Intelligent Assistance for Data Pre-processing

Besim Bilalli**, Alberto Abell6®, Tomas Aluja-Banet?, Robert Wrembel®

“Universitat Politécnica de Catalunya, BarcelonaTech, Barcelona, Spain
b Poznan University of Technology, Poznan, Poland

Abstract

A data mining algorithm may perform differently on datasets with different characteristics, e.g., it might perform
better on a dataset with continuous attributes rather than with categorical attributes, or the other way around. Typ-
ically, a dataset needs to be pre-processed before being mined. Taking into account all the possible pre-processing
operators, there exists a staggeringly large number of alternatives. As a consequence, non-experienced users become
overwhelmed with pre-processing alternatives. In this paper, we show that the problem can be addressed by automat-
ing the pre-processing with the support of meta-learning. To this end, we analyzed a wide range of data pre-processing
techniques and a set of classification algorithms. For each classification algorithm that we consider and a given dataset,
we are able to automatically suggest the transformations that improve the quality of the results of the algorithm on the
dataset. Our approach will help non-expert users to more effectively identify the transformations appropriate to their
applications, and hence to achieve improved results.

Keywords: Data pre-processing, Data mining, Meta-learning

1. Introduction In this paper, we propose a solution to this problem.
We aim at assisting the user by recommending trans-
formations i.e., pre-processing operators, that will ulti-
mately improve the result of the analysis, that usually
happens to be a classification task. In order to do that,
we make use of the concept of meta-learning, which
consists of two phases, such as learning and predicting.
For a given dataset and a selected classification algo-
rithm we are able to suggest transformations that once
applied yield an improved classification performance
(e.g., predictive accuracy).

Contributions. The main contributions of this paper
can be summarized as follows:

Recently, more and more non-experts are using data
mining tools to perform data analysis. These users
require off the shelf solutions that will assist them
throughout the process. The process itself, a.k.a. knowl-
edge discovery, consists of several steps, such as data
selection, data pre-processing, data mining, and evalu-
ation or interpretation [1], see Figure 1. One of the most
important steps of this process is the data pre-processing
step. Data pre-processing is so important that usually
50-80% of analysis time is spent on it [2]. The rea-
son for this, is that, a properly prepared/pre-processed
dataset yields better results. One can apply the best
learning algorithm, but if the data is not well-prepared,
the algorithm may perform poorly (e.g., bad predictive
accuracy) [3].

Since data pre-processing is so important and typi-
cally it is performed by a non expert-user, there is a need
to support the user by means of automating the process
as much as possible.

o We leverage ideas from meta-learning to present a
technique for ranking pre-processing operators de-
pending on their impact on the final result of data
analysis.

e We show the benefits of our approach by imple-
menting a tool that is capable of automatically rec-
ommending pre-processing operators to the user.

e We show experiments that demonstrate the effec-

*Corresponding author . K
tiveness and quality of our approach.

Email addresses: bbilalli@essi.upc.edu (Besim Bilalli),
aabello@essi.upc.edu (Alberto Abelld),

tomas.aluja@upc.edu (Tomas Aluja-Banet),
robert.wrembel@cs.put.poznan.pl (Robert Wrembel)

Preprint submitted to Computer Standards and Interfaces

The rest of the paper is organized as follows: the re-
lated work is discussed in Section 2. An overview of

June 1, 2017

Data
Pre-processing

Data
Selection

Interpretation/

Data Mining Evaluation

==U=#=1/

Data source Target data

Pre-processed

data

Models/

Knowledge
Patterns

Figure 1: Data Analysis/Knowledge Discovery Process, adapted from [1]

data pre-processing, together with its benefits is given in
Section 3. Our proposed solution is formally defined in
Section 4. A brief look at the materialization of our pro-
posed approach in terms of a prototype solution is given
in Section 5. The results of the experimental evaluations
are reported in Section 6. Finally, Section 7 summarizes
our work and outlines some future work.

2. Related Work

A lot of research has been conducted in terms of pro-
viding user support for different steps of data analysis.
The focus however, has usually been on the data mining
step, and data pre-processing has generally been over-
looked.

Weka [4], an open source tool for data mining, allows
users to apply pre-processing algorithms but it does
not provide assistance in terms of which one to apply.
However, since different data mining algorithms have
different requirements regarding the dataset, some pre-
processing is applied by default inside some of the algo-
rithms. This pre-processing is usually a simple transfor-
mation that does not aim at improving the performance
of an algorithm but it aims at transforming the dataset
so that it can fit to the data mining algorithm. Further-
more, note that only few algorithm implementations in
Weka contain these kind of on the fly transformations.

In AutoWeka [5], user assistance is provided, how-
ever, only with regard to the data mining step. That is,
the system suggests the best learning algorithm to use
with it’s proper parametrisation without considering the
pre-processing step. Hence, the user needs to deal with
the pre-processing on his own.

In AmazonML!, the system recommends an initial
recipe for pre-processing, which is prepared taking into
consideration the attributes of the dataset, including
the response (i.e., the attribute to be predicted). The
recipes provided, however, are pre-formatted instruc-
tions for common transformations and do not guarantee

! https://aws.amazon.com/machine-learning

improvements of the final result. Hence, they are rec-
ommended only because they are applicable to the par-
ticular dataset, whereas we are interested in performing
pre-processing with the only goal of improving the final
result of the analysis.

eIDA [6], which is a product of the eLico® project,
aims at autonomously constructing workflows that are
combinations of pre-processing and data mining algo-
rithms. In order to do that, the problem of workflow
construction is viewed as a planning problem, in which
a plan must be built consisting of operators that trans-
form the initial data into models or predictions. In order
to find the plans, an exhaustive combination of all ap-
plicable transformations with all applicable algorithms
is performed. Taking into consideration the number of
algorithms (e.g., hundreds in RapidMiner? — the project
is built on top of RapidMiner), the search space of the
problem is unfeasible to compute, hence, the optimal
solution may not be found. Moreover, in this approach,
independent support, exclusively for pre-processing is
not provided. As a matter of fact, a take it all, or leave
it solution is given. In contrast, we focus only on pre-
processing, which not only reduces the search space but
at the same time allows independent support, hence, the
data mining algorithm can be chosen at will.

