On sky characterization of the BAORadio wide band digital backend. Search for HI emission in Abell85, Abell1205 and Abell2440 galaxy clusters
Abstract
We have observed regions of three galaxy clusters at z∼[0.06÷0.09] (Abell85, Abell1205, Abell2440) with the Nançay radiotelescope (NRT) to search for 21 cm emission and to fully characterize the FPGA based BAORadio digital backend. We have tested the new BAORadio data acquisition system by observing sources in parallel with the NRT standard correlator (ACRT) back-end over several months. BAORadio enables wide band instantaneous observation of the [1250,1500] MHz frequency range, as well as the use of powerful RFI mitigation methods thanks to its fine time sampling. A number of questions related to instrument stability, data processing and calibration are discussed. We have obtained the radiometer curves over the integration time range [0.01,10 000] seconds and we show that sensitivities of few mJy over most of the wide frequency band can be reached with the NRT. It is clearly shown that in blind line search, which is the context of H I intensity mapping for Baryon Acoustic Oscillations, the new acquisition system and processing pipeline outperforms the standard one. We report a positive detection of 21 cm emission at 3 σ-level from galaxies in the outer region of Abell85 at ≃1352 MHz (14400 km/s) corresponding to a line strength of ≃0.8 Jy km/s. We also observe an excess power around ≃1318 MHz (21600 km/s), although at lower statistical significance, compatible with emission from Abell1205 galaxies. Detected radio line emissions have been cross matched with optical catalogs and we have derived hydrogen mass estimates.
- Publication:
-
Experimental Astronomy
- Pub Date:
- February 2016
- DOI:
- 10.1007/s10686-015-9477-7
- arXiv:
- arXiv:1505.02623
- Bibcode:
- 2016ExA....41..117A
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics
- E-Print:
- 18 pages, 17 figures