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Abstract In numerical models of the climate system and in other applications, the surface energy
budget is usually considered closed, allowing for estimation of missing terms as the residual of the others.
Real measurements of this budget show significant uncertainties in the values of each flux and imbalances
that range between 5% and more than 50%, as shown in recent literature. In this article, a derivation of
the surface energy budget equation from the prognostic temperature equation is presented and the
hypotheses are discussed. Minor terms, which are usually neglected, such as tendency or advection, are
estimated. Then, the 2 year statistics for a station in the Ebro Valley are analyzed, focusing on the imbalance,
which is found to increase as the other terms in the equation increase, with values on the order of 30% of
the net radiation. The same location seen by the model of the European Center for Medium-Range Weather
Forecasts (ECMWF) is analyzed. Large differences between observations and model simulation results occur
at a daily scale although the average terms are comparable, with a systematic overestimation of the ground
and sensible heat fluxes by the model.

1. Introduction

The surface energy budget (SEB) is a balance equation for a surface or volume, typically applied to the
interface between the atmosphere and the elements of the surface. It accounts for inputs, outputs, and
storage in the internal constituents. Traditionally, the budget is taken for an infinitesimal volume comprising
the interface for steady state conditions, with no storage or tendency. This classical formulation is

Rn + H + LE + G = 0 (1)

where the net radiation (Rn) is the main input (or output) of energy during daytime (nighttime) and drives
the sensible (H) and latent (LE) turbulent heat fluxes and the ground heat flux (G). An extensive discussion
on the equation may be found in reference books such as the classical textbook of Garratt [1992].

This equation is used in a number of applications, both for measurement and modeling aspects, often
obtaining one of the terms (usually LE or G) as the residual of the others, for which there are measurements
or estimations. Examples can be found for remote sensing [Bastiaanssen et al., 1998], agricultural applica-
tions [Sánchez et al., 2008], and numerical modeling [Viterbo and Beljaars, 1995].

Despite the widely used simplified form of equation (1), more processes modify the energy of the volume
for which the SEB is applied and are customarily neglected. These include advection of heat due to local
heterogeneities, as well as transient conditions such as morning or evening transitions or cloud passages, as
equation (1) implicitly assumes homogeneous terrain and steady state conditions during the computation
period. Storage in the elements of the volume and biological processes involving energy exchanges or
unaccounted water phase changes are also usually ignored. The current knowledge on the importance
of these processes can be found, among others, in Mauder et al. [2007], Oncley et al. [2007], Foken [2008],
Moderow et al. [2009], and Leuning et al. [2012].

Even under homogeneous and steady state conditions, there are fundamental issues remaining. The form
of equation (1) implies a box of differential volume for which the four different terms can be determined.
However, sensors are installed at different locations and heights and report different physical influences,
as described in Foken [2008]. Each sensor has its own error range and the total error can be large when
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one of the terms is estimated as the residual of the equation [Oncley et al., 2007]. The different time scales
contributing to each term have been analyzed [e.g., Oncley et al., 2007 or Foken, 2008], and this issue is
minimized only if the averaging times are large enough to include them. This implies that the available
imbalances computed using 30 min averages include effects of longer time scale processes, but Foken et al.
[2010] considered these effects not to be significant if the average time is increased to 2 h.

In many numerical models, such as that of the European Center of Medium-Range Weather Forecasts
(ECMWF) [Viterbo and Beljaars, 1995], computed values of Rn,H, and LE, assuming that the residual is
G, are used to determine the surface temperature equation with an iterative approach. The different
fluxes are expressed as functions of some parameters that may be adjusted and have to be continuously
checked against observations. In some configurations, such as in the case of clear nights with weak winds,
the model errors can become large and have led to significant modifications of the schemes (such as in
Viterbo et al. [1999]).

The main objective of this work is to quantify the imbalance for a particular station, looking for patterns
related to the time of the day or the season of the year, and to see how a numerical model compares
with the available observations. In the following section, we relate the SEB to the prognostic temperature
equation to provide a formal framework for our analysis. In section 3, we proceed to compute the imbalance
for 2 years of observations in the Raimat station belonging to the Meteorological Service of Catalonia in the
eastern Ebro Valley, in the Iberian Peninsula. Relations between the computed imbalance and the rest of
the terms of the SEB and some meteorological variables are inspected to see which conditions maximize
the imbalance during the day and night in the different seasons of the year. A term-by-term comparison
to the ECMWF corresponding model values, in which the SEB is closed, is made in section 4 to determine
differences and highlight possible consequences in the model runs. Some conclusions are provided
in section 5.