There exist some other systems [7, 8, 9], however,
they also focus on providing support for the data mining
step only.

3. Overview on Data Pre-processing

In this section we give a general overview of the pre-
processing step in data analysis by first explaining the
different existing pre-processing operators/algorithms.
Next, we examine and discuss the impact of data pre-
processing operators on the final result of data analysis.

2http://www.e—lico.eu
3http://rapidminer.com

Transformation Technique Attributes Input Type Output Type
Discretization Supervised Local Continuous Categorical
Discretization Unsupervised Local Continuous Categorical
Nominal to Binary Supervised Global Categorical Continuous
Nominal to Binary Unsupervised Local Categorical Continuous
Normalization Unsupervised Global Continuous Continuous
Standardization Unsupervised Global Continuous Continuous
Replace Miss. Val. Unsupervised Global Continuous Continuous
Replace Miss. Val. Unsupervised ~ Global Categorical Categorical
Principal Components Unsupervised Global Continuous Continuous

Table 1: List of Transformations (Data Pre-processing Operators)

3.1. Data Pre-processing Operators

Traditionally, data mining has been performed on
transactional data consisting of continuous attributes.
The continuous scale of these attributes has enabled
the use of conventional statistical methods, such as lo-
gistic regression. However, the advances in computa-
tional and storage capacity have enabled the accumula-
tion of ordinal, nominal, and binary data, giving rise to
datasets of heterogeneous scales. This has induced: 1)
advances in the application of data driven methods (e.g.,
decision trees, bayesian algorithms, nearest neighbours,
support vector machines, etc.) capable of mining large
datasets, 2) challenges in transforming attributes of dif-
ferent scales into mathematically feasible and compu-
tationally suitable formats [3]. Indeed, each attribute
may require special treatment, such as discretization of
numerical attributes, rescaling of ordinal attributes and
encoding of categorical ones. Hence, different transfor-
mations may be required.

For the sake of this paper, we consider the transfor-
mations shown in Table 1. They are available in the
form of open source packages in different data mining
tools (e.g., Weka, RapidMiner). We aimed at selecting
some of the most important transformations that cover a
wide range of data pre-processing tasks, which are dis-
tinguished as data reduction and data projection. The
purpose of data reduction is to decrease the size of the
dataset (e.g., instances selection or feature selection).
The purpose of data projection is to alter the represen-
tation of the dataset (e.g., mapping continuous values to
categories or encoding nominal attributes) [10].

In Table 1, a transformation is described in terms of:
1) the Technique it uses, which can be Supervised
— the algorithm knows the class of each instance and
Unsupervised — the algorithm is not aware of the
class, 2) the Attributes it uses, which can be Global
— applied to all compatible attributes and Local —

applied to specific compatible attributes, 3) the Input
Type, which denotes the compatible attribute type for
a given transformation, which can be Continuous — it
represents measurements on some continuous scale, or
Categorical — it represents information about some
categorical or discrete characteristics, 4) the Output
Type, which denotes the type of the attribute after the
transformation and it can similarly be Continuous or
Categorical.

3.2. Impact of Pre-processing

In the following we devise a brief example that re-
veals the importance of data pre-processing for a pre-
diction (e.g., classification) problem. For more in depth
analysis of the impact of pre-processing we refer the
reader to [3, 11].

Let us suppose that a user wants to apply the
Logistic algorithm to the Automobile* dataset. The
summary of Automobile is given in Table 2. This
dataset specifies autos in terms of their various char-
acteristics like fuel type, aspiration, num-of-doors,
engine-size, etc. The response attribute (i.e., class)

4https://archive.ics.uci.edu/ml/support/Automobile

Metadata Value
Instances 205
Attributes 26
Classes 2
Categorical Atts. 11
Continuous Atts. 15
Miss. Values 59

Table 2: Summary of Automobile

Transformation Attribute PA
Unsup. Discretiz. 1,9,10,11,12,13 0.81
Unsup. Discretiz. 1,9.10 0.80

All Cont. Atts. 0.75
All Cat. Atts. 0.73
All Cont. Atts. 0.71

Unsup. Discretiz.

Sup. Nom. To Bin.

Unsup. Normaliz.

Table 3: The Impact of Transformations on the Automobile Dataset

is symboling. Symboling is a categorical attribute
that indicates the insurance risk rate, and its range is:
-3,-2,-1,0,1,2,3. Value 3 indicates that the auto is
risky, -3 that it is pretty safe. The problem is to build a
model that will predict the insurance risk rate for a new
auto.

Now, if Logistic is applied to the original non-
transformed dataset, a predictive accuracy of 0.71 is
obtained with a 10 fold cross-validation. Note that for
this run the Weka implementation of Logistic with a
default parametrization is used. On the other hand, if
some pre-processing is first performed on Automobile
and then the data mining algorithm is applied, the re-
sults shown in Table 3 are obtained. In Table 3, the
first column denotes the transformation applied, the sec-
ond denotes the index values of the attributes to which
the transformation is applied and the third is the pre-
dictive accuracy (PA) obtained after the Logistic al-
gorithm is applied on the transformed dataset. Note
that for instance, if the transformation Unsupervised
Discretization (with default parametrization) is ap-
plied to attributes {1,9,10,11,12,13}, an improve-
ment of 14% is obtained in terms of the predictive ac-
curacy. A non-experienced user would not be aware
of that. Hence, a proper recommendation of transfor-
mations would ease user’s task and at the same time it
would improve the final result.

