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Abstract 

Perlecan, or heparan sulfate proteoglycan 2 (HSPG2), is a ubiquitous heparan sulfate proteoglycan that 

has major roles in tissue and organ development and wound healing by orchestrating the binding and 

signaling of mitogens and morphogens to cells in a temporal and dynamic fashion. In this review, its 

roles in fibrosis are reviewed by drawing upon evidence from tissue and organ systems that undergo 

fibrosis as a result of an uncontrolled response to either inflammation or traumatic cellular injury leading 

to an over production of a collagen-rich extracellular matrix. This review focuses on examples of fibrosis 

that occurs in lung, liver, kidney, skin, kidney, neural tissues and blood vessels and its link to the 

expression of perlecan in that particular organ system.   
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1. Introduction 

Fibrosis is a complex and finely tuned process that occurs in response to either inflammation, 

traumatic cellular injury or as a result of unknown or congenital issues affecting the structure of the 

extracellular matrix (ECM). Fibrosis is generally associated with pathological changes where significant 

increases in the expression and assembly of the ECM, notably the collagen content of the tissues. This 

has significant longer term impacts on the structural and functional properties of the tissues that may 

lead to impairment and failure of that organ. While the primary attributes seen in these diseases lie in 

the over-production of collagen in the tissues, changes in perlecan, also known as heparan sulfate 

proteoglycan 2 (HSPG2), levels also occur [1-3].  

It is now well accepted that fibrosis is not a static event, but a dynamic process involving several 

phases that are also common to the wound healing response. Initially, an influx of inflammatory cells 

are seen that become activated resulting in the downstream activation of tissue resident ECM secreting 

cells followed by a significant change in the structure of ECM from an increased synthesis and 

decreased proteolytic turnover, further immune cell infiltration and delayed apoptosis [4, 5]. Many of 

these phases involve heparin-binding growth factors, cytokines and chemokines suggesting that 

heparan sulfate (HS) proteoglycans play important roles in this process [6]. Despite the range of 

biological activities of HS, there are only a few HS proteoglycans present in the ECM including perlecan, 

collagen type XVIII and agrin [7]. The abundance of perlecan in basement membranes and connective 

tissues that exhibit fibrosis [7, 8] as well as the key roles that it plays in many tissues suggests that it 

may play important roles in fibrosis. Recent evidence that will be reviewed in the following sections 

supports the hypothesis that perlecan plays key roles in the regulation of fibrogenesis. 

 

1.2 Overview of perlecan 

 

1.2.1 Structure of perlecan 

Perlecan is a ubiquitous HS proteoglycan synthesized by most cells and present in most pericellular 

and extracellular matrices and is recognized as an essential component of basement membranes [7, 

9]. Perlecan has also been localized to connective tissues and is produced by leukocytes [10]. The 

protein core of human perlecan is 460 kDa and composed of five distinct domains with 

glycosaminoglycan attachment sites located in both the N- and C-terminal domains (Fig. 1). Perlecan 

exerts tissue-specific activities through its glycosaminoglycan chains as the structure of these depends 

on the context and cell source. Typically, the three glycosaminoglycan attachment sites in domain I are 

decorated with HS, which has been shown for endothelial cell derived perlecan [11]. Perlecan may also 

be decorated with chondroitin and/or keratan sulfate (CS and KS respectively) in addition to HS as has 

been demonstrated for smooth muscle and epithelial cell derived perlecan [12-14] and these may also 

utilize the glycosaminoglycan attachment site in domain V [15]. There are many biological functions 

ascribed to perlecan including playing central roles in regulating the assembly of the ECM and the 

binding and presentation of growth factors to cells [16].  

