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Fault Detection by Means of Hilbert–Huang
Transform of the Stator Current in a PMSM

With Demagnetization
Antonio Garcia Espinosa, Javier A. Rosero, Jordi Cusidó, Luis Romeral, and Juan Antonio Ortega

Abstract—This paper presents a novel method to diagnose de-
magnetization in permanent-magnet synchronous motor (PMSM).
Simulations have been performed by 2-D finite-element analysis in
order to determine the current spectrum and the magnetic flux
distribution due to this failure. The diagnostic just based on motor
current signature analysis can be confused by eccentricity fail-
ure because the harmonic content is the same. Moreover, it can
only be applied under stationary conditions. In order to over-
come these drawbacks, a novel method is used based upon the
Hilbert–Huang transform. It represents time-dependent series in a
2-D time–frequency domain by extracting instantaneous frequency
components through an empirical-mode decomposition process.
This tool is applied by running the motor under nonstationary
conditions of velocity. The experimental results show the reliability
and feasibility of the methodology in order to diagnose the demag-
netization of a PMSM.

Index Terms—Demagnetization, empirical-mode decomposition
(EMD), fault diagnosis, finite-element analysis (FEA), Hilbert–
Huang transform (HHT), permanent-magnet synchronous motor
(PMSM).

I. INTRODUCTION

P ERMANENT-MAGNET synchronous-motor (PMSM)
machines are attractive for a variety of applications, such as

aerospace and automotive drives, because of their high-power
density, wide constant-power speed range, and excellent effi-
ciency [1], [2]. Thus, more PMSM machines are being used
in critical high-performance applications. It is for this reason
that the early detection and fault diagnosis are acquiring great
importance.

Several studies have been carried out in fault detection of
permanent-magnet machines with different degree of succeed
due to the utilized tool [3]. In this context, new tools have been
investigated and implemented in the technical literature, in order
to overcome the previous drawbacks and improve the obtained
results [4]–[10]. The finite-element analysis (FEA), allowing
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the coupling between the nonlinear magnetic and electric cir-
cuits, is taken into account for the motor analysis to predict the
performance characteristics of a system, especially when the
system is under fault conditions [11].

The fast Fourier transform (FFT) of the stator current has
been applied to detect demagnetization faults by analyzing spe-
cific harmonics. However, it cannot be applied to nonstationary
signals. Moreover, FFT analysis can not differentiate harmonics
due to demagnetization from others due to eccentricity [1], [12].

Time–frequency analysis methods have been used for non-
stationary signal feature extraction, although successful appli-
cation of these techniques requires understanding of their re-
spective limitations. The selection of a suitable window size is
required when applying the short-time Fourier transform (STFT)
to match with the specific frequency content of the signal, which
is generally not known a priori. Moreover, there is a limitation
between time and frequency limitations. A very appealing fea-
ture of the continuous wavelet transform (CWT) is that it pro-
vides a uniform resolution for all the scales [13]. Limited by the
size of the basic wavelet function, the downside of the uniform
resolution is a uniformly poor resolution. Moreover, an impor-
tant limitation of the wavelet analysis is its nonadaptive nature.
Once the basic wavelet is selected, it is used to analyze the whole
frequency range [14]. A basic time–frequency representation is
done by the Wigner–Ville distribution (WVD), which is a part
of the Cohen class of distribution [15]. The difficulty with this
method is the severe cross terms as indicated by the existence
of negative power for some frequency ranges. In addition, the
WVD of discrete time signals suffers from the aliasing problem.

The Hilbert–Huang transform (HHT) is based on the instan-
taneous frequencies resulting from the intrinsic-mode functions
(IMFs) of the signal being analyzed [16]; thus, it is not con-
strained by the uncertainty limitations with respect to the time
and frequency resolutions to which other time–frequency tech-
niques are subject. In recent years, HHT has been applied to tran-
sient signal analysis and bearing identification of damage [17],
[18].