Indeed, to alleviate this problem, in the next section
we propose an approach that leverages meta-learning to
recommend transformations that ultimately improve the
result of the data analysis.

4. Meta-learning for Data Pre-processing

Meta-learning is a general process used for predict-
ing the performance (e.g., predictive accuracy) of an al-
gorithm on a given dataset. It is a method that aims at
finding relationships between dataset characteristics and
data mining algorithms [12].

However, taking into consideration the above men-
tioned scenario where a user needs to be provided with

Metadata

Establish
Meta-learning
space

Meta-learner

Perform

. Predict
learning

Figure 2: Phases of the Ranking Process

some transformations to be applied, we propose to use
meta-learning in order to find relationships between
transformations and data mining algorithms.

This can be done, since transformations, through the
changes they cause in the dataset characteristics, they
impact the results of the data mining algorithms. Us-
ing meta-learning, we can learn this impact and we can
rank transformations according to their capability of
improving the final result of the data mining algorithm.

The process of ranking consists of three phases, see
Figure 2. First, a meta-learning space is established us-
ing metadata. The metadata consist of dataset character-
istics along with some performance measures for data
mining algorithms on those particular datasets. Then,
the meta-learning phase generates a model (i.e., predic-
tive meta-model) which defines the area of competence
of the data mining algorithm [7]. Finally, when a trans-
formed dataset (i.e., a transformation was applied on the
dataset) arrives, the dataset characteristics are extracted
and fed to the predictive meta-model, which predicts the
performance of the algorithm on the transformed ver-
sion of the dataset. At this point, we are able to ob-
tain predictions for different transformed datasets (e.g.,
different transformations applied to the same dataset).
By comparing the obtained predictions for the differ-
ent transformations, we are able to rank the transforma-
tions depending on their predicted impact on the given
dataset. This concludes the prediction phase.

For the sake of concreteness, let us assume that, the
user wants to apply Logisitc Regression to a dataset, to
deal with a classification problem at hand. Our system,
firstly, takes the dataset and applies several transforma-
tions to it (i.e., one at a time to avoid a combinatorial
problem). As a result, several transformed versions of
the dataset are obtained. Next, the system extracts the
necessary meta-features (see Section 4.1.1) from all the
transformed versions of the dataset and uses them as in-
put to the predictive meta-model which is specifically
built for the Logistic Regression algorithm. The meta-
model is built by training a meta-learner (e.g., Ran-
dom Forest or any other regression algorithm) on exist-
ing/historical metadata consisting of dataset character-
istics and a performance measure (e.g., predictive ac-

curacy) of Logistic Regression on the datasets. This
meta-model is used to produce a prediction for each
transformed dataset. Informally, this is what the system
thinks will be the result (i.e., predictive accuracy) of ap-
plying Logistic Regression on each transformed dataset.
Thus, these values are used to rank the transformations.
That is, if the prediction is higher the higher will stand
the transformation — that caused this prediction, in the
ranking. The top ranked transformations will be recom-
mended to the user.

Two necessary ingredients for performing the afore-
mentioned process are the metadata and the meta-
learner. In the following we give details on each one
of them.

4.1. Metadata.

In our previous work [13], we studied and classi-
fied all types of metadata that can be used by systems
that intelligently support the user during the process
of data analysis. These systems may vary in terms of
the methodology they follow (e.g., case based reason-
ing, planning systems, etc.) [14] and may use different
metadata. When it comes to meta-learning however,
metadata consist of: 1) dataset characteristics — meta-
features, and 2) a performance measure for the algo-
rithms considered — meta-response. In statistics, the
former are called predictors and the latter is called re-
sponse.

4.1.1. Meta-features

Meta-features characterize a dataset, and two main
classes have been proposed :

o General measures: include general information re-
lated to the dataset at hand. To a certain extent they
are conceived to measure the complexity of the un-
derlying problem. Some of them are: the number
of instances, number of attributes, dataset dimen-
sionality, ratio of missing values, etc.

e Statistical and information-theoretic measures:
describe attribute statistics and class distributions
of a dataset sample. They include different sum-
mary statistics per attribute like mean, standard de-
viation, class entropy, etc.

In the literature, other meta-features have also been
proposed, such as Landmarking and model-based [15,
16] measures. These measures are not classical dataset
characteristics, but involve performing simple data min-
ing algorithms on datasets and then use these as values

of the features. We do not consider them as dataset char-
acteristics and, since in big data settings, they may in-
troduce significant computational overhead, they do not
participate as meta-features in our experiments. Yet,
various systems may use various meta-features for the
construction of the meta-space. The meta-features we
specifically consider are shown in Table 4. These are the
set of meta-features extracted in OpenML [17], which is
an open science platform developed with the aim of al-
lowing researchers to share their datasets, implementa-
tions and experiments (machine learning and data min-
ing) in such a way that they can easily be found and
reused by others. OpenML is the biggest source of data
and metadata for advancing meta-learning studies.

Column Type in Table 4, specifies the type of the
meta-feature, and it can be Continuous — the meta-
feature can be extracted only from datasets that con-
tain attributes of continuous type, Categorical — the
meta-feature can be extracted only from datasets that
contain attributes of categorical type, Generic — the
meta-feature can be extracted from any dataset, regard-
less of the types of it’s attributes. Furthermore, in Ta-
ble 4, column Modifiable indicates whether the meta-
features are modifiable through the transformations we
use, shown in Table 1. If meta-features are not modi-
fiable/transformable, we do not consider them, because
they remain constant and they do not reflect the impact
of transformations.

Yet, note that, in the set of meta-features considered
(excluding the non-modifiable ones), not all the meta-
features are independent or non-correlated. In order to
remedy this, we perform feature extraction and then fea-
ture selection on the original/initial set of meta-features.
The method is depicted in Figure 3 and consists of two
steps, which are explained next.

