m = m is when |w| = n and n is even. This is only possible if N = 2n−1 for
even n, which we assumed not to be the case. Therefore s ∈ S<.

Theorem 10. Every natural number is the sum of at most two elements from S≤.

Proof. For the natural number N , write N = 2n − 1 + t where 0 ≤ t ≤ 2n and n ≥ 0.
Again, let m = dn

2
e. If t = 2n, then N = 2n+1 − 1 giving N ∈ S<. If t = 2n−1 and n is

even, then N = 2n − 1 + 2n−1 and |N |0 = 1 and |N |1 = n, giving N ∈ S< for n ≥ 2. So
now suppose that t < 2n and t 6= 2n−1 where n is even. Observe that every natural number
in the interval [2n− 1− (2m− 2), 2n− 1] is in S<. This is because the bn

2
c most significant

digits of the canonical base-2 representation of any number in this interval must all be
1’s and at least one of the m least significant digits of the canonical base-2 representation
of any number in this interval is a 1. By Lemma 20 there exists an integer c such that
0 ≤ c ≤ 2m − 2 and t + c ∈ S<. So if we take u = 2n − 1− c and v = t + c, then we have
u ∈ S< and v ∈ S< and u+ v = 2n − 1− c+ t+ c = 2n − 1 + t = N . Therefore N can be
written as the sum of at most two elements from S<.

2.5.5 The Set S≤

Theorem 8. Every natural number is the sum of at most two elements from S≤.

Proof. This is a direct consequence of Theorem 10, as proved in Section 2.5.4, since S< ⊂
S≤.

2.5.6 The Set S 6=

Theorem 8. Every natural number is the sum of at most two elements from S 6=.

Proof. This is a direct consequence of Theorem 10, as proved in Section 2.5.4, since S< ⊂
S6=.

31

2.5.7 Generalization to Other Bases

It would be nice to generalize our results on the preceding languages bases k > 2. However,
the appropriate generalization is not completely straightforward, except in the case of S=,
the digitally balanced numbers in base 2. We can generalize this as follows:

Sk,= = {n ∈ N : |(n)k|i = |(n)k|j for all i, j ∈ Σk}.

Unfortunately Sk,= does not form an additive basis in general, as the gcd of its elements
equals 1 if and only if k = 2 or k = 3.

Theorem 21. The gcd gk of the elements of Sk,= is (k − 1)/2, if k is odd and k − 1, if k
is even.

Proof. Let gk be the gcd in question. Consider the two numbers with base-k representations

1 0 2 3 · · · (k − 3) (k − 1) (k − 2)

1 0 2 3 · · · (k − 3) (k − 2) (k − 1)

and take their difference. Now gk must divide this difference, which is k − 1.

Next, take any base-k digitally balanced number n =
∑

0≤i<t aik
i and compute it

modulo k − 1. We get j(0 + 1 + · · ·+ k − 1) where j is the number of occurrences of each
digit. But this is jk(k − 1)/2. It follows that

n ≡

{
j(k − 1)/2 (mod k − 1), if k is odd;

0 (mod k − 1), if k is even.

The result follows.

We can now prove

Theorem 22. For each k there exists a least integer D = D(k) such that every sufficiently
large multiple of gk is a sum of at most D(k) members of Sk,=. Furthermore, D(k) ≥
kk−1 + 1.

Proof. Let T be the set of all words of length k containing each occurrence of Σk exactly
once, and let U be the words in T that do not begin with the symbol 0. Then UT ∗ is
a regular subset of the language (Sk,=)k, and is sufficiently dense that Theorem 1.1 of [4]
applies.

32

For the lower bound, let n be the smallest element of Sk,= of length tk for some t ∈ N,
and let n′ be the largest element of Sk,= of length (t− 1)k. Then a representation of n− 1
as the sum of elements of Sk,= requires at least d(n−1)/n′e summands. Now n ≥ ktk−1 + 1
and n′ ≤ k(t−1)k − 1. It follows that (n− 1)/n′ > kk−1, as desired.

With more work we can prove

Theorem 23. All natural numbers, except 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20,
23, 24, 25, 27, 28, 29, 31, 35, 39, 46, 50, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 233,
234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256, 257, 258, 259, 261, 262, 263, 264, 265, 267, 269, 270, 272, 273, 274, 276, 280, 284,
291, 295, are the sum of at most 11 elements of S3,=.

We start with an observation similar to that made at the start of Section 2.5.2.

Observation 24. If N is a positive number that is base-3 digitally balanced, then 27N + 5,
27N + 7, 27N + 11, 27N + 15, 27N + 19 and 27N + 21 are each positive base-3 digitally
balanced numbers. This is because we have 5 = (012)3, 7 = (021)3, 11 = (102)3, 15 =
(120)3, 19 = (201)3, and 21 = (210)3.

We next show by brute force that some range of values can be written as the sum of
11 non-zero elements of S3,=, and then use induction to get 11 non-zero summands in S3,=

for values beyond this range.

Lemma 25. For all k ∈ {0, 1, 2, . . . , 26} there exist integers m1,m2, . . . ,m11 ∈ {5, 7, 11, 15,

19, 21} such that k ≡
11∑
i=1

mi (mod 27).

Proof. Easy to verify, we can fill in all 27 cases via a simple brute-force computation.

Lemma 26. Every natural number greater than or equal to 622 is the sum of 11 non-zero
elements of S3,=.

Proof. We can show by brute-force checking that every integer N satisfying 622 ≤ N ≤
17024 can be written as the sum of 11 non-zero elements of S3,=. So assume that for all
integers m satisfying 622 ≤ m < N we have that m can be written as the sum of 11
non-zero elements of S3,=.

Suppose that N ≡ k (mod 27), for k ∈ {0, 1, 2, . . . , 26}. Let C =
∑11

i=1 ci where
c1, c2, . . . , c11 ∈ {5, 7, 11, 15, 19, 21} satisfy k ≡

∑11
i=1 ci (mod 27). Note such a set of values

33

c1, c2, . . . , c11 exists by Lemma 25. Observe that C ≤ 11× 21 = 231. Consider m = N−C
27

.
For N > 17024 we have m = N−C

27
≥ N−231

27
≥ 17025−231

27
≥ 622 and m = N−C

27
< N . So

we can write m =
∑11

i=1mi for non-zero integers m1,m2, . . . ,m11 ∈ S3,= by the inductive
hypothesis. Then by Observation 24, for each 1 ≤ i ≤ 11 we have 27mi + ci is a non-zero
element of S3,=. Thus we can write

11∑
i=1

27mi + ci = 27
11∑
i=1

mi +
11∑
i=1

ci = 27m+ C = N.

Therefore, by induction we have that every integer N ≥ 622 can be written as the sum of
11 non-zero elements of S3,=.

We can now prove Theorem 23.

Proof of Theorem 23. By Lemma 26 we have that every integer greater than or equal to
622 can be written as the sum of at most 11 elements of S3,=. Performing a brute-force
search on all natural numbers N < 622 yields a representation for N as the sum of at most
11 elements of S3,=, except where N is one of the values listed in the statement of the
theorem.

We do not currently know if the bound 11 is optimal. By Theorem 22 there is a lower
bound of 10.

2.5.8 Generalization to k-Context-Free Sets

Another natural generalization to consider is the generalization of the method from k-
automatic sets to k-context-free sets. Just as k-automatic sets can be defined in terms of
regular languages, k-context-free sets can be defined in terms of context-free languages.
We can re-state the definition of a k-automatic sequence as a sequence (an)n≥0 over a finite
alphabet ∆ for which for each symbol c ∈ ∆, the set {(n)k : an = c} is a regular language.
Then, we say a sequence (bn)n≥ over finite alphabet ∆ is k-context-free if for every c ∈ ∆,
the set {(n)k : bn = c} is a context-free language. And as in the case for k-automatic
sets, a set is k-context-free if its associated characteristic function defines a k-context-free
sequence.

However, for k-context-free sets the criteria for forming (asymptotic) additive bases do
not carry over from the result for k-automatic sets. That is, there are k-context-free sets
that are not sparse and have elements with a greatest common divisor of 1, but do not

34

form an asymptotic additive basis of finite order. An example of such a set, given in [4,
Example 7.1], is S = {n : (n)2 = 10nx, where |x| = n ≥ 0}∪{0}. This set is 2-context-free
and has density πS(x) = Θ(x1/2), but it can be shown that at least n/2 terms are needed
in order to represent 2n(2n − 1) as a summation of elements of S [4].

This means that the method cannot directly be extended to k-context-free sets. Deeper
investigations of other questions concerning k-context-free sets and k-context-free sequences
can be found, for example, in [19, 28].

2.6 N-State Automata Accepting Additive Basis Lan-

guages

We can also investigate questions about how common or rare it is for an N -state automaton
to accept a language over Σ2 that corresponds to the base-2 representations of a set that
forms an (asymptotic) additive basis. As mentioned in Section 2.3.1 and as described by
Bell, Hare, and Shallit in [4], an automatic set forms an asymptotic additive basis if and
only if the set is not sparse and the greatest common divisor of the elements in the set
is 1. Using an algorithm described in [18] we can efficiently determine if the language
accepted by an N -state automaton is not sparse and Walnut can be used to determine
if the greatest common divisor of the values corresponding to the accepted words is 1,
following the approach described in [4]. Since the translation between the language of
base-2 representations and the numbers represented requires that leading zeros have no
effect on the membership of words in the language, we only consider automata that have a
self-loop on the initial state on symbol 0. We refer to such automata as consistent automata.
Table 2.3 displays the number of minimal consistent N -state automata over Σ2 according
to which of the criteria for forming an asymptotic additive basis the corresponding sets of
values meet. Additionally, the table shows how many of these sets form an additive basis.
Given a set forming an asymptotic additive basis it is easy to determine if it forms an
additive basis; a necessary and sufficient condition for a set forming an additive basis that
is known to form an asymptotic additive basis is that the set contains 1 as an element.

