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ABSTRACT

High crime rates have become a public health problem in many
important cities, according to World Health Organization. Many
researchers have been developing algorithms to predict crime oc-
currences to tackle this problem. The smart cities’ environment can
provide us enough ubiquitous data, e.g., traffic flow, human mobil-
ity, and Points of Interest (POI) information, to feed those predictive
policing algorithms and reflect city dynamics. POIs data provide
essential information such as geographical location, category, cus-
tomer reviews, and busy hours. Recent studies have shown that
POI geographical locations are useful for predictive policing. In this
paper, we aim at predicting crimes in a delimited region around the
POIs of a city with new environmental features. We investigate the
relevance of POIs location and the semantic and the temporal fea-
tures from POIs data in our problem. We also propose and analyze
different machine learning approaches to train prediction functions
based on these features and conduct experiments on real crime data
over multiple years. The experiments demonstrate that the popular
time feature is more relevant than the historical information about
the number of crimes around a POI, but both information is much
less critical than the spatio-temporal information. This work is the
first that studies the popular time feature extracted from POIs data
and historical criminal information for predictive policing from the
authors’ knowledge.
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1 INTRODUCTION

Crimes have emerged as one of the most critical problems countries
face, making the prevention of violence a public health priority
[13]. In particular, in Brazil, crime is the prime concern in some
cities due to the high crime rates, the sheer magnitude of violence,
and the perceived number of lives lost. In 2018, in Fortaleza City,
the 5th most populous in Brazil, citizens reported approximately
53,000 robberies, more than 4,000 homicides, and over 10,000 thefts
according to police reports [8]. In response to those numbers, public
police departments could use intelligent police tactics and improve-
ments in law-enforcement analytics to handle the high number
of criminal occurrences [17]. As an example of smart tactics that
could be adopted by the police, we have the use of techniques to
visualize criminal stains to help in the allocation of police patrols,
characterization of criminal environments based on occurrences
and environmental data, and the use of machine learning models
in support decision making.

Therefore, to improve citizens’ life quality, accurate and reliable
prediction of crimes is a necessity for helping governments and
police departments effectively prevent crimes from happening and
handle them efficiently when they occur [12].

Many algorithms used for crime predictions rely on a large
amount of data for model training. With the technological growth,
smart cities can provide us enough ubiquitous data, e.g., traffic flow,
human mobility, and Points of Interest (POI) information, to reflect
city dynamics and provide new insights to understand some pub-
lic security problems [3], such as the predictive policing problem
addressed in this paper. In other words, smart cities’ advancement
can better describe the environments in which citizens live with all
their specific needs, particularly the needs related to public security.
POIs data provides information such as the GPS coordinates, cate-
gory, customer reviews, and popular time, which shows how busy
a POI typically is during different times. Recent studies have shown
that POIs locations are useful for predictive policing [12, 19, 24]
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and crime rate analysis [20]. This information makes sense since
entertainment, business, and sustenance facilities may have higher
crime rates in the area around them [2]. For instance, robberies
usually occur in places nearby shops, bars, and restaurants, where
people often move around.

In this paper, we address the problem of predicting the number
of crime incidents for a 100m circle region around a POI and the
influence of spatial-temporal and semantic features. First, we study
the spatial factors of crime, analyzing the geographical impact by
considering the POIs location (latitude and longitude). For simplic-
ity, we used a 100m circle region due to the strong influence of
the Points of Interest on street robbery count in the block level,
as shown in [2]. Second, the semantic feature considered is the
popular time captured for each POIL This feature shows how busy
a POl is during different time slots. Popularity for any given time
slot is shown relative to the POIs typical peak popularity in a week.
We believe this information is relevant since crime is more likely
to happen when people visit a POL

As an example of how the semantic information about the popu-
lar times of POIs could be used, Figure 1 shows how police units
could be allocated. At 7:15 am, police units should be patrolling
around schools since this is when children arrive at this category
of POL, i.e., the period where there is a high value for the popular
time feature (Figure 1a). Then, at 10:00 am, police units should be
reallocated to, for example, POIs with bank category (Figure 1b). In
this new time, the popular time feature of the POIs with the school
category should have decreased, and police action in that area is
no longer necessary. On the other hand, the popular time feature
value for the POIs with the bank category should have increased,
demanding police patrol.