2. A Framework for the Surface Energy Budget Equation
2.1. The Prognostic Temperature Equation for a Volume Across the Interface
The prognostic temperature equation is used here as a framework to discuss the different terms measured
and those usually neglected that contribute to the imbalance of the SEB. Temperature is used instead of
potential temperature because these differences are minor close to the surface. In addition, this approach
allows to locate each term of the budget at the position where it is actually measured or computed in the
volume. This equation can be expressed as

𝜕T
𝜕t

+ ui
𝜕T
𝜕xi

= − 1
𝜌Cp

𝜕Rn
𝜕xi

−
𝜕u′

i T ′

𝜕xi
− 𝜕G∗

𝜕xi
+ S∗ + B∗ + LE∗ + Ot∗ (2)

where the Einstein summation convention is used. The overline indicates an average value for the computa-
tion period and the accent shows a deviation from this average. The left-hand side is equivalent to the total
derivative of T , expanded as the sum of the Temperature Tendency (TT∗), and the advection term (A∗). On
the right-hand side, there are the divergences of the net radiation (Rn), turbulent fluxes that arise from the
Reynolds decomposition (u′

i T ′) and the molecular heat flux (G∗). They are followed by some source terms
distributed in the volume, namely the storage in the mass elements (S∗), the biological processes (B∗), the
phase changes of water (LE∗), and other processes or factors, which also may include instrumental errors
(Ot∗). Cp and 𝜌 are the specific heat and the density of the air, which are the parameters used to convert
W m−2 to K s−1.

The molecular heat flux is customarily neglected in the air but it is very important in the soil. Furthermore,
the storage of energy in the soil is included here in G, following the standard calorimetric approach
proposed by the manufacturer of the heat plate using values of temperature and soil moisture of the layer
between the surface and the plate, a procedure that allows G to be considered as if it were located very
close to the surface.

For the purposes of our discussion, we will drop the overlines for the average values—except for the
turbulent fluxes—and restrict our equation to a 2-D framework. Furthermore, here we will only consider
the vertical divergences, implying that smaller-scale motions than the resolved horizontal advection remain
in the term Ot∗. A negative divergence of any flux will result in heating the volume considered. Finally,
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Figure 1. A conceptual diagram of the surface energy balance,
with a lower boundary condition into the soil and an upper
boundary condition in the atmosphere. Rn stands for the net
radiation, H for the turbulent sensible heat flux, LE for the heat
related to phase changes, G for the ground heat flux, S for the
storage, B for the biological processes, A for the advection across
the box between temperature Tl and Tr . T and u stand for the
temperature and the wind speed, and zt and zb for the height of
the top and bottom of the box.

let us assume that u is the predominant wind
direction (positive pointing to the right) and
that the average vertical wind speed is zero,
leading to

𝜕T
𝜕t

+ u
𝜕T
𝜕x

= − 1
𝜌 Cp

𝜕Rn
𝜕z

− 𝜕w′T ′

𝜕z
− 𝜕G∗

𝜕z

+ S∗ + B∗ + LE∗ + Ot∗ (3)

We conceptually apply this equation to the
usual experimental configuration, which uses
measurements from a few meters above
the surface and a few centimeters below the
ground. The equation can also be used for the
usual model approach, which computes values
at the first flux and mass model levels in the air
and at a layer adjacent to the surface for the
soil values (Figure 1). We can consider this the
prognostic equation of the temperature of
the volume, with the advection term only
applicable to the air part between the left
and right arbitrary limits (marked l and r,

respectively). Let us also assume that the sources (phase changes included) can be anywhere in the volume
and that the heat fluxes are at the top and bottom limits of the box (marked t and b, respectively).

ΔT
Δt

+ u
(Tr − Tl)

xr − xl
= − 1

𝜌Cp

(
Rnt − Rnb

zt − zb

)
−

(
w′T ′

t − w′T ′
b

zt − zb

)
−
(G∗

t − G∗
b

zt − zb

)
+ S∗ + B∗ + LE∗ + Ot∗ = 0 (4)

To reach the final form of this conceptual equation, we assume that radiation and turbulence in the soil are
zero, the molecular conductivity of heat in the air can be neglected, and we mark the turbulence flux at the
top as H∗. For the sake of simplicity we approximate (zt − zb) to zt because zb is usually much smaller than zt

in absolute value and multiply the equation by zt𝜌Cp

zt𝜌Cp

(
ΔT
Δt

+ u
(Tr − Tl)

xr − xl

)
= −Rnt − 𝜌CpH∗ + 𝜌CpG∗ + zt𝜌 Cp(S∗ + B∗ + LE∗ + Ot∗) (5)

To express the equation in the traditional form, all the terms of the SEB are written in W m−2, as for the
storage and advection terms TT =zt𝜌 Cp

ΔT
Δt

, A=zt𝜌Cpu (Tr−Tl)
xr−xl

. We adopt the classical notation Rn for
the radiation of the upper part, and we take G=−𝜌CpG∗. The sensible turbulent heat flux is written
H=𝜌CpH∗ =𝜌Cp w′T ′

t , using the fluxes provided by an eddy-correlation system, or a parameterized
value from the vertical gradient of temperature. The phase changes in the box are given by
LE=−zt 𝜌CpLE∗ =𝜌Lv w′q′, where q is the specific humidity and Lv is the latent heat of vaporization of
water. Taking the rest of the source terms in W m−2 as S, B, LE, and Ot (dropping the asterisk), we reach the
compact equation

TT + A = −Rn − H − G + S + B − LE + Ot (6)

The usual form of the SEB (whose terms are in bold in the preceding equation) is obtained assuming that
the tendency, the advection, the storage, the biological, and the other processes can be neglected, leading
straight to equation (1), Rn + H + LE + G = 0. For example, at noon a positive radiation flux (downward, Rn
positive) that heats the surface will be compensated by a sensible heat flux directed upward (H, negative),
evaporation of water (LE, negative), and a ground flux directed downward (G, negative).

