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Patterns in syntactic dependency networks
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Many languages are spoken on Earth. Despite their diversity, many robust language universals are known to
exist. All languages share syntax, i.e., the ability of combining words for forming sentences. The origin of such
traits is an issue of open debate. By using recent developments from the statistical physics of complex
networks, we show that different syntactic dependency netw@rs Czech, German, and Romanjafare
many nontrivial statistical patterns such as the small world phenomenon, scaling in the distribution of degrees,
and disassortative mixing. Such previously unreported features of syntax organization are not a trivial conse-
guence of the structure of sentences, but an emergent trait at the global scale.
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I. INTRODUCTION pL+ Py
€=1-——".
There is no agreement on the number of languages spoken 2

on Earth, but estimates are_in the range from 3000 to 1Q O,ORnowing p,=0.70 andp,=0.17[

[1]. World languages exhibit a vast array of structural simi-

larities and differences. Syntax is a trait common to all hu- €, =0.56.

man languages and the subject of the present paper. Mo

precisely, we aim at finding new statistical patterns in syntax

General statistical regularities that human language obeys

different scales are knowj2—5]. Probably, the most striking (n-1)(1-py)

regularity is Zipf's law for word frequencief?]. Unfortu- €1= T

nately, such a law seems to have nothing to do with syntax

and symbolic reference, which researchers have identified &henn—« we gete;=1-p,, which givese; =0.30, which

the crux of human languadé—9]. is still high. A precise definition of syntactic link is thus
Syntax involves a set of rules for combining words into required. In this paper we study the architecture of syntactic

phrases and sentences. Such rules ultimately defipcit  graphs and show that they display small world patterns,

syntactic relations among words that can be directly mappedcale-free structure, a well-defined hierarchical organization,

into a graph capturing most of the global features of theand assortative mixing18—20J. Three different European

underlying rules. Such a network-based approach has préanguages will be used. The paper is organized as follows.

vided new insights into semantic weps0-13. Capturing The three data sets are presented together with a brief defi-

global syntactic information using a network has been atnition of the procedure used for building the networks in Sec.

tempted. The global structure of word interactions in shortll. The key measures used in this study are presented in Sec.

contexts in sentences has been studied,15. Although I1ll, with the basic results reported in Sec. IV. A comparison

about 87% of syntactic relationships take place at distancdsetween sentence-level patterns and global patterns is pre-

lower than or equal to 216], such early work lacks both a sented in Sec. V. A general discussion and summary are

linguistically precise definition of link and fails in capturing given in Sec. VI.

the characteristic long-distance correlations of words in sen-

tences[17]. The proportion of incorrect syntactic depen-

dency links captured with a window of length 2 as in Ref. Il. THE SYNTACTIC DEPENDENCY NETWORK

[14] is

16] we get

Fhat is, one half of the links are syntactically meaningless.
[LjiJ[sing a window of length 1 we have

The networks that are analyzed here have been defined
(n=1)(1-py) +(n-2)(1-py) according to the _dependency grammar fo_rmalism. D_epen-
= L Z dency grammar is a family of grammatical formalisms

2n-3 [21-23, which share the assumption that syntactic structure
) consists of lexical node@epresenting wordsand binary re-
wheren is the length of the sentence apd and p, are,  |ations (dependencigslinking them. This formalism thus
respectively, the probability that two words at distances 1o, rally defines a network structure. In this approximation,
and 2 are syntactically linked. Whem- < we have a dependency relation connects a pair of words. Most of the
links are directed and the arc goes from the head word to its
modifier or vice versa depending on the convention used.
*Corresponding author. Email address: rferrer@imim.es Here we assume that links go from the modifier to its head.
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subject  object
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iJohn has apples | /

{ Q/ tant for our concerns here. Syntactic dependency networks

were built collecting all words and syntactic dependency
links appearing in three corpota corpus is a collection of
sentences Hereg; =1 if an arc from theith word to thejth
word has appeared in a sentence at least onceagr®
otherwise. Punctuation marks and logpscs from a word to
itself) were rejected in all three corpora. Sentences with less
than two words were rejected.

The corpora analyzed here are the following.