 

1.2.2 Functions of the glycosaminoglycan chains 
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The HS chains that decorate perlecan electrostatically interact with growth factors enabling their 

storage in the ECM, protection from proteolytic degradation and potentiation of their activity when bound 

to their cognate receptors [17, 18]. The HS chains of perlecan, bind and modulate the signaling of 

fibroblast growth factors (FGF) 1, 2 and 18 [13, 14, 19, 20] and also bind to other heparin-binding growth 

factors that have been shown to be involved in the fibrotic process and include vascular endothelial 

growth factor (VEGF) isoforms 165, 189 and 206, epidermal growth factor (EGF), transforming growth 

factor (TGF) α, connective tissue growth factor and hepatocyte growth factor (HGF) [6, 21]. Fine 

structural changes in the HS chains on perlecan can control growth factor signaling. For example, FGF1 

signals when complexed with endothelial cell derived perlecan HS but not smooth muscle cell derived 

perlecan HS [13]. Additionally, cells have the ability to dynamically change the structure of their 

glycosaminoglycan chains as a result of the microenvironment [22] enabling temporal control over 

heparin-binding growth factor activities. The FGF2/perlecan complex is important in specifying the 

spatial distribution of the growth factor while degradation of perlecan destabilizes the complex causing 

FGF2 to lose its defined localization [23] in the ECM enabling it to interact with the syndecan and 

glypican families of cell surface HS proteoglycans [24]. The HS chains that decorate perlecan modulate 

the activity of mitogenic growth factors that support the proliferation of a wide variety of cell types 

including those involved in fibrosis [25-28]. At high cell densities in culture, the proliferation of many 

mesenchymal cell types was reduced by perlecan [25, 29, 30], suggesting that the role of perlecan in 

these situations is complex and not well understood.  

 

1.2.3 Enzymatic regulation by heparanase and sulfatases 

The activity of heparin binding growth factors can be affected by the action of HS modifying enzymes 

including heparanase and the sulfatases. Heparanase cleaves HS both on the cell surface and in the 

basement membrane and has been shown to modulate FGF signaling [31, 32]. Heparanase expression 

is reduced during liver fibrosis and increased in atherosclerosis [14, 17, 33-35]. Sulfatases (SULF)-1 

and -2 selectively remove 6-O-sulfate mainly from trisulfated disaccharide units (IdoA2S-GlcNS6S) 

within S-domains of heparin/HS, where many growth factors, including FGFs, bind. Pretreatment of 

heparin with SULF-2 has been shown to inhibit the binding of many heparin binding growth factors while 

treatment of complexes formed between heparin and growth factors can be released by treatment with 

SULF-2 [36]. In addition, SULF-1 inhibits growth factor binding to its receptor [37]. Interestingly, both 

SULF-1 and -2 are regulated by transforming growth factor (TGF)-β1 and are reported to be upregulated 

in pulmonary fibrosis [38]. Together these studies suggest a role for HS modifying enzymes in the 

regulation of growth factor signaling events in fibrosis. 

 

1.2.4 Roles of the protein core 

Perlecan possesses an α2β1 integrin binding site in domain V that mediates cell adhesion, while 

other putative cell adhesion sites reside in domains III and IV [13, 39, 40]. In addition, domain III of 

mouse perlecan contains an RGD sequence that may interact with integrins [41]. Perlecan can support 

the proliferation of a wide variety of cell types including those involved in fibrosis [25-28]. Perlecan can 

also be anti-proliferative for cell types such as smooth muscle cells (SMCs) via both HS and protein 
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core, particularly domain III [13, 42], that is mediated by the tumor suppressor PTEN [43]. Perlecan can 

also bind some growth factors via its protein core including platelet-derived growth factor (PDGF) to 

domain III [44] and keratinocyte growth factor (also known as FGF7) to both domains III and V [45]. Low 

density lipoprotein (LDL) binds to perlecan domain II and this binding is modulated by HS [35, 46]. 

Proteolytic processing of perlecan by chymase, MMPs, and cathepsins which can cleave in perlecan 

domain IV has been reported to generate perlecan fragments encompassing endorepellin [10], which 

is a recombinant form of perlecan domain V named due to its anti-angiogenic activities [47, 48]. 

Although endorepellin contains a glycosaminoglycan attachment site in its protein sequence it is devoid 

of a glycosaminoglycan chain [47], thus its activities are ascribed to the protein core. Endorepellin can 

be cleaved by BMP1/Tolloid-like proteases and cathepsin L to release the laminin G-like domain (LG)3 

region that includes the α2β1 integrin binding site [49, 50]. Inflammatory cells including mast cells 

produce alternatively spliced forms of perlecan with a relative increase in the amount of transcripts 

corresponding to domain V [51]. Together the various roles of the perlecan protein core suggest that 

perlecan may exert its roles in fibrosis through both the parent molecule and biologically active 

fragments. 

