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Abstract

Due to the decreasing revenues from the surplus renewable energy injected into the grid, mechanisms promoting self-consumption
of this energy are becoming increasingly important. Demand Response (DR) and local storage are among the widely used mech-
anisms for reaching higher self-consumption levels. Deploying a shared storage unit in a residential microgrid is an alternative
scenario that allows households to store their surplus renewable energy for a later use. However, this creates some challenges in
managing the battery and the available energy resource in a fair way. In this paper, a reputation-based centralized Energy Manage-
ment System (EMS) is proposed to deal with these issues by considering households’ reputations in the reallocation of available
energy in the shared storage unit. This framework is used in an optimization problem, in which the EMS jointly schedules house-
holds’ appliances power consumption and the energy that each household can receive from the storage unit. The scheduling problem
is formulated as a Mixed Integer Linear Programming (MILP) with the objective of minimizing the amount and price of energy
absorbed from the main grid. The MILP problem is coded in GAMS and solved using CPLEX. Numerical analysis is conducted
using real data of renewable energy production and appliances’ demand profiles for different classes of households and different
annual periods in Spain. Simulation results of the different scenarios show that by using the proposed framework higher cost savings
can be achieved, in comparison with the classical scheduling scenario. The saving can reach up to 68% when different classes of
households exist in the microgrid. The results also show that the fairness in energy allocation is guaranteed by the reputation-based
policy, and that the total power absorbed from the main grid by the whole microgrid is significantly decreased.

Keywords: Microgrids, self-consumption, energy management systems, demand response, photovoltaic, appliances scheduling,
energy sharing, reputation-based systems.

1. Introduction1

Microgrids are typically conceived as integrated operational2

and technological small-scale systems that help in optimizing3

power generation, distribution, and consumption. The concept4

refers to a set of loads (e.g., households), Distributed Genera-5

tion (DG) (e.g., small-scale on-site Renewable Energy Sources6

(RESs)), and possibly Energy Storage Systems (ESSs) (e.g.,7

batteries), operating as a single controllable system that pro-8

vides power to its local area [1, 2].9

Since a large portion of electricity is consumed in the resi-10

dential sector, involving citizens in the efficient planning and11

use of electricity is key. For instance, a 25% of the total elec-12

tricity consumption in Spain is in the residential sector. More-13
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over, the share of electricity used by appliances and electronics 14

in an average household accounts for around two-thirds of its 15

total electricity consumption [3]. Hence, the management of 16

households’ appliances power consumption can play an impor- 17

tant role in saving costs and reducing the environmental impact 18

of the electricity consumed in the residential sector. 19

Accordingly, Demand Response (DR) programs have been 20

defined, providing several economic and technical benefits for 21

utilities and consumers [4]. Namely, DR programs aim to re- 22

shape consumer energy profiles in order to improve the relia- 23

bility and efficiency of the grid and defer generation capacity 24

expansion [5, 6]. Participants can take actions in response to 25

a DR program by mean of load management schemes such as 26

demand limiting, demand shedding, demand shifting and on- 27

site generation [4]. Recently, an increasing focus of DR is 28

placed on the residential sector motivated by the vision of future 29

homes with smart appliances that allow their control and inte- 30

gration in Energy Management Systems (EMSs) [7]. DR can 31

be performed as incentive-based or price-based programs [8]. 32
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Incentive-based schemes compensate participating users for de-33