In this paper, the effects of flux disturbances due to chipped
or locally demagnetized magnets in PMSM machines are re-
searched through simulations and experiments.

First, in Section II, simulations have been carried out by
means of 2-D FEA for different velocities and demagnetiza-
tions conditions. Currents and flux density are presented, and
their harmonic content is obtained. The purpose of the simula-
tions is to find out the appearing fault frequencies, or at least
to determine a range. In Section III, the novel approach for
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Fig. 1. Schematic of the motor and electronics model for a PMSM.

nonlinear, nonstationary data analysis, the HHT is presented for
better understanding. Then, this methodology is performed to
the different acquired current spectrums in order to validate this
novel proposed tool. Finally, in Section V, it is concluded that
this method can effectively diagnoses demagnetization failure
of the PMSMs under nonstationary conditions.

II. SIMULATION OF PMSM WITH DEMAGNETIZATION

PERMANENT MAGNET

Analysis and development of fault detection methods needs,
as a previous stage, good knowledge of the motor behavior under
fault conditions. Electrical variables such as currents and fluxes
are the signals to be considered.

Compact parametric models of the motor are usual tools if
the motor is considered to be in healthy state, i.e., to obtain the
torque–speed ratio, to analyze and develop control algorithms,
etc. On the other hand, faulty parametric models of the motor
are used to acquire electromechanical faulty signals, which are
represented, in general, as time-evolution signals or specific
harmonics due to faults if stationery conditions can be assumed.
However, parametric models assume symmetry in mechanical
and electromagnetic fields, and this symmetry is missing in
case of fault. For this reason, too many complex parametric
models result if we attempt to model a full representation of
every mechanical, electrical, or magnetic part of the motor. To
overcome this drawback, simulations by means of FEA can be
carried out.

Numerical simulations were developed over a model obtained
with the combination of a finite-element software, Flux2D [19]
for the motor model, and MATLAB–Simulink for electronics
and control. Both circuits, electromagnetic and electric, have
been coupled automatically by linking local variations in flux
with the circuit voltage, as shows in Fig. 1.

A. Partial Demagnetization of Rotor Magnet

The permanent magnets of a PMSM can be demagnetized
by high stator currents. This demagnetization phenomenon is
mainly due to armature reaction especially where strong starting
torque is required. Other reasons may include high short-circuit
currents produced by inverter or stator faults, loads, varying

Fig. 2. Demagnetization curve of a permanent magnet (PM).

Fig. 3. Flux density distribution in air gap of a PMSM with 50% magnetized.

working temperatures, and the own ageing of the magnet. More-
over, a short circuit of the winding can be troublesome because
of drag torque and potential overheating of the motor [1]. The
demagnetization can provoke irreversible losses that cause the
operating point to “fall off” at the lower end of a recoil line, and
then appearing as an irreversible flux loss [20], as shows in the
Fig. 2. The permanent magnets can be demagnetized by fault
currents such as short-circuit currents produced by inverter or
stator faults, with an overrunning load, or where two motors are
coupled to a single load. Moreover, short circuit of the wind-
ing can be troublesome because of drag torque and potential
overheating of the motor [12].

As a consequence of demagnetization, the distributed mag-
netomotive force (MMF) is not sinusoidal. Thus, the amplitude
of MMF has constant amplitude except under the pair of poles
where the fault occurs (see Fig. 3).

So, the MMF under failure, together with the constant per-
meance, induces currents of main multiple frequency. If demag-
netization exists, low-frequency components in the current near
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the fundamental appear [21], given by

fdmg = fs

(
1 ± k ± 1

p

)
, fs = pfr , k = 1, 2, 3, . . . .

(1)
In case of constant speed at high and medium speeds, FFT

allows detecting demagnetization fault by analyzing only the
speed, and also it is not possible to apply FFT when there are
speed and torque changes. In such a way, a new processing tool
is presented next, so that it can be applied in the aforesaid cases.