 

1.2.5 Roles in ECM organization 

Perlecan is an essential molecule in tissue and organ development with roles in ECM stabilization 

and the maintenance of the functional status of mature connective tissues [52]. Perlecan interacts with 

a diverse range of ECM components including fibronectin, laminin and many of the collagens 

coordinating the organization of a diverse array of structural glycoproteins and ECM proteins [17, 53].  

For example, perlecan assists in collagen fibrillogenesis, largely through its pendant glycosaminoglycan 

chains [54, 55].  

 

 

2 Manifestations of fibrosis and the fundamental roles of perlecan 

Fibrosis can affect a number of different tissues and organs in the body including the lung, liver, 

skin, kidney, neural and vascular tissues. The fibrogenic response involves several phases of cell-based 

processes such as fibroblast and immune cell activation, immune cell infiltration and delayed apoptosis 

resulting in the accumulation of ECM, which is the accepted hallmark of the condition. The many roles 

of perlecan described above suggest that it has important roles to play in both modulating and promoting 

fibrogenesis. The roles of perlecan in fibrogenesis are reviewed in the following sections drawing upon 

evidence in the literature of tissue-specific examples. A summary of the known roles of perlecan and 

their impact on fibrogenesis are summarized in Fig. 1. 
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Fig. 1. Roles of perlecan in fibrogenesis mediated by both its protein core and glycosaminoglycan chains. 
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A key event in the initiation of fibrosis is the activation of fibrocyte and fibroblast cells and their trans-

differentiation to myofibroblastic-like cells that express α-smooth muscle actin (α-SMA). Interestingly, 

the activation of fibroblasts is not unique to fibrosis as it occurs in cancer, decidualization and infection 

[56-58]. The net accumulation of ECM in injured tissues results from the increased synthesis of ECM 

components including collagen types I and III, perlecan and laminins by cells [59]. Cells that infiltrate 

the injured site, including circulating inflammatory cells and fibrocytes, may also contribute to the 

synthesis of ECM locally; for example, monocyte-derived macrophages express perlecan in response 

to hypoxia mediated via the HIF-1α pathway [60] while macrophages and granulocytes have also been 

shown to produce perlecan [10, 60]. Another example is the infiltration of mesenchymal stem cells and 

pericytes that potentially contribute to lung fibrosis that express the PDGF receptor α as well as 

fibrocytes of bone marrow origin [61] that home to sites of remodeling via CXC chemokine ligand 

(CXCL)12 and CXCR4 involving HS [62]. In ECM remodeling and repair, the myofibroblasts and 

fibroblasts are cleared through apoptosis [63]. However, during fibrosis the wound healing phase fails 

to terminate due to the lack of apoptosis of these cells and it has been hypothesized that the C-terminal 

fragment of perlecan directs cell apoptosis [64, 65].  

Perlecan is involved in the generation of chemotactic growth factor and morphogen gradients which 

recruit cells to sites of ECM remodeling, primarily through interactions of the cytokines with its HS chains 

[66-70] but also including interactions of growth factors with its protein core [45]. Numerous cytokines 

including CC chemokine ligand (CCL) -2, -3 and -5 and CXCL-1, -8 (also known as interleukin (IL)-8), -

9 and -10 and -12 (also known as stromal cell derived factor 1α) bind HS/heparin [71-78] and their 

gradients in tissues are likely to be affected by the structure of the perlecan HS chains. These factors 

promote the migration of fibrogenic cells to the site of injury thereby amplifying inflammation [79]. This 

selective action suggests that perlecan may be involved in recruiting cell types that contribute to the 

organization of provisional matrix during tissue repair, and not those with a profibrotic phenotype, which 

would limit fibrosis [80].    

TGFβ1 is one of the major cytokines involved in upregulating perlecan expression and it is expressed 

by many of the cell types involved in fibrogenesis in tissues including hepatic stellate cells (HSCs), 

fibroblasts, astrocytes and microglia, specialized brain macrophages [81-84]. The latent form of TGFβ1 

is activated by plasmin that in turn upregulates perlecan expression [85, 86]. There is also evidence of 

TGFβ1 regulating perlecan expression when endothelial cells are plated at high density, which may 

promote the repair of the injured endothelium in vivo [87].  