mand reduction by offering discount rates separated to electric-34

ity prices [9]. Some examples of this kind of programs are35

Direct Load Control (DLC), interruptible/curtailable load, de-36

mand bidding and buyback, and emergency demand reduction37

[8]. Price-based schemes provide energy customers with time38

varying rates that define different electricity prices at different39

times. The customer reacts to the fluctuations in the electricity40

prices. This kind of programs might be confusing to customers,41

therefore scheduling techniques are needed to help customers42

manage their load [5]. Some of the implemented price-based43

schemes are Time of Use (ToU), Critical-Peak Price (CPP), and44

Real-Time Price (RTP) [8, 10]. RTP in DR programs are usu-45

ally based on day-ahead or real-time wholesale price [11].46

In [12], the potential benefits of DR on a residential distri-47

bution network operation are studied and the results show its48

influence in the load and voltage profiles, the network losses,49

and the service reliability. Still, some of the challenge of us-50

ing DR in the residential sector are to establish an optimal DR51

system strategy beneficial for both customers and the utility,52

schedule demand in order to balance energy consumption with53

the available supply and implement the communication system54

that handles the DR [5]. To deal with these issues, some re-55

search has been conducted. In, [11], a dynamic DR controller56

is proposed to curtail peak load and save electricity under two57

RTP programs. The objective is to provide the set-point tem-58

perature for heating, ventilating and air conditioning (HVAC)59

systems based on the dynamic price of electricity and occupant60

preferences. In [13], two noncooperative games are defined to61

model a DR associated with the interaction among multiple util-62

ities and customers in a smart grid. The first one, a supplier-63

side game, defines the utility companies’ profit maximization64

problem. The utility companies submit bids, then the electric-65

ity price is computed and sent to the customers. In the second66

game, a customer-side game, the price anticipating customers67

determine optimal shiftable load profile to maximize their daily68

payoff. In [14], the DR program is modelled as a repeated game69

with RTP scheme from the utility company perspective. The70

goal is to achieve a desired value for the peak to average ra-71

tio (PAR) in the aggregate load demand, and at the same time72

benefit the customers, by reducing their long-term cost. Nev-73

ertheless, those approaches are focused on the aggregated load74

and they do not considered the simultaneous management of75

other distributed energy resources.76

The management of households’ appliances and distributed77

energy resources has received significant attention in the last78

few years [15–24]. In [15], the smart appliance power schedul-79

ing problem is modeled using Mixed Integer Linear Program-80

ming (MILP), capturing relevant appliance operational con-81

straints. A distributed algorithm to schedule households’ ap-82

pliances aiming to minimize power costs by using game theory83

is presented in [16], where households are the players of the84

game and their strategies are the daily schedules of their appli-85

ances. In [17, 18], an ESS is used in the appliance scheduling86

problem, in which the battery charges from the main grid dur-87

ing off-peak times, and feeds the load during peak times. In88

[19], a residential energy consumption scheduling of electrical89

and thermal appliances to minimize energy costs of a customer 90

with a RES is proposed taking its comfort into consideration. 91

An artificial intelligence based smart appliance scheduling ap- 92

proach for reducing energy demand in peak periods by maxi- 93

mizing the use of RES in the residential sector is proposed in 94

[20]. Other EMS that consider the ownership of both an on- 95

site RES and an ESS in each household have been considered 96

in [21–24]. However, equipping each household with an on- 97

site ESS might be economically unaffordable due to the high 98

cost of batteries which are required to buffer sufficient renew- 99

able energy for an average household daily power consumption 100

[25]. Besides, batteries with long lifespan have a big physical 101

size that makes them difficult to be located inside houses [26]. 102

On the other hand, the increasing costs of electricity from 103

the grid, the decreasing cost of photovoltaics (PV) technology 104

and the expected decreasing revenues from excess electricity 105

injected into the grid in the near future will raise the incentives 106

to maximize the self-consumption ratio [27–29]. Moreover, in 107

some cases, like the current situation in Spain, the surplus PV 108

electricity injected into the grid is not remunerated and thus is 109

lost for the household [29]. Therefore, new operation frame- 110

works are needed in order to optimize the benefit from on-site 111

RESs. 112

In this study, we consider a microgrid composed of house- 113

holds each with a PV system, that can inject the surplus PV 114

energy into the main grid but without any compensation for it. 115

To take advantage of this energy, a shared ESS is used (e.g., 116

a battery), which is managed by a reputation-based EMS. The 117

battery charges only from households surplus energy. In [30], 118

a similar scenario is proposed with a more expensive electrical 119

implementation and assuming the ESS as an inexhaustible en- 120

ergy resource that never gets fully charged or discharged. The 121

reputation-based energy allocation policy is considered in the 122

allocation of available energy in the shared battery, in a fair 123

way, since they record the previous energy contribution of each 124

household in charging the battery. This is more meaningful in 125

a system where households’ demands may exceed the available 126

energy in the shared battery at some time periods. This frame- 127

work is used in a daily appliances power scheduling optimiza- 128

tion model, in which the EMS jointly schedules households 129

appliances power consumption and the energy each household 130

can receive from the shared battery, taking its operational con- 131

straints into account. 132

The contributions of this paper are summarized as follows: 133

• We propose a reputation function, according to which the 134

EMS manages the available energy in the shared battery, 135

and determines the portion of energy that will be scheduled 136

to each household. 137

• We apply the proposed framework in a centralized opti- 138

mization problem to minimize the energy absorbed from 139

the grid in a DR scheme of RTP. The optimization model 140

provides the power battery profiles as well as appliances 141

power scheduling for each household. 142

The paper is structured as follows. The system model is pre- 143

sented in Section 2. The proposed reputation factor is described 144
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Figure 1: System Architecture.

in Section 3. In Section 4, the household appliances power145

scheduling is presented and the centralized optimization prob-146

lem is formulated in Section 5. Numerical results are discussed147

in Section 6. Finally, we conclude the paper and give pointers148

for possible future directions in Section 7.149

2. System Model150

In this work we consider a generic microgrid which consists151

of a set of households N , indexed by i ∈ {1, 2, . . . ,N}, with a152

small-scale on-site RES (e.g., a solar PV system). Households153

are connected to the main grid and to the battery via AC power154

lines. They share their surplus harvested renewable energy by155

storing it in the shared battery that is controlled by an EMS. The156

EMS, in turn, controls the microgrid, manages households’ de-157

mands, and allocates the shared renewable energy to them fol-158

lowing an energy allocation policy. Households are connected159

to the main grid to secure their power demands during times of160

the day when renewable energy generation is impossible, when161

there is no available energy in the battery, or when the energy162

available in the battery is not scheduled.163

We assume that households’ demands are variable both in 164

quantity and time. At a certain time period, each household 165

could be a supplier which shares some amount of renewable 166

energy, or a demander which requests some amount of energy 167

from the battery. Each household is equipped with a load man- 168

ager, which monitors and controls energy harvesting and power 169

consumption intelligently. The load manager is also responsi- 170

ble for data communications between households and the EMS, 171

as well as between households and the main grid. 172

The average power action of household i happens on a time 173

slot t ∈ T = {t0, t0+∆t, t0+2∆t, . . . ,T }, and denoted as pt,i. Each 174

time slot can represent different timing horizons (e.g., an hour). 175

In this way, the energy is represented by the average power dur- 176

ing a time slot of length ∆t (i.e., E = p∆t). A power action 177

of household i at time slot t could be either an interaction with 178

main grid (i.e., injection pt,i
grid, inj, or absorption pt,i

grid, abs), or an 179

interaction with the battery (i.e., charging pt,i
bat, ch, or discharging 180

pt,i
bat, dis), where pt,i

grid, inj, pt,i
grid, abs, pt,i

bat, ch and pt,i
bat, dis ∈ R. pt,i

grid, inj 181

is introduced to allow households to inject the excessive power 182

into the main grid in case the battery is fully charged. The 183
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amount of power harvested by the local PV system of household184