The imbalance, which will usually have the same sign as Rn, reads as

Rn + H + LE + G = −TT − A + S + B + Ot = Imb (7)
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Figure 2. (left) The area surrounding the station at Raimat with a 1 km resolution topography; (right) the topographical
representation at the resolution of the ECMWF model (0.125◦). The cross represents the location of the Raimat station.

2.2. Scale Analysis of the Imbalance Terms
The main terms of the SEB are well known, and their typical ranges of variation will be illustrated in the next
section. Here we provide estimations of the orders of magnitude of the traditionally neglected terms.

Tendency. The tendency may reach its maximum values in the morning transition of a clear day, when an
increase of 20 K could take place in 6 h at midlatitudes. The corresponding value would be between 1
and 5 W m−2.

Horizontal Advection. Horizontal advection depends on the scale of the heterogeneities of the surface
temperature. For a regional temperature gradient this term is very small. For instance, if the temperature
gradient is 1 K/100 km, the horizontal advection is below 0.1 W m−2. Nevertheless, for small-scale
heterogeneities this term may become significant. In the case of a temperature gradient of 1 K/100 m, it
would be of the order of 50 W m−2.

Storage. If we assume that thermal equilibrium is reached within the computation period between the
bodies of the volume and the air (objects, vegetation, etc.), we can estimate the energy used in the process.
For instance, if 10 kg of mass per m3 was considered, as in a dense crop field, using the heat capacity of
water and considering 1 K in 1 h, this would provide values of the order of a few W m−2.

Biological processes. Biological processes, such as the plant respiration process may yield, in very dense
canopies, less than 10 W m−2, which are used essentially inside the leaf tissue [Oke, 1987]. The transpiration
that the plants make is more relevant for the SEB, because only a small part of the water moved along the
plant is actually used in plant biochemical processes. This may lead to an underestimation of the value of
the evapotranspiration.

Others. Any other processes not accounted for by now are impossible to estimate. With respect to
instrumental errors, they can include sensor misalignments, missing transport by eddies smaller than
the device, or longer time scale processes than the selected averaging period. In some specific locations,
vertical advection may be relevant. It can also include energy related to water changes in the surface, the
vegetation, and the soil that may not reach the measuring device a few meters above the surface. This term
could easily account for several tens of W m−2.

3. Analysis of the Raimat Data
3.1. Location, Instrumentation, and Data
A site in the eastern Ebro Basin was chosen for this study, the station in the Raimat vineyards
(41◦41′N, 0◦34′E, Figure 2a), in Catalonia. Two complete years (2009 and 2010) of SEB data are available
and will be analyzed in this section. The characteristics of the site are described in detail in Cuxart et al.
[2012]; the site is located in a clearing among vineyards on a flat plateau in the lowermost area of the Ebro
Basin, which is a closed, triangular basin, limited by the Pyrenees to the north, the Iberian System to the
southwest, and the Catalan precoastal ranges to the east. The climate is semiarid, but the lowlands are
extensively irrigated in the summer months.

The two predominant regimes are the synoptic westerlies and the local circulations. Martínez et al. [2008]
and Cuxart et al. [2012] documented the diurnal cycle of the latter. During the day, after the morning
transition, winds blow upslope from the wet lowlands to the drier warmer gentle slopes surrounding
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Table 1. The 2009 and 2010 Average Observed and Model Values of the Terms of the SEBa

TT A Rn H LE G Imb

annual
station 0.47 0.06 365.8 −64.7 −155.9 −36.6 104.0
model 0.23 −0.03 347.8 −148.6 −140.4 −58.9 0

winter
station 0.37 0.07 180.1 −50.8 −50.4 −23.2 59.4
model 0.23 −0.06 186.1 −66.7 −76.9 −42.5 0

1200–1500 UTC spring
station 0.46 0.03 435.4 −84.8 −185.8 −47.1 116.3
model 0.23 −0.02 412.1 −180.2 −162.0 −70.0 0

summer
station 0.62 0.11 555.9 −65.2 −284.5 −57.1 142.5
model 0.27 −0.02 509.3 −229.0 −204.2 −76.1 0

fall
station 0.44 0.04 293.3 −56.4 −104.8 −22.7 105.2
model 0.17 −0.02 279.5 −116.3 −116.8 −46.3 0

annual
station −0.29 0.21 −40.2 14.3 −7.5 23.0 −11.7
model −0.28 0.00 −56.7 13.7 −2.9 45.9 0

winter
station −0.16 0.25 −33.5 11.0 −4.3 19.2 −8.0
model −0.16 −0.05 −52.1 17.8 −1.8 36.1 0