Perlecan interacts with type IV collagen and a number of structural proteins to help form the 

basement membranes [88-90]. It assists in collagen fibrillogenesis, largely through its pendant CS 

chains [54], but there is evidence that this may also involve HS-dependent mechanisms [55].  Perlecan 

facilitates the interactions of laminin and collagen in conjunction with proline-arginine-rich end leucine-

rich repeat protein (PRELP), a collagen anchorage small leucine-rich proteoglycan, to create the 

basement membrane present in many tissues including those discussed in more detail in the next 

sections [91, 92].  
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2.1 Lung 

In lung, chronic obstructive pulmonary disease (COPD), asthma and idiopathic pulmonary fibrosis 

(IPF) affect the parenchymal tissue manifesting as a thickening of the subepithelial ECM [93, 94].  While 

both COPD and IPF exhibit a progressive loss of alveolar parenchyma, COPD is an obstructive disease 

with airway inflammation and IPF is a restrictive disease [95]. The major ECM producing cells are 

fibroblasts and myofibroblasts while airway epithelial and SMCs are also involved [94, 96, 97] (Fig. 2A). 

Airway SMCs obtained from donors with COPD showed enhanced perlecan production following 

stimulation with TGFβ1 that was driven by intracellular SMAD activation [86]. Furthermore, this study 

demonstrated that COPD airway SMCs adhered to perlecan via epitopes in domains IV and V [86]. 

Interestingly, the ECM is degraded in the alveoli and excessive deposition in the bronchi and 

bronchioles that is correlated with differences in the fibroblast morphology, proliferation and ECM 

production [98]. Phenotypically different fibroblasts have been reported in central airways and lung 

parenchyma in COPD [99]. Fibroblasts in the parenchymal tissue were more sensitive to TGFβ1 

expression than in the central airways, which resulted in increased VEGF synthesis, proliferation and 

increased the synthesis of perlecan [99, 100]. Fibrotic cells from biopsies taken from patients with 

asthmatic symptoms showed an increased secretion of perlecan in culture media compared to cells 

from normal patients [101]. In addition, cigarette smoke extract increased perlecan expression by COPD 

fibroblasts in vitro, however the mechanisms involved have not been explored [102]. 

In a rat model of bleomycin-induced pulmonary fibrosis, total proteoglycan content was significantly 

increased, including the expression level of perlecan [103]. Furthermore, primary lung fibroblast cultures 

established from rats after bleomycin induction exhibited increased production of perlecan, compared 

with normal lung fibroblasts together with a significant increase in the amount of TGFβ1[104]. Incubation 

with an anti-TGFβ1 antibody inhibited proteoglycan expression in a dose-dependent manner, indicating 

that TGFβ1 was responsible in part for the increase in proteoglycan production in fibrotic cells [104]. 

Nitric oxide has been reported to downregulate perlecan expression in asthmatic lung fibroblasts [105]. 

Fibulin-1 peptides can stimulate the production of perlecan in lung derived airway SMCs and fibroblasts 

from patients with pulmonary fibrosis and COPD [106]. The augmented deposition of cell-associated 

perlecan together with fibronectin modulated by fibulin-1 may enhance fibroblast activity and extend 

fibroblast induced lung remodeling [106].  

The structures of the HS chains decorating perlecan in lung tissue from patients with IPF showed 

increased levels of glycosaminoglycans as well as increased sulfation of the HS in the areas of 

increased matrix deposition linking these changes in glycosaminoglycan structure to the altered growth 

factor activity in fibrosis [107]. Immunohistochemical staining showed co-localization of perlecan and 

the highly sulfated HS, indicating perlecan may be the core protein that harbors these highly sulfated 

HS chains [107]. The altered HS composition in IPF may thus suggest that the ECM landscape in 

fibrosis favors growth factor activity and tissue remodeling [107]. 
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Fig. 2. Schematic of where fibrogenesis occurs and the cell types involved in (A) lung, (B) liver, (C) skin, (D) kidney, (E) neural tissues and (F) blood vessels. 
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2.2 Liver  