i at time slot t is Pt,i
pv. Besides Pt,i

pv and households’ uncontrol-185

lable demand profile, the EMS receives additional information186

from the load manager of each household and from the util-187

ity. The load manager sends some input parameters about the188

number of appliances to be scheduled, Ai, and the time pref-189

erence for the activation of those devices, TPa,t,i, where a is190

the index of the corresponding controllable appliance. The util-191

ity sends the time varying electricity price at each t, Ct, and the192

maximum allowed power for the aggregated appliances demand193

in each time slot, Pt,i
peak. Other constant input data required to194

solve the optimization problem (e.g., power requirements of ap-195

pliances) can be stored in the database of the EMS. By using196

all these data, the EMS calculates the set-points power of the197

battery and provides the optimal appliances schedules to load198

managers. The proposed system architecture and more details199

about the exchanged information with the EMS are illustrated200

in Fig. 1.201

3. Reputation Factor202

In order to model the interaction between households and the203

EMS, and strengthen their cooperation, we define a reputation204

factor R based on which the EMS will be able to dynamically205

and reliably allocate the available energy stored in the shared206

battery among households. Reputation-based systems belong to207

incentive-based mechanisms in cooperation enforcement games208

[31]. They have been proposed for similar engineering prob-209

lems in P2P systems [32] and grid computing [33]. The ba-210

sic idea is to identify entities based on their behavior. Entities211

that offer resources should be rewarded. On the other hand,212

selfish/unreliable entities should be gradually isolated from the213

system. In reputation-based systems, the actual value of an in-214

teraction depends heavily on the ability and reliability of in-215

volved entities. If each entity’s history of previous interactions216

is made visible to the potential interaction partner, several ben-217

efits ensue. Firstly, a history may reveal information about an218

entity’s ability, allowing to make choices about weather to in-219

teract with that entity, and on what terms. Secondly, an expec-220

tation that current performance will be visible in the future may221

deter the temptation to cheat or exert low effort in the present.222

Finally, because history reveal information about entities, en-223

tities with higher abilities will be drawn to participate, as they224

will be distinguishable from those of lower abilities, and re-225

spected or rewarded appropriately [34]. Reputation-based sys-226

tems are a good application in energy sharing framework in mi-227

crogrids, where there exists various classes of households with228

different power consumption profiles and when their aggregated229

demands may exceed the energy available in the shared battery.230

In our proposed framework, the EMS keeps a reputation
value for each household based on the amount of renewable
energy it shared previously. As mentioned before, at each time
slot t, household i may charge or discharge the battery with an
amount of power, pt,i

bat, ch or pt,i
bat, dis, respectively. The reputation

of i depends on the total amount of renewable power it shared
every day d during a set of previous days Dp, being p the last

day of the set. It is denoted Rp
i and calculated as follows:

Rp
i =

∑
d∈Dp

∑
t∈T

pt,i,d
bat, ch∑

j∈N

∑
d∈Dp

∑
t∈T

pt, j,d
bat, ch

. (1)

The value of the reputation factor Rp
i represents the ratio be- 231

tween the total amount of renewable power shared by house- 232

hold i during the set of previous days Dp, and the total renew- 233

able power shared by all households in the microgrid, including 234

household i, during the same set Dp. In a similar way, the EMS 235

calculates the reputation of other households. Reputations take 236

positive values between 0 and 1. The more renewable energy a 237

household i shares, the higher its reputation will be. This could 238

motivate households to change their energy consumption be- 239

havior and/or share more renewable energy. A new household 240

joins the system with a reputation equals to 1/N, which allows 241

it to receive some amount of energy from the EMS. 242

4. Household Appliances Power Scheduling 243

Households’ electric appliances are generally classified as 244

cold appliances, cooking appliances, wet cleaning, electron- 245

ics or miscellaneous [35]. They can also be divided into two 246

categories: i) shiftable appliances, which can be run at flexi- 247

ble time schedule in scope of a day, or ii) non-shiftable appli- 248

ances, which are uncontrollable and can not be scheduled. Wet 249

cleaning electric appliances, including clothes washers, clothes 250

dryers and dishwashers, are considered as shiftable appliances. 251

Cold appliances (i.e., refrigeration) are typically considered as 252

non-shiftable appliances in terms of, for example, their low 253

capabilities for shifting power consumption for relatively long 254

time periods. Nevertheless, those appliances have the potential 255

to provide short-term flexibility through small adjustments of 256

the on/off cycles while maintaining the temperature within lim- 257

its [36]. The operation of non-shiftable and some shiftable ap- 258

pliances is typically uninterruptible, while some other shiftable 259

appliances (e.g., pool pumps) can be interrupted. 260

Plug-in Electric Vehicles (PEVs) are emerging as more eco- 261

nomic and environmentally-friendly alternatives to the conven- 262

tional fossil fuel-based cars. When a large number of PEVs are 263

integrated into the grid, the total charging demand constitutes a 264

significant load which does not only increase the existing peak 265

load demand, but may also introduce new peaks to the daily 266

load profile [37]. DR and smart charging can play a major role 267

in mitigating the effect of the increasing adoption of PEVs in 268

households on the grid by providing proper incentives for shift- 269

ing the charging times of PEVs. This control mechanism can 270

reduce supply and customer side cost and enhance power sys- 271

tem operating conditions [37]. Several studies have examined 272

various aspects for PEVs charging scheduling in [21, 38–41]. 273

Game theoretic based scheduling approaches for addressing the 274

overload problem associated with the charging demand of PEVs 275

are proposed in [38, 39]. In [38], a stochastic model for the 276

starting time of PEVs charging is given in order to simulate 277

vehicle owners’ charging behavior. A predictive approach for 278
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charging demand of the PEVs is provided in [41]. In [21, 40],279