Feature Extraction. As previously mentioned, some
of the meta-features considered may be very correlated
or even redundant (e.g., we calculated the correlation
between Noise to Signal Ratio and Equivalent Number
of Attributes on a sample with 570 datasets, and they
appeared to be correlated with a Pearson coefficient of
0.85)°. As a matter of fact, performing meta-learning on
top of correlated meta-features will not lead to a good
performance of the meta-learning system. Therefore, in
order to remove the dependency and extract the most
important information from the meta-features, we first
perform a Principal Component Analysis (PCA) [18] to
the original set of meta-features. PCA is the predom-
inant linear dimensionality reduction technique, and it

Shttp://www.openml.org/search?type=measure

No Name Type Modifiable
1.2 [Number|Percentage] of Continuous Attributes Continuous Yes
3..6 Min[Means|Std|Kurtosis|Skewness] of Continuous Attributes Continuous Yes
7..10 Mean[Means|Std|Kurtosis|Skewness] of Continuous Attributes ~ Continuous Yes
11..14 Max[Means|Std|Kurtosis|Skewness] of Continuous Attributes Continuous Yes
15..17 Quartile [1]2|3] of Means of Continuous Attributes Continuous Yes
18..20 Quartile [1]2|3] of Std of Continuous Attributes Continuous Yes
21..23 Quartile [1]2]3] of Kurtosis of Continuous Attributes Continuous Yes
24.26 Quartile [1]2|3] of Skewness of Continuous Attributes Continuous Yes
27 Number of Categorical Attributes Categorical Yes
28 Number of Binary Attributes Categorical Yes
29 Percentage of Categorical Attributes Categorical Yes
30 Percentage of Binary Attributes Categorical Yes
31..33 [Min|Mean|Max] Attribute Entropy Categorical Yes
34..36 Quartile [1]2|3] Attribute Entropy Categorical Yes
37..39 [Min|Mean|Max] Mutual Information Categorical Yes
40..42 Quartile [1]2|3] Mutual Information Categorical Yes
43 Equivalent Number of Attributes Categorical Yes
44 Noise to Signal Ratio Categorical Yes
45.48 [Min|Mean|Max|Std] Attribute Distinct Values Categorical Yes
49 Number of Instances Generic Yes
50 Number of Attributes Generic Yes
51 Dimensionality Generic Yes
52,53 [Number|Percentage] of Missing Values Generic Yes
54,55 [Number|Percentage] of Instances with Missing Values Generic Yes
56 Number of Classes Generic No
57 Class Entropy Generic No
58,59 [Minority|Majority] Class Size Generic No
60,61 [Minority|Majority] Class Percentage Generic No

Table 4: Meta-features (Dataset Characteristics)

has been widely applied on datasets in all scientific do-
mains, from the social sciences and economics, to biol-
ogy and chemistry. In short, PCA seeks to reduce the
dimension of a large number of directly observable fea-
tures into a smaller set of indirectly observable features
— latent features. More precisely, the goals [19] of PCA
are, to:

e extract the most important information from the
dataset,

o compress the size of the dataset by keeping only
this important information,

o explain and simplify the description of the dataset,
and

e analyze the structure of observations (instances)
and variables.

In order to achieve these goals, PCA computes new
features, which are called principal components. These

Feature extraction

Meta features)

PCA + Orthogonal rotation

Latent features)

Feature selection

Latent features + Alg. performance)

Partial correlations]

Partial correlation graph,
ranking of latent features

Figure 3: Feature Extraction and Feature Selection

features are obtained as linear combinations of the orig-
inal features. The first principle component is required
to have the largest possible variance to “explain” the
largest part of the variance of the dataset (i.e., meta-
dataset). Then, the rest of the components are com-
puted under the following constraints: 1) each compo-
nent needs to be orthogonal to the previous one, and
2) each component needs to have the largest possible
variance. The values of these new features are called
factor scores and are geometrically interpreted as the
projections of the instances onto the principal compo-
nents. PCA finds a subspace of size p, where the fea-
tures are clustered depending on their projections into
the factor space. The feature clusters actually form
latent-features. A set of p components p < n is then
selected. Each component represents a certain part of
the total variance of the dataset. We retain all the com-
ponents (latent features) that cumulatively represent at
least 90% of the total variance.

Next, to facilitate interpretation, after having deter-
mined the number of components, we perform a rotation
of the components retained. Two types of rotations are
mainly used: orthogonal — the new axes are required to
be orthogonal to each other and oblique — the new axes
are not required to be orthogonal. Note that, the part of
variance explained by the total subspace after rotation
is the same as it was before the rotation. In this paper,
orthogonal rotation or more precisely VARIMAX [20]
method is chosen to perform a transformation of the
data. VARIMAX method assumes that a simple solu-
tion means that each component has a small number of
large loadings, and a large number of zero loadings. Af-
ter the rotation, the set of components — latent features,
are independent, more interpretable, and they, of course,

are defined by their respective meta-features — the ones
that are most correlated (a latent feature is calculated as
a mean of its corresponding meta-features).

As a final remark, PCA followed by VARIMAX ro-

tation removes the dependency/correlation between fea-
tures, however, it does not guarantee that all the latent-
features retained are equally relevant for predicting the
performance of a data mining algorithm. Thus, in order
to retain only the most relevant latent features (i.e., the
ones that have higher predictive power), in the second
step (see Figure 3), we perform latent-feature selection,
which is explained next.
Feature selection. The first step in Figure 3, produces a
set of candidate latent-features for meta-learning. How-
ever, it does not provide a measure on the relevance of
the latent-features. The question is: "How relevant is
a latent-feature for predicting the response?”. Indeed,
we are interested on the subset of latent-features that are
the most relevant for predicting the response. In order
to find and retain only the most relevant latent-features,
in this step, first, an additional feature (i.e., response)
is attached to the set of latent-features. The additional
feature can be any of the performance measures (e.g.,
predictive accuracy, see Section 4.1.2) of the algorithms
evaluated over the datasets (the instances of the meta-
dataset).