FIG. 1. (@ The syntactic structure of a simple sentence. Here (1) A Czech dependency corpus was annotated by
words define the nodes in a graph and the binary relatiarcsy Uhlifova and Kralik among otheli29,30. The corpus was
represent syntactic dependencies. Here we assume arcs go front@mpiled at the Czech Language Institute, Prague, within a
modifier to its head. The proper noun “John” and the verb “has” argperiod of 1970-1985. The corpus contains 562 820 words
syntactically dependent in the sentence. John is a modifier of thgnd 31 701 sentences. Many sentence structures are incom-
verb has, which is its head. Similarly, the action of has is modifiedp|ete in this(i.e., they have less tham-1 links, wheren is
by its object “apples.b) Mapping the syntactic dependency struc- tne |ength of the sentengerhe proportion of links provided
ture of the sentence ifa) into a global syntactic dependency yith regard to the theoretical maximum is about 0.65. The
network. structure of sentences was determined by linguists by hand.

Head and modifier are primitive concepts in the dependenc%/ (2) The Romanian corpus was formed by all sample sen-
grammar formalisniFig. 1(a)]. In some cases, such as coor- ences in the Dependency Grammar Annotator welydie
dination, there is no clear directid24]. Since these cases It conta!ns 21 275 words and 2340 sentences. The syntactic
are rather uncommon, we will assume that links in the dat@nnotation was performed by hand.
sets used here have a direction and assign an arbitrary direc- (3) The German corpus is The Negra Corpus 1.0. It con-
tion to the undirected cases. Syntactic relations are thus bfains 153 007 words and 10 027 sentences. The formalism
nary, usually directed and sometimes typed in order to disUSed is based on the phrase-structure grammar. Nonetheless,
tinguish different kinds of dependencies. for certain constituents, the head word is indicated. Only the
We define a syntactic dependency network as a set of hea_d rr_lodlfler links between words at the same Ieve_l of the
wordsV={s}(i=1,... n) and an adjacency matriA:{aij}. derivation tree were collected. The sy_ntactlc gnnotatlon was
s can be a modifier word of the heaglin a sentence if; p(_arformed automatically. .The proportion of links provided
=1 (a;; =0 otherwisg. Here, we assume arcs go from a modi- With regard to the theorgtlcal maximum is about 0.16. o
fier to its head. The syntactic dependency structure of a sen- 1he German corpus is the most sparse of them. It is im-
tence can be seen as a subset of all possible syntactic linR@rtant to notice that while the missing links in the German
contained in a global networig. 1(b)]. More precisely, the COTPUS obey. no clear regularlty, links in Fhe Czech corpus are
structure of a sentence is a subgraphtreg of the giobal mostly function words, specially prepositions, the annotators
network that is induced by the words in the sentef&. did not Iln'k because they trgated them as grammatlc_al mark-
Different measures can be defined Arallowing one to €S- The links that are missing are those corresponding to the
test the presence of certain interesting features such as tHaPSt connected word types in the remaining corpora.
small world effec{26] and scale invarianc7]. Such mea-
sures can also be used for finding similarities and differences

among different networkéee Sec. I\ 1. NETWORK PROPERTIES
The common formal property of dependency representa- i
tions(compared to other syntactic representatjiagsshe lack In order to properly look for syntactic dependency pat-

of explicit encoding for phrases as in the phrase-structur&'ns, we need to consider several statistical measures mainly
formalism [17] and later developmentf28]. Dependency based on the undirected version of the network for simplicity
grammar regards phrases as emergent patterns of syntaciR@sons. These measures allow one to categorize networks in
dependency interactions. Statistical studies about phras&ms of the following. 3
structure-based grammars have been performed and reveal (@) Small world structureTwo key quantities allow one
that the properties of syntactic constructs map to only a few© characterize the global organization of a complex network.
distributions[3,4], suggesting a reduced set of principles be-T"e first is the so calledverage path length Ddefined as
hind syntactic structures. D=(Dmin(i,})), where(:--) is the average operator over all
We studied three global syntactic dependency networkBairs (si,s;) in the network, whereDp (i, j) indicates the
from three European languages: Czech, German, and Romigngth of the shortest path between nodesnd j. D was
nian. Because of the reduced availability of data, the lancalculated on the largest connected component of the net-
guage set is unintentionally restricted to the Slavic, Gerworks. The second measure @& the so called clustering
manic, and ltalic families. These languages are not intendegioefficient, defined as the probability that two vertices.,
to be representative of every family. We mention the familieswords that are neighbors of a given vertex are neighbors of
these languages belong to in order to show how distant theg@ch otherC is defined agC;) where(:--) is the average
languages are; probably not enough distant for standardver all vertices and;, the clustering coefficient of thigh
methods in linguistics for finding universals but enough dis-vertex, is easily defined from the adjacency matrix as
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whereP(g) is the proportion of vertices whose betweenness
centrality isg. The betweenness centrality was calculated
wherek; is the degree of théh vertex. Erdos-Rényi graphs using Brandes’ algorithni36].