the operation constraints of PEVs when working as distributed280

energy storage systems in a grid are described.281

In this work we assume that each household i has a number282

of shiftable appliances Ai (i.e., including PEV) whose opera-283

tion can be scheduled in the next 24 hours, where a time slot284

duration is one hour, in such a way that the cost of their to-285

tal power consumption is minimized. The cost of 1 kWh from286

the main grid at each time slot t is assumed to be known (e.g.,287

day-ahead RTP) and denoted as Ct. Some appliances might be288

used more than one time per day depending on the composition289

of the household and other factors. The operation happens in290

a time slot t and may last more than one time slot per use ac-291

cording to appliances’ characteristics. It is assumed that there is292

no sequential operation constraints between appliances and that293

each appliance has a predetermined daily energy requirement,294

a maximum and a minimum power per use (i.e., taken from ap-295

pliances datasheet), and a maximum execution time. The max-296

imum allowed power for the aggregated appliances demand in297

each time slot, Pt,i
peak, is also constrained.298

As mentioned earlier, inside each household there is a load299

manager that controls the appliances and interacts automat-300

ically with the EMS to receive an optimal schedule for the301

shiftable load. The output of the EMS is the optimized power302

profiles of the scheduled appliances. Each appliance has a303

power profile denoted as pa,t,i, corresponding to the power as-304

signed to an appliance a in household i at time slot t. The power305

profile pa,t,i takes a real value and is measured in kW (i.e., it is306

written in small letters, since it will be considered as a decision307

variable in the appliances’ optimization problem in Section 5).308

pt,i
sl represents the total power demand of the scheduled shiftable309

appliances for household i at time t. The total power of non-310

shiftable appliances (i.e., the basic load profile) at time t for311

household i is denoted Pt,i
nsl (i.e., it is written in capital letters,312

since its value will be given as an input).313

5. Optimization Problem Formulation314

The following optimization problem is conceived as a MILP315

model that is performed by the EMS to jointly schedule house-316

holds appliances power consumption and the energy that can be317

received from the shared battery in order to reduce appliances318

demand cost and minimize the power absorbed from the grid.319

5.1. Objective Function320

The objective function aims to minimize the amount of power321

absorbed from the main grid by each household, taking their322

reputations into account. It is defined as:323

minimize
T∑

t=1

Ct
N∑

i=1

Rp
i pt,i

grid, abs∆t, (2)

where pt,i
grid, abs is the power absorbed from the grid by house-324

hold i, Ct is the cost of power at time slot t, and Rp
i is the repu-325

tation factor of household i. This factor is introduced to sched-326

ule the shared energy stored in the battery to each household327

proportional to its previous energy contribution in charging the 328

battery. It is worth noting that minimizing the power absorbed 329

from the grid implies taking benefit from the locally harvested 330

solar energy, Pt,i
pv as well as from the scheduled energy provided 331

by the shared battery, pt,i
bat, dis. This will be illustrated in the fol- 332

lowing local balance constraints (i.e., Eq. 3 and 4). 333

5.2. Constraints 334

5.2.1. Local Balance 335

The power balance between supply and demand should be
assured in each household as follows:

pt,i = pt,i
sl + Pt,i

nsl − Pt,i
pv, ∀i, t, (3)

where pt,i is the average power action of household i at time slot
t (i.e., as previously mentioned in Section 2 and seen in Fig. 1),
namely:

pt,i = (pt,i
grid, abs − pt,i

grid, inj) + (pt,i
bat, dis − pt,i

bat, ch), ∀i, t. (4)

5.2.2. Global Balance 336

The power exchange between households, the shared battery,
and the main grid can be written as:

N∑
i=1

pt,i = (pt
grid, inj − pt

grid, abs) + (pt
bat, ch − pt

bat, dis), ∀t, (5)

where (pt
grid,inj − pt

grid,abs) and (pt
bat, ch − pt

bat, dis) represent the 337

power interaction with the grid and the power available in the 338

battery at time t, respectively. 339

5.2.3. Grid Balance 340

The households are exchanging power with the main grid and 341

the battery at the same time. The contribution of each house- 342

hold in the whole system can be considered independently us- 343

ing the superposicion principle as shown in Fig. 2. 344

In this way, the main grid global balance should be complied
(Fig. 2(a)), and it is formulated as follows,

N∑
i=1

(pt,i
grid, inj − pt,i

grid, abs) = (pt
grid, inj − pt

grid, abs), ∀t. (6)

5.2.4. Battery Balance 345

Likewise, the battery global balance, illustrated in Fig. 2(b),
should be satisfied, and it can formulated as follows:

N∑
i=1

(pt,i
bat, ch − pt,i

bat, dis) = (pt
bat, ch − pt

bat, dis), ∀t. (7)

5.2.5. Power Boundaries 346

The variables related to the power absorbed from and in- 347

jected to the main grid, as well as the power charges and dis- 348

charges the battery, are bounded as follows: 349

0 ≤ pt,i
grid, abs ≤ Pi

grid, absmax
, ∀t, i, (8)

0 ≤ pt,i
grid, inj ≤ Pi

grid, injmax
, ∀t, i, (9)

0 ≤ pt,i
bat, ch ≤ Pi

bat, chmax
, ∀t, i, (10)

0 ≤ pt,i
bat, dis ≤ Pi

bat, dismax
, ∀t, i, (11)
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Figure 2: Power components flow in the main bus (see Eq. 5).