Finally, we also explore temporal features since factors underly-
ing crime occurrences may change over time. For instance, burglary
causality in the morning may differ from the night in urban areas,
and crime causality on weekdays may differ from weekends. More-
over, as stated in [7], there is a temporal patterning of crime inci-
dents. The occurrence of a crime actively increases the probability
of further incidents in the vicinity [7].

Crime prediction based on crime occurrences and POIs location
and popular times could be used by police departments to allocate,
more intelligently and strategically, police officers in areas with
more significant citizens’ movement, such as near bars, restaurants,
bus stops, and so avoid new crime occurrences.

We address our problem by proposing and analyzing different
machine-learning approaches to train different prediction functions.
In summary, this paper’s contributions are: 1) we exploit different
features (spatial, temporal, and semantic) from POI and analyze
their relevance for the crime prediction problem. We also combine
these features from POIs data with historical crime occurrences
for learning predictive policing functions; 2) We conduct extensive
experiments, including comparing different machine learning pre-
diction models. We conducted experiments on real crime data from
2014 to 2019 in Fortaleza, Ceara, Brazil. The experiments demon-
strate that the spatio-temporal information from POIs provides way
more relevant features for predictive policing. Nevertheless, the
experiments also demonstrated that the popular time feature is
more relevant than the historical information about the number of
crimes around a POI From the best of the authors’ knowledge, this
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07:15 am 10:00 am

(b) Police units move-
ment after a period.

(a) Initial police units
position.

Figure 1: Example of how the police units allocation could
change depending on the popular time of a Point of Interest.

is the first work that studies different features extracted from POIs
data and their predictive policing relevance.

The remainder of the paper is structured as follows: Section 2
formally defines the problem. Section 3 presents the related works.
Section 4 discusses we prepare the dataset to build the prediction
models. Section 5 discusses the experimental evaluation. And finally,
Section 6 draws the final conclusions.

2 PRELIMINARIES

This section will first perform a preliminary analysis of the correla-
tion between POIs and crime rates. Next, we will introduce some
necessary notations and formally present the predictive policing
problem formulation.

2.1 An Analysis of Correlation Between POIs
and Crime Rate

Let a road network be represented by a graph G(V, E), where V
represents the set of nodes and E the set of edges (road segments).
A POI p represents an object within the underlying network char-
acterized by its geographic coordinates (latitude and longitude).
In most of the literature present, a POI represents a static entity,
such as hospitals, restaurants, and schools. We use the same idea
in this paper. For simplicity, each POI is modeled by its orthogonal
projection into the closest edge in E and placed as if it was there.
Otherwise, there would be a need to create more nodes and edges
to support the new objects.

To quantify the relations between crimes and POIs, we investi-
gate their correlations on the real-world dataset that comprises the
crimes in Fortaleza, Brazil, and only those in the theft category. The
data contains the following features: the spatial position (latitude,
longitude) where the crime was reported and its time. In particular,
we first generated a vector to reflect the spatial and time of where
and when the crime occurred. We also append the density of the
POIs data. To calculate the correlation, we divided Fortaleza City
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Figure 2: Correlation analysis between theft occurrences
and the density of POIs

into ten Integrated Security Areas (ISA). Those areas are adminis-
trative divisions used in the Public Security State Department that
involve some city neighborhoods. For all ten ISA, we counted the
number of POIs associated with desired categories and the number
of crimes in the area around those POIs. We used those aggregated
values to calculate the Person correlation coefficients. Police offi-
cers from Fortaleza, Ceara, Brazil chose some categories of POIs
for believing in their influence in the theft occurrences. They chose
bars, restaurants, and some sustenance facilities, the categories of
POIs that are more probable to have a high number of potential
victims and offenders visiting the area.