have a binomial degree distribution that can be approximated e Assortativenes# network is said to show assortative
by a Poissonian distributiofl8-20. Erdds-Rényi graphs mixing if the nodes in the network that have many connec-
with an average degre¢&k) are such thatC,,ngom=<k)/(n tions tend to be connected to other nodes with many connec-

—-1) and the path length followg31]: tions. A network is said to show disassortative mixing if the
highly connected nodes tend to be connected to nodes with
Inn few connections. The Pearson correlation coefficierde-
Drandom™ m 2 finedin Ref.[37] measures the type of mixing wifh> 0 for

assortative mixing an#l <0 for disassortative mixing. Such
It is said that a network exhibits the small world phenom-correlation function can be defined as

enon wherD =D, ,nq0om [26]. The key difference between an 1 2

Erdds-Rényi graph and a real network is oft€& C,anqom c> jiki — {CE —(ji + ki)}

[18-2Q. e i i 2 @
(b) Heterogeneity A different type of characterization B 1 1 2!

of the statistical properties of a complex network is given by CE E(J'i2 +k?) - {CE E(ji + ki)J

the degree distributioR(k). Although the degree distribution ' :

of Erdos-Rényi graphs is Poisson, most complex networkgyherej; andk; are the degrees of the vertices at the ends of
are actually characterized by highly heterogeneous distribuheith edge, withi=1, ... m, c=1/m andm being the num-
tions: they can be described by a degree distribu®9k)  per of edges. Disassortative mixii§ <0) is shared by In-
~k7¢(klk;), where ¢(k/k;) introduces a cutoff at some ternet, World Wide Web, protein interactions, neural net-
characteristic scalk.. The simplest test of scale invariance is works, and food webs. In contrast, different kinds of social
thus performed by looking aP(k), the probability that a relationships are assortatiVE > 0) [37,38.
vertex has degrek, often obeying18—2Q
Pk ~ k7. IV. RESULTS

S o The first relevant result of our study is the presence of
The degree distribution is the only statistical measure whergmall world structure in the syntax graph. As shown by our
link direction will be considered. Therefore, input and OUtpUtanaIysis(see Table | for a summayysyntactic networks
degree will be also analyzed. _ ~ showD=3.5 degrees of separation. The valueDoaind C
~(0) Hierarchical organization Some scaling properties gre very similar for Czech and Romanian. A certain degree of
indicate the presence of hierarchical organization and modyzayiation for German can be attributed to the fact that it is the
larity in complex networks. When studying(k), i.e., the  most sparse data set. Thilsjis overestimated an@ is un-
clustering coefficient as a function of the degieecertain  gerestimated. Nonetheless, all networks hdveclose to

networks have been shown to behave 233 Diandom Which is the hallmark of the small world phenom-
—9 enon[26]. The fact thatC> C,4,40m indicates(Table ) that
C(k) ~ K™, ) the organization of syntactic networks strongly differs from

the Erdds-Rényi graphs. Additionally, we have also studied
e frequency of short path lengths for the three networks. As
hown in Fig. 2, the three distributions are actually very

with =1 [32]. Hierarchical patterns are specially important
here, since treelike structures derived from the analysis o

sentence structure sfrongly claim for a hierarchy. similar, thus suggesting a common pattern of organization.

h(bd'z Beltyve(a_nrl(re]sg gentralltgyr;|l_i rl’_lany rt(ra]al ntTtworIf(sth When we compare the observed distributions to the expecta-
exnibit scaiing In their degree distributions, the valué ot ey, , #0054 random Poissonian grapimdicated by filled
exponenty is not universal, the betweenness centrality dis

tribution is less varying34] although it fails to work as a triangles, they strongly differ. Although the average value is

work classificati thd@51. The bet ral the same, syntactic networks are much more narrowly dis-
network classitication me da5]. The betweenness cen '3 tributed. This was earlier observed in the analysis of World
ity of a vertexv, g(v), is a measure of the number of mini- Wide Web[39]

mum distance paths running throughwhich is defined as 1o gecond result concerns the presence of scaling in their