where Pi
grid, absmax

, Pi
grid, injmax

, Pi
bat, dismax

and Pi
bat, chmax

are constant350

values defined as boundaries for each household. They are re-351

lated to the physical AC power lines capacity and battery opera-352

tional constraints. In the case of the battery, those power limits353

are provided by the manufacturer for normal operation of the354

unit under both charging and discharging stage. The physical355

restrictions regarding the main grid are imposed by the system356

protector that exists inside each household such as fuse and cir-357

cuit breakers. We note that the maximum amount of power that358

household i can share with the battery, or inject into the grid359

should not exceed the total amount of solar energy it produces360

at time t (i.e., Pi
bat, chmax

= Pi
grid, injmax

= Pt,i
pv).361

On the other hand, the power shared by each household with362

the battery should be safeguarded to ensure sharing only the363

energy produced by household’s solar PV system (i.e., without364

charging the battery with any amount of power received from365

the main grid). This can be represented as follows:366

Pt,i
pv − (Pt,i

nsl + pt,i
sl ) ≤ M(1 − xt,i), ∀t, i, (12)

pt,i
bat, ch + pt,i

grid, inj − Pt,i
pv + (Pt,i

nsl + pt,i
sl ) ≤ Mxt,i, ∀t, i,

pt,i
bat, ch + pt,i

grid, inj ≤ M(1 − xt,i), ∀t, i,

where the binary variable xt
i is defined to determine when the367

generation is lower than the consumption for each household368

i. The value of M must be chosen sufficiently large so that the369

artificial variable would not be part of any feasible solution.370

5.2.6. Energy Storage System371

The battery’s State of Charge (SoC) at time t can be repre-372

sented in terms of its power as the following:373

SoCt = SoCt−1−

(
1

ηdisCbat
(pt

bat, dis)∆t

−
ηch

Cbat
(pt

bat, ch)∆t
)
, ∀t, (13)

where ηch and ηdis are the charge and discharge efficiency, re- 374

spectively, and Cbat is the battery’s capacity that depends on the 375

technology used. 376

The SoC of the shared battery is bounded as follows:

SoCmin ≤ SoCt ≤ SoCmax, ∀t. (14)

Besides, a global balance of the battery should be included
to ensure equal or better conditions for the next day:

T∑
t=1

SoCt − SoCt−1 ≥ 0, ∀t. (15)

5.2.7. Shiftable Appliances Demand Management 377

Part of the appliances demand is shiftable (psl) and can be 378

scheduled to minimize costs. 379

5.2.7.1 Daily power requirement 380

This constraint ensures that the total energy assigned to each 381

shiftable appliance per day fulfills its daily energy consumption 382

requirement Ea
sl. 383

T∑
t=1

pa,t,i∆t = Ea
sl, ∀a, i. (16)

5.2.7.2 Hourly demand 384

This constraint indicates that the total power assigned to all
shiftable appliances of household i at a certain time slot t is
equal to its shiftable appliances demand at that time slot.

Ai∑
a=1

pa,t,i = pt,i
sl , ∀t, i. (17)

5.2.7.3 Power assignment bounds 385

Pa
minya,t,i ≤ pa,t,i,≤ Pa

maxya,t,i, ∀a, t, i, (18)

where Pa
min and Pa

max are the lower and upper limits of power 386

assignment to an appliance a which are taken from appliances 387

datasheet, and ya,t,i is a decision binary variable that indicates 388

whether an appliance a at a particular time slot t in household i 389

is switched on (ya,t,i = 1) or off (ya,t,i = 0). 390

5.2.7.4 Peak power 391

This constraint is to guarantee that the shiftable appliances de-
mand of household i in any time slot can not exceed an upper
limit.

pt,i
sl ≤ Pt,i

peak, ∀a, i, (19)

where Pt,i
peak denotes the peak signal determined by the utility 392

company for each time slot t and can also be considered as a 393

DR signal. 394

6



5.2.7.5 Operation time395

Each household can set up a time preference constraint for each396

appliance. An appliance cannot be active outside its predeter-397

mined time preference interval.398

ya,t,i ≤ TPa,t,i, ∀a, i, (20)

where TPa represents the household’s time preference for op-399

erating shiftable appliances in a certain day (e.g., the operation400

time of a PEV is between 19:00 and 07:00). Mathematically401

TPa is a vector of 24 binary variables that are set by each house-402

hold separately and take a value equal to one when it is prefer-403

able to household i to switch an appliance a at time slot t and404

zero otherwise.405

5.2.7.6 Uninterruptible operation406

These constraints ensure a continuous operation of an appli-407

ance.408

ya,t,i ≤ 1 − za,t,i ∀t, a, i, (21)
ya,t−1,i − ya,t,i ≤ za,t,i ∀t, a, i, (22)

za,t−1,i ≤ za,t,i ∀t, a, i, (23)

where ya,t,i and za,t,i are binary decision variables used to ensure409

that if an appliance a starts working at a time slot t, it should410

not be interrupted until it finishes.411

6. Numerical Evaluation412

This section provides a performance evaluation of the pro-413

posed framework. First of all, we evaluate how the renewable414

energy is reallocated to each household based on its reputation.415

Then, we measure the economic impact of the proposed frame-416

work on the participating households. After that, we show how417

the system performance can be affected by the battery’s capac-418

ity, the number of participating households, and the period of419

the year.420

We consider a microgrid with N = 3 households that share421

one battery. A time period represents one day and is divided422

to T = 24 time slots. The performance of the proposed frame-423

work is measured by running the optimization model once at424

the beginning of the day (i.e., 24-hours ahead scheduling).425

Since the power consumption in the residential sector can426

vary significantly among communities (i.e., tightly bounded427

with living habits and some social factors), we will run our sim-428

ulations over households with different appliances demand pro-429

files (i.e., different classes of households that are most common430

in Spain). The selected classes are listed in Table. 1.431

6.1. Renewable Power Profile432

It is assumed that the N households have a solar PV sys-433

tem as an on-site RES, with the same capacity, material and434

installation settings, and that they generate a similar amount of435

renewable energy with a little variance (i.e., all houses are in436

the same area). Real hourly AC solar power measurements are437

used, which are outputted from a 1.5 kW solar PV system ap-438

plied in Girona, Spain, during 2015 and with the characteristics439

Table 1: The considered classes of households.

Class Household’s
type

Occupancy
pattern

Assumptions

Class A Two adults 18:00 to 9:00
on weekdays

Full-time working adults whose average
daily power consumption will be dis-
tributed throughout the day into two main
periods, from 6:00 till 9:00 and from
18:00 till 01:00.