Next, we calculate the partial correlation [21] be-
tween the features. This allows us to generate partial
correlation graphs that represent the relationships and
the strengths of the relationships between features. Our
focus is only on the relationships between the latent-
features (extracted in the first step) and the response.
That is, we measure how relevant are the latent-features
for predicting the response. The graph allows us to visu-
alize only the latent-features that have a direct link with
the response. Furthermore, these links have a strength
which is measured through the significance value (i.e.,
p-value). We consider as significant only the links with
a value less than or equal to 0.05 (p-value < 0.05).
Hence, at the end, only a subset of latent-features is re-
tained. Given the fact that, latent-features are defined
through the original meta-features, as explained in the
previous section, ultimately this step allows us to re-
tain a subset of the original meta-features. Hence, in
the whole process then, we use only the meta-features
identified in this step. A schematic representation of a
partial correlation graph is shown in Figure 4.

4.1.2. Performance measures (meta-response)
Performance measures are different outputs that can

be obtained after the evaluation of data mining algo-

rithms. Since we are dealing with classification prob-

Latent feature 1
(m56,m57,m61)

.. Latent feature 2
Le="T (m4,m15,m18)

Latent feature 3 Performance Measure

(m6,m13,m14)

Latent feature 5
(m37,m38,m39,m40,m41,m42)
Latent feature 4
(m31,m32,m34,m35)
Figure 4: Schematic representation of a partial correlation graph for
Decision Tree algorithm and Predictive Accuracy as a performance
measure. The thickness of the edges denotes the significance of the
relationship between two nodes. The dashed edges denote negative

correlation. m[n] denotes a meta-feature and corresponds to the meta-
features in Table 4

lems, and hence the algorithms we consider are of clas-
sification type, the performance is usually measured in
terms of predictive accuracy, precision, recall or area
under the roc curve (AUC). Moreover, classification
algorithms are usually evaluated using 10-fold cross-
validation [22].

In Table 5, formulas for calculating these measures
are given. Briefly, Accuracy is a measure of the over-
all effectiveness of a classifier. Precision is the class
agreement of the instance labels with the positive labels
given by the classifer. Recall measures the effectiveness
of a classifier to identify positive labels. Finally, one
can think of AUC as the classifier’s ability to avoid false
classification. For more details regarding these mea-
sures and how they extend to multi-class classification
problems we refer the reader to [23].

4.2. Meta-learner

Having stored an algorithm performance characteris-
tic (see Table 5) and a set of dataset characteristics (see
Table 4), the goal is to predict the performance of an
algorithm in a transformed dataset. Formally, the prob-
lem can be defined as follows. Given algorithm A and
a limited number of training data D = (Xy, y1)...(Xu; Yn)»
the goal is to find a meta learner with optimal/good gen-
eralization performance. Generalization performance is
estimated by splitting D into disjoint training and vali-
dation sets Df?am and D(v'zh. 4 We use leave-one-out val-
idation [22], which splits the training data into n parti-
tions DV D™ andsets D = D\DY _ fori=

valid’ ***> “valid’ train valid

Measure Formula

TP+TN
Accuracy

TP+ FP+FN+TN
Precision TP/(TP+ FP)
Recall TP/(TP+ FN)
AUC l (TP N TN)
2\TP+FN TN+ FP

TN - True Negatives, TP - True Positives, FN -
False Negatives, FP - False Positives

Table 5: Classification algorithm performance measures

1,...,n. Note that X € x|, x,...x,, are the dataset charac-
teristics and y; is a chosen measure of the performance
of algorithm A run on that particular dataset. Hence, x
and y altogether are the extracted metadata. Since y con-
sists of 4 different performance measures for algorithm
runs, we build meta-spaces for each specific measure
separately. Then for each meta-space (meta-dataset), we
generate meta-models — using a meta-learner.

A few basic criteria were followed for selecting the
meta-learner to use. First, the problem in the meta-
learning space is of regression type — a number needs
to be predicted (i.e., a value in the range of [0, 1]) rather
than a class.

The second criterion is that the meta-learner needs
to be more sensitive. By this we mean that the meta-
learner needs to be able to capture even the slight
changes that transformations might apply on datasets.
This is because we need to predict the impact of the
transformations on the data mining results and we need
to be able to compare the impacts of different transfor-
mations. This comparison needs to be done at a finer
granularity. Otherwise, in the worst case, all the trans-
formations may end up having the same impact. For in-
stance, as a first approach we considered simple regres-
sion trees [24] as meta-learners, and they suffer from
this problem. Their limitation is that they contain a dis-
crete number of leaves, and hence a discrete number of
possible predictions.

The third criterion is that the meta-learner should
handle missing values. Recall that some dataset char-
acteristics can be calculated on datasets that necessar-
ily contain either continuous or categorical attributes
(see Table 4). As a matter of fact, our second trial of
using Logistic Regression as meta-learner did not give
good results. Because Logistic Regression cannot han-

dle missing values.

Hence, finally the meta-learner we decided to use is
Random Forest. Random Forest complies with all the
above mentioned criteria. It can be used for regression
problems. It suffers far less from the discreteness of the
leaves, because internally, a lot of trees (i.e., 500 trees)
are built at random and at the end averages are taken to
be used as predictions. Finally, it performs well when
missing values are present.

Thus, we use Random Forest to build models for each
data mining algorithm or more precisely for each clas-
sification algorithm that we consider.

In particular, the classification algorithms that we
consider are representative algorithms for all, except
two classes of algorithms in Weka. In Weka, the classi-
fication algorithms are classified into: bayes, functions,
lazy, rules, trees, meta-methods, and miscellaneous. We
aimed at considering one algorithm for each one of the
first five classes, and they are: Naive Bayes, Logistic,
IBk, PART, and J48 respectively. The last two classes
were omitted due to the fact that they are more complex
and are not commonly used by non experienced users.