0000–0300 UTC spring
station −0.33 0.23 −41.8 15.3 −9.2 22.0 −14.6
model −0.33 0.01 −57.9 13.3 −3.6 42.8 0

summer
station −0.38 0.16 −47.6 21.2 −14.0 27.3 −15.4
model −0.37 0.04 −59.5 10.6 −3.5 52.4 0

fall
station −0.30 0.22 −38.1 9.9 −2.5 23.3 −8.9
model −0.24 −0.02 −57.3 13.2 −2.7 46.9 0

aUnits: W m−2. The imbalance is the average of individual imbalances.

them, whereas a reverse circulation takes place at night, with well-defined low-level jets from the E and SE,
originating from the slopes, which are colder than the plain at night. These circulations are more intense
in summer, when the regional thermal gradients are stronger. This regime, as documented in Martínez
et al. [2008], took place for 37% of the time between 1997 and 2005. In the wintertime, fog is a frequent
phenomenon and its characteristics in the area have been described by Cuxart and Jiménez [2012].

In Raimat there is an operational, automated weather station belonging to the Meteorological Service of
Catalonia that, between December 2008 and February 2011, was supplemented with equipment measuring
turbulent heat, momentum, humidity, and CO2 fluxes (a sonic anemometer Campbell model CSAT-3 and
an openpath fast gas analyzer LiCoR model 7500), the four components of the radiation budget (Kipp and
Zonen CNR1), ground heat flux (a Hukseflux self-calibrated heat plate), and soil temperature and water
content (Campbell CS 616). As mentioned before, the ground flux was corrected for heat storage in the layer
above the plate. The analyzed time series consists of half-hourly averages and standard deviations of the
different quantities computed, as provided by the Campbell software package, which includes the Webb
et al. [1980] correction for the latent heat flux. Radiation uncertainties are of the order of 25 W m−2 during
the daytime and 10 W m−2 at night [Kohsiek et al., 2007].

Here we select the daily averaged values for the 3 h intervals 1200–1500 UTC and 0000–0300 UTC because
these time intervals are, respectively, daytime and nighttime all year in the location that was analyzed and
allow for consistent analyses for the whole 2 year series. Moreover, the values that can be obtained from the
model of the European Center of Medium-Range Weather Forecasts (ECMWF) are 3 h averages, making our
data-averaged values directly comparable to the model data in section 4.

3.2. Annual Averages and Evolution
The SEB is estimated for the Raimat site using the annual and seasonal averages displayed in Table 1 for the
intervals 1200–1500 UTC (“noon”) and 0000–0300 UTC (“midnight”), and also looking at the annual cycle
using monthly averages (Figure 3) and individual 3 h averages in the x axes (Figure 7). Note that the daily
extreme values may not occur during these periods.

We see that TT is usually below 1 W m−2, positive near noon and negative near midnight. For 10 km scales,
A, computed with the nearby stations of Alfarràs (18.5 km to the northeast) and Gimenells (5.4 km to the
southwest), is also of the order of 1 W m−2 . Therefore, these two processes will be neglected from now on,
keeping in mind that A may be important at smaller scales, an effect that will remain in the imbalance.

CUXART ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1012
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Figure 3. Evolution of the monthly averages of the surface energy budget terms. (left) Average value for 1200–1500 UTC. (right) Average value for 0000–0300 UTC.
(top to bottom) Net radiation (Rn), sensible heat flux (H), latent heat flux (LE), ground flux (G), and imbalance (Imb) for observed (blue) and ECMWF (red).
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Figure 4. The imbalance as a function of the main terms of the observed SEB (all data). Values are the averages of the
imbalances for a particular interval of the SEB term. The black line represents the average values and the shaded grey
area the standard deviation.

The net radiation, computed from the balance of the four measured components is, on average, the largest
term at noon, with a clear annual cycle, from 180 W m−2 in winter to 556 W m−2 in summer. The annual
cycle is less defined at midnight, with seasonal values varying from −34 W m−2 in winter to −48 W m−2

in summer.

H and LE are commented together. At noon, the annual averages show that LE is 2.4 times larger than H.
Monthly evolutions in Figure 3 indicate that LE has a well-defined annual cycle, whereas H varies much less
and without a clear annual cycle. This is most likely linked to the large availability in the site of soil moisture,
due to irrigation in the warm part of the year, implying that most of the radiative energy input is used
for evaporation. However, in winter, the two quantities have comparable values, due to the net radiation
minimum and the seasonal lack of irrigation. At midnight the situation is completely different. On average
H is bringing heat to the surface while LE removes heat through evaporation. However, the value of LE is
the result of averaging positive (condensation) and negative (evaporation) values and, for individual 3 h
averages, LE and H can be similar in value (Figure 7). The largest average values of H and LE are found in
summer, when the soil is warmer and the low-level jets are most intense, increasing turbulent mixing,
as described in Cuxart et al. [2012].