Figure 2 shows the correlation analysis of the dataset as evaluated
by Pearson correlation coefficients (p). This coefficient shows if
two variables X and Y are related linearly, assuming values varying
from p = —1to p = +1. If p = +1, that means that the variables X
and Y are perfect and positively correlated. If p = —1, the variables
X and Y are perfect and negatively correlated. Lastly, if p = 0, the
variables X and Y do not have any correlation.

From Figure 2, we can observe that all categories of POIs chosen
are positively correlated with crime occurrences for the theft cat-
egory. For instance, considering that p < 0.7 means a moderated
correlation between the two features analyzed, theft is more likely
to happen in regions with denser POIs of the meal takeaway cate-
gory (p = 0.605) and meal delivery category (p = 0.593). However,
considering that 0.0 < p < 0.3 means a negligible correlation, POIs
from the bakery category do not impact thefts (p = 0.188). We fur-
ther utilize the POIs data in our predictive policing approach and
give the following definitions, which serve as our model’s inputs.

We also apply Kernel Density Estimation (KDE) [11], a well-
known technique used to create criminal hotspots, to estimate the
probability of crime occurs at a target POI based on historical crime
occurrences, as shown in Figure 3. The KDE algorithm version
works as follows: for each POI, a circle with a 100m radius and
center on it is considered, and each POI is scored by the density
of crimes inside the described area. We choose the 100m radius
because it is the average size of a city block in the region analyzed.
The kernel function is built according to each POI score and indi-
cates the estimation of the density of crimes close to the POL Figure
3 shows one example of POIs in Fortaleza generated with the scores
calculated by the kernel function, classified in a choropleth map. The
POI color intensity represents the density of crimes that occurred
and were map-matched to it. Notice that the distribution of crime
is not uniform. Some areas are dense, while others are sparse. This
is already expected since it depends on the opportunity of crime
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Figure 3: POIs with different density of crimes.

and environmental conditions (i.e., location, if it is a busy environ-
ment, among others). Figure 3 specifically depicts the downtown
of Fortaleza City on the right side. The downtown is an area with
lots of POIs, and, as shown in the figure, a high amount of crime is
concentrated.

2.2 Problem Definition

Let R = {r1,r2,...rN} denote a set of regions in a city, where N
is the number of regions (in our experiments, a region is a circle
around a POI). Suppose that there are totally K time slots (i.e.,
minutes, hours, days), i.e., T = {t1,t2, ..., tg} € RK. Let Y € RN*K
be the numbers of crime incidents reported where Y, is the crime
number at region ry, in time slot t.

Now, we can define a function that returns a feature value ex-
plored in this paper.

Definition 2.1 (Popular time function). LetT = {t1,tp,....tx} €
RX be the time slots and R = 1,12, ..., 'N denote a set of regions in
a city, the popular time function popular(rp, t.) is a number that
represents the average popularity over the last several weeks for
the region r, € R at the time slot t; € T.

Let Xk = [X{‘,Xé‘, X{fj] € RNX denote the feature matrix of
all regions in the time slot t;, where N is the number of features.
One of the features is the popular time (obtained from the function
defined above). As we mentioned before, we explored in this paper
spatial, temporal, and semantic features. We will discuss all of them
in the next section. We can now state our problem we intend to
address.

Problem Statement. Given the feature matrices X?, X2, ..., XK
and the historical crime incidents reported Y of regions in R, our
goal is to learn a predictive model which estimates the unknown
crime occurrence for each region in R in time tgj, (h is a number
of time slots) by leveraging Xj, Xy, ..., Xg and Y.

3 RELATED WORK

This paper exploits spatial, temporal, and semantic features of POIs
to build a predictive policing model. Our study is different from [24]
since the crime incidents analyzed in our work follows a kind of
opportunist behavior. Furthermore, from the information provided
in POI data, we exploit their location and temporal and semantic
features from these POIs to build a predictive policing model. This is
different from previous approaches that use different datasets, e.g.,
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meteorological, human mobility, and 311 public-service complaint
data, and do not evaluate them individually.