Class B Two adults
with chil-
dren

13:00 to 9:00
on weekdays

One member has a full-time job and the
second adult holds a part-time job in the
morning in order to take care of the chil-
dren after school.

Class C Two pen-
sioners

All the time Most loads are distributed throughout the
day in a random way and only what is re-
lated to cooking a specified periods.

Table 2: Solar PV system and performance data.

Parameter Value Parameter Value
DC System Size (kW): 1.5 Location: Girona, Spain
Module Type: Standard Array Type: Fixed (roof mount)
Array Tilt (deg): 20 Array Azimuth (deg): 180
System Losses: 14 Invert Efficiency: 96
DC to AC Size Ratio: 1.1

listed in Table. 2. Then, the renewable power of each household 440

at each time slot is selected from a normal distribution with the 441

mean value of the solar AC power output, and the standard de- 442

viation of 0.05 kW. 443

6.2. Appliances Demand Profile 444

We develop an appliances demand profile generator similar 445

to the one proposed in [42], which generates the average appli- 446

ances power consumption profile for each class of households. 447

The generator is based on a probabilistic model that predicts 448

the possibility of each household to operate a certain amount of 449

appliances on a certain time slot per day (e.g., there is a prob- 450

ability of 0.15 to run the dishwasher between 20:00-21:00, 0.3 451

between 21:00-22:00, 0.3 between 22:00-23:00, and 0.25 be- 452

tween 23:00-24:00 for households of class A). The appliances 453

used in this tool, their power consumption, and their ownership 454

level are compiled with respect to the statistical data provided 455

by a study that analyses the energy consumption in the residen- 456

tial sector in Spain [3]. This generator provides quick and easy 457

way to generate the average appliances demand profile of any 458

class of households. It uses an hourly step calculator which we 459

believe it is enough to provide a rough estimation of the daily 460

appliances demand. We differentiate between household’s ap- 461

pliances demand in weekdays and weekend. We also add some 462

uncertainty in household’s appliances demand during weekdays 463

and weekends. A household’s appliances demand at each time 464

slot t is selected from a normal distribution with the mean value 465

of the appliances demand profile output, and a standard devia- 466

tion of 0.1-0.15 kWh in weekdays and 0.3-0.4 in weekends. 467

Each of households’ electric appliances in the model is as- 468

sumed to have two operational states: on or off, and no ap- 469

pliance is left on standby. Cold appliances (i.e., refrigerators- 470

freezers) are assumed to have a constant power demand when 471

switched-on. Other appliances can be represented by time- 472

varying demands. For example, a clothes washer that runs 473
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Figure 3: Average appliances demand profile of each considered class of households (without scheduling).

Table 3: The values of the problem parameters used in simulations.

Parameter Value Parameter Value
Pi

grid, absmax
(kW) 6 Pi

bat, dismax
(kW) 2

SoCmin (%) 20 SoCmax (%) 100
SoC0 (%) 60 Cbat (kWh) [5, 30]
ηdis [0, 1] ηch [0, 1]
TPa,t,i PEV: 19:00-07:00.

DW, CW and CD:
06:00-23:00

Pt,i
peak (KW) 3.6

Pa
min = Pa

max (kW) PEV: 1.4, DW: 0.625,
CW: 0.67, CD: 1.39

through various stages of water heating, washing and spin-474

ning, significantly varies its demand throughout a cycle. How-475

ever, such detailed demand cycle data is not generally available.476

Thus, and for the sake of simplicity, we calculate appliances’477

demand per each time slot based on their total daily demand478

and operation period (e.g., if the washing machine is used one479

time per day, requires 1.34 kWh per time of usage, and lasts two480

hours on average to complete its operation, then its demand per481

each time slot is 0.67 kWh). The weakly average appliances de-482

mand profiles of the selected classes of households are shown483

in Fig. 3. The selected household appliances and their daily484

average power consumption are presented in Table. 4 (i.e., for485

class A as an example). The listed operation times are the oper-486

ation times in the ordinary case (i.e., without scheduling). It is487

assumed that all households in the considered microgrid have488

one of the listed appliances. In this numerical evaluation, each489

household has four shiftable smart appliances including a dish-490

washer (DW), a clothes washer (CW), a clothes dryer (CD), and491

a PEV.492

6.3. Simulation Results493

This section presents the simulation results of the optimiza-494

tion problem presented in Section V. The MILP problem is495

coded in GAMS 24.2.3 [43] and solved using IBM ILOG496

CPLEX Optimization Studio [44]. MATLAB R2014a is used497

as an interface. For the electricity pricing tariff, we use the RTP498

rate of the market in Spain in 2015 [45]. The execution pe-499

riod is from 00:00 till 24:00, and the length of time slots is 1500

hour. The value of each parameter used in this simulation is501

provided in Table. 3. In this numerical evaluation, we consider502

Table 4: Household appliances and their average energy consumption of Class
A.

Category Appliance Operation time No. of times Average consumption
(most likely) per day per

capita
(kWh/day)

per time
of usage
(kWh)

Cooking Electric Oven 18:00-22:00 1 1.00 2.00
Microwave Oven 6:00-9:00 and

18:00-22:00
2 0.23 0.23

Refrigeration Refrigerator-Freezer All the day 24 0.66 0.06
Electric Vehicle PEV 18:00-01:00 7 4.90 1.40

Wet Cleaning
Clothes Washer (CW) 18:00-24:00 1 0.67 1.34
Clothes Dryer (CD) 19:00-24:00 1 1.39 2.78
Dishwasher (DW) 20:00-24:00 1 0.625 1.25