The ground flux (G) is the fourth term of importance at noon, showing an annual cycle with a clear
maximum in summer. It is approximately 10% of the value of the net radiation. At night, the term becomes
the second in magnitude, with absolute values greater than half the net radiation, and no well-defined
annual cycle.

The imbalance (Imb) follows a similar pattern as the radiation, an annual cycle at noon peaking in summer
and no cycle at midnight. During the daytime the values of the imbalance are approximately 34% Rn
in fall and winter and 27% in spring and summer, whereas for the nighttime, spring and summer are
close to 33% Rn and fall and winter approximately 24% Rn. These imbalances include subkilometric scale
advection—related to surface heterogeneities—heat storage in the mass elements, biological processes
that are thermally relevant, and instrumental uncertainties, such as unaccounted latent heat flux in the soil
and over vegetation. On average the imbalance has the same sign as Rn, meaning that the radiative forcing
is not compensated by the main terms of the SEB.

Compared to other recent studies, in the case of sites with a less complex terrain, LITFASS-2003 has
imbalances on the order of 20% of the net radiation [Foken et al., 2010], and EBEX (Energy Balance
Experiment) is above 10% [Oncley et al., 2007]. Studies carried out over more complex terrain, such as the
Loess Plateau in Tibet, have imbalances close to 15% during the day and above 40% at night [Yue et al., 2012].
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Figure 5. The imbalance as a function of several relevant atmospheric and soil variables (all data). Values are the
averages of the imbalances for a particular interval of the variable. (left to right and top to bottom) Wind speed,
surface pressure, air temperature, specific humidity, soil temperature (TG1), and soil moisture. The black line represents
the average values and the shaded grey area the standard deviation.

We can see that our imbalances are relatively large in the daytime, whereas the values at night are between
those of flat heterogeneous terrain and those of mountainous terrain.

It is worth noting that for the other times of the day, the annual averages are difficult to interpret, because
they include daytime and nighttime values. Nevertheless, the general behavior of the average values
(not shown) indicates that the fluxes and the imbalance increase from 0700 UTC until 1200 UTC and
decrease afterward until 1600 UTC, whereas at nighttime they have almost constant average values. A
special time is 1700 UTC, when Rn is still positive but smaller than Imb and G, reflecting the evening
transition process.

3.3. Imbalance Versus the Other Terms of the Budget
Figure 4 displays the different terms of the observed SEB against the imbalance for all hours (not only for
1200–1500 UTC and 0000–0300 UTC). The values are obtained by averaging imbalance values inside each
variable bin, and the mean and the standard deviation are shown.

Table 2. The 2009–2010 Observed Averages for 1200–1500 UTC, Ordered by Imbalance Valuesa

1200–1500 UTC % of Data Imb Rn H LE G u (m s−1) p (kPa) T (◦C)

Imb <60 26 33 157 −36 −64 −23 2.5 97.6 11.7
60 ≤ Imb <100 21 80 298 −68 −117 −33 2.8 97.7 14.8
100 ≤ Imb <150 30 126 436 −79 −186 −45 2.4 98.0 20.5
Imb ≥ 150 23 179 522 −80 −220 −45 2.2 98.0 24.8

aTerms of the energy balance in W m−2.
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Table 3. The 2009–2010 Observed Averages for 0000–0300 UTC, Ordered by Imbalance Valuesa

0000–0300 UTC % of Data Imb Rn H LE G u (m s−1) p (kPa) T (◦C)

Imb < −25 18 −38 −52 15 −22 20 1.6 97.8 9.7
−25 ≤ Imb< −10 46 −18 −51 18 −8 23 1.4 98.0 11.9
−10 ≤ Imb<5 22 −3 −30 10 −6 23 1.0 97.9 9.6
Imb ≥ 5 14 27 −14 8 10 23 1.1 97.8 7.3

aTerms of the energy balance in W m−2.

There is a linear variation of the imbalance with the net radiation, either during daytime or at night. A similar
behavior is found for H and LE for values between 0 and −100 W m−2, and for G between 0 and −60 W m−2,
all leveling off at larger values with imbalances between 100 and 150 W m−2. Since these values of the fluxes
typically correspond to daytime, we may state that the imbalance increases with the value of net radiation
as well as with the sum of H, LE, and G.

At night, H and G are typically positive and Rn and LE are negative (except when there is condensation and
LE is positive). The imbalance behaves linearly for Rn and for LE (either for positive and negative values),
whereas G and H have essentially constant values, indicating a possible saturation of the response capacity
of these fluxes to the vertical temperature gradients that are typically established at night in the air and soil.

3.4. Imbalance and the Meteorological Variables
In Figure 5, the main air and soil mean variables are represented against the imbalance, again averaging
imbalance values inside each variable bin. In general, none of the variables show any clear relationship
with the values of the imbalance, and the standard deviations are very large, indicating low statistical
significance.