5. Solution Prototype

In this section, we discuss the materialization of the
approach proposed in Section 4, into a prototype solu-
tion. The general architecture of the developed proto-
type solution is depicted in Figure 5. The solution’s
main processes, Learning and Recommending, are im-
plemented independently of each other. Below we give
detailed explanations for each one of them.

5.1. Learning phase

In the previous sections we mentioned that in order
to build a model (i.e., predictive meta-model), we must
firstly establish the meta-space — denoted as Learning
phase in Figure 5. In our context, the meta-space needs
to be constructed out of metadata that can be extracted
from datasets and from the executions of classification
algorithms on those datasets. As a matter of fact, we
needed to fetch hundreds of datasets, extract their char-
acteristics, run different algorithms on them and get dif-
ferent evaluation measures with 10 fold cross validation.
Finally, use all of these to feed the Meta-database.

In order to do the aforementioned, we first used
OpenML to fetch several hundred datasets (i.e., 570).
Next, from each dataset we extracted the 55 dataset
characteristics — highlighted as modifiable in Table 4,
and on each dataset we applied 5 classification algo-
rithms in order to extract the performance measures —

shown in Table 5. Then, we performed feature extrac-
tion — using PCA followed by VARIMAX on the set of
dataset characteristics (meta-features), and feature se-
lection — using the partial correlation graphs, for every
classification algorithm and every performance measure
considered. Finally, for each classification algorithm
and for each performance measure, we obtained a meta-
dataset that was fed to the Meta-database. In Figure 5,
this whole process is represented via the Metadata Gen-
erator module and was developed in Java.

After obtaining the metadata, hence constructing the
meta-space, we continued on building the Models (or
predictive meta-models) using the Meta-learner (i.e.,
Random Forest) we considered. We used the R language
to construct a model for each one of the algorithms and
for each one of the performance measures considered.
After that, the models were exported to PMML [25]
files, and were next fed to the Predictor in the recom-
mending phase.

Note that this process is not specifically tailored for
datasets from the OpenML repository, but it can work
on any collection of datasets. The models obtained are
expected to slightly change from one collection to an-
other.

5.2. Recommending phase

When a user wants to analyze a dataset, he/she selects
an algorithm to be used for the analysis and then the sys-
tem automatically recommends transformations to be
applied, such that the final result is improved. In order
to do that, the system first, applies different transforma-
tions to the dataset through the Transformation execu-
tor module. Then, the meta-features of the transformed
dataset are extracted through the Meta-feature Extrac-
tor module and they are fed to the Predictor, which
using the meta-model (i.e., PMML file) corresponding
to the classification algorithm selected by the user, pre-
dicts the impact of the transformation/s. The gain here
is that, the classification algorithms are not applied for
real to the transformed datasets — which is a costly pro-
ces. Instead, meta-models are used to predict the out-
puts of the classification algorithms on the transformed
datasets. Hence, finally, transformations are ranked ac-
cording to their impact on the final result — according
to whether they improve the final result. The modules
of the Recommending phase are entirely developed in
Java.

6. Evaluation

We perform an experimental study of the perfor-
mance that can be achieved by our approach on vari-

-

®
DM Algorithms

Learning phase

v
Metadata
Generator

Datasets

> Meta
Database

> Meta-learner (O >t Meta-model
O

pmmi

Transformation
Executor

A

h

New Dataset

Meta-feature Predictor
Extractor

i

Ranking

Transformations

e

DM Algorithm of Transformations
[]

N

F i Recommending phase

—» Data flow

> Metadataflow O

> Statistical Model flow

@®—» Parametrization

Figure 5: Solution Architecture

ous algorithms and various datasets. After specifying
our experimental environment, we evaluate our system’s
ability to predict the transformations that will improve
the final result of the analysis.

6.1. Experimental setup

Recall that when building the meta-learners, we use
leave-one-out validation for evaluating them. Likewise,
in order to enable a larger number of datasets for per-
forming the experiments, each time we performed the
leave-one-out validation, we created a meta-model us-
ing the subset of datasets (i.e., withholding the dataset
that was left-out). Hence, for each data mining algo-
rithm, we created as many meta-models as datasets con-
sidered for the respective algorithm. As a matter of fact,
in order to perform experiments for an algorithm, we
can use the entire set of datasets for testing, only bear-
ing in mind that for each dataset, in the Predictor, we
use the meta-model that was built without using that
particular dataset.

In this context, an experiment — depicted in Figure 6,
is performed in the following way. First, a dataset and a
classification algorithm to be used for performing anal-
ysis (i.e., classification) on the dataset, is selected. Next,
the system finds the impact of a set of transformations
on the final result of the classification.

The set of transformations, consists of iteratively
applying the transformations shown in Table 1, how-
ever each time changing the set of attributes to which the
transformation is applied. Note that the transformations
which are denoted as Global in the table, are applied

10

only once to the set of all compatible attributes (alto-
gether), whereas the transformations, which are denoted
as Local are applied to: 1) every compatible attribute
separately (one by one), and 2) all the set of compatible
attributes (altogether). Indeed, transformations are not
applied to combinations of attributes and hence there is
no ’combinatorial explosion’. However, the user may
apply the method several times in iteration and, as such,
arrive to a combination that may induce better results.
Yet, this depends on the user and his availability to use
the method iteratively.

The impact, is the effect of transformations to the fi-
nal result (i.e., predictive accuracy) of the selected al-
gorithm, and it can be, predicted impact or computed
impact.

The predicted impact is calculated by applying the
set of transformations, as defined above, and subse-
quently extracting the characteristics of the transformed
datasets, to use them as inputs for predicting the perfor-
mance of the respective algorithm on the transformed
datasets.