III. HTT ANALYSIS

Each of the traditional time–frequency analysis techniques
have their own limitations [22], [23]. The consequence is the
misleading energy–frequency distribution for nonlinear and
nonstationary data. The principle of the HTT is based on the
physical time scales that characterize the oscillations of the
phenomena. The local energy and the instantaneous frequency
derived from the IMFs through the Hilbert transform can give
us a full energy–frequency–time distribution of the data [23];
it would be the ideal tool for nonlinear and nonstationary data
analysis.

A. Empirical-Mode Decomposition

An IMF is a function that satisfies two conditions. The first,
in the whole dataset, the number of extreme and the number of
zero crossings must either be equal or differ at most by one,
and the second, at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the
local minima is zero.

The EMD extracts the first IMF by the following sifting pro-
cess [22].

1) Find the upper envelope of x(t) as the cubic spline inter-
polated of its local maxima, and the lower envelope, as the
cubic spline interpolated of its local minimum.

2) Compute the envelope mean m(t) as the average of the
upper and lower envelopes.

3) Compute h(t) = x(t) − m(t).
4) If the sifting result h(t) is an IMF, stop. Otherwise, treat

h(t) as the signal and iterate on h(t) through steps 1–4.
The stopping condition is

∑
t

[hk−1(t) − hk (t)]2

h2
k−1(t)

< SD (2)

where hk (t) is the sifting result in the kth iteration, and SD is
standard deviation, typically set between 0.2 and 0.3.

The EMD extracts the next IMF (see Fig. 4) by applying the
aforementioned procedure to the residue

r1(t) = x(t) − c1(t) (3)

where C1(t) denotes the first IMF. This process is repeated until
the last residue rn (t) has at most one local extreme.

The first IMF component from the data contains the highest
oscillation frequencies found in the original data x(t).

Fig. 4. IMF for a healthy PMSM. Simulations result at 1500 r/min.

B. Hilbert–Huang Transform

Once the IMFs have been obtained by means of the EMD
method, the Hilbert transform is performed to each IMF com-
ponent as follows:

H[ci(t)] =
1
π

∫ +∞

−∞

ci(τ)
t − τ

dτ (4)

which means that ci(t) and H[ci(t)] form a complex conjugate
pair, so that an analytic signal zi is defined as

zi(t) = ai(t)ejωi (t) . (5)

To transform this temporal-space data to time–frequency
space, the Hilbert transform is performed on each IMF com-
ponent obtained by means of the EMD method as

ai(t) =
√

c2
i + H2 [ci(t)] (6)

θi = arctan
(

H2 [ci(t)]
ci(t)

)
. (7)

In this way, the instantaneous frequency ωi(t) is given by

ωi =
dθi(t)

dt
. (8)

After performing the Hilbert transform on each IMF compo-
nent, we can express the data in the following form:

x(t) = Re
n∑

i=1

ai(t) exp
(

j

∫ t

−∞
ωi(t)dt

)
(9)

where Re{·} denotes the real part of a complex quantity.
Equation (5) enables to represent the amplitude and the in-

stantaneous frequency in a 3-D figure, in which the amplitude
is the length in the time–frequency plane. This time–frequency
distribution is designed as the Hilbert–Huang spectrum H(ω,t)
at will as

H(ω, t) = Re
n∑

i=1

ai(t) exp
(

j

∫ t

−∞
ωi(t)dt

)
. (10)
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Fig. 5. Instantaneous frequency for a healthy PMSM. Simulations result at
1500 r/min.

With the Hilbert–Huang defined, the marginal spectrum h(ω)
can be defined as

h =
∫ T

0
Hi(ω, t)dt. (11)

By this way, the local marginal hi(ω) spectrum offers a mea-
sure of the local amplitude contribution from the frequency that
we are interested in.

Then, the marginal spectrum is computed as [14] follows.
1) To calculate the envelope signal y(t) applying Hilbert

transform to the current signal x(t):

y(t) =
√

x2 + H2 [x(t)]. (12)

2) To decompose the envelope signal y(t) using EMD and to
obtain IMFs.