Nevertheless, there are a couple of issues worth noting. On one hand, warm and moist soils have very large
imbalances, pointing to the effect of water conductivity and water phase changes as key processes in hot
weather. On the other hand, the wind seems to indicate a two-modal distribution, with a local maximum
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Figure 6. Terms of the surface energy budgets for selected days. (a) A clear day with weak winds, (b) a cloudy day with
weak winds, (c) a night with a few scattered clouds and moderate wind, and (d) a clear night with very weak winds.
The lines indicate the terms measured in the station, the violet symbols show the resulting imbalance and the crosses
indicate the ECMWF model values at the center of the averaging intervals (1200–1500 UTC and 0000–0300 UTC). The
symbols for the model have the same colors as the corresponding lines for the observations.
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of imbalance at approximately
1.5 m s−1. Typically, the wind speeds
found on fair weather days with dry
or shallow cumulus convection are
well correlated with high latent and
sensible heat fluxes.

3.5. Imbalance and Weather
Tables 2 and 3 summarize the
behavior of some of these quantities
if we divide them into intervals,
loosely based on the weather anno-
tated by a human observer in the
area. Values of 1200–1500 UTC show
linear increases of the imbalance
with almost all variables, except
the already noted saturation of H
and G for very large values of the
imbalance. Analyses by day of the
year (not shown) indicate that small
imbalances (Imb < 60 W m−2)
are usually in winter with cloudy
conditions, and sometimes rain,
whereas moderate imbalances
(60 ≤ Imb <100 W m−2) are found
mostly from fall to spring, on cloudy
or windy days. Large imbalances
(100 ≤ Imb < 150 W m−2) are found
between spring and fall, mostly
on fair, cloudless days with weak
wind. The largest values, which
occur between May and September,
correspond to days with very high
evaporation values. Figures 6a and
6b show two examples of the SEB,
one for a clear calm day with a great
imbalance—in absolute value as large
as the evaporation—(2 May 2009)
and one for a cloudy day with weak
winds (24 January 2010) where all the
terms are smaller but the imbalance
is proportionally as large as the
previous one.

Nighttime shows less defined pat-
terns (Table 3). The nights with very

Figure 7. Observed versus ECMWF model
values of the surface energy budget
terms. (left) Averages for the interval
between 1200 and 1500 UTC. (right)
Averages for the interval between 0000
and 0300 UTC. (top to bottom) Tendency,
advection, net radiation, sensible heat
flux, latent heat flux, and ground flux. The
1:1 line is included for reference, as is
the correlation coefficient.
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high negative imbalances (Imb < −25 W m−2) are of two types. On one hand, nights that are foggy, cloudy,
or rainy are mainly concentrated in December and January. On the other hand, nights with relative high
negative LE values, implying windy conditions and evenly distributed throughout the year. An example of
a clear, windy night (25 May 2010) is given in Figure 6c, with both evaporation and net radiation being high
and negative. This cooling is not compensated by the sum of G and H, and it may be used in water con-
densation in the soil or plants. The most frequent category (−25 ≤ Imb < −10 W m−2) consists of calm,
clear nights with dew and sometimes mist, equally distributed throughout the year. Figure 6d shows one of
these nights (17 August 2009), when there is a certain constancy of Rn and G throughout the night, whereas
the turbulent fluxes are significant in the first part of the night and practically die out after midnight, with
the occurrence of some positive values of LE (condensation). For the other two intervals, there are usually
clouds, rain or fog, with low-absolute values of Rn.

4. Comparison With ECMWF Values
4.1. The Surface Energy Budget in the ECMWF Model
Three-hour values of the terms of the SEB and other variables of interest were obtained from the ECMWF
database for the nearest grid point to the Raimat station, and a comparison is made here to the values
observed. We used the forecast starting at 0000 UTC to obtain the values for 1200–1500 UTC and one start-
ing at 1200 UTC to obtain the 0000–0300 UTC values. The fundamentals of the soil vegetation model in the
ECMWF model are described in Viterbo and Beljaars [1995]. In the soil, four levels are used and connected by
a temperature diffusion equation, with the heat conductivity as a function of the volumetric water content
as in McCumber and Pielke [1981]. The top boundary condition is the sum of Rn,H, and LE, whereas at the
bottom (deeper than 3 m) zero heat flux is assumed. The upper boundary flux is expressed as proportional
to the difference between skin temperature and the first ground temperature. The skin temperature (Tsk)
intends to take into account the effect of vegetation and litter, it is assumed to have no heat capacity and
therefore is the result of a SEB [Viterbo and Beljaars, 1995, equation (6)]:

(1 − 𝛼)Rs + 𝜖(Rt − 𝜎T 4
sk) + H + LE + Λ(TG1 − Tsk) = 0 (8)

where 𝛼, 𝜖, and 𝜎 are, respectively, the albedo, the surface emissivity, and the Stefan-Boltzmann constant, Rs

and Rt solar and terrestrial radiation are computed by the radiation scheme of the model, G is represented
by the last term, TG1 is the temperature of the first ground level (−7 cm), and Λ is a parameter that plays the
role of skin conductivity. H and LE are traditionally parameterized, using transfer coefficients dependent on
thermal stratification and, in particular, on Tsk.