35

Table 2.3: Number of consistent N -state automata according to criteria met for forming
an (asymptotic) additive basis

Sparse Non-Sparse
N GCD 6= 1 GCD = 1 GCD 6= 1 GCD = 1 GCD = 1 & Accepts w = 1 Total
1 1 0 0 1 1 2
2 1 0 1 6 4 8
3 0 6 25 187 103 218
4 18 58 666 8178 4422 8920
5 144 1232 24914 450802 237854 477092

Of those consistent N -state automata that correspond to sets forming (asymptotic)
additive bases, we can use Walnut again to determine the orders of the (asymptotic) ad-
ditive bases. This is done by writing a first-order logic query for asserting that all natural
numbers, or all natural numbers greater than some value M , can be written as the sum
of k = 1, 2, 3, . . . summands until the minimum order is found. For consistent automata
with 2 or 3 states we can determine the additive basis order of each corresponding set that
has a finite (asymptotic) additive basis order. However, even when the number of states
is limited to N = 4, using Walnut to determine the minimum order of the additive basis is
too computationally intensive. For example, the set corresponding to the automaton, M4,
depicted in Figure 2.16 does not form an asymptotic basis of order 6 and testing order 7
using Walnut requires a step in the computation involving the determinization of an NFA
given by a nontrivial product of automata with 7 and 78,125 states respectively. Given
the amount of computation required, it has not been determined whether or not this au-
tomaton corresponds to a set forming an asymptotic additive basis of order 7. That said,
it may still be feasible to test as far as 7 summands, given that testing if the set forms an
(asymptotic) additive basis of order 6 requires the determinization of an NFA with more
than 66,000 states and Walnut is able to do this in less than 5 minutes of computation on
a 2017 laptop computer.

36

q0 q1 q2 q3

0

1

0

1

0

1

0, 1

Figure 2.16: Consistent automaton, M4, on 4 states with asymptotic additive basis order
greater than 6

Nevertheless, we can use an alternative approach to prove that the set corresponding
to the language accepted by M4 forms an asymptotic additive basis of order 9. Let L4 be
the language accepted by M4.

Theorem 27. Every natural number greater than 160 can be written as the sum of at most
9 elements of S4 := [L4]2. The 9 is optimal.

Proof. Observe that the set S4 is the set of numbers whose last block of 1’s in their
canonical base-2 representations is of length congruent to 3 (mod 4). So we have 7 ∈ S4

and 127 ∈ S4, as (7)2 = 111 and (127)2 = 1111111. Table 2.4 describes how to represent
all natural numbers n ≥ 7 · 7 + 127 = 176 by considering each residue class for n modulo
16. In each case, the last term in the representation is congruent to 7 (mod 16).

37

Table 2.4: Representations of n as the sum of at most 9 elements of S4

n (mod 16) Representation Condition
0 7+7+7+7+7+7+127+(n− (6 · 7 + 127)) n ≥ 7 · 7 + 127
1 7+7+7+7+7+7+(n− (6 · 7)) n ≥ 7 · 7
2 7+7+7+7+127+(n− (4 · 7 + 127)) n ≥ 5 · 7 + 127
3 7+7+7+7+(n− (4 · 7)) n ≥ 5 · 7
4 7+7+127+(n− (2 · 7 + 127)) n ≥ 3 · 7 + 127
5 7+7+(n− (2 · 7)) n ≥ 3 · 7
6 127+(n− 127) n ≥ 7 + 127
7 n n ≥ 7
8 7+7+7+7+7+7+7+(n− (7 · 7)) n ≥ 8 · 7
9 7+7+7+7+7+127+(n− (5 · 7 + 127)) n ≥ 6 · 7 + 127
10 7+7+7+7+7+(n− (5 · 7)) n ≥ 6 · 7
11 7+7+7+127+(n− (3 · 7 + 127)) n ≥ 4 · 7 + 127
12 7+7+7+(n− (3 · 7)) n ≥ 4 · 7
13 7+127+(n− (1 · 7 + 127)) n ≥ 2 · 7 + 127
14 7+(n− (1 · 7)) n ≥ 2 · 7
15 7+7+7+7+7+7+7+7+(n− (8 · 7)) n ≥ 9 · 7

Using a brute-force computation on the values of n less than 176 we can then write
every natural number, except a set of 79 values less than or equal to 160, as the sum of at
most 9 elements of S4.

To prove that 9 summands is optimal, we can show that there are infinitely many n
congruent to 15 (mod 16) for which n cannot be written as the sum of 8 or fewer elements of
S4. Suppose n ≡ 15 (mod 32), giving n ≡ 15 (mod 16) as well. Observe that all elements
of S4 are congruent to either 7 (mod 16) or 15 (mod 16), but that those elements congruent
to 15 (mod 16) are necessarily congruent to 31 (mod 32). For all choices of k,m ∈ N such
that k +m ≤ 8 we have 7k + 15m ≡ 15 (mod 16) if and only if k = 0 and m = 1. So the
only way to get a residue of 15 (mod 16) with 8 or fewer summands from S4 is with a single
element congruent to 15 (mod 16). But all such elements are congruent to 31 (mod 32).
Therefore we cannot write n as the sum of 8 or fewer elements of S4.

Table 2.5 gives the number of minimal consistent N -state automata that correspond to
sets that have each finite asymptotic additive basis order from 1 to 6. Computations were
only able to be completed up to N = 4 due to the large running times and the significant
memory resources required by Walnut to perform these computations. Similar data is

38

given in Table 2.6, but for (non-asymptotic) additive basis orders of sets corresponding to
consistent automata with 1, 2, or 3 states.

Table 2.5: Number of consistent N -state automata according to the asymptotic additive
basis orders of the corresponding sets

Asymptotic Additive Basis Order

N 1 2 3 4 5 6 ≥ 7

1 1 0 0 0 0 0 0

2 1 3 2 0 0 0 0

3 2 129 45 6 4 0 1†

4 12 6420 1326 206 146 37 31

† This set has asymptotic additive basis order 7.

Table 2.6: Number of consistent N -state automata according to the additive basis orders
of the corresponding sets

Additive Basis Order

N 1 2 3 4 5 6 7 8 9 10 ≥ 11

1 1 0 0 0 0 0 0 0 0 0 0

2 1 2 0 1 0 0 0 0 0 0 0

3 0 65 21 8 2 3 1 2 0 1 0

The code used to generate this data is publicly available at https://github.com/

FinnLidbetter/additiveNumberTheoryAutomata.

2.7 Open Problems

We conclude this chapter with some open problems related to this work.

1. Does S3,= form an asymptotic additive basis of order 10?

The largest value less than 8,000,000 that cannot be written as the sum of at most
10 elements of S3,= is 4,793,143. If it can be shown that there is a sufficiently large

39

https://github.com/FinnLidbetter/additiveNumberTheoryAutomata
https://github.com/FinnLidbetter/additiveNumberTheoryAutomata

interval of values greater than or equal to 4,793,144 that can all be written as the sum
of at most 10 elements of S3,=, then the same method as used to prove Theorem 23
could work.

2. More generally, what is the value of D(k), as in the statement of Theorem 22, for
values of k ≥ 4?

3. What other interesting sets can be shown to form an (asymptotic) additive base using
the method of regular approximation?

4. Compute the number of N -state automata corresponding to sets forming (asymp-
totic) additive bases and the orders of these bases for larger N .

5. Does the ratio of N -state automata recognizing languages corresponding to sets that
are (asymptotic) additive bases to all N -state automata approach some constant as
N tends to infinity? If so, what is this constant?

6. Let B(N) be the greatest value such that there is an N -state automaton accepting a
language corresponding to a set forming an asymptotic additive basis of least finite
order B(N). What is the sequence B(N)? The first three terms are 1, 3, 7.

7. Let b(N) be the greatest value such that there is an N -state automaton accepting a
language corresponding to a set forming an additive basis of least finite order b(N).
What is the sequence b(N)? The first 3 terms are 1, 4, 10.

A lower bound for b(N), that is tight for the first 3 terms, is given by b(N) ≥
2N+1 − 2N−1 − 2. This is because there is an N -state automaton recognizing a non-
sparse language L such that [L]2 has 1 and 2N+1 − 2N−1 − 1 as its two smallest
elements. Therefore, at least m = 2N+1 − 2N−1 − 2 summands (all of which are 1’s)
will be needed to represent m. The 3-state automaton giving b(3) = 10 is shown in
Figure 2.17.

40

q0 q1 q2

0

1 0, 1

0

1

Figure 2.17: Consistent 3-State automaton corresponding to a set with additive basis order
10

41

Chapter 3

Counting Subwords

3.1 Preliminaries

3.1.1 Introduction

An idea used in many different topics within the study of formal languages is that of
counting occurrences of letters within words. For example, the results of Chapter 2 are
centered around languages defined by the relative counts of letters within words. The
Parikh map (see, e.g., [31]), a tool in formal language theory with a variety of applications,
is another example of this idea of counting occurrences of letters within words. In this
chapter we consider a generalization of counting occurrences of letters within words to
counting occurrences of words as subwords within words. Recall that for a ∈ Σ and
w ∈ Σ∗ we define |w|a to be the number of occurrences of letter a within word w. We
extend this definition such that for words w, x ∈ Σ∗, the notation |w|x is defined to mean
the number of (possibly overlapping) occurrences of word x within word w. For example,
we have |banana|ana = 2. In this chapter we study the languages

Lx<y = {w ∈ Σ∗ : |w|x < |w|y},
Lx≤y = {w ∈ Σ∗ : |w|x ≤ |w|y},
Lx=y = {w ∈ Σ∗ : |w|x = |w|y},

and their complements. In particular, we address the question of when these languages are
regular.

The content of this chapter is based upon the published paper, Counting Subwords
and Regular Languages [11], and the unpublished extended version of the same name [12].

42

Both of these are works for which the author of this thesis is a coauthor. As such, large
sections of the content within this chapter are copied verbatim from [11, 12]. The order in
which some of this content is presented here has been adapted from these papers to better
suit this alternative presentation format. The content of the remainder of Section 3.1, all
of Section 3.2, and Section 3.3 can be found in [11, 12].

3.1.2 Bordered Words and Periodicity

Let y, z be words with y nonempty. We say that z is y-bordered if z 6= y and y is both a
prefix and a suffix of z. There are two types of y-bordered words: one where the prefix and
suffix y do not overlap in z (that is, where |y| ≤ |z|/2), and one where they do (that is,
where |y| > |z|/2). In the first case, we say that z is disjoint y-bordered, and in the second
case, overlapping y-bordered. For example, entanglement is disjoint ent-bordered, and
alfalfa is overlapping alfa-bordered. For more about borders of words, see, for example,
[14].

We will need two lemmas about bordered words. To prove the first of these two lemmas
and some other results in this chapter it will be useful to recall a theorem of Lyndon and
Schützenberger as in, for example, [26] or [38, Theorem 2.3.2].

Theorem 28 ([26], as stated in [38]). Let x, y, z ∈ Σ+. Then xy = yz if and only
if there exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 0 such that x = uv, z = vu, and
y = (uv)eu = u(vu)e.

Lemma 29. Suppose z ∈ Σ∗ is y-bordered. Then there exist words u ∈ Σ+ and v ∈ Σ∗

and an integer e ≥ 0 such that y = (uv)eu and z = (uv)e+1u.

Proof. Follows immediately from Theorem 28.

Lemma 30. Let u ∈ Σ+, v ∈ Σ∗, and e ≥ 0. Suppose that y = (uv)eu. Define z1 = (uv)e+1

and z2 = (uv)e+2. Let c = |z1|y and d = |z2|y − |z1|y. Then c, d ≥ 1 and |(uv)i|y =
(i− e)d+ c− d for all integers i > e.

Proof. If x = (uv)e+1, then |x|y = c. Appending uv to x on the right results in d ≥ 1
additional copies of y. The result now follows by induction.

We also recall the following classical result.

Theorem 31. Let x, y be nonempty words. There exists a word with two distinct factor-
izations as a concatenation of x’s and y’s if and only if xy = yx.

Proof. This follows from the so-called “defect theorem” [25], or from [17, Theorem 1].

43

3.1.3 Pattern-Matching Automata

We will need the following well-known result about pattern-matching automata (for exam-
ple, see [13, §32.3]).

Theorem 32. Given a word w ∈ Σn, a DFA M = ({q0, . . . , qn},Σ, δ, q0, {qn}) exists of
n+ 1 states such that δ(q0, x) = qn if and only if w is a subword (resp., suffix) of x. Here
the state qi can be interpreted as asserting that the longest suffix of the input that matches
a prefix of w is of length i.

3.1.4 Interlacing

Suppose y is a subword of every x-bordered word. In this case we say x is interlaced by
y. For example, it is easy to check that 000100 is interlaced by 1000 when the underlying
alphabet Σ is {0, 1}. The following lemma gives the fundamental property of interlacing:

Lemma 33. Suppose x is interlaced by y, and suppose z is a word satisfying |z|y = |z|x+k.
Then for all t we have |zt|y ≥ |zt|x + k − 1. In particular, |t|y ≥ |t|x − 1 for all t.

Proof. Identify the starting positions of all occurrences of x in zt. Since x is interlaced by
y, between any two consecutive occurrences of x, there must be at least one occurrence of
y. So if zt has i more occurrences of x than z does, then zt must have at least i− 1 more
occurrences of y than z does.

3.2 Regularity of Subword Count Comparison Lan-

guages

3.2.1 Deterministic Context-Freeness

We now return our attention to the languages Lx<y, Lx≤y, Lx=y and their complements.
It is easy to prove a first result on the hierarchical location of such languages. For a
precise definition of the class of deterministic context-free languages see, for example, [38,
Section 4.7] or [40, Section 2.4].

Proposition 34. For all words x and y, the languages Lx<y, Lx≤y, Lx=y, and their com-
plements Lx≥y, Lx>y, Lx 6=y are all deterministic context-free languages.

44

Proof. We prove this only for Lx=y, with the other cases being analogous. We construct
a deterministic pushdown automaton M that recognizes Lx=y as follows: its states record
the last max(|x|, |y|) − 1 letters of the input seen so far. The stack of M is used as a
counter to maintain the absolute value of the difference between the number of x’s seen so
far and the number of y’s (a flag in the state records the sign of the difference). We have
M accept its input if and only if this difference is 0. Since there is only one possible action
for every triple of state, input symbol, and top-of-stack symbol, M is deterministic (any
“invalid” configurations transition to a dead state d).

We proceed by working towards necessary and sufficient conditions on when Lx<y, Lx≤y,
Lx=y, and their complements are regular languages.

3.2.2 Regularity

While Lx=y is always deterministic context-free, sometimes—perhaps surprisingly—it can
also be regular. For example, when the underlying alphabet Σ is unary, then Lx=y is always
regular. Less trivially, for Σ = {0, 1} it is an easy exercise to show that L01=10 is regular,
and is recognized by the 5-state DFA in Figure 3.1; however, L01=10 is not regular when
Σ = {0, 1, 2}. We can see this by observing that the morphism h1 : {a, b} → Σ∗ defined by
h1(a) = 2012 and h1(b) = 2102 gives h−11 (L01=10 = {x ∈ {a, b}∗ : |x|a = |x|b}, a context-
free language. Then, by the closure of regular languages under inverse morphism we can
deduce that L01=10 is not regular over the alphabet Σ = {0, 1, 2}. On the other hand,
L0011=1100 is never regular, even when Σ = {0, 1}. Using the morphism h2 : {a, b} → Σ∗,
defined by h2(a) = 001101 and h2(b) = (110010), we again get h−12 (L0011=1100) = {x ∈
{a, b}∗ : |x|a = |x|b}.

45

q0

q1

0

q2

1

0

q31

1

q4
0

0

1

1

0

Figure 3.1: A DFA recognizing L01=10 over Σ = {0, 1}

We give necessary and sufficient conditions on when Lx<y and Lx=y are regular in
Theorem 35 and Theorem 36 respectively. Note that the argument for the remaining case
of Lx≤y is very similar to the arguments for Lx<y and Lx=y. Conditions on when the
complements of these languages are regular are identical, due to the closure of regular
languages under complement.

Theorem 35. The language Lx<y is regular if and only if either x is interlaced by y or y
is interlaced by x.

Proof. ⇐=: There are two cases: (i) x is interlaced by y; and (ii) y is interlaced by x.

Case (i): Using Lemma 33, we can build a finite automaton M recognizing Lx<y as follows:
using the pattern-matching automata for x and y described in Section 3.1.3, on input z
the machine M records whether

(a) |z|x = |z|y + 1;

(b) |z|x = |z|y;

(c) |z|x = |z|y − 1, and |z′|x ≥ |z′|y − 1 for all prefixes z′ of z;

(d) |z′|x ≤ |z′|y − 2 for some prefix z′ of z.

46

Of course we do not maintain the actual numbers |z|x and |z|y in M , but only which of
(a)–(d) hold. Lemma 33 implies that the four cases above cover all the possibilities. It
is not possible to have |z|x ≥ |z|y + 2, and if (d) ever occurs, we know from Lemma 33
that |z|x < |z|y for all words z extending z′. So in this case the correct action is for the
automaton to remain in state (d), an accepting state that loops to itself on all inputs. The
automaton accepts the input if and only if it is in the states corresponding to conditions
(c) and (d).

Case (ii): Using Lemma 33, as in Case (i), we can build a finite automaton recogniz-
ing Lx<y as follows: using the pattern-matching automata for x and y described in Sec-
tion 3.1.3, on input z the machine M records whether

(a) |z|y = |z|x + 1;

(b) |z|y = |z|x, and |z′|y ≥ |z′|x for all prefixes z′ of z;

(c) |z′|y ≤ |z′|x − 1 for some prefix z′ of z.

Lemma 33 implies that the three cases above cover all the possibilities. It is not possible
to have |z|y ≥ |z|x + 2, and if (c) ever occurs, we know from Lemma 33 that |z|x ≥ |z|y for
all words z extending z′. So in this case the correct action is for the automaton to remain
in state (c), a rejecting “dead” state that loops to itself on all inputs. The automaton
accepts the input if and only if it is in the state corresponding to condition (a).

=⇒: We proceed by proving the contrapositive. So suppose that there is some y-bordered
word r such that x is not a subword of r, and some x-bordered word s such that y is
not a subword of s. Using Lemma 29, we know that there are words u, v, p, q and natural
numbers e, f such that r = (uv)e+1u, and y = (uv)eu, and s = (pq)f+1p, and x = (pq)fp.

Suppose that x is a subword of (uv)iu for some i ≥ 0. Since x is not a subword of r,
we know that i ≥ e+ 2. If x is a subword of (uv)e+2u and not a subword of (uv)e+1u, then
y = (uv)eu must be a subword of x. But then y is a subword of s, a contradiction. So x is
not a subword of (uv)iu for any i. By exactly the same reasoning we deduce that y is not
a subword of (pq)jp for any j ≥ 0.

Let c = |(uv)e+1|y and d = |(uv)e+2|y − |(uv)e+1|y. Similarly, define c′ = |(pq)f+1|x and
d′ = |(pq)f+2|x− |(pq)f+1|x. Consider a word z = (uv)i(pq)j, where i > e and j > f . From
above and Lemma 30, we know that |(uv)i|x = 0 for all i ≥ 0 and |(pq)j|x = (j−f)d′+c′−d′
for j > f . Let m be the number of additional occurrences of x that straddle the boundary
between (uv)e+1 and (pq)f+1. That is, m is the number of distinct values for k, such that x is

47

a subword of (uv)e+1(pq)f+1 starting at index k and (e+1)|uv|+2−|x| ≤ k ≤ (e+1)|uv|+1.
Similarly, we know that |(uv)i|y = (i−e)d+c−d for i > e and |(pq)j|y = 0 for all j ≥ 0. Let
n be the number of additional occurrences of y that straddle the boundary between (uv)e+1

and (pq)f+1. The precise definition of n is given as above by replacing m and x with n and
y respectively. Thus z has (j − f)d′ + c′− d′ +m occurrences of x and (i− e)d+ c− d+ n
occurrences of y.

Now assume, contrary to what we want to prove, that Lx<y is regular. Define L =
Lx<y ∩ (uv)e(uv)+(pq)f (pq)+. Then L is regular. Define a morphism h : {a, b}∗ → Σ∗ as
follows: h(a) = uv, and h(b) = pq. We claim that h−1(z) = {aibj}. One direction is clear.
For the other, suppose h−1(z) included some word other than aibj. Then by Theorem 31,
we know that uv and pq commute. But then by the Lyndon-Schützenberger theorem [26],
uv and pq are both powers of some word t. But then x would be a subword of (uv)`u for
some `, which we already saw to be impossible.

By a well-known theorem (e.g., [38, Theorem 3.3.9]), h−1(L) is regular. But h−1(L) =
{aibj : (i− e)d+ c− d+ n < (j − f)d′ + c′ − d′ +m, for i > e, j > f} which, using the
pumping lemma, is not regular.

Theorem 36. The language Lx=y is regular if and only if either x is interlaced by y or y
is interlaced by x.

Proof. The proof is quite similar to the case Lx<y, and we indicate only what needs to be
changed.

⇐=: Without loss of generality we can assume that x is interlaced by y. Using Lemma 33
we can build a finite automaton recognizing Lx=y just as we did for Lx<y, using case (i).
The only difference now is that the accepting state corresponds to (b).

=⇒: Proceeding by contraposition, suppose that there is some y-bordered word r such
that x is not a subword of r, and some x-bordered word s such that y is not a subword of
s. Once again, we follow the argument used for Lx<y, but there is one difference.

Recall that z = (uv)i(pq)j for some i > e and j > f . By the argument for Lx<y we
know that z has (j−f)d′+ c′−d′+m occurrences of x and (i− e)d+ c−d+n occurrences
of y. Let A = (−(m+ c′)) mod d′ and B = (−(n+ c)) mod d. Let w be the shortest suffix
of (uv)e+2 such that wz has (i− e)d+ c− d+n+B occurrences of y; let w′ be the shortest
prefix of (pq)f+2 such that zw′ has (j − f)d′ + c′ − d′ +m+ A occurrences of x. Then by
our construction wzw′ has (j − f + C)d′ occurrences of x and (i− e+D)d occurrences of
y, for some C,D ≥ 0.

Now assume, contrary to what we want to prove,that Lx=y is regular. Define L′ =
Lx=y ∩w(uv)e(uv)+(pq)f (pq)+w′. Then L′ is regular. Define L = #L′#, where # is a new

48

symbol not in the alphabet Σ; then L is regular. Define a morphism h : {a, b, a′, b′}∗ →
Σ∗ as follows: h(a′) = #w, h(a) = uv, h(b) = pq, and h(b′) = w′#. We claim that
h−1(#wzw′#) = {a′aibjb′}. One direction is clear, and the other follows from Theorem 31.
By a well-known theorem (e.g.,[38, Theorem 3.3.9]), h−1(L) is regular. But h−1(L) =
{a′aibjb′ : (i − e + D)d = (j − f + C)d′, for i > e, j > f} which, using the pumping
lemma, is not regular.

3.2.3 Testing the Criteria

Given x, y we can test if there is some y-bordered word z such that x is not subword of z,
as follows: create a DFA recognizing the language

(Σ∗xΣ∗)c ∩ yΣ+ ∩ Σ+y.

A simple construction gives such a DFA M with at most N = (|x| + 1)(|y| + 3)(|y| + 2)
states and at most N |Σ| transitions.

This can be improved to N ′ = (|x| + 1)(2|y| + 3) states as follows: first build a DFA
of (2|y| + 3) states recognizing the language yΣ+ ∩ Σ+y by “grafting” the DFA, A1, of
|y| + 3 states recognizing yΣ+ onto the DFA, A2, of |y| + 2 states recognizing Σ+y. This
can be done by modifying the pattern-matching DFA described in Theorem 32. Simply
replace transitions to the final state in A1 with transitions to the appropriate states in A2.
The final state of A1 and the initial state of A2 both become unreachable. Then form the
direct product with the DFA for (Σ∗xΣ∗)c. The resulting DFA has N ′ states. We can then
use a depth-first search on the underlying transition graph of M to check if L(M) 6= ∅.

Thus, we have proved:

Corollary 37. There is an algorithm running in time O(|Σ||x||y|) that decides whether
the criteria of Theorems 35 and 36 hold.

Corollary 38. If there exists a y-bordered word z such that x is not a subword of z, then
|z| < N ′.

Proof. If M = (Q,Σ, δ, q0, F) accepts any word at all, then it accepts a word of length at
most |Q| − 1.

49

3.2.4 Improving the Bound in Corollary 38

As we have seen in Corollary 38, if x is not a subword of some y-bordered word, then there
is a relatively short “witness” to this fact. We now show that this witness can be taken
to be of the form yty for some t of constant length. The precise constant depends on the
cardinality of the underlying alphabet Σ. In Corollary 40 we prove that if |Σ| ≥ 3, then
this constant is 1. In Corollary 45 we prove that if |Σ| = 2, then this constant is 3.

Theorem 39. Suppose Σ is an alphabet that contains at least three symbols, and let x, y ∈
Σ∗. Without loss of generality assume that {0, 1, 2} ⊆ Σ. If x is a subword of y0y and y1y
and y2y, then x is a subword of y.

Proof. Assume, contrary to what we want to prove, that x is not a subword of y. Also
assume that |y| = m and |x| = n. For x to be a subword of y0y (resp., y1y, y2y), then,
it must be that x “straddles” the y—y boundary. More precisely, when we consider where
x appears inside y0y, the first symbol of x must occur at or to the left of position m + 1
of y0y (resp., y1y, y2y). Similarly, the last symbol of x must occur at or to the right of
position m+ 1 of y0y (resp., y1y, y2y).

For a = 0, 1, 2, label the x that matches yay as xa, and assume that the position of the
0 that matches x0 is i, the position of the 1 that matches x1 is j, and the position of the
2 that matches x2 is k. Note that x0 = x1 = x2 = x; the indices just allow us to refer to
the diagram below. Without loss of generality we can assume 1 ≤ i < j < k ≤ n. Thus we
obtain a picture as in Figure 3.2. Here we have labeled the two occurrences of y as y and
y′, so we can refer to them unambiguously. Note that i ≥ 1 and k ≤ m+ 1. Furthermore,
note that n ≤ m+ i.

y a y′

0

1

2

= x0

= x1

= x2

Figure 3.2: Matches of x against y0y, y1y, and y2y

We now use “index-chasing” to show that x[k] = x[i]; this will give us a contradiction,
since x[k] = 2 and x[i] = 0. We will use the following identities, which can be deduced by

50

observing Figure 3.2.

x1[`] = y[`+m+ 1− j] for 1 ≤ ` ≤ j − 1; (3.1)

x2[`] = y[`+m+ 1− k] for 1 ≤ ` ≤ k − 1; (3.2)

x0[`] = y′[`− i] for i+ 1 ≤ ` ≤ n; (3.3)

x1[`] = y′[`− j] for j + 1 ≤ ` ≤ n. (3.4)

Notice that j + 1 ≤ k ≤ n, so we can take ` = k in (3.4) to get x[k] = y[k − j].
Additionally, k − j ≥ 1, giving i+ 1 ≤ i+ k − j. Also i− j < 0 ≤ n− k, so i+ k − j ≤ n.
Thus we can take ` = i+ k − j in (3.3) to obtain y[k − j] = x[i+ k − j].

Since i ≥ 1 and k− j ≥ 1, we get i+ k− j ≥ 2. Since j− i ≥ 1 we have i− j ≤ −1 and
i+k−j ≤ k−1. Thus we can take ` = i+k−j in (3.2) to get x[i+k−j] = y[i+m+1−j].
Since 1 ≤ i ≤ j − 1, we can take ` = i in (3.1) to get y[i+m+ 1− j] = x[i]. Putting these
observations together, we finally obtain

2 = x[k] = y[k − j] = x[i+ k − j] = y[i+m+ 1− j] = x[i] = 0,

which produces the desired contradiction.

Corollary 40. Suppose |Σ| ≥ 3. Then x is a subword of yty for all t with |t| = 1 if and
only if y is interlaced by x.

We now turn to case of a binary alphabet. This case is more subtle. For example,
consider when x = 10100 and y = 01001010. Then, as can be verified, x is a subword of
the self-overlaps y(010)−1y and y0−1y, as well as the words yy, y0y, y1y, y00y, y01y, y10y,
y11y, y000y, y001y, y010y, y011y, y100y, y101y. But x is not a subword of y110y.

For a binary alphabet Σ, a special role is played by the language

A = 01+ ∪ 10+ ∪ 0+1 ∪ 1+0.

We also define the following languages. For each integer k ≥ 1, let

B0k1 := (1 + 01 + · · ·+ 0k−11)+0k0∗ and B10k := 0∗0k(1 + 10 + · · ·+ 10k−1)+.

Similarly, define B1k0 and B01k by relabeling 0 to 1 and 1 to 0.

Lemma 41. Suppose Σ = {0, 1} and x ∈ A. Then y ∈ Bx if and only if x is not a subword
of y, but x is a subword of all y-bordered words.

51

Proof. We consider the case where x = 0k1 and note that the case where x = 1k0 is given
by relabeling 0 to 1 and 1 to 0, and the other two cases are given by a symmetric argument.

=⇒: Suppose that y ∈ Bx = B0k1 = (1 + 01 + · · ·+ 0k−11)+0k0∗ and z is a y-bordered
word. By the definition of Bx, observe that x is not a subword of y. By Lemma 29
there exist u ∈ Σ+, and v ∈ Σ∗, and a natural number e ≥ 0 such that y = (uv)eu and
z = (uv)e+1u.

We first show that e ≤ 1. If we assume the contrary, then y = (uv)e−2uvuvu. We know
that vu has the suffix 10k+i for some i ≥ 0. But since there is at least one 1 in vu we have
that 0k1 is a subword of vuvu, giving a contradiction.

If e = 0 then z = uvu = yvy for some v ∈ Σ∗. Since vy has at least one 1 and y has
a suffix of 0k, we get that x is a subword of yvy = z. If e = 1 then y = uvu such that vu
has the suffix 0k and there is at least one 1 in vu. Then z = (uv)2u = uvuvu has 0k1 as a
subword.

⇐=: Assume, to get a contradiction, that there is some y ∈ Σ∗ \ Bx = Σ∗ \ B0k1 such
that x is a subword of all y-bordered words and x is not a subword of y. Then y satisfies
at least one of the following cases, and we will get a contradiction in each of these.

Case (i): y = 0i for some i ≥ 0. Clearly, x is not a subword of the y-bordered word
yy.

Case (ii): y has x = 0k1 as a subword, giving an immediate contradiction.

Case (iii): The suffix of y is 10i for some 0 ≤ i < k. Then consider the y-bordered
word z = y1y. If x is a subword of z but x is not a subword of y, then x must straddle the
y—y boundary in z. So the 1 in x = 0k1 must align with the 1 between the y’s in z = y1y.
But the suffix of y is 10i for i < k. So x cannot be a subword of y1y.

However, for x 6∈ A, it turns out that if x is not a subword of y, then there is some
word t of length 3 such that x is not a subword of yty. To prove this we first give two
preliminary lemmas.

Lemma 42. Suppose Σ = {0, 1}, and let x, y ∈ Σ∗ with |x| = n and |y| = m. Suppose x
is not a subword of y, but x is a subword of yty for all t ∈ Σ∗ such that |t| = 3 and x /∈ A.
Then for every integer k satisfying max{1,m− n+ 2} ≤ k ≤ min{2m+ 3− n,m+ 2} and
for all pairs of words t1, t2 ∈ Σ∗ with |t1| = |t2| = 3, we have either x 6= (yt1y)[k..k+n− 1]
or x 6= (yt2y)[k + 1..k + n], or both.

Proof. Assume, to get a contradiction, that there exist x, y ∈ Σ∗ such that x is not a
subword of y and x /∈ A and that there exist t1, t2 ∈ Σ∗ with |t1| = |t2| = 3 and an integer

52

k satisfying max{1,m−n+2} ≤ k ≤ min{2m+3−n,m+2} such that (yt1y)[k..k+n−1] =
(yt2y)[k + 1..k + n] = x, and furthermore x is a subword of yty for all t ∈ Σ∗ with |t| = 3.
Let t1 = a1b1c1 and t2 = a2b2c2 and x = x1x2 · · ·xn. Before proceeding, first observe that
n ≥ 3 since for all x with |x| ≤ 2 we have that either x ∈ A or x is not a subword of one
of y000y and y111y.

Case (i): max{1,m− n+ 3} ≤ k ≤ min{2m+ 3− n,m+ 1}.
If max{1,m − n + 4} ≤ k ≤ min{2m + 3 − n,m} then n ≥ 4 and we can write x =
x1va1b1c1w = va2b2c2wxn for some v, w ∈ Σ∗ where x1v = va2 and c1w = wxn and
a1b1 = b2c2. Then, by the first theorem of Lyndon-Schützenberger, we have that v = xi1 and
w = xjn for integers i, j ≥ 0. Thus x can be re-written as x = xi1a1b1x

j
n for x1, a1, b1, xn ∈ Σ

and i, j ≥ 1.

If k = m−n+ 3 then, where n ≥ 3, we can write x = x1va1b1 = va2b2c2 for v ∈ Σ∗ and
after applying the first theorem of Lyndon-Schützenberger we get x = xi1a1b1 where i ≥ 1.

Similarly if k = m+ 1 then we can write x = a1b1c1w = b2c2wxn and applying the first
theorem of Lyndon-Schützenberger gives x = a1b1x

j
n for j ≥ 1.

So we have that x = xi1a1b1x
j
n for a1, b1, x1, xn ∈ Σ and i, j ≥ 0 and either i ≥ 1 or j ≥ 1.

We will proceed by getting a contradiction for each possible assignment of a1, b1, x1, xn to
symbols in Σ for all valid i, j. Table 3.1 gives contradictions for all possible assignments
where x1 = 0. Note that the remaining cases can be ruled out by relabeling 0 to 1 and 1
to 0.

Case (iii): k = m− n+ 2 ≥ 1.
We can write x = x1wa1 = wa2b2 for some w ∈ Σ+, where x1w = wa2. So by the
first theorem of Lyndon-Schützenberger, we get w = xi1 for some integer i ≥ 1 and thus
x = xi+1

1 xn for x1, xn ∈ Σ. If x1 = xn, then xi+1
1 xn = xi+2

1 . But, since x is not a subword of
y we cannot have that xi+2

1 is a subword of both y111y and y000y, giving a contradiction.
If instead we have x1 6= xn, then xi+1

1 xn ∈ A, an immediate contradiction.

Case (iv): k = m+ 2 ≤ 2m+ 3− n.
We can write x = b1c1w = c2wxn and similar to Case (iii), we get x = x1x

i+1
n for x1, xn ∈ Σ

and i ≥ 1. By the same argument as in Case (iii), we get a contradiction if x1 = xn and if
x1 6= xn.

Lemma 43. Suppose Σ = {0, 1}, and let x, y ∈ Σ∗ with |x| = n and |y| = m. If x is a
subword of yty for all t ∈ Σ∗ such that |t| = 3 and x /∈ A, and x is not a subword of y, then

53

Table 3.1: Contradictions for each a1, b1, xn ∈ Σ and x1 = 0, where in each row x =
xi1a1b1x

j
n and i, j ≥ 0 and either i ≥ 1 or j ≥ 1. The contradictions rely on the assumption

that x is not a subword of y.

x1 a1 b1 xn Contradiction

0 0 0 0 For all i, j ≥ 0 we have that x is not a subword of y111y.

0 0 0 1 For all i ≥ 0:
If j = 0, then x is not a subword of y111y;
If j = 1, then x = 0i+21 ∈ A;
If j > 1, then if x is a subword of y101y, then y has 0i+21j−1 as a
suffix. But if x is a subword of y011y, then y has 0i+1 as a suffix.

0 0 1 0 For all i ≥ 0:
If j = 0, then x = 0i+11 ∈ A;
If j > 0, then x is not a subword of y111y.

0 0 1 1 If i = 0 or j = 0, then x ∈ A.
If i > 0 and j > 0, then if x is a subword of y101y, then y has 0i+11j

as a suffix. But if x is a subword of y011y, then y has 0i as a suffix.

0 1 0 0 If i = 0, then x = 10j+1 ∈ A.
If i > 0, then x is not a subword of y111y.

0 1 0 1 If i = 0 and j > 0, then x is not a subword of y000y.
If i > 0 and j = 0, then x is not a subword of y111y.
If i > 0 and j = 1, then if x is a subword of y011y, then y has 0i1
as a suffix. But if x is a subword of y111y, then y has 0i10 as a suffix.
If i = 1 and j > 0, then if x is a subword of y001y, then y has 01j

as a prefix. But if x is a subword of y000y, then y has 101j as a prefix.
If i > 1 and j > 1, then if x is a subword of y011y, then y has 0i1
as a suffix. But if x is a subword of y111y, then y has 0i101` as a suffix
for some ` < j. Since i > 1, this is a contradiction.

0 1 1 0 If i = 0 and j = 1, then x = 110 ∈ A.
If i = 1 and j = 0, then x = 011 ∈ A.
If i > 1 and j = 0, then if x is a subword of y101y, then y has 0i1
as a suffix. But if x is a subword of y011y, then y has 0i−1 as a suffix.
If i=0 and j > 1, then if x is a subword of y101y, then y has 10j

as a prefix. But if x is a subword of y110y, then y has 0j−1 as a prefix.
If i > 0 and j > 0, then x is not a subword of y111y.

0 1 1 1 For all j ≥ 0 :
If i = 0, then x is not a subword of y000y;
If i = 1, then x = 01j+2 ∈ A;
If i > 1, then if x is a subword of y011y, then y has 0i−1 as a suffix.
But if x is a subword of y101y, then y has 0i1j+1 as a suffix.

54

Table 3.2: Contradictions for each valid u ∈ Σ+, v ∈ Σ∗, and x1 = 0, where in each
row x = x1(uv)i+1u for i ≥ 0. The contradictions rely on the assumption that x is not a
subword of y.

x1 u v Contradiction

0 00 ε x is not a subword of y111y.

0 0 0 x is not a subword of y111y.

0 01 ε If x is a subword of y111y, then y has 0(01)i+10 as a suffix.
But if x is a subword of y011y, then y has 0(01)i+1 as a suffix.

0 0 1 x is not a subword of y111y.

0 10 ε x is not a subword of y111y.

0 1 0 If x is a subword of y111y then y has 0(10)i+1 as a suffix.
But if x is a subword of y011y then y has (01)i+1 as a suffix.

0 11 ε x ∈ A.

0 1 1 x ∈ A.

for all pairs of words t1, t2 ∈ Σ∗ with |t1| = |t2| = 3 we have either x 6= (yt1y)[m+1..m+n],
or x 6= (yt2y)[m+ 3..m+ 2 + n], or both.

Proof. Assume, to get a contradiction, that there exist x, y ∈ Σ∗ such that x is not a
subword of y and x /∈ A and that there exist t1, t2 ∈ Σ∗ with |t1| = |t2| = 3 such that
(yt1y)[m + 1..m + n] = (yt2y)[m + 3..m + 2 + n] = x, and furthermore x is a subword of
yty for all t ∈ Σ∗ with |t| = 3. Let t1 = a1b1c1 and t2 = a2b2c2 and x = x1x2 · · ·xn, and
assume |y| = m.

We can write x = a1b1c1w = c2wxn−1xn. So b1c1w = wxn−1xn and by the first theorem
of Lyndon-Schützenberger there exist u ∈ Σ+ and v ∈ Σ∗ and an integer i ≥ 0 such that
b1c1 = uv and xn−1xn = vu and w = (uv)iu = u(vu)i. This gives x = x1wxn−1xn =
x1(uv)iuvu = x1(uv)i+1u. We now consider each possible u ∈ Σ+ and v ∈ Σ∗, seeking a
contradiction in each case. The contradictions are summarized in Table 3.2. Note again
that the contradictions are given for all cases where x1 = 0; the remaining cases can be
obtained by relabeling 0 to 1 and 1 to 0.

Theorem 44. Suppose Σ = {0, 1} and let x, y ∈ Σ∗. If x is a subword of yty for all t ∈ Σ∗

such that |t| = 3 and x /∈ A, then x is a subword of y.

55

Proof. Define the function f : Σ∗ × Σ∗ → N over pairs of words x,w ∈ Σ∗ such that x is
a subword of w as f(x,w) = min{i ∈ N : w[i..i + |x| − 1] = x}. Also, define the bitwise
complements of elements of Σ as 0 = 1 and 1 = 0.

Assume, to get a contradiction, that x is not a subword of y and also assume that
|y| = m and |x| = n. If x is a subword of yty for each t ∈ Σ∗ with |t| = 3, then for each
such t we have f(x, yty) ≤ m+ 3 and f(x, yty) +n− 1 ≥ m+ 1. Since the position of x in
yty cannot be the same for all valid t, let t0 = a0b0c0 be the choice of t for which f(x, yty)
is greatest across all valid t and let t4 = a4b4c4 6= t0 be the choice of t for which f(x, yty)
is smallest across all valid t. We now consider two cases depending on the position of x in
yt0y.

Case (i): f(x, yt0y) = m + 3. Consider t1 = a40c0 and t2 = a41c0. Since t1 and t2 differ
from t4 in the first index of t4, and t4 gives the leftmost position for x as a subword of
yty over all valid choices of t, we know f(x, yt1y) 6= f(x, yt4y) and f(x, yt2y) 6= f(x, yt4y).
Similarly we have f(x, yt1y) 6= f(x, yt0y) and f(x, yt2y) 6= f(x, yt0y). Applying Lemma 42
to the pairs t4, t1 and t4, t2 and Lemmas 42 and 43 to the pairs t1, t0 and t2, t0 we have that
f(x, yt1y) + n − 1 ≥ m + 3 and f(x, yt2y) + n − 1 ≥ m + 3 and that f(x, yt1y) ≤ m + 1
and f(x, yt2y) ≤ m+ 1. So for yt1y (resp., yt2y), the position of x is such that it entirely
overlaps t1 (resp., t2). But since t1 6= t2 we know that the positions of x as a subword of
yt1y and yt2y are distinct, i.e., f(x, yt1y) 6= f(x, yt2y).

So suppose without loss of generality that f(x, yt1y) > f(x, yt2y). We now perform
an index chasing argument, similar to that of the ternary case, using t0, t1, t2 and seeking
the contradiction c0 = (yt0y)[m + 3] = (yt2y)[m + 3] = c0. We use the same labeling
scheme as in the ternary case. So define i, j, k such that i = m + 4 − f(x, yt0y) and j =
m+4−f(x, yt1y) and k = m+4−f(x, yt2y), giving x0[i] = t0[3] = c0 and x1[j] = t1[3] = c0
and x2[k] = t2[3] = c0. Note that in this case we have i = 1 by assumption and j ≥ i + 3
by Lemmas 42 and 43. From Figure 3.3 we obtain the following identities.

x1[`] = y[`+m+ 3− j] for 1 ≤ ` ≤ j − 3; (3.5)

x2[`] = y[`+m+ 3− k] for 1 ≤ ` ≤ k − 3; (3.6)

x0[`] = y′[`− i] for i+ 1 ≤ ` ≤ n; (3.7)

x1[`] = y′[`− j] for j + 1 ≤ ` ≤ n. (3.8)

Since j + 1 ≤ k ≤ n, we can apply (3.8) to get x1[k] = y′[k − j]. Then, since i ≤ j and
k ≤ n, we have i + k ≤ n + j, giving i + k − j ≤ n. This, together with the inequality
k−j ≥ 1 giving i+1 ≤ i+k−j, means that we can apply (3.7) to get y′[k−j] = x0[i+k−j].
Next, j− i ≥ 3 gives i+k−j ≤ k−3, so applying (3.6) gives x2[k+ i−j] = y[i+m+3−j].

56

y a b c y′

c0

a4 0 c0

a4 1 c0

= x0

= x1

= x2

Figure 3.3: Positions of x in yt0y, yt1y, yt2y for Case (i)

Finally, since 1 ≤ i ≤ j − 3, we can apply (3.5) to get y[i + m + 3 − j] = x1[i]. Together
this gives the contradiction

c0 = x2[k] = y′[k − j] = x0[i+ k − j] = y[i+m+ 3− j] = x2[i] = c0.

Case (ii): f(x, yt0y) ≤ m + 2. Consider t1 = a4b0c0 and t2 = a4b0c0 and t3 = a4b0c0.

By the same argument as in Case 1 we get that the positions of x as a subword of each
of yt0y, yt1y, yt2y, yt3y, yt4y are all distinct. Furthermore, by Lemma 42 we have that for
each pair ti, tj with 0 ≤ i, j ≤ 4 and i 6= j the difference in positions of x as a subword
of ytiy and ytjy is |f(x, ytiy) − f(x, ytjy)| ≥ 2. We now order these choices of t and
relabel t1, t2, t3 if necessary such that f(x, yt0y) > f(x, yt3y) > f(x, yt1y) > f(x, yt2y) >
f(x, yt4y). At this point we again perform an index-chasing argument using t0, t1, t2. If
we have that t2[3] = c0 then the argument given in Case (i) holds to give a contradiction.
If instead we have that t2[3] = c0, then we know that t2[2] = b0 and we will get the
contradiction b0 = (yt0y)[m+ 2] = (yt2y)[m+ 2] = b0. To do this we define i, j, k such
that i = m+ 3− f(x, yt0y) and j = m+ 3− f(x, yt1y) and k = m+ 3− f(x, yt2y), giving
x0[i] = t0[2] = b0 and x1[j] = t1[2] and x2[k] = t2[2] = b0. Since f(x, yt0y) > f(x, yt3y) >
f(x, yt1y), Lemma 42 gives f(x, yt0y) ≥ f(x, yt3y) + 2 and f(x, yt3y) ≥ f(x, yt1y) + 2.
So f(x, yt0y) ≥ f(x, yt1y) + 4 and thus j ≥ i + 4. From Figure 3.4 we get the following
identities. Note that these identities are centered around t[2] instead of t[3] as in Case 1.

x1[`] = y[`+m+ 2− j] for 1 ≤ ` ≤ j − 2; (3.9)

x2[`] = y[`+m+ 2− k] for 1 ≤ ` ≤ k − 2; (3.10)

x0[`] = y′[`− i− 1] for i+ 2 ≤ ` ≤ n; (3.11)

x1[`] = y′[`− j − 1] for j + 2 ≤ ` ≤ n. (3.12)

Since j + 2 ≤ k ≤ n we can apply (3.12) to get x1[k] = y′[k− j − 1]. Then since i ≤ j and
k ≤ n we have i + k ≤ n + j, giving i + k − j − 1 < i + k − j ≤ n. This, together with

57

k − j ≥ 2 giving i + 2 ≤ i + k − j by Lemma 42, means that we can apply (3.11) to get
y′[k − j − 1] = x0[i + k − j]. Next, j − i ≥ 4 gives i + k − j ≤ k − 4 < k − 2, so applying
(3.10) gives x2[k + i− j] = y[i + m + 2− j]. Finally, since 1 ≤ i ≤ j − 4 < j − 2, we can
apply (3.9) to get y[i+m+ 2− j] = x1[i]. Together this gives the contradiction

b0 = x2[k] = y′[k − j − 1] = x0[i+ k − j] = y[i+m+ 2− j] = x2[i] = b0.

y a b c y′

b0 c0

a4 t1[2] c0

a4 b0 c0

= x0

= x1

= x2

Figure 3.4: Positions of x in yt0y, yt1y, yt2y for Case (ii) where t2[3] = c0

Theorem 45. Let Σ = {0, 1}. Then x is a subword of every y-bordered word if and only
if x is a subword of yty for all words t of length 3.

Proof. If x is a subword of every y-bordered word, then clearly x is a subword of yty for
all words t of length 3. For the other direction there are two cases.

Case 1: x /∈ A. Then by Theorem 44 we know x is a subword of y. So x is also a subword
of every y-bordered word.

Case 2: x ∈ A. Then x has the form 01i, or 0i1, or 10i, or 1i0 for some i ≥ 1. We consider
the case where x = 01i and note that the case where x = 1i0 follows by a symmetric
argument and the other cases are given by relabeling 0 to 1 and 1 to 0. If x is a subword of
y then the result follows trivially. So suppose that x = 01i is not a subword of y, but that
x is a subword of yty for all words t of length 3. Then, since x is a subword of y000y, we
have that 1i is a prefix of y. Additionally, since x is a subword of y111y, we know that 01j

is a suffix of y for some j satisfying 0 ≤ j < i. So we have y = 1iw01j for some w ∈ Σ∗.
Now consider a y-bordered word z. Let k be the index of the first 0 in z. Since z has y as
a prefix and a suffix, and z 6= y, we know that |z| ≥ |y|+ k. This is because the y-suffix of
z must start after the first 0 in z. So we have that there are i consecutive 1’s in z starting
at some index ` > k. Let k′ be the largest index less than ` such that z[k′] = 0. Then
z[k′..k′ + i] = 01i. So x is a subword of z.

58

Remark 46. The number 3 is optimal in Theorem 45. Consider x = 10100, y = 01001010.
Then x is a subword of every y-bordered word of length ≤ 2|y|+2 = 18, but not a subword
of yty with t = 110.

3.3 Finiteness

We now examine when Lx=y is finite.

Theorem 47. Let x, y ∈ Σ+. Then Lx=y is finite if and only if |Σ| = 1 and x 6= y.

Proof. There are four cases to consider.

Case (i): x = ai and y = aj for integers i, j > 0. If |Σ| = 1, then Lx=y is finite if and only
if x 6= y, for otherwise without loss of generality i < j, and for n ≥ j the word an contains
n− j + 1 occurrences of aj, but n− i+ 1 occurrences of ai.

Otherwise |Σ| > 1. Let b ∈ Σ and b 6= a. Then for each z ∈ b∗ we have |z|x = |z|y = 0.
Thus Lx=y is infinite.

Case (ii): x = ai and y = bj for two distinct symbols a, b and i, j > 0. Then for each z of
the form (xy)n we have |z|x = |z|y = n. Thus Lx=y is infinite.

Case (iii): x = ai for some i > 0 but y contains two different symbols. Let b ∈ Σ with
b 6= a. Then for each z ∈ b∗ we have |z|x = |z|y = 0. Thus Lx=y is infinite.

Case (iv): x and y both contain two different symbols. Let a ∈ Σ∗. Then for each z ∈ a∗
we have |z|x = |z|y = 0. Thus Lx=y is infinite.

We could consider the generalization of Lx=y to more than two words:

Lx1=x2=···=xn = {z ∈ Σ∗ : |z|x1 = |z|x2 = · · · = |z|xn}.

The following examples show that deciding the finiteness of Lx1=x2=···=xn for n ≥ 3 is more
subtle than the case n = 2. Suppose Σ = {0, 1}. Then L0=1=00=11 and L0=1=01=10 are finite
languages, but L00=11=000=111 is not.

Consider L0=1=00=11. For any maximal subword consisting of 0’s, the number of 0’s
exceeds the number of 00’s, and similar for 1 and 11. So L0=1=00=11 = {ε}.

Consider L0=1=01=10. Since |z|01 = |z|10, as shown in Figure 3.1, the words in this
language must start and end with the same character. There cannot be a 00 or the
number of 0’s exceeds that of 01 and 10, and similar for 11. So, the language is a subset

59

of (01)∗0 ∪ (10)∗1 ∪ {ε}. But no word z in this language, other than ε, has |z|0 = |z|1.
Therefore, L0=1=01=10 = {ε}.

Consider L00=11=000=111. It contains (01)∗, and hence is infinite.

Lacking a general condition for finiteness, we prove the following sufficient condition.

Theorem 48. If |x1| = · · · = |xn| then Lx1=x2=···=xn is infinite.

Proof. Let ` = |x1|. Consider the cyclic order-` de Bruijn word w of length k` over the
cardinality-k alphabet Σ. Such a word is guaranteed to exist for all k ≥ 2 and ` ≥ 1;
see, e.g., [35]. Let w′ be the prefix of w of length ` − 1. Then wiw′ ∈ Lx1=x2=···=xn for all
i ≥ 1.

3.4 Counting Subwords and Additive Bases

To finish this chapter and tie together the work in this thesis, we briefly consider applying
the additive basis ideas of Chapter 2 to languages defined by comparing the counts of
occurrences of subwords, as in the present chapter. For languages Lx<y, Lx≤y, Lx=y over
alphabet Σ2 where x is interlaced by y, or y is interlaced by x it is easy to state results about
whether the corresponding sets [Lx<y]2, [Lx≤y]2, [Lx=y]2 form asymptotic additive bases, and
the order of the bases if they exist. This is because by Theorem 36 Lx<y, Lx≤y, Lx=y are
then all regular, and we can use the algorithms given in [4] and [18] to evaluate the criteria
for forming an (asymptotic) additive basis and then directly use Walnut to determine the
order of the basis, provided that the associated automaton has few enough states for the
computation to be feasible.

For example, in Section 3.2 we saw that L01=10 is a regular language. We can construct
an automaton accepting all base-2 representations of numbers with an equal number of
occurrences of 01 and 10 in their base-2 representations. This gives a 3-state automaton
and using Walnut we find that the corresponding set forms an additive basis of order 2. On
the other hand, [L01>10]2 = ∅ and the greatest common divisor of the elements of [L01<01]2
is not 1. This means that none of [L01<10]2, [L01>10]2, [L016=10]2 form (asymptotic) additive
bases of finite order.

We can also consider a natural generalization of the sets considered in Chapter 2, listed
in Table 2.2, and ask whether the sets [L00<11]2, [L00≤11]2, [L00=11]2, and their complements,
or even more generally the sets [L0n<1m]2, [L0n≤1m]2, [L0n=1m]2, and their complements, form
(asymptotic) additive bases for n,m ≥ 1. Given that 0n does not interlace 1m, nor vice
versa, for every n,m ≥ 1, we cannot use Walnut directly. Thus, to attain results on

60

whether these sets form (asymptotic) additive bases we need to rely on methods presented
in Section 2.3.1, or otherwise. For example, we obtain the following result on the sets
[L0n=1m] for all n,m ≥ 3.

Theorem 49. For all integers n,m ≥ 3 the set [L0n=1m]2 forms an additive basis of order
2.

Proof. The language [L0n=1m]2 is the set of all natural numbers whose canonical base-2
representations have an equal number of occurrences of 0n and 1m as subwords. If n,m ≥ 3
we can observe that the regular language, R, consisting of all words that do not have either
000 or 111 as a subword is a subset of L0n=1m for all n,m ≥ 3. The state diagram for an
automaton recognizing 0∗R is given in Figure 3.5.

q0 q1

q2

q3 q4

q50

1

0

1

0

1

0

1
0

1

0, 1

Figure 3.5: Automaton accepting 0∗R

After writing this automaton to a file, NO3.txt for Walnut to work with, we can get
the set of number representable as the sum of two elements with base-2 representations in
0∗R, using the Walnut the command

eval no3 "E x1,x2 (NO3[x1]=@1)&(NO3[x2]=@1)&(n=x1+x2)":.

This returns an automaton accepting all n. Therefore, [L0n=1m]2 forms an additive basis
of order 2 for all n,m ≥ 3.

For the remaining values of n,m it is more difficult to find regular approximations that
give optimal additive basis orders. For n = 1 and small values of m, empirical results
suggest that [L0n=1m]2 has asymptotic additive basis order 3. For example, for m = 2, 3, 4,

61

the largest values less than 500,000 that cannot be represented as the sum of 3 elements
of [L0=1m]2 are 49, 220, and 1154, respectively. Similarly, for m = 1 and n = 2, 3, 4, the
largest values less than 500,000 that cannot be represented as the sum of 3 elements of
[L0n=1]2 are 239, 2047, and 32,766, respectively.

Fixing n = 2 (resp., m = 2) and considering small values of m (resp., n), empirical
results suggest that [L0n=1m]2 form asymptotic additive bases of order 2. We highlight
one curious example given by n = 2,m = 3. We can verify by a brute-force computation
that, with the exception of 77, every natural number less than 500,000 can be represented
as the sum of at most 2 elements of [L00=111]2. However, proving this using a regular
underapproximation and Walnut seems to be difficult. We can, however at least prove the
following optimal result on the (non-asymptotic) additive basis order of [L00=111]2.

Theorem 50. Every natural number is the sum of at most 3 elements of [L00=111]2.

Proof. Consider the regular languageR00=111 given by (((1+11)0)∗(111(0(1+11))∗00)∗)∗((1+
11)0)∗(ε+ 1 + 11). Using the Walnut command

eval qq23 "E x,y,z (QQ23[x]=@1)&(QQ23[y]=@1)&(QQ23[z]=@1)&(n=x+y+z)":

we get an automaton accepting the base-2 representations of all n.

The set of numbers with base-2 representations in R00=111 do not form an asymptotic
additive basis of order 2. If we consider regular subsets of L00=111 that are supersets of
R00=111, we run into issues with evaluating the Walnut commands, due to the significant
time and memory requirements.

3.5 Open Problems

We conclude this chapter with some open problems related to this work.

1. Find an algorithm that decides if Lx1=···=xn is finite, given x1, . . . , xn.

2. Characterize when Lx1=···=xn is finite.

3. Find a more straightforward and less case-based proof of Theorem 45.

4. Does [L0n=1m]2 form an asymptotic additive basis of order 3 for n = 1 and m ≥ 1
and for m = 1 and n ≥ 1? Similarly, Does [L0n=1m]2 form an asymptotic additive
basis of order 2 for n = 2 and all m ≥ 2 and for m = 2 and all n ≥ 2?

62

References

[1] J. P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In
Sequences and their applications, pages 1–16. Springer, 1999.

[2] J. P. Allouche and J. Shallit. Automatic sequences: theory, applications, generaliza-
tions. Cambridge University Press, 2003.

[3] W. D. Banks. Every natural number is the sum of forty-nine palindromes. Integers,
16(A3), 2016.

[4] J. P. Bell, K. E. Hare, and J. Shallit. When is an automatic set an additive basis?
Proc. Amer. Math. Soc., Series B, 5(6):50–63, 2018.

[5] J. P. Bell, T. F. Lidbetter, and J. Shallit. Additive number theory via approximation
by regular languages. In M. Hoshi and S. Seki, editors, Developments in Language
Theory (DLT 2018), volume 11088 of Lecture Notes in Computer Science, pages 121–
132. Springer, 2018.

[6] J. P. Bell, T. F. Lidbetter, and J. Shallit. Additive number theory via approximation
by regular languages. Preprint available at https://arxiv.org/abs/1804.07996,
2018.

[7] J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

[8] J. R. Büchi. On a decision method in restricted second order arithmetic. In The
Collected Works of J. Richard Büchi, pages 425–435. Springer, 1990.

[9] A. L. Cauchy. Démonstration du Theoreme Général de Fermat sur les Nombres Poly-
gones, volume 6 of Cambridge Library Collection - Mathematics, pages 320–353. Cam-
bridge University Press, 2009.

63

https://arxiv.org/abs/1804.07996

[10] J. Cilleruelo, F. Luca, and L. Baxter. Every positive integer is a sum of three palin-
dromes. Math. Comp., 87(314):3023–3055, 2018.

[11] C. J. Colbourn, R. E. Dougherty, T. F. Lidbetter, and J. Shallit. Counting subwords
and regular languages. In M. Hoshi and S. Seki, editors, Developments in Language
Theory (DLT 2018), volume 11088 of Lecture Notes in Computer Science, pages 231–
242. Springer, 2018.

[12] C. J. Colbourn, R. E. Dougherty, T. F. Lidbetter, and J. Shallit. Counting subwords
and regular languages. Preprint available at https://arxiv.org/abs/1804.11175,
2018.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

[14] A. Ehrenfeucht and D. M. Silberger. Periodicity and unbordered segments of words.
Discrete Math., 26:101–109, 1979.

[15] C. C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98(1):21–51, 1961.

[16] N. J. A. Sloane et al. The on-line encyclopedia of integer sequences. Available at
https://oeis.org, 2018.

[17] G. Gamard, G. Richomme, J. Shallit, and T. J. Smith. Periodicity in rectangular
arrays. Inform. Process. Lett., 118:58–63, 2017.

[18] P. Gawrychowski, D. Krieger, N. Rampersad, and J. Shallit. Finding the growth rate
of a regular or context-free language in polynomial time. Internat. J. Found. Comput.
Sci., 21(4):597–618, 2010.

[19] M. Le Gonidec. On the complexity of a family of k-context-free sequences. Theoret.
Comput. Sci., 414:47–54, 2012.

[20] J. Hartmanis and H. Shank. On the recognition of primes by automata. J. ACM,
15:382–389, 1968.

[21] D. Hilbert. Beweis für den Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl
n-ter Potenzen. Math. Ann., 67:281–300, 1909.

[22] B. R. Hodgson. Décidabilité par automate fini. Ann. Math. Qué., 7(1):39–57, 1983.

64

https://arxiv.org/abs/1804.11175
https://oeis.org

[23] S. Horváth, J. Karhumäki, and J. Kleijn. Results concerning palindromicity. J. Inf.
Process. Cybern. EIK, 23:441–451, 1987.

[24] D. M. Kane, C. Sanna, and J. Shallit. Waring’s theorem for binary powers. arXiv
preprint arXiv:1801.04483, 2018.

[25] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics
and its Applications. Addison-Wesley, 1983.

[26] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a free group.
Michigan Math. J., 9:289–298, 1962.

[27] P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit. Lagrange’s theorem
for binary squares. In Igor Potapov, Paul Spirakis, and James Worrell, editors, 43rd
International Symposium on Mathematical Foundations of Computer Science (MFCS
2018), volume 117 of Leibniz International Proceedings in Informatics (LIPIcs), pages
18:1–18:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik.

[28] Y. Moshe. On some questions regarding k-regular and k-context-free sequences. The-
oret. Comput. Sci., 400(1-3):62–69, 2008.

[29] H. Mousavi. Automatic theorem proving in Walnut. Preprint available at https:

//arxiv.org/abs/1603.06017, 2016.

[30] M.B. Nathanson. Additive Number Theory The Classical Bases, volume 164. Springer
Science & Business Media, 2013.

[31] R. J. Parikh. On context-free languages. J. ACM, 13:570–581, 1966.

[32] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetic ganzer
Zahlen, in wlechem die Addition als einzige Operation hervortritt. In Sprawozdanie z
I Kongresu Matematyków Krajów S lowiańskich, pages 92–101. Warsaw, 1929.

[33] M. Presburger. On the completeness of a certain system of arithmetic of whole numbers
in which addition occurs as the only operation. History and Philosophy of Logic,
12(2):225–233, 1991. D. Jacquette, trans.

[34] A. Rajasekaran, J. Shallit, and T. Smith. Sums of palindromes: an approach via
automata. In R. Niedermeier and B. Vallée, editors, 35th Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2018), volume 96 of Leibniz International
Proceedings in Informatics. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

65

https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017

[35] A. Ralston. De Bruijn sequences — a model example of the interaction of discrete
mathematics and computer science. Math. Mag., 55:131–143, 1982.

[36] D. R. Raymond and D. Wood. Grail: A C++ library for automata and expressions.
J. Symbolic Comput., 17:341–350, 1994.

[37] L. Schaeffer. Deciding properties of automatic sequences. Master’s thesis, University
of Waterloo, 2013.

[38] J. Shallit. A second course in formal languages and automata theory. Cambridge
University Press, 2008.

[39] T. N. Shorey and C. L. Stewart. On the diophantine equation ax2t + bxty + cy2 = d
and pure powers in recurrence sequences. Math. Scand., 52:24–36, 1983.

[40] M. Sipser. Introduction to the theory of computation. Thomson Course Technology
Boston, 3rd edition, 2012.

[41] R. C. Vaughan and T. D. Wooley. Waring’s problem: a survey. In M. A. Bennett,
B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand, and W. Philipp, editors,
Number Theory for the Millennium, volume 3, pages 301–340. A. K. Peters, 2002.

66

	List of Tables
	List of Figures
	Introduction
	Introduction
	Words, Languages, and Automata
	Words and Languages

	Additive Number Theory and Formal Languages
	Automatic Sequences and First-Order Logic
	Automatic Sequences
	First-Order Logic
	Decidability and Walnut

	Additive Number Theory Background
	Introduction
	Languages as Additive Bases

	Additive Number Theory via Approximation by Regular Languages
	Method
	Example of the Method: the Set S
	The Set S=
	The Set S
	The Set S<
	The Set S>
	The Set S=
	The Totally Balanced Numbers
	Prefixes of Totally Balanced Numbers

	Limitations of the Method
	Alternative Methods and Generalizations
	The Set S
	The Set S=
	The Set S>
	The Set S<
	The Set S
	The Set S=
	Generalization to Other Bases
	Generalization to k-Context-Free Sets

	N-State Automata Accepting Additive Basis Languages
	Open Problems

	Counting Subwords
	Preliminaries
	Introduction
	Bordered Words and Periodicity
	Pattern-Matching Automata
	Interlacing

	Regularity of Subword Count Comparison Languages
	Deterministic Context-Freeness
	Regularity
	Testing the Criteria
	Improving the Bound in Corollary 38

	Finiteness
	Counting Subwords and Additive Bases
	Open Problems

	References