3) To select the interested IMF component ci(t) according to
the objective of fault diagnosis.

4) To calculate the marginal spectrum hi(ω) according to
(11).

5) To analyze the marginal spectrum of selected ci(t) com-
ponent and draw a diagnostic conclusion.

Following this procedure, the amplitude and instantaneous
frequency for every IMF at every time step is computed, as
shows in Fig. 5. This result can be projected on the time–
frequency–energy space, with energy defined as the amplitude
squared [24].

Summarizing, the HHT algorithms accurately analyze phys-
ical signals via the following steps.

1) Instantaneous frequencies are calculated based on the
EMD method when IMFs are generated for complex data.

2) A Hilbert transform converts the local energy and instan-
taneous frequency derived from the IMFs to a full-energy–
frequency–time distribution of the data.

3) The physical signal is filtered by reconstruction from se-
lected IMFs.

4) A curve can be fitted to the filtered signal.

Fig. 6. Instantaneous frequency for a PMSM with 50% demagnetization.
Simulation result at 1500 r/min.

IV. EXPERIMENTAL RESULTS

The motors under analysis have been a PMSM of 6000 r/min
nominal speed, 2.3 N·m nominal torque, and three poles pair.
The demagnetization analysis for PMSM [1], [12] has been
carried out by simulation and experimental tests for 6000, 3000,
and 1500 r/min at nominal current, and faults of 75% and 50%
of demagnetization. Additionally, speed variations of 500 r/min
around the operational speed have been introduced through the
control.

The EMD algorithm and HHT were implemented by means of
software HTT Data Processing System (HHT-DPS) [25] from
the National Aeronautics and Space Administration (NASA)
Institution. The analysis of the current is carried out mainly for
low speeds, i.e., for the cases where the classic methods of fault
detection does not have kind characteristic.

The demagnetization is analyzed under different speed con-
ditions. The stator current is divided into five IMF and HHT
is calculated. The results of demagnetization machine are com-
pared with those obtained from healthy machines.

A. Steady-State Conditions: Constant Speed
and Nominal Torque

The IMF are calculated from the stator current at speeds of
6000, 3000, and 1500 r/min with nominal torque. The difference
in magnitude between healthy and demagnetized machine can
be shown with the instantaneous frequency in the IMF 1 and 2
in Fig. 6. The IMF 2 contains the stator-current main frequency
and the others correspond to high or low frequencies with re-
gard to the main frequency. In a similar way to simulations,
experimental results in Figs. 7 and 8 show the changes in the
instantaneous frequency at 1500 r/min.

In the figures, IMF1, and specially IMF2, clearly show the
fault for the motor damaged. As IMF allows to isolate frequency
ranges in the spectra, they can be used to wrap up the frequencies
that are around those of interest, and separate those that are not
necessary. For instance, if one IMF isolates the stator-current
main frequency, the other IMFs could be analyzed more easily
to increase the precision in the failure detection, i.e., the analysis
can be concentrated in specify frequency ranges. By this way,
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Fig. 7. Instantaneous frequency for a healthy PMSM. Experimental result at
1500 r/min.

Fig. 8. Instantaneous frequency for a PMSM with 50% demagnetization.
Experimental result at 1500 r/min.

Fig. 9. HHT for a healthy PMSM. Experimental result at 1500 r/min.

the method can be extended for detection of other electric and
mechanics fault.

The Figs. 9 and 10 show higher values in HHT for demagne-
tization machine at 1500 r/min. Besides, the dynamic character
of the current signal is indicated visually by means of the mag-
nitude changes around the main frequency of 75 Hz, the system
is working at a constant torque and speed.

In Fig. 11, the instantaneous frequencies at 6000 r/min is
shown. The values of IMF 1 and 2 show once again the demag-
netization of the machine. The aforementioned comments are
easy to understand taking into account that the demagnetiza-

Fig. 10. HHT for a PMSM with 75% demagnetization. Experimental result at
1500 r/min.