Hepatic endothelial cells line the space of Disse, which contains a non-continuous basement 

membrane due to a lack of polymerized laminin, which presumably facilitates the movement of cells 

and blood throughout and across the liver sinusoids (Fig. 2B). Despite the absence of polymerized 

laminin, this discontinuous membrane contained significant amounts of other ECM components 

including collagen, perlecan and fibronectin [2, 24, 108, 109]. In contrast, laminin is present together 

with collagen type IV in classical continuous basement membranes around liver biliary ducts and blood 

vessels [110]. In fibrosis, peri-sinusoidal basement membranes are synthesized and it has been shown 

that these contain laminin and collagen fibrils that are deposited, along with increased perlecan 

expression [2, 85, 108, 110-113]. The production of these basement membrane structures can cause 

functional changes that impact upon the exchange of macromolecules between the endothelial 

sinusoids and hepatocytes in the liver [93, 114, 115]. While perlecan is a major component of the 

perisinusoidal basement membrane in the liver, it along with type XVIII collagen is upregulated in 

fibrosis [2, 116]. 

The primary cells that are responsible for the deposition of the ECM in liver fibrosis are HSCs [4] 

that are resident peri-sinusoidal cells in the subendothelial space residing between the hepatocytes and 

sinusoidal endothelial cells. These cells become activated at sites of injury by factors produced by 

hepatocytes and endothelial cells, as well as infiltrating inflammatory cells including macrophages [117-

121]. Once activated HSCs exhibit increased mitogenic activity in the presence of PDGF-BB, a heparin 

binding growth factor that binds to perlecan HS and signals cells via the Ras-mitogen-activated protein 

kinase (MAPK) pathway via an upregulation of the PDGF-β receptor [17, 29]. The increased production 

and activity of cytokines are required for the continued activation of HSCs, which amplify inflammation 

through the release of neutrophil and monocyte chemo-attractants, such as monocyte chemotactic 

protein 1 (MCP-1) and colony-stimulating factor [122]. This positive feedback system results in an 

accumulation of HSCs and macrophages at the site of injury and it is interesting to note that activated 

HSCs respond to MCP-1 [123] that binds perlecan [124], demonstrating a level of cross talk in the 

system resulting in an accumulation of HSCs at the site.  

Perlecan is upregulated in the periportal parenchyma during chronic cholestatic disease [24] and 

there is an increase in the HS and CS/dermatan sulfate (DS) content [125, 126] together with an 

upregulation of some of the enzymes involved in sulfate modification of HS including the 6-O-

sulfotransferases and glucosamine 3-O-sulfotransferase 1 enzymes involved in producing heparin-like 

sequences [126]. This supports the hypothesis that an increased abundance of these highly sulfated 

glycosaminoglycan sequences promote both collagen fibrillogenesis and laminin polymerization [54, 

55, 127].  

Matrix metalloproteinase (MMP) activity is increased in fibrosis, particularly MMP-2,-3 and -9, that 

degrades basement membrane components, including perlecan [94, 128-131], and replace this ECM 

with type I collagen which further activates cell growth and MMP production [132]. MMPs are derived 

from tissue resident cell populations, activated HSCs and Kupffer cells which are specialized liver 

macrophages [133]. 
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In congenital hepatic fibrosis, there is a marked infiltration of mast cells scattered throughout the 

portal structures. These are more abundant than in other chronic liver diseases such as chronic viral 

hepatitis and alcoholic fibrosis [134] suggesting that mast cells might have a specific role in the 

congenital condition. It is tempting to speculate that it might involve the expression of the shorter forms 

of perlecan previously shown to be produced by mast cells [10, 51] which are produced by the actions 

of proteases secreted by mast cells including chymase or are a result of mRNA splicing and processing 

as shown for the mast cell line, HMC-1 [10].  

 

2.3 Skin 

The initiation of fibrosis in skin requires the epithelial cells in the epidermis to undergo an epithelial 

to mesenchymal transition, which converts the cell into an ECM expressing cell [94] (Fig. 2C). Perlecan 

is expressed throughout the epidermis and dermis of skin with a peri-cellular pattern with little 

demonstrable in the epithelial basement membrane. Aged keratinocytes have been reported to be 

perlecan deficient and were unable to form a multilayered epidermis with  defects in cell proliferation 

and differentiation, suggesting that perlecan is a key modulator of cell proliferation [135]. Endorepellin 

has cell-signaling roles and was implicated as a key fibrogenic mediator [64]. Apoptosis of endothelial 

cells induces ECM proteolysis, and subsequently acts through phosphoinositide 3-kinase (PI3K) to 

prevent apoptosis in fibroblasts [65], implicating C-terminal fragments of perlecan in delaying fibroblast 

apoptosis. However, an increase in collagen secretion was not observed in response to endorepellin 

alone, indicating that additional apoptotic factors must act in a coordinated fashion to induce all features 

of myofibroblast differentiation [64]. Interestingly, human fibroblasts derived from sclerodermia skin 

lesions were more sensitive to the action of endorepellin than fibroblasts derived from healthy control 

skin [64], indicating a disease specific response to perlecan signaling. 