Computers Desktop and Laptop 19:00-24:00 5 0.40 0.16

Miscellaneous

TV 18:00-24:00 6 0.84 0.28
Electric Kettle 06:00-09:00,

19:00-20:00
and 22:00-
24:00

3 0.39 0.26

Iron 18:00-24:00 1 0.09 0.18
Others (e.g., Vacuum) 18:00-24:00 1 0.65 1.30

that all households have the same protection system (i.e., the 503

same power boundaries on the amount of power absorbed from 504

the grid). Unless it is mentioned otherwise, we assume that the 505

microgrid uses a battery of a 30 kWh capacity with an initial 506

SoC equal to 60%, and an efficiency of charge and discharge 507

equal to 1. 508

In Fig. 4, the daily allocation of power by the shared bat- 509

tery (
∑T

t=1 pt
bat, dis) for each household during the first week of 510

July 2015 is presented. The allocation of power for households 511

of different classes, and of the same class (e.g., class A), are 512

shown in Fig. 4(a) and Fig. 4(b), respectively. The reputation 513

is updated every day (i.e., Dp = {1}), and the total allocation 514

is calculated at the end of the day. When households join the 515

system, they start with an equal reputation. We set the initial 516

reputation to R = 1/N. It is observed from Fig. 4 that the alloca- 517

tion of power strongly depends on households’ reputations even 518

if the differences in their reputations are small (see Fig. 4(b)). 519

It is worth to highlight the correlation between the reputations, 520

and the amount and distribution of appliances demand during 521

the day (see Fig. 3). For instance, the appliances demand of 522

households belonging to class C has a higher match with their 523

solar PV energy generation profile than other classes of house- 524

holds. Therefore, their shared surplus renewable energy is less 525

than other classes, which makes their reputation lower and their 526

resulted allocation of power in future time periods smaller. The 527
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(b) All Households are of class A.

Figure 4: Daily amount of power received from the battery based on reputations
during the first week of July 2015. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

MILP solver starts allocating the energy available in the battery528

to the household with the highest reputation, then it moves to529

next households in a descending order of reputation. When the530

battery does not have enough energy for all households, house-531

holds with low reputation may not receive energy from the bat-532

tery (e.g. household 3 of class C in Fig. 4(a)), although they533

share some amount of renewable energy every day. However,534

we argue that those households still have an interest to stay in535

the system, since they may share more energy in some time pe-536

riods (e.g., if they go outside or if they are on vacations), and537

get a higher reputation in the next day.538

It can also be noticed from Fig. 4(a) that the amount of power539

allocated to the household of class A is always higher than to540

other classes, since their reputation is higher. This is because541

the amount of surplus renewable energy shared by households542

of class A is higher than other classes due to their occupancy543

pattern (i.e., from 18:00 to 9:00, see Table. 1). From Fig. 4(b),544

we notice that when all households are of the same class, their545

power allocation depends on the variability of their demands546

throughout the day and the uncertainty introduced from day to547

day.548

In order to evaluate the economic impact of the proposed549

framework, we calculate and compare the appliances demand550

costs in three different scenarios. In the first scenario, the daily551

appliances demand costs are calculated in the ordinary case552

(i.e., without scheduling the shiftable appliances and without553

using the shared battery). In the second scenario, the shiftable 554

appliances are scheduled at times when electricity tariffs are 555

cheap, but without using the shared battery (i.e, which can be 556

considered as a baseline to our framework). The third scenario 557

captures the proposed framework, where both the shiftable ap- 558

pliances and the energy that each household can receive from 559

the shared battery are scheduled. In all the scenarios, house- 560

holds satisfy their appliances demand from their solar PV sys- 561

tem first. 562

In Fig. 5, the economic impact of the proposed framework 563

on each participating household, represented by the average 564

daily appliances demand cost and the average daily cost sav- 565

ing achieved, is presented. We run the three different scenarios 566

in the first week of July 2015. Those scenarios are compared in 567

two situations: i) when households are of different classes, in 568

Fig. 5(a), and ii) when all households are of the same class: all 569

of class A in Fig. 5(b), all of class B in Fig. 5(c) and all of class 570

C in Fig. 5(d). It is assumed that households are not enforced to 571

make any additional payment for the power received from the 572

shared battery. 573

We start by discussing the cost savings archived in the sec- 574

ond scenario when the shared battery does not exist (i.e., green 575

bars). In this scenario, Fig. 5(a) and (d) show that the cost sav- 576

ing achieved in class C households is higher than both class 577

A and B, Fig. 5(b) and (c), respectively. This is related to the 578

longer occupancy timeline of class C households than class A 579

and B (see Table. 1). This gives class C households more flex- 580

ibility for scheduling the shiftable appliances and results in a 581

higher cost saving. We note that all the cost savings in this fig- 582

ure are with respect to the original cost (i.e., blue bars). 583

Fig. 5 shows that after applying the proposed appliances 584

scheduling framework using the shared battery (i.e., the third 585

scenario, red bars), the daily cost saving of appliances demand 586

is noticeably increased. For instance, in Fig. 5(a), when house- 587

holds are of different classes, up to 68% of saving is achieved 588

by a class A household, which accounts for more than twice the 589

saving achieved by the second scenario (i.e., green bar) in that 590

situation. As illustrated before in Fig. 4(a), when all households 591

are active, households with limited shared surplus energy (e.g., 592

class C) achieves a limited cost saving due to their low reputa- 593

tion. However, we discussed earlier that those households still 594

have some interest to stay in the system. 595

With respect to the second situation (i.e., when households 596

are of the same class), the saving obtained by the proposed 597

scenario when all households are of class A (i.e., Fig. 5(b)) 598

is higher than when they are of class B and C, Fig. 5(c) and 599

(d), respectively. The reason is that in those classes the oc- 600

cupancy timeline is longer than class A, which results in higher 601

matches between their appliances demand and their locally gen- 602

erated solar energy and lower amounts of surplus renewable en- 603

ergy shared with the battery. It is important to note that the 604

differences between households’ appliances daily cost and the 605

achieved saving, when all belong to the same class, is due to 606

the uncertainty of households’ demand and generation profiles 607

during the week (see Section 6.1 and 6.2). 608

Fig. 6 shows the system performance during different annual 609

periods. In this simulation experiment, we consider a microgrid 610
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Figure 5: Households average daily appliances demand cost (euro) and the savings (%) achieved in each scenario during the first week of July 2015. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