Fig. 11. Instantaneous frequency for a PMSM with 50% demagnetization.
Simulations result at 6000 r/min.

tion has a great influence in the stator current, and the magnetic
density induction is proportional to the speed

B. Variable Conditions: Speed Change at Nominal Torque

The PMSM usually operates to different speeds and torque
conditions. Under these dynamic conditions, the demagneti-
zation detection can be carried out by means of analysis of
time–frequency of the stator current. As it could be seen in the
previous section, the proposed method is able to perform fault
detection at a medium speed, constant conditions.

Next, it is demonstrated that it is also useful for medium and
high speeds under variable conditions. Figs. 12 and 13 depict the
instantaneous frequency for healthy and demagnetized machine
when the speed changes from 1500 to 1000 r/min. The IMF 1
shows the speed change, while IMF 2 is centered on the stator-
current main frequency.

Fig. 14 shows the instantaneous frequency for a demagnetized
machine when a speed change form 6000 to 5500 r/min occurs.

Figs. 15 and 16 show the resulting HHT. The differences
between healthy and demagnetized machines are evident, espe-
cially at the beginning of the speed change. The use of the HHT
introduces better precision for the fault detection than others sig-
nal processing techniques. The HHT also shows the condition
change and can be used to implement supervision systems.

Fig 17 shows instantaneous frequencies of IMFs for a dam-
aged machine with a demagnetization fault. The results are ex-
perimental for a speed change from 1500 to 1000 r/min. There
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Fig. 12. Instantaneous frequency for a healthy PMSM. Speed change from
1500 to 1000 r/min. Simulations result.

Fig. 13. Instantaneous frequency for a PMSM with 50% demagnetization.
Speed change from 1500 to 1000 r/min. Simulations result.

Fig. 14. Instantaneous frequency for a PMSM with 50% demagnetization.
Speed change from 6000 to 5500 r/min. Simulations result.

is a correlation with the simulation results, which probes the
viability of this method for fault detection in PMSM.

The calculation of the IMFs depends on the signal form,
the number of the samples, and the current main frequency.
Therefore, it has to be carefully defined, especially when the
HHT analysis should be executed.

Fig. 15. HHT for a healthy PMSM. Speed change from 6000 to 5500 r/min.
Simulations result.

Fig. 16. HHT for a PMSM with 50% demagnetization. Speed change from
6000 to 5500 r/min. Simulations result.

Fig. 17. Instantaneous frequency for a PMSM with 50% demagnetization.
Speed change from 1500 to 1000 r/min. Experimental result.

The HHT allows to eliminate the undesired frequencies and
concentrates the information in some IMFs, exactly those of
interest for the detection of the fault frequencies.

V. CONCLUSION

Simulation results for a PMSM driven by a vector control
have indicated that faulty harmonics are visible in the current
spectrum, and FFT allows detecting demagnetization by ana-
lyzing the amplitude of first and fifth harmonics, especially for
high speeds. However, fault detection with FFT is not clear at
low speed, and also, it is not possible to apply FFT without
steady-state operation, i.e., when there are speed and torque
changes.
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Therefore, a novel signal processing technique named HTT is
presented, this methodology can overcome the aforesaid draw-
backs since it allows to analyze the stator current obtained from
experimental data for both stable state and dynamic conditions
with speed changes at high, medium, and low velocities.

The experimental results show that this method can effec-
tively diagnose the demagnetization failure, thus obtaining an
increase in the spectral resolution and also reliability compared
with the motor current signature analysis, based on the FFT.

Moreover, the HHT algorithm is simple and easy to imple-
ment in a system for supervision, fault detection, and failure
diagnostic by means of digital signal processor (DSP) with ad-
equate development tools.

The application of HHT not only allows to detect the failure,
but also to know the condition of operation of the machine and
its changes throughout the time, as well as its trend.
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