 

2.4 Kidney 

Renal fibrosis occurs in chronic nephropathies, leading to changes to the tubular and glomerular 

basement membranes and interstitial ECM resulting in decreased kidney function and eventually failure 

[136] (Fig. 2D). Kidney infections, toxins, mechanical obstruction, immune complexes resulting from 

autoimmune diseases or chronic infections and genetic disorders lead to cellular injury while type-2 

diabetes mellitus and ischemic/hypertensive nephropathy also contribute to kidney fibrogenesis [137]. 

Fibrotic changes in the kidney can also be caused by genetic mutations such as Denys-Drash syndrome 

from mutations in the WT1 gene that causes an initial decrease in perlecan expression that is later 

reversed and increases along with collagen type IV, laminin, fibronectin and tenascin and results in 

mesangial sclerosis [96]. In the kidney, the major HS proteoglycan in the glomerular basement 

membrane is agrin [138] while perlecan plays a major role in filtration in the glomeruli [139] and has 

been correlated with a slower progression of IgA nephropathy [140]. Decreased amounts of perlecan 

have been shown in animal models of diabetic nephropathy as well as in diabetic patients [141]. 

Perlecan is also decreased in glomerular nephritis and IgA nephropathy whereas biglycan and decorin 

are both up regulated with a concomitant upregulation of TGFβ suggesting that a positive autocrine 

loop plays a major role in the expansion of the mesangial matrix [140]. Further, in an animal model of 
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diabetic nephropathy streptozotocin elevated levels of TGFβ and was a major factor in the up-regulation 

of tissue fibrosis [142]. An increase in collagen types I, III and IV and fibronectin accompanied the 

decreased expression of perlecan in this model [143]. 

In sclerotic lesions of focal glomerulosclerosis in a rat renal transplant model, an induction of 

perlecan expression in the glomerular basement membrane was detected compared with its expression 

in control kidneys [144]. The observed induction of perlecan expression was also observed in the 

interstitium in a capillary-like pattern. Kidney allografts also presented extensive lymphangiogenesis, 

associated with induced perlecan expression underneath the lymphatic endothelium. The magnitude of 

lymphangiogenesis and perlecan expression both correlated with severity of interstitial fibrosis and 

impaired graft function [144]. 

 

2.5 Glial scarring in neural tissues 

Glial scarring can arise in neural tissues that have undergone physical injury due to trauma including 

injury to the spinal cord or an hypoxic insult as a result of ischemia or cerebral stroke. In neural tissues, 

astrocytes, oligodendrocytes, Schwann cells and microglia, specialized brain macrophages, are the 

major cell types involved in the production of ECM components and assembly of myelin [145, 146] (Fig. 

2E). The microglia and astrocytes have major roles in fibrosis after becoming activated in response to 

the release of inflammatory cytokines such as IL-1β and TGFβ [145, 146]. These cytokines cause 

further release of proinflammatory cytokines and an upregulation of ECM molecules, most notably CS 

lectican proteoglycans including aggrecan, versican, neurocan, brevican [147] and phosphacan [145, 

146]. Perlecan has a central role in the developing brain by regulating neurogenesis through the control 

of neural cell position and phenotype in regions of the developing brain [148, 149]. 