[34] degree distributions. The scaling exponents are summarized
- in Table I. For the undirected graph, we have found that the
g(v)=z M networks are scale free witly=2.2. Additionally, Fig. 3
iz G(i,]) showsP(k) for input and output degredsee Table | for the

specific values observiedWith the exception of the Czech
whereG,(i, ) is the number of shortest pathways between corpus, they display well-defined scale-free distributions.
andj running throughv and G(i,j)==, G,(i,j). Many real The Czech data set departs from the power lawkforl(’.
networks obey Thus highly connected words appear underestimated in this
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TABLE I. A summary of the basic features exhibited by the three syntactic dependency networks analyzedishéne. number of
vertices of the networksgk) is the average degre€,is the clustering coefficient, art,nqomis the value ofC of an Erdés-Rényi network.
D is the average minimum vertex-vertex distance 8yghqom iS the value ofD for an Erdds-Rényi grapH:. is the Pearson correlation
coefficient.y, vi,, andy,,; are, respectively, the exponents of the undirected degree distribution, input degree distribution, and output degree
distribution. », 6, and{ are, respectively, the exponents of the betweenness centrality distribution, the clustering vs degree, and the frequency
vs degregestimated within & k< 10%). Two further examples of complex networks are shown. One is a technological @ auiitware
network analyzed in Ref40]) and the second is a biological web: the protein interaction map of yé#stHereskewedndicates that the
distribution C(k) decays withk but not necessarily following a power law.

Czech German Romanian Software graph Protéome
n 33336 6789 5563 1993 1846
(ky 13.4 4.6 5.1 5.0 2.0
C 0.1 0.02 0.09 0.17 221072
Crandom 4x10°* 6x10° 9.2x107* 2x1073 1.5x 1073
D 35 3.8 3.4 4.85 7.14
Dandom 4 5.7 5.2 4.72 9.0
r -0.06 -0.18 -0.2 -0.08 -0.16
v 2.29+0.09 2.23+0.02 2.19+0.02 2.85+0.11 (R5-20)
Yin 1.99+0.01 2.37+£0.02 2.20+0.01
Yout 1.98+0.01 2.09+0.01 2.20+0.01
7 1.91+0.01 2.10+£0.01 2.10+0.01 2.0 2.2
0 Skewed Skewed Skewed Skewed 1.0
{ 1.03+£0.02 1.18+0.01 1.06+£0.02

®Data available from Ref50].

. . T . . IN-distribution OUT-distribution
case, consistent with the limitations of this corpus discussec 1¢° 10°
in Sec. IIl. These power laws fully confirm the presence of & | Czech B Czech
scaling at all levels of language organizatidj. a1 10
Complex networks display hierarchical structuj@?]. g 102 102
Figure 4 (left column shows the distribution of clustering = , “ ,
coefficientsC(k) against degree for the different corpora. We g 10° 10
observe skewed distributions Cﬁ(k) (WhICh are not power 10-4 vl vl ey 10-4 v ool i
10° 10! 100 100 10° 10' 10° 10°
05 10° 10’
2 German German
& 10" 10"
E ) 2
g 10 10
= -1.09
g 10° 10° .
4 4 ||||u,||] ||||u,|,|] L1l
10 0 1 2 10 0 1 2 3
10 10 10 10 10 10 10
10° .
2 Romanian
& 10"
2 2
% 10
g 10°
4 |||||u,|] |||||u,|] L 4 ||||u,|_|] ||||u,|_|] [IEETTI|
10 0 1 2 3 10 0 1 2 3
10 10 10 10 10 10 10 10
k k

FIG. 2. Shortest path length distributions for the three syntactic
networks analyzed here. The symbols correspond to Romanian FIG. 3. Left: Cumulative degree distributions for the three cor-
(circles, Czech(triangles, and Germarisquarey respectively. The pora. Here the proportion of vertices whose input and output de-
three distributions are peaked around an average distané® of grees arek is shown. The plots are computed using the cumulative
~ 3.5 degrees of separation. The expected distribution for a PoissdlistributionsP- (k) ==;~P(j). The arrows in the plots on top indi-
nian graph is also showfilled triangleg, using the same average cate the deviation from the scaling behavior in the Czech corpus
distance. (see Sec. V.
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FIG. 4. Left: C(k), the clustering coefficient vs degr&dor the
three corpora. In all three pictures the scaling relatgk) ~ k™ is
shown for comparison. Right: the correspondingmulative P(g),
the proportion of vertices whose betweenness centrality is