scenario that consists of three households of different classes.611

Fig. 6(a) illustrates how the average min and max SoC reached612

(i.e., SoCreached
min and SoCreached

man , respectively) varies every month613

according to the amount of solar energy generated in Girona614

in 2015. Fig. 6(b) shows that the proposed framework reduces615

the total demands absorbed from the main grid by the whole616

microgrid (
∑

t∈T ,i∈N
pt,i

grid, abs, see Eq. 6).617

From Fig. 6(a), we notice that in all the annual periods, the618

minimum SoC has not been reached (i.e., SoCmin=20% in our619

simulation settings). This is because the EMS needs to guar-620

antee a certain initial SoC at the beginning of next day (i.e.,621

SoC0= 60% in our simulations, see Eq. 15). In order to do622

that, the optimizer does not allow the battery SoC to go below a623

certain value, depending on the battery capacity, the amount of624

shared solar energy, and the number and class of participating625

households.626

Therefore, we further study the effect of the battery capac-627

ity Cbat, and the number of participating households N on628

SoCreached
min , SoCreached

man , and
∑

t∈T ,i∈N
pt,i

grid, abs, by running the exper-629

iments presented in Table. 5. We assume that households are of630

different classes (i.e., Household 1,4 are of class A, 2,5 are of631

class B, and 3,6 are of class C) and all of them have the four632

shiftable appliances mentioned before. In this experiment, we633

have the same previous simulation settings except ηdis= 0.9 and634

ηch=0.95. Table. 5 shows how the system allows the battery to635

reach a lower SoCreached
min if its size is smaller or when the number636

Table 5: The effect of the number of households and battery capacity on the
min and max SoC and the total absorbed power from the main grid.

Capacity (kWh) Parameter Number of households (N)
3 4 5 6

Cbat=30

∑
pgrid, abs (kW) 56.97 74.26 95.29 112.27

SoCreached
max (%) 83.66 94.02 95.57 94.83

SoCreached
min (%) 59.23 59.01 58.42 56.75

Cbat=15

∑
pgrid, abs (kW) 56.69 73.77 94.83 111.77

SoCreached
max (%) 94.89 99.83 99.95 99.37

SoCreached
min (%) 58.07 51.31 46.34 46.58

Cbat=7.5

∑
pgrid, abs (kW) 56.36 73.36 94.28 111.25

SoCreached
max (%) 97.29 99.76 100.00 98.75

SoCreached
min (%) 54.29 39.36 41.56 38.30

of households in the microgrid increases. The first case is due to 637

the limited size of the battery. In this case, the system allows a 638

lower SoCreached
min , and at the same time it guarantees the required 639

initial SoC0 at the beginning of the next day. The second case is 640

because of the increased amount of shared renewable energy. It 641

is clear in Table. 5 that the microgrid absorbs more power from 642

the main grid as the number of households increases. 643

6.4. Scalability and Computation Time 644

In this section, the solving time of the scheduling optimiza- 645

tion problem is computed for different number of households 646

in the microgrid. The problem is run one time per day (i.e., 647

24-hours ahead scheduling). It is coded in GAMS 24.2.3 and 648
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Figure 6: System performance during every month in 2015, (three households
of class A, B and C).

solved using CPLEX 12 in a modern laptop (i.e., i7 at 2.4 GHz,649

4 GB of RAM, 64-bit Windows). We assume that the ownership650

of shiftable appliances may differ from household to household,651

thus, the computation time for different number of shiftable ap-652

pliances in each household is further calculated in each case.653

Fig. 7 shows how the computation time for solving the opti-654

mization problem changes in each case. It can be noticed that655

the number of households and the ownership of shiftable appli-656

ances have a significant impact on the computation time. How-657

ever, the computation time remains reasonable when the num-658

ber of households increases with a full ownership of the men-659

tioned shiftable appliances.660

7. Conclusions661

In this study, a reputation-based centralized Energy Man-662

agement System (EMS) for residential microgrids is proposed.663

Using this framework, households aim to maximize the self-664

consumption of their on-site RES by storing their surplus re-665

newable energy in a shared storage unit. The EMS runs a day-666

ahead optimization problem to jointly schedule households’ ap-667

pliances power consumption and the energy that each house-668

hold can receive from the shared battery. Households’ reputa-669

tions are considered by the EMS in the reallocation of available670

energy in the shared battery.671
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Figure 7: Computation time.

Simulation results assess the performance of this framework 672

and show how households are able to achieve a cost saving of 673

up to 68% by sharing only their surplus renewable energy. It is 674

shown that their cost saving is tightly related with their reputa- 675

tion, that increases as they share more renewable energy. Using 676

the reputation factors, the EMS will be able to fairly and reli- 677

ably allocate the available energy stored in the shared battery 678

among households. Further simulation experiments have been 679

conducted to show the effect of the battery capacity and the 680

number of participating households on the maximum and mini- 681

mum battery’s state of charge reached, and on the total amount 682

of power absorbed from the main grid. In addition, we show 683

that the problem solution can be obtained in a reasonable com- 684

putation time for different number of households and different 685

ownership level of shiftable appliances. 686

This study provides insights on how the shared energy using 687

the reputation-based policy can be fairly and reliably allocated 688

among households within the microgrid and how this frame- 689

work can reduce power demands from the main grid without 690

urging households to have a local ESS or to export electricity to 691

the main grid. Future work will focus on applying this frame- 692

work in real time which imposes additional supervisory control 693

and prediction models. Selfish behavior and manipulation are 694

also among the important issues that need to be considered in 695

this reputation-based energy sharing framework. 696
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