The computed impact is calculated by similarly ap-
plying the set of transformations, but then, subsequently
applying the respective classification algorithm for real
to the transformed datasets, and hence obtaining the real
performance (e.g., predictive accuracy) of the classifica-
tion algorithm on the transformed datasets. In terms of
computational complexity, the latter is a costly process,
and it is performed only for the sake of evaluating the
system.

The experiments were performed on an Intel Core i5

~

New Dataset

Dataset

I
Y |
r i
[] o
Transformation DM Algorithm model
Transformed Transformed y
4 Dataset Dataset ~ S 4 Predictions -
Transformation [Metadata L1 Predi L Get the predicted
Executor Extractor > redictor p| Impact of a transformation
Dataset Predictions
Dataset
Bad Good
Trans. Trans.
Algorithm y A

Transformed dataset

Data Mining Alg.
Executor

Dataset

A

performance

Real performances
of Good Trans. ol Avg
T -

Get the computed
impact of a transf.

performance

Algorithm

DM Algorithm

Real performances
Comparison

—— Flow of information about the original dataset

————————— » Flow of information about the transformed version of the dataset

of Bad Trans.
Successful/Unsuccessful
Dataset

Figure 6: Experimentation Scheme

machine, running at 1.70 GHz with 8 GB of main mem-
ory. An experiment for a single algorithm, on average
took approximately 4 CPU hours.

On each run, the system internally categorizes a
transformation, into one of the following three cate-
gories:

e Good — an improvement of the final result for the
respective algorithm is predicted if the transforma-
tion were to be applied, compared to the predic-
tion obtained on the non-transformed version of
the dataset,

Bad — a worsening of the final result for the re-
spective algorithm is predicted if the transforma-
tion were to be applied, compared to the predic-
tion obtained on the non-transformed version of
the dataset,

e Neutral — neither improvement nor worsening is
predicted if the transformation were to be applied.

The aim of the experiments is roughly to verify
whether the categorizations made by the system are true
for real (i.e., whether a transformation categorized as
Good, is Good for real and improves the performance of
the algorithm). This, as previously mentioned — though
costly, is done by executing the data mining algorithms
on the transformed datasets and computing the real im-
pact of the transformations (see Figure 6).

In this context, we mark as Successful, the cases (i.e.,
datasets) on which the real/computed average improve-

11

ment we get from all the transformations categorized as
Good for a dataset, is greater than the real/computed av-
erage improvement we get from the transformations that
were categorized as Bad for the same dataset. That is,
the transformations predicted as Good, ’beat” on aver-
age the transformations predicted as Bad. In contrast,
we mark as Unsuccessful, the cases on which the trans-
formations predicted as Good cannot “beat” on average
the transformations predicted as Bad.

6.2. Results for Random Forests

In Figure 7, we show the results obtained when Ran-
dom Forests are used as meta-learners. In the figure, we
show the comparison between the number of Success-
ful cases — the green bar, and the number of Unsuc-
cessful cases — the red bar. In addition, the gray bar,
denotes the total number of cases (datasets) for which
we performed the experiments on each respective algo-
rithm. Furthermore, the bars highlighted with dashes,
dots, and back slashes refer to the results for predictive
accuracy, precision and AUC, respectively. Notice that
the results for recall are omitted due to the fact that iden-
tical values with predictive accuracy were obtained (see
weighted recall in Weka®).

Observe that, the sum of Successful (green) and Un-
successful (red) cases does not coincide with the total
number of datasets (gray). This is because, for some

6http://Weka.sourceforge.net/doc.stable/weka/classiﬁers/Evaluation

[Successful
71 Predictive Accuracy

I Unsuccessful
[C=3 Precision

[Total #Datasets
=3 AUC

600

500

IN
o
)

300

Number of datasets

200

100

NaiveBayes
Logistic

1Bk
PART
148

Figure 7: Random Forest Results

datasets we either do not find Good transformations
(14.3%), or we do not find Bad transformations (7.9%).
This happens because the datasets already belong to the
best or the worst leaves of all the internal trees of the
Random Forests, hence there can be no transformations
that can move them to a better or worse leaf respectively.
As a matter of fact, in those particular cases we cannot
compare the Good versus Bad, hence, they do not ap-
pear neither as Successful nor as Unsuccessful.

In order to understand whether the numbers shown in
the figure are significant, we performed a binomial dis-
tribution test, comparing the number of Successful cases
to the number of Successful + Unsuccessful cases with
respect to the theoretical probability which is equal to
0.5. The results obtained are shown in Table 6. The
column p-value denotes how significant is the difference
between the values of Successful and the population of
Successful + Unsuccessful. We assume the difference to
be significant if the p-value is less than or equal to 0. 05.
Observe that our method gives significant values for all
the algorithms and all the performance measures with
the only exception of algorithm J48 with performance
measure AUC. Yet, recall that when we performed fea-
ture selection using the partial correlation graphs be-

12

tween features and the response, we retained only the
features that had a significant relationship within the
limits of 0.05, which happens to be too restrictive for
J48 with AUC (i.e., some relevant feature is left out). If
we increase the threshold to 0.1 (less restrictive) we ob-
tain significant results for this case too. The p-value we
obtain is 0.0011.

7. Conclusions and Future Work

In this work, we have shown that the daunting prob-
lem of data pre-processing can be alleviated by a prac-
tical, automated tool. This is made possible through
meta-learning which enables predicting the impact of
transformations on the final performance of algorithms
on the corresponding datasets, and in turn, allows rank-
ing the transformations according to their impact on the
final result.