PHYSICAL REVIEW B9, 051915(2004)

function words(i.e., prepositions, articles, determiners, etc.
Disassortative mixingI'<0) tells us that function words
tend to avoid linking each other. This consistently explains
why the Czech corpus has a valuelotlearly greater than
that of the remaining languages. We already mentioned in
Sec. Il that most of the missing links in the Czech corpus are
those involving function words such as prepositions, which
are in turn the words responsible for a tendency to avoid
links among highly connected words.is thus overestimated

in the Czech network.

The scaling exponeny is somewhat variable, but the
scaling exponents obtained for the betweenness centrality
measure are more narrowly constrair@dble I). Although
again the Czech corpus deviates from the other ¢iwcan
expected way the two other corpora display a remarkable
similarity, P(g) distribution with=2.1. Is is worth mention-
ing that the fits are very accurate and give an exponent that
seems to be different from those reported in most complex
networks analyzed so far, typically e[2.0,2.9 [34]. The
behavior ofP(g) in Fig. 4 with a domain with scaling with
n=~2.1 for German and Romanian suggests a common pat-
tern is shared. The deviation of Cezch from the remaining
networks may be explained by its lack of hub words.

The behavior ofC(k) (Fig. 4, left) differs from the inde-
pendence of the vertex degree found in Poisson networks and

laws) as in other systems displaying hierarchical organizaCertain scale-free network modg33]. Such behavioC(k)

tion, such as the World Wide Webee Fig. &) in Ref.[33)]).

is also different from Eq(3) with #=1 that is clearly found

In order to measure to what extent word syntactic depenl Synonymy networks and suggested in actor netw{8$

dency degred is related to word frequencfy we calculated
the average value dfversusk (5) and found a power distri-
bution of the form

f~ K, (5)

where{~1 (Table ) indicates a linear relationshigig. 5).

The higher values of for German can be attributed to the
sparseness of the German corpus. Knowing that Zipf's la

states thaf2]
P(f) ~ ¢
with typically B~ 2, it follows
P(k) ~ K

with typically y' =2 if {=1. The estimated’ is close to the
values ofy in Table I.

and metabolic network§32]. In contrast, such behavior is
similar to that of the World Wide Web and Internet at the
autonomous system levi33]. The similar shape oE(k) in
the three syntactic dependency networks suggests a common
mechanism of hierarchical organization.

Besides word cooccurrence networks and the syntactic
dependency networks presented here, other types of linguis-

V&ic networks have been studied. Networks where nodes are

words or concepts and links are semantic relations are known
to showC> C,,nqom With d= d,anq0m @nd power distribution

of degrees with and exponemte [3,3.5. For Roget's The-
saurus, assortative mixiri@'=0.157 is found[20,10-13. In
contrast, syntactic dependency networks have
e[2.11,2.29 and disassortative mixingable I), suggesting
semantic networks are shaped by radically different factors.
Further work, including more precise measures, should be
carried out for semantic networks.

Highly connected words tend to be not interconnected

among them. Since degree and frequency are positively cor-
related[Eqg. (5) and Fig. 5] one easily concludes, as a visual

V. GLOBAL VERSUS SENTENCE-LEVEL PATTERNS
One may argue that the regularities encountered here are

examination will reveal, that the most connected words areot significant unless it is shown that they are not a trivial

FIG. 5. Average word fre-
quencyf of words having degree
k. Dashed lines indicate the slope
of f~k, in agreement with real
series.

107 ¢ 107 ¢ — 10™ ‘

P / A

107 ¢ 107 ¢ w"/ - 410 L W\w ]

10° ¢ 1 ; P M
L Tt b ]

10° = Czech 4 10 . German ? 107 = " Romanian

10_6 :—E; ./‘/.“..\_4..“..“1_3‘ HW‘—Z e —1‘ H“501 - _—4 -3 -2 —1 —010_5 -4‘ H/‘HA—GH WHJ—Z ‘....‘.\_1. = l:0
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TABLE 1l. Summary of global vs sentence network traits.
dgioban Cglobar @NdIgi0na are, respectively, the normalized average
vertex-vertex distance, the clustering coefficient, and the Pearsor 10°
correlation coefficient of a given global syntactic dependency net-
work. dsentence Csentence @Nd'sentencedre, respectively, the normal-
ized average vertex-vertex distance, the clustering coefficient, anc
the Pearson correlation coefficient of a given sentence syntactics
dependency networkx) stands for the average valuebver all
sentence syntactic dependency networks wheasedefined.