Therefore, for our purpose, G = Λ(TG1 − Tsk), Rnt = (1 − 𝛼)Rs + 𝜖(Rt − 𝜎T 4
sk), H and LE will be compared to the

measured values. However, G in the model is the residual of the other three terms because it is not stored in
the ECMWF database.

4.2. Statistical Comparison to Data
4.2.1. Daytime
Table 1 provides the seasonal averages of the terms computed by the ECMWF compared to the observed
ones. The model values of TT and A are of the same order of magnitude as the observed ones, with A sys-
tematically smaller for the model, most likely because the model heterogeneity of the 2 m temperature field
is smaller than in reality (Figure 2). By inspecting the table simultaneously with the left column of Figure 3,
which contains the evolution of the monthly averaged values, the model correctness can be assessed.

It is found for averages that Rn is well simulated, with differences below 10%, which are within the observa-
tional uncertainties [Kohsiek et al., 2007]. H is severely overestimated by the model, especially in spring and
summer, whereas LE is underestimated, indicating that the availability of soil water in reality is very differ-
ent to what the model represents, most likely related to the treatment of irrigation, not explicitly included
in the model. The differences between the model and observations for H and LE are minimal in winter. G is
systematically larger in the model and is approximately double the average observations in fall and winter.
These large values of G in the model could originate from an inadequate representation of the soil ther-
mal characteristics, an incorrect temperature profile, and most likely because this term incorporates the
entire imbalance.

If we inspect the individual averages shown in Figure 7 (left column), the maximum absolute model values
of LE are approximately 300 W m−2, while the observations can be greater than 400 W m−2, making the
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discrepancies evident for absolute
values above 200 W m−2. For H com-
plementary behavior is observed,
because the observations rarely
exceed 200 W m−2, while the model
can reach more than 300 W m−2. In
general, G is larger in the model as
previously indicated.

To provide more information about
these discrepancies, Figure 8 (left
column) compares key variables
for the SEB equation terms. It is
interesting to see that the model
values for air and skin temperature
are consistent with the observations.
This means that the model success-
fully formulates the correspondence
between these two magnitudes. The
main differences are in the ground
temperature and the soil moisture,
where the first model level values
are compared to the data taken
at approximately 6 cm under the
surface. Errors in ground tempera-
ture can easily be above 5◦C, and
soil moisture (SM, expressed as the
volume of water over total volume)
can be underestimated by nearly
50%, although observed SM values
above 0.5 may correspond to
water pooling on the surface. If th
e difference (Tsk − TG1) is compared,
one can see that for values of more
than 4◦C, the observation may reach
values that are greater than 12◦C,
whereas the model never exceeds
8◦C. Tsk and T are well simulated by
the model, implying that most of the
differences lie in the soil component.
Since H, LE, and Rn are well estimated,
G, in fact, has to also address with the
imbalance and, therefore, is overesti-
mated, despite the soil in the model
being warmer and drier, which should
lead to smaller ground fluxes. The
parameter Λ is a factor that may be
adjusted if needed.

Figure 8 also shows that the modeled
wind speed is consistent with

Figure 8. As in Figure 7, (top to bottom)
air, skin and ground temperatures, soil
moisture, difference between skin and
ground temperatures, and wind speed.
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Table 4. Values for the Four Selected Days of Figure 6 (Terms of the Energy Balance in W m−2)a

Dayb Rn H LE G Imb SM(%) Tsk (◦C ) TG1 (◦C )

02/05/2009, 1200–1500 587/571 −71/−268 −271/−199 −60/−103 185/0 26/23 25/28 17/22

24/01/2010, 1200–1500 143/117 −41/−41 −40/−48 −32/−28 30/0 34/31 14/12 9/10

25/05/2010, 0000–0300 −66/−71 48/30 −42/−4 16/45 −43/0 36/16 15/15 18/19

17/08/2009, 0000–0300 −51/−57 18/9 −8/−3 25/51 −16/0 27/15 20/22 24/26

aLeft value: observation, right value: model.
bDates are formatted as day/month/year.

observations implying that the model overestimation of H is most likely not produced by too large of a
mechanical production of turbulence, but from a displaced value of the Bowen ratio. As an illustration, the
values for the selected individual cases shown in Figure 6 are given in Table 4. The observed large midday
summer imbalance of 2 May 2009 is closed in the model using much larger values of H and lower values of
LE. The errors in the ground part (3◦C for Tsk, 5◦C for TG1, 3% for SM) indicate that the model heats the soil
more than the observations suggest, allowing more sensible heat flux to reach the surface, which is also
warmer in the model, indicating that the heat missing in the observations (the imbalance) usually goes to
G and H in the model.