We built a tool that draws on a range of classification
algorithms in Weka and makes it easy for non-experts
to perform data pre-processing. An extensive evalua-
tion on hundreds of datasets showed that for the set of
algorithms considered, even blindly (e.g., users without

Predictive Accuracy Precision AUC
Algorithm \ Suc. Suc.+Uns. p-value \ Suc. Suc.+Uns. p-value \ Suc. Suc.+Uns. p-value
Naive Bayes | 289 484 7.40E-06 | 301 501 2.41E-06 | 334 528 3.36E-10
Logistic | 279 442 1.O9E-08 | 268 427 4.34E-08 | 292 442 3.39E-12
IBk | 264 491 431E-02 | 277 493 2.59E-03 | 358 526 0
PART | 286 454 9.73E-09 | 269 451 L61E-05 | 301 487 6.42E-08
J48 | 307 529 8.95E-05 | 319 526 3.79E-07 | 193 387 5.00E-01

Table 6: Binomial Significance Test for Random Forests

any prior knowledge in data mining) applying the rec-
ommended transformations improves the final result of
the algorithms on average. We believe that this can be a
handy tool for experienced users as well, because they
can discriminate within the recommended transforma-
tions and pick the ones that are potentially more suitable
for their problem at hand.

As future work, we see potential value in customiz-
ing the transformations depending on the class of
algorithms (e.g., trees) or even specific algorithms. We
also aim at extending the range of the classification
algorithms that we have considered so far.

Acknowledgments. This research has been funded
by the European Commission through the Erasmus
Mundus Joint Doctorate “Information Technologies for
Business Intelligence - Doctoral College” (IT4BI-DC).
The work of R. Wrembel is supported from the National
Science Center grant No. 2015/19/B/ST6/02637.

References
[1] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From data min-

ing to knowledge discovery in databases, Al Magazine 17 (3)

(1996) 1-34.

M. A. Munson, A study on the importance of and time spent on

different modeling steps, SIGKDD Explor. Newsl. 13 (2) (2012)

65-71.

S. F. Crone, S. Lessmann, R. Stahlbock, The impact of prepro-

cessing on data mining: An evaluation of classifier sensitivity

in direct marketing, European Journal of Operational Research

173 (3) (2006) 781 — 800.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

et al., The weka data mining software: An update, ACM

SIGKDD Explorations Newsletter 11 (1) (2009) 10-18.

C. Thornton, F. Hutter, H. H. Hoos, et al., Auto-weka: Com-

bined selection and hyperparameter optimization of classifica-

tion algorithms, in: KDD, 2013, pp. 847-855.

J. Kijetz, F. Serban, S. Fischer, A. Bernstein, Semantics Inside!

But Let’s Not Tell the Data Miners: Intelligent Support for Data

Mining, in: ESWC, 2014, pp. 706-720.

K. Alexandros, H. Melanie, Model selection via meta-learning:

A comparative study, International Journal on Artificial Intelli-

gence Tools 10 (04) (2001) 525-554.

[2]

[3]

[4]

(5]

[6]

[7]

13

[8] D. Michie, D. J. Spiegelhalter, C. C. Taylor, J. Campbell (Eds.),
Machine Learning, Neural and Statistical Classification, Ellis
Horwood, 1994.

M. Charest, et al., Bridging the gap between data mining and de-
cision support: A case-based reasoning and ontology approach,
Intelligent Data Analysis 12 (2) (2008) 211-236.

D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann,
1999.

T. Dasu, T. Johnson, Exploratory data mining and data cleaning,
Vol. 479, John Wiley & Sons, 2003.

P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearn-
ing: Applications to Data Mining, 1st Edition, Springer Publish-
ing Company, Incorporated, 2008.

B. Bilalli, A. Abell6, T. Aluja-Banet, R. Wrembel, Towards in-
telligent data analysis: The metadata challenge, in: Proceedings
of the International Conference on Internet of Things and Big
Data, 2016, pp. 331-338.

F. Serban, J. Vanschoren, J.-U. Kietz, A. Bernstein, A survey of
intelligent assistants for data analysis, ACM Computing Surveys
45 (3) (2013) 31:1-31:35.

B. Pfahringer, H. Bensusan, C. G. Giraud-Carrier, Meta-
learning by landmarking various learning algorithms, in: Pro-
ceedings of the Seventeenth International Conference on Ma-
chine Learning, 2000, pp. 743-750.

Y. Peng, P. A. Flach, C. Soares, P. Brazdil, Improved Dataset
Characterisation for Meta-learning, 2002, pp. 141-152.

J. Vanschoren, J. N. van Rijn, B. Bischl, L. Torgo, Openml:
Networked science in machine learning, SIGKDD Explorations
Newsletter 15 (2) (2014) 49-60.

H. Hotelling, Analysis of a complex of statistical variables into
principal components, Journal of Educational Psychology 24 (6)
(1933) 417-441.

M. Morchid, R. Dufour, P. Bousquet, G. Linares, J. Torres-
Moreno, Feature selection using principal component analysis
for massive retweet detection, Pattern Recognition Letters 49
(2014) 33-39.

H. F. Kaiser, The varimax criterion for analytic rotation in factor
analysis, Psychometrika 23 (3) (1958) 187-200.

K. Baba, R. Shibata, M. Sibuya, Partial correlation and con-
ditional correlation as measures of conditional independence,
Australian and New Zealand Journal of Statistics 46 (4) (2004)
657-664.

R. Kohavi, A study of cross-validation and bootstrap for accu-
racy estimation and model selection, in: Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, 1995, pp.
1137-1143.

M. Sokolova, G. Lapalme, A systematic analysis of performance
measures for classification tasks, Information Processing and
Management 45 (4) (2009) 427-437.

[9]

[10]
(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

(24]

[25]

B. Bilalli, A. Abell6, T. Aluja-Banet, R. Wrembel, Automated
data pre-processing via meta-learning, in: Proceedings of the
International Conference on Model and Data Engineering, 2016,
pp- 194-208.

A. Guazzelli, M. Zeller, W.-C. Lin, G. Williams, Pmml: An
open standard for sharing models, The R Journal 1 (2009) 60—
65.

14