.
fe>)
.
Do
o

tribution
00

Cumulative dis
o

E_ _E D\“\Q
Czech Romanian German Al 1 40%k O\ _
107 E E \
dglobal 2.3x10* 1.3x10°3 1.2x10°3 g E Lo
{dsentence 0.88 0.75 0.83 10—4-. [ .?. ! 1o i
Cglobal 0.1 0.09 0.02 o 1 2 ?( 4 5 6 Py 10"
k
(Csentence 0 0 0
Lgiobal -0.06 -0.2 -0.18 FIG. 6. CumulativePggnenckk) for Czech (circles, German
(T'sentence -0.4 -0.51 -0.64 (squarey and Romaniar{diamond$. Here linear-log(a) and log-

log (b) plots have been used, indicating an exponential-like decay.
PsentenctK) is the probability that a word has degrken the syn-
consequence of some pattern already present in the syntactgstic dependency structure of a sentence. NoticeRhét) is less
structure of isolated sentences. In order to dismiss such po#an 1 for Czech and German since the sentence dependency trees
sibility, we define dyopar @Nd dsenrence @S the normalized  are not comple_te. IPsentencewas a power function, a_straight line
vertex-vertex distance of the global dependency net\Nork§h0“|d appear in log-log scale. The German corpus is so sparse that

and a sentence dependency network. The normalized averalje @PPearance is dubious. Statistics are showrLforthe typical
vertex-vertex distance is defined here as entence length. We haug€ =12 for Czech and German and

=6 for Romanian. The average valueRy,enctk) for all sentence
d D-1 lengths is not used since it can be misleadind28 shows in a
= ) similar context.
Dmax—1

whereD,,,=n+1/3, themaximum distance of a connected patterns rely on precise measures and have been shown to be

network withn nodes[42]. Similarly, we defineCyqp, and ratBerdhoTogde_neotL;‘s. . ¢ tax impli derstand
CeentencdOr the clustering coefficient anlyopa aNATsenience - 1her Sonaind The Origins of syntax Imples undetsand-
for the Pearson correlation coefficient. The clustering coeffi- ' what is e_ssentlal_ln human_language. Recent studies h_ave

: . ) . explored this question by using mathematical models in-
cient of whatever syntactic dependency Structur€gence

- ) ) . ! ..spired by evolutionary dynamic§43—-45. However, the
=0, since the syntactic ldependency structure is defined wit tudy of the origins of language is usually dissociated from
no cycles [21]. We find Cgyopa> Csentence @Nd dgjopal

o the quantitative analysis of real syntactic structures. The sta-
<sentence aNd dgionar Significantly smaller thandsentence  tistical pattern reported here could serve as validation of ex-

(Table I). T'sentencelS clearly different thagopa, @lthough  jstent formal approaches to the origins of syntax. What is
disassortative mixing is found in both cases. reported here is specially suitable for evolutionary ap-
Besides, one may think that the global degree distributiorproaches to the origins of language, since they reduce syntax
is scale-free because the degree distribution of the syntactte word pairwise relationships.
dependency structure of a sentence is already scale-free. Linguists can decide not to consider certain word types as
PsentenctK), the probability that the degree of a word in a vertices in the syntactic dependency structure. For instance,
sentence ik is not a power function ok (Fig. 6). Actually,  annotators in the Czech corpus decided that prepositions are
the data point suggests an exponential fit. To sum up, weot vertices. This way, we have seen that different statistical
conclude that scaling iR(k), small world with significantly ~regularities are distorted, e.g., disassortative mixing almost
high C, and the global value df are features emerging at the disappears and degree distributions are truncated with regard
macroscopic scale. The global patterns discussed above dfethe remaining corpora. If the degree distribution is trun-
emergent features that show up at the global level. cated, describing degree distributions requires more complex
functions. If simplicity is a desirable property, syntactic de-
scriptions should consider prepositions and similar word
V1. DISCUSSION types as words in the strict sense. Annotators should be
aware of the consequences of their decision about the local
We have presented a study of the statistical patterns aftructure of sentences with regard to global statistical pat-
organization displayed by three different corpora in this paterns.
per. The study reveals that, as it occurs at other levels of Syntactic dependency networks do not imply recursion,
language organizatiofil0-13, scaling is widespread. The which is regarded as a crucial trait of the language faculty
analysis shows that syntax is a small world and suggest]. Nonetheless, different nontrivial traits that recursion
other potentially broad patterns for languages on Earth. Sucheeds have been quantified:

051915-6



PATTERNS IN SYNTACTIC DEPENDENCY NETWORKS PHYSICAL REVIEW B9, 051915(2004)

(1) Disassortative mixing tells us that labor is divided in pects for future deeper and broader studies. The present work
human language. Linking words tend to avoid connectionss a starting point for finding linguistic universals from the
among them. point of view of complex networks. The patterns presented

(2) Hierarchical organization tells us that syntactic de-here are candidates for linguistic universals. More empirical
pendency networks not only define the syntactically correcand theoretical work is needed to establish such syntactic
links (if certain context freedom is assumdalit also a top- dependency universals.
down hierarchical organization that is the basis of phrase-
structure formalism$46].. N ACKNOWLEDGMENTS

(3) Small worldness is a necessary condition for recur-
sion. If mental navigatioff13] in the syntactic dependency =~ We thank Ludmila Uhkova for providing us with the
structure cannot be performed reasonably fast, recursion canpportunity to analyze the Czech corpus for the present
not take place. In this context, pressures for fast vocal comstudy. R.F.C. thanks a grant from the Generalitat de Catalu-
munication are known to exi§t7,49. nya (Grant No. FI/2000-00393 This work has been also

Regardless of the heterogeneity of the annotation criterissupported by Grant No. BFM 2001-2154 and by the Santa Fe
common patterns have appeared, suggesting interesting prdsstitute (RVS).

[1] D. Crystal, The Cambridge Encyclopedia of Langua@&am- [21] I. Mel¢uk, Dependency Syntax: Theory and Practi@JNY,
bridge University Press, Cambridge, UK, 1997 New York, 1988.

[2] G. K. Zipf, Human Behaviour and the Principle of Least Ef- [22] R. HudsonWord GrammarnBlackwell, Oxford, 1984
fort. An introduction to Human Ecologylst ed.(Addison- [23] D. Sleator and D. Temperley, Carnegie Mellon University