The small daytime imbalance for a cloudy and windy day (24 January 2010) has quite a good correspon-
dence between observed and model values of the budget terms and of the soil moisture and temperatures
(Figure 6b and Table 4).
4.2.2. Nighttime
The 0000–0300 UTC values in Table 1 and the evolution of the monthly means (Figure 3, right column) show
a main difference with respect to the daytime: the model systematically overestimates Rn. This is essentially
counterbalanced by G, also overestimated by a factor between 1.2 and 2.8 depending on the month. H
and LE have quantitatively far fewer differences with the data, although LE is almost always underesti-
mated. Individual averages confirm this in Figure 7 (right column). For the other terms, it is interesting to
note that H in the model has very few negative values in Figure 7, contrary to the significant occurrences in
the observations, and that the number of condensation events (positive LE) is also less in the model than
observed.

Looking at the key variables for the surface processes (Figure 8, right column), air, surface, and also ground
temperature are consistent to observations. The SM is underestimated as it was during daytime, most
likely because this variable changes very slowly in the model. The wind forecast is worse than during the
daytime, but since H is not the key factor, this is not relevant. The difference (Tsk − TG1) is always negative
in the model (surface colder than the ground), but no major differences between the model and the
observations appear.

Inspecting the two nighttime cases of Figures 6c and 6d (values in Table 4), we see that for the windy
night with scattered clouds (25 May 2010) the main difference lies in LE, which is underestimated in the
model that has a SM value much lower than the observations. A clear night with calm winds has, in 3 h
average, a very small contribution to water phase changes for either the observations or the model, and
the main difference lies in G, which is higher in the model despite the lower SM contents compared to
the observations.

5. Conclusions

The imbalance in the determination of the SEB is an issue that deserves continuous exploration. Here a
formal derivation of the processes hidden in this term has been made using the prognostic temperature
equation for a conceptual volume. This formalism allows measurements not located at the same level to be
treated together. The imbalance contains the temperature tendency, the advections due to the surrounding
heterogeneities, the storage of heat in the volume, the exchanges of heat with the air due to biological
processes, unmeasured water phase changes in the soil and surfaces, and any instrumental indetermination,
in addition to other processes that may have been neglected.
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The inspection of the observed SEB for a location in the eastern Ebro Valley (Catalonia, Spain) has shown that
local tendencies and horizontal advection of temperature for scales larger than a few kilometers contribute
very little to the imbalance. The same hypothesis is made for the storage and the biological processes for
the test site, where the mass of the elements in the volume is small. It can be considered that the main
driving term is the net radiation, which shows a well-defined annual cycle during the daytime but no clear
cycle at night.

The diurnal radiation heating is mostly compensated by LE and H, the former usually larger than the latter
because of the large availability of water due to irrigation. G is of the order of 10% Rn, whereas the resulting
imbalance is approximately 30%. The nocturnal radiation cooling is essentially counteracted by G, while
H and LE are significantly smaller. LE at night is often positive indicating condensation and warming.

The imbalance shows a well-defined linear relation with Rn. The largest imbalances take place on warm
days, when the values level off despite increasing values of H, LE, and G. Analyses of the frequencies and of
particular cases indicate that very large imbalances are related to high values of soil moisture, especially in
warm conditions.

Data are compared to the corresponding computations for the same point made by the ECMWF model
separately for two 3 h time intervals for noon and midnight. In the daytime, there is a significant difference
in the Bowen ratio, because the model is drier than the observations for this point. Despite this, G is larger
in the model, where lower soil moisture causes less ground heat flux. This may come from the fact that
G is, in practice, the residual of the other three terms (Rn, H, and LE) and may be overestimated. The good
representation of the variables by the model indicates that the differences are taken into account by
adapting parameters of the model such as the skin or ground thermal conductivities.

In the comparison for the nighttime, Rn and G essentially counteract each other, but their values are higher
in the model than in the observations. The model values of air, surface, and skin temperature are well
simulated, but the soil moisture is again typically underestimated by a factor of 2. The high-model values
of Rn and G on clear, calm nights are most likely related to the emissivity and thermal conductivity changes
due to the soil moisture, whereas the windy nights observed imbalances may be related to the insufficient
amount of evaporation from the ground.

The results of this study show that, for a site of moderate terrain heterogeneity, the imbalances are similar
to the ones found for other studies, therefore allowing the technique to be used for nonhomogeneous sites
if the imbalances are documented. The imbalance behaves similarly to the other terms of the SEB equation,
approximately 30% of the value of Rn on average, although for individual cases the amount can vary
significantly below or above this value. Which components contribute most to the imbalance still need to
be determined, and this is most likely function of the type of terrain and its uses. Models impose the closure
of the SEB equation; therefore, if one term is computed as the residual, it will include all of the uncertainties,
causing an error that will have to be corrected by means of tunable parameters in their physical schemes.
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