We divide this section into two groups. The first one discusses the
works that propose (semi-supervised) clustering-based models for
crime pattern detection, and the second one works on supervised
techniques as classification. Some of them also study the influence
of spatial and temporal features from crime report data underlying
the crime occurrences.

The paper [16] formulates crime pattern detection as a machine
learning task. It tries to identify the crime patterns from many
crimes, making the job for crime detectives easier by applying
a clustering algorithm. The paper [21] proposes Series Finder, a
pattern detection algorithm that grows a pattern of discovered
crimes from within a database, starting from a seed of a few crimes.
The papers [1] and [18] perform a clustering algorithm to discover
crime patterns, but in a semi-supervised way, in the sense of using
labeled data to generate seed clusters that initialize a clustering
algorithm, as well as the use of constraints generated from the
labeled data to guide the clustering process.

The second group of techniques is supervised methods. [12] pro-
poses the DeepCrime framework, which enables predicting crime
occurrences of different categories in each region of a city by jointly
embedding all spatial, temporal, and categorical signals into hidden
representation vectors and capturing crime dynamics with an atten-
tive hierarchical recurrent network. [24] exploits temporal-spatial
correlations for crime prediction with urban data and proposes
a TCP framework that captures temporal-spatial correlations for
crime prediction. [9] performs Twitter-specific linguistic analysis
and statistical topic modeling to automatically identify discussion
topics across a major city in the United States. The authors incor-
porate these topics into a crime prediction model and show that,
for most crime types studied, the addition of Twitter data improves
crime prediction performance. [19] observed significantly improved
performance in crime rate inference compared to using standard
features when it used POI data and taxi flow data. The authors from
the paper [22] demonstrate that by dividing the analyzed area into
heterogeneous partitions taking into account the density of crime
improves crime prediction. The paper explores the heterogeneous
division’s effect on three prediction methods (Moving Average,
ARIMA, and LSTM). [22] models the crime prediction as sequence
prediction that involves using sequence information of g values
(for instance) to predict the next value.

4 DATASET PREPARATION

We used different data sources with relevant geospatial, semantic,
and temporal information for the public security domain to build
the training dataset. Next, we describe these data sources in detail.

e Points of Interest: We collected information on 16,223
Points of Interest located in Fortaleza City from a web map-
ping service. We extracted the following categories: restau-
rant, bar, meal takeaway, bakery, cafe, and meal delivery.
As we mentioned before, these categories were chosen by
the police officers from Fortaleza City because these cate-
gories are more likely to have many potential victims and
offenders visiting the POL This fact is in line with the Crime
Pattern Theory [5]. Each POI contains information on its
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name and geographical location (latitude and longitude). As
an example, Figure 3 also shows the location of all POIs from
the mentioned categories for a delimited region of Fortaleza
City.

e Popular Times: Some of the collected Points of Interest also
have an array of values, with 168 positions, representing its
busy hours for every day of a week and every hour in a
day (7 days X 24h = 168h). They are called Popular Times.
For example, a restaurant has a higher Popular Time value
at noon, representing a probable higher number of people
having lunch. We also obtained the Popular Times values
from a third party API that uses the web mapping service
mentioned before. The Popular Times values are calculated
based on aggregated and anonymized data from users that
frequent the POIs over the last few months. In this work,
we are only interested in the POIs that offer Popular Time
information.

e Violent Crimes Against Patrimony: The Secretariat of
Public Security and Social Defense (SSPDS) of the State of
Ceara, Brazil, collects the location and timestamp for all Vio-
lent Crimes Against Patrimony (CVPs). In general, CVPs are
all crimes that did not end up in murder. The SSPDS provided
us 115,163 records of CVPs that occurred between 2014 and
2019 in the city of Fortaleza, Brazil. Every record was asso-
ciated with one crime and has (i) a category of crime (e.g.,
theft, vehicle, and bank robbery), (ii) geospatial information
(latitude and longitude) of where the crime occurred, and
(iii) date, and time of the occurrence.