Wesley, Cambridge, MA, 1949reprinted by(Hafner, New Technical Report No. CMU-CS-91-196, 19@inpublishegl
York, 1972. [24] 1. Mel¢uk, in International Encyclopedia of the Social and
[3] R. Kéhler, J. Quantitative Linguistic§, 46 (1999. Behavioral Sciencesdited by N. J. Smelser and P. B. Baltes
[4] R. Kéhler and G. Altmann, J. Quantitative Linguisti@s 189 (Pergamon, Oxford, 2002pp. 8336—8344.
(2000. [25] B. Bollobas,Modern Graph TheoryGraduate Texts in Math-
[5] L. Hrebitek, Quantitative Linguisticsedited by G. Altmann, ematics Vol. 184Springer, New York, 1998
R. Kohler, and B. RiegefWissenschaftlicher Verlag, Trier, [26] D. J. Watts and S. H. Strogatz, Natufeondon 393 440
1995, Vol. 56. (1998.
[6] M. D. Hauser, N. Chomsky, and W. T. Fitch, Scien268 [27] A.-L. Barabasi and R. Albert, Scienc286, 509 (1999.
1569 (2002. [28] J. UriagerekaRhyme and Reason. An Introduction to Minimal-
[7] T. W. Deacon;The Symbolic Species: The Co-evolution of Lan- ist Syntax(MIT Press, Cambridge, MA, 1998
guage and the BraiiiNorton, New York, 199Y. [29] L. Uhlirova, I. Nebeska, and J. Kralik, i@OLING 82, Pro-
[8] M. Donald, Origins of the modern mingCambridge Univer- ceedings of the Ninth International Conference on Computa-
sity Press, Cambridge, MA, 1991 tional Linguistics, Praguge edited by J. Horecky(North-
[9] M. Donald, in Approaches to the Evolution of Language: So- Holland, Amsterdam, 1982pp. 391-396.
cial and Cognitive Base®dited by J. R. Hurford, M. Studdert- [30] M. T&Sitelova,Kvantitativni Charakteristiky SafasnéCestini
Kennedy, and C. Knigh¢Cambridge University Press, Cam- [Quantitative Characteristics of Present-day Czecdf#fca-
bridge, 1998, pp. 44-67. demia, Praha, 1985p. 249s.
[10] A. E. Motter, A. P. S. de Moura, Y.-C. Lai, and P. Dasgupta, [31] M. E. J. Newman, J. Stat. Phy401, 819(2000.
Phys. Rev. E65, 065102(2002). [32] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and
[11] M. Sigman and G. A. Cecchi, Proc. Natl. Acad. Sci. U.S.A. A.-L. Barabasi, Scienc®97, 1551(2002.
99, 1742(2002. [33] E. Ravasz and A.-L. Barabasi, Phys. Rev. &, 026112
[12] M. Steyvers and J. Tenenbaum, e-print cond-mat/0110012. (2002.
[13] O. Kinouchi, A. S. Martinez, G. F. Lima, G. M. Lourenco, and [34] K.-I. Goh, E. Oh, H. Jeong, B. Kahng, and D. Kim, Proc. Natl.
S. Risau-Gusman, Physica &15 665 (2002. Acad. Sci. U.S.A.99, 12583(2002.
[14] R. Ferrer i Cancho and R. V. Solé, Proc. R. Soc. London, Serf35] M. Barthélemy, Phys. Rev. Let91, 189803(2003.
B 268 2261(200). [36] U. Brandes, J. Math. SocioRk5, 163 (2002).
[15] S. N. Dorogovtsev and J. F. F. Mendes, Proc. R. Soc. London37] M. E. J. Newman, Phys. Rev. LetR9, 208701(2002.
Ser. B 268 2603(2001). [38] M. E. J. Newman, Phys. Rev. 7, 026126(2003.
[16] R. Ferrer i Canchgunpublishegl [39] L. A. Adamic, Proceedings of the ECDL'99 Conference, LNCS
[17] N. Chomsky, Syntactic StructuregMouton, S-Gravenhage, 1696 (Springer, Berlin, 199Ppp. 443-452.
1957%). [40] S. Valverde, R. Ferrer i Cancho, and R. V. Solé, Europhys.
[18] A.-L. Barabasi and R. Albert, Rev. Mod. Phyg4, 47 (2002. Lett. 60, 512(2002.
[19] S. N. Dorogovtsev and J. F. F. Mendes, Adv. Ph§$, 1079 [41] H. Jeong, S. Mason, A.-L. Barabasi, and Z. N. Oltvai, Nature
(2002. (London 411, 41 (2001).
[20] M. E. J. Newman, SIAM Rev45, 167 (2003. [42] R. Ferrer i Cancho and R. V. Solé, 8tatistical Mechanics of

051915-7



CANCHO, SOLE, AND KOHLER PHYSICAL REVIEW E659, 051915(2004

Complex Networksedited by R. Pastor-Satorras, J. M. Rubi, Press, 199D

and A. Diaz-Guilear, Lecture Notes in Physics Vol. 625 [47] J. A. Hawkins, inlnnateness and Function in Language Uni-

(Springer, Berlin, 2008 pp. 114-125. versals edited by J. A. Hawkins and M. Gell-Marfddison-
[43] M. A. Nowak and D. C. Krakauer, Proc. Natl. Acad. Sci. Wesley, Redwood, CA, 1992pp. 87—120.

U.S.A. 96, 8028(1999.

) [48] P. Lieberman,Uniquely Human: The Evolution of Speech,
[44] M. A. Nowak, J. B. Plotkin, and V. A. Jansen, Nature

(Londor) 404, 495 (2000 Thought and Selfless BehavigHarvard University Press,
[45] M. A. Nowak, Philos. Trans. R. Soc. London, Ser. 355 Cambridge, MA, 1991 ) .
1615(2000 [49] See http://phobos.cs.unibuc.ro/roric/DGA/dga.html

[46] D. Bickerton, Language and SpecietChicago University [50] http://www.nd.edu*networks/database/protein/bo.dat.gz

051915-8