The CS proteoglycans present in the glial scar surrounding the lesion site prevent neurite outgrowth 

in vitro and nerve regeneration in vivo [150]. A recent transcriptomic analysis of astrocytes stimulated 

with IL-1β showed no evidence of upregulation of any of the CS proteoglycan genes suggesting that 

they were not the only proteoglycans in the glial scar [151].  Rat cortical astrocytes were shown to 

produce more HS than CS in culture with a relatively higher content of unsubstituted glucosamine 

disaccharides. The glycosaminoglycan chains of higher negative charge were more effective at 

stimulating nerve growth factor (NGF) signaling in PC12 cells but the protein core to which the HS was 

attached was not investigated [152]. The heparin binding domain of laminin is responsible for neurite 

outgrowth together with NGF [127] implicating HS proteoglycans in this process. The C-terminal domain 

V region of perlecan delayed the onset of glial scarring in rat models by decreasing the expression of 

neurocan and phosphacan and stimulating the activity of NGF [153]. These data suggest that the 

balance between CS and HS proteoglycans in the ECM and the alteration in this balance changes the 

nature of the surrounding environment, which can either inhibit or stimulate neurite outgrowth and nerve 

regeneration [154]. 

While the laminin-like G domain (LG)3 fragment, as yet, has not been associated with the formation 

of glial scarring, mice deficient of neural/glial antigen 2 (NG2)/chondroitin sulfate proteoglycan 4 

(CSPG4) had a reduced amount of glial scarring and were more permissive to axonal regrowth [155]. 

Interestingly these animals had a similar phenotype to the progranulin deficient animals [155]. 
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Progranulin is a neuroprotective molecule [156] that binds to the C-terminal region of perlecan and 

specifically to the first two laminin like repeats LG1 and LG2 [157]. A recent study indicated that the C-

terminal region of perlecan binds to CSPG4 [158] and it is tempting to speculate that this binding 

involves an intermediate interaction with progranulin. Interestingly, this same C-terminal region of 

perlecan is neuroprotective and pro-angiogenic in a rat ischemic model [159].   

 

2.6 Blood vessels and vascular tissues 

Atherosclerosis is characterized by intimal thickening due to an over production of ECM and lipid 

accumulation in the intima as well as macrophage activation and foam cell formation [160, 161] (Fig. 

2F). Monocyte recruitment, retention and differentiation play a central role in the development of 

atherosclerosis [161] and removal of HS increased the association of monocytes with the subendothelial 

matrix [35] suggesting that HS may inhibit monocyte interactions with the ECM by inhibiting cell-surface 

integrin interactions [162, 163]. The initial activation of SMCs after arterial injury is coupled with a 

decrease in the expression of laminin and basement membrane-like structures, whereas fibronectin 

accumulates around proliferating cells in the arterial media and intima [164]. Perlecan can act directly 

on fibrocyte-like cell activation through promotion of cell adhesion or indirectly via binding and 

potentiating the signaling of growth factors and cytokines involved in cell activation and proliferation 

[165]. Non-human primates fed a diet to induce hypercholesterolemia demonstrated atherosclerotic 

lesions with perlecan associated with the media in normal vessels and early stages of lesion formation 

and was prominent in the SMC matrix near the plaque core of more advanced lesions [166]. These 

observations indicate that basement membrane components, including perlecan, may take part in the 

regulation of the differentiated state of ECM producing cells [167]. 

The progression and organization of the developing plaque in blood vessels, including migration and 

proliferation of SMCs into the intima, results in the secretion of collagen and the formation of a fibrous 

cap that surrounds the lipid rich core of the plaque. Perlecan is thought to have pro-atherogenic effects 

by retaining lipoproteins in the matrix in the early phase of atherosclerosis [46, 168]. Perlecan supports 

low density lipoprotein (LDL) sequestration via its protein core, notably domain II, while HS modulates 

this binding [35, 46], a key effect in the progression of atherogenesis.  

Vascular SMC proliferation occurs via FGF2 and suggests a role for perlecan in the downregulation 

of the FGF2 mediated proliferative response as demonstrated by the HS chains that decorate SMC 

derived perlecan did not potentiate the growth signal of FGFs [13]. Removal of HS, through the action 

of the HS degrading enzyme heparanase [169], from late vascular lesion explants supported the 

proliferation of neointimal SMCs and rendered them responsive to PDGF [17, 170]. FGF2 is also 

induced by PDGF treatment of SMCs, further supporting the role of FGF2 in the proliferation of SMCs 

[171]. While perlecan is often thought of as a pro-atherogenic molecule [172], vascular SMC activation 

and proliferation is inhibited by perlecan [170, 173, 174] and it is the lack of perlecan expression in early 

initiation of atherosclerosis that enables SMC activation, proliferation and ECM synthesis [170]. When 

SMCs are