Unfortunately, the Points of Interest and Popular Times dataset
can not be publicly available due to the Terms of Services from the
used web mapping service. Also, we could not share the Violent
Crimes Against Patrimony dataset due to classified information.

Next, we address all the necessary phases to build the training
dataset used in the Machine Learning algorithms considered in this
work.

Data cleaning. In this phase, we chose to use only a fraction of the
POIs dataset. We filtered and maintained only the POIs from the bar
and restaurant category, resulting in a dataset with 12,178 records.
We made this choice because the bar and restaurant category were
the ones with the most Popular Times values available. After this
first filtering, we joined the new Points of Interest dataset with the
Popular Times dataset. We then applied a second filter and excluded
all Points of Interest that did not have Popular Times, resulting
in a dataset with 2,140 records. We also filtered the CVPs dataset
and considered only the theft category since that category is the
one with most occurrences. After this filter, the final CVPs dataset
contained 62,145 records.

Data aggregation. This phase aims to construct a data frame with
all necessary pieces of information about the Points of Interest to
create a final dataset used to train our models. With that said, we
divided our dataset into 168 time slots, representing every hour
of the day from one week, starting on Sunday, at 0 o’clock, and
finishing on Saturday, at 23 o’clock. Then, for each Point of Interest
in the previous dataset and each of the periods, the attributes in
Table 1 were obtained or calculated using the CVP’s datasets and
the Popular Times dataset.
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Table 1: List of attributes aggregated from different datasets.

Atribute Description
name The name of the Point of Interest.
. Latitude of the Point of Interest in the road
latitude
network.
. Longitude of the Point of Interest in the road
longitude
network.

Number of crimes that happened for each
time slot, in a 100m radius from the Point
of Interest.

Popular times for each time period for the
Point of Interest.

amount_of _crimes

popular_times

Prediction
Window
Query
Time
| (tsp) i (tsa) |
T T 1
X X
| (tsc) i
I 1
L J
T
2X

Figure 4: Diagram showing the engineering of time stamps

Data engineering. After creating all initial attributes at the data
aggregation phase, joining pieces of information from the crime
occurrences and popular times of the Points of Interest, in the data
engineering phase, we also add the temporal dimension to our
model. Figure 4 shows how we divided the time domain into inter-
vals. The Query Time represents the instant where the prediction
request takes place.

The Prediction Window, also called tsg, is the interval after the
Query Time that we wish to predict how many crimes happen for
every POl in a 100 meters radius.

We also use information from the periods before the query time,
as follows:

o tsp: time slot with the same size as ts, that ends also at the
same time that ts, starts.

e ts.: time slot with double the size of ts, that ends also at the
same time that ts, starts.

To exemplify the previous definitions, consider the following
example: for a Query Time equal to 93 (representing Wednesday,
at 21 o’clock), we aim to know the number of crimes in a future
time slot (¢s;) of two hours, i.e., Wednesday, from 21 o’clock to 23
o’clock. For this prediction, we would consider features from the
past two hours (tsp), i.e., Wednesday, from 19 o’clock to 21 o’clock,
and four hours (¢s¢), i.e., Wednesday, from 17 o’clock to 21 o’clock.
The police resources can be optimally allocated to stop crimes and
distributed in different POIs based on the predictions.

With all phases put together, we end up with training sets with
28 features that model the number of crimes in a delimited region
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around Points of Interest and the time dimension. Table 2 sum-
marizes the features. We decide to profit from the output of some
aggregate functions (average, sum, max, and min) over the features.
This is commonly used in feature extraction and feature construc-
tion, which involve finding a set of composite features, which are
functions of the original features. According to [23], feature extrac-
tion projects a high-dimension feature space to a low-dimension
space via linear/non-linear transformations such that most of the
information in the original features are retained. Feature construc-
tion addresses the problem of feature interaction by discovering
good combinations of the original features. We refer the reader to
[10, 15] for further details.

We use the sum_amount_of _crimes_next as the prediction label
for our dataset.

The scenarios indicated in Table 2 represent the different combi-
nation of features that we aim to model:

e Scenario 1: A model created based only on the latitude,
longitude, and timestamp features.

e Scenario 2: A model created based on the latitude, longitude,
timestamp, and popular times features.

e Scenario 3: A model created based on the latitude, longitude,
timestamp, popular times, and the number of crimes features.

With those scenarios, we aim at evaluating the influence of the
different combinations of features (popular times, amount of crimes,
and latitude and longitude) and the number of crimes in the model
creation. That is what we will study in the next section.

5 EXPERIMENTS

This section discusses the experiments conducted to generate dif-
ferent models using different features on the training dataset. More
specifically, Section 5.1 describes the experimental setting of the
models’ generation, and Section 5.3 discusses the results found.

5.1 Experimental settings

Experimental settings. We conducted all experiments on a Mac-
book Pro computer with 2,2 GHz Quad-Core Intel Core i7, 16 GB
1600 MHz DDR3, and macOS Catalina (10.15).

Dataset. The dataset used in the experiments contains 51,552 records
for each of the three scenarios discussed in Section 3 and for each of
the four different prediction windows used. The prediction window
has the same size as the time interval of ts, (in other words, the
prediction window size is x). Therefore, the experiments analyze
a total of 12 datasets. We divided the dataset into training (80% of
the original dataset) and test set (20% of the original dataset).
Machine learning methods. To choose and train the models used
in the experimental evaluation, we used the AutoML function from
the H20 Machine Learning framework [14]. To create each model,
we set the maximum runtime to one hour. H20 uses algorithms like
Random Forest, Gradient Boosting Machines (GBMs), and Neural
Networks.

5.2 Evaluation Metrics

For all the experiments described in this work, we used the Root
Mean Square Error (RMSE) to evaluate the models created.

The Root Mean Square Error (RMSE) is given by the Equation 1,
where y; is the predicted amount of crimes and g; is the real value.
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Table 2: Features used to create all models

Coutinho and Linhares, et al.

Scenario Features Name Description
Point of Interest latitude Latitude part of the POI coordinate
1,2and 3 longitude Longitude part of the POI coordinate
Timestamp timestamp Query time that the prediction request occurs
sum_populartimes_prevX Sum of popular times
std_populartimes_prevX Standard Deviation
Popular times X hours before Query Time max_populartimes_prevX Maximum popular time
2and3 min_populartimes_prevX Minimum popular time
avg_populartimes_prevX Average popular time
sum_populartimes_prev2X Sum of popular times
std_populartimes_prev2X Standard Deviation
Popular times 2X hours before Query Time max_populartimes_prev2X Maximum popular time
min_populartimes_prev2X Minimum popular time
avg_populartimes_prev2X Average popular time
sum_populartimes_nextX Sum of popular times
std_populartimes_nextX Standard Deviation
Popular times X hours after Query Time max_populartimes_nextX Maximum popular time
min_populartimes_nextX Minimum popular time
avg_populartimes_nextX Average popular time
sum_amount_of_crimes_prevX Sum of crimes
std_amount_of_crimes_prevX Standard Deviation
3 Amount of crimes X hours before Query Time  max_amount_of_crimes_prevX  Maximum number of crimes

min_amount_of_crimes_prevX Minimum number of crimes
avg_amount_of_crimes_prevX

Average number of crimes

sum_amount_of_crimes_prev2X Sum of crimes
std_amount_of_crimes_prev2X  Standard Deviation

Amount of crimes 2X hours before Query Time max_amount_of crimes_prev2X Maximum number of crimes
min_amount_of_crimes_prev2X Minimum number of crimes
avg_amount_of_crimes_prev2X  Average number of crimes

Z?:] (yi — gi)z

n

RMSE = 1)

5.3 Experimental results

For this work, we tried to answer the following questions with the
described experiments:

e Q1. Which Prediction Window generates the models with
the best results, e.g., smaller Root Mean Square Error (RMSE),
for the crime occurrence prediction problem?

e Q2. Which features are the most relevant for each model
created? Also, how the feature relevance change for the
different scenarios/features analyzed?

e Q3. Which algorithm returns the best model for the crime
occurrence prediction problem?

5.3.1 QI - Prediction Window. This batch of experiments’ main
goal is to vary the prediction window size x to evaluate which
one returns the model with the best results. We used the features
described in Table 2 for the POIs category bar and restaurant, sepa-
rately. For each POl instance of each category, we created a dataset
with 168 — 3x records, where x is the time window size, in hours.
The reason for this number of records for each POI instance is the
need to evaluate the features described for the previous x hours
and 2x hours before the Query Time and x hours after it, as shown
in Figure 4. With that said, the dataset for the bar category has
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approximately 58,000 records, and the dataset for the restaurant
category has approximately 288,000 records.

For each dataset created according to the methodology presented
in Section 4, we created a training set with 70% of the original
dataset and a test set with 30% of the same dataset.

Table 3 show the RMSE measure for each model trained in each
of the three scenarios and for each of the six different time windows.
According to the results found, smaller time windows provide better
results. That is an expected result since by increasing the time
window size, more challenging is to build an accurate prediction
model. This is in line with the crime theory [7], the occurrence
of a crime actively increases the probability of further incidents
in the temporal vicinity. The experiments show that the models
created are always better for the x = 2 time window size and get
progressively worst until the x = 12 time window. In the scenario of
x = 12, even with more training data, the models are less accurate
to predict the number of crimes because of the large time window
size.

For all the results found in Table 3, we see that scenario 3, which
involves features related to the number of crimes around the POIs,
always delivers the worst results compared to the other scenarios.
This fact shows us that those features do not help the algorithm to
create more accurate models. This behavior is the same for both
categories of PO, i.e., bar and restaurant.

It is worth to mention that XGBoost, which is one of the most
used methods by data scientists. In all the considered time window
size variations in this batch of experiments, AutoML chose the
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Table 3: Root Mean Square Error (RMSE) for the best models
trained for each combination of time window and scenario.

(a) bar category.

time window scenario 1 scenario 2 scenario 3
x=2 0.7408 0.7576 1.7229
x=3 0.9913 0.9889 2.0451
x=4 1.2225 1.1841 3.5868
x=6 1.6250 1.5285 3.3682
x=8 2.0883 2.1126 3.7774
x=12 2.9690 2.9109 7.9249
(b) restaurant category.
time window scenario 1 scenario 2 scenario 3
x=2 0.5085 0.4857 0.7998
x=3 0.6643 0.6356 1.0950
x=4 0.8120 0.7731 1.0438
x=6 1.1805 0.9706 1.4891
x=8 1.5449 1.1593 1.8576
x=12 2.0570 1.5142 3.6415

model trained using XGBoost as the best one in terms of RMSE.
XGBoost is an optimized distributed gradient boosting library de-
signed to be highly efficient, flexible, and portable. We refer the
reader to [6] for further details.

5.3.2 Q2 - Feature relevance. To answer question Q2, we analyzed
the feature importance of the XGBoost algorithm’s models in the
previous batch of experiments. We used the datasets for the bar
and restaurant categories of POIs with a time window of two hours
(x=2 because we achieved the best results). We also analyzed the
three different scenarios described in Section 4 in order to discover
the most relevant features. Figure 5 presents the results for the bar
category and Figure 6 for the restaurant category.

From the bars plot presented, we can observe that for all scenarios
and both categories of Points of Interest, the spatial coordinates
from the POIs and the timestamp representing the instant where
the prediction request takes place are the essential features for the
models created. Those results show us that the location of the Point
of Interest and a given timestamp are more critical for predictive
policing. Moreover, most of the features related to the popular
time information of a POI are more relevant than the historical
information about the number of crimes in that region.

5.3.3 Q3 - Model generation algorithm. Differently from the batch
of experiments used to answer question Q1, in this batch, we chose
the time window x = 2 that generated the best models so far and
ran specific algorithms to generate new models.

The difference from these experiments from the one executed
to answer question Q1 is that, previously, we only set the training
limit of time to one hour and let H20 AutoML choose the algo-
rithms that should be used. This time, we picked up three different
algorithms (XGBoost, GLM, and DRF) and let H20 AutoML train
different models, setting a training limit of time to one hour for
each algorithm. We did this setup of experiments for the bar and
restaurant categories and all three scenarios.

26

ARIC’20, November 3-6, 2020, Seattle, WA, USA

Table 4: Root Mean Square Error (RMSE) for different algo-
rithms and a time window of two hours.

(a) bar category.

algorithm scenario 1 scenario 2 scenario 3
XGBoost  0.7424 0.7587 1.7229
GLM 17.8205 22.7485 19.5937
DRF 0.7550 0.7667 1.5294
(b) restaurant category.

algorithm scenario 1 scenario 2 scenario 3
XGBoost  0.5085 0.4857 0.8089
GLM 7.5647 11.8125 9.9537
DRF 0.4736 0.5203 1.1085

According to the H20 documentation, XGBoost is a supervised
learning algorithm that implements a process called boosting to
produce more accurate models. Boosting refers to the ensemble
learning method of building many models sequentially, with each
new model attempting to adjust for the deficiencies in the preceding
model.

The Generalized Linear Models (GLM) used by H20 AutoML
estimate regression models for outcomes following exponential dis-
tributions, e.g., normal, Poisson, binomial, and gamma distributions.
Each serves a distinct purpose, and depending on distribution and
link function choice can be used either for prediction or classifica-
tion.

Distributed Random Forest (DRF) is a robust tool that generates
classification and regression models. When given a dataset, DRF
generates a forest of classification or regression trees. Each of these
trees is a weak learner built on a subset of rows and columns. More
trees will reduce the variance. Both classification and regression
take the average prediction over all of their trees to make a final
prediction, predicting a class or numeric value.

Table 4 shows the result of this new batch of experiments for
the bar and restaurant categories. For all three scenarios, XGBoost
outperforms all the other algorithms producing models with smaller
errors. It is worth mention that scenario 1, composed only by the
latitude, longitude, and timestamp features, presents the best results
for the predictive policing problem.

6 CONCLUSION

The predictive policing modeling problem should use any critical
feature that helps to produce better models. In this context, we
consider the use of Point of Interest datasets to better predict the
number of crimes in a specific region. We used the geospatial co-
ordinates of a POI, as well as their popular times, as features. We
also aggregated data from the number of crimes around the Points
of Interest considered. The temporal dimension of the criminal
records used was engineered to create new features that aggregated
historical information for a previous time window, based on given
query time.

To analyze the importance of the popular times of the Points of
Interest and the number of crimes around them, different scenarios
were tested in the experimental evaluation. We found that the
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Figure 5: Feature importance for the bar category of POIs, time window of two hours, and three different scenarios.
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Figure 6: Feature importance for the restaurant category of POIs, time window of two hours, and three different scenarios.

addition of the historical amount of crimes does not improve the
model quality. Also, all models’ essential features are the geospatial

coordinates of the POIs and the time when the prediction takes place.

When comparing different algorithms, the XGBoosts outperforms
all the others, i.e., GLM and DRF.

As future work, we aim to analyze sliding windows in opposition
to this paper’s fixed ones. Also, we aim at adding to the training
set information about the neighbors’ Points of Interest, e.g., the
number of crimes and their popular times. For the Points of Interest
that do not have popular times associated with it, future work
could create an estimator to describe those popular times based
on Points of Interest with the same category or neighborhood. We
will also investigate the POIs, which are risky facilities [4], that is,
any group of similar facilities (for which) a small proportion of the
group accounts for the majority of crime.

Another line of future work is to develop algorithms to, based on
the prediction models created, allocate police resources to prevent
crimes. The intuition behind the automatic allocation of the police

patrols based on the prediction model’s output and the popular
time of each POI is the allocation should consider POIs that are
spatially close and with complementary popular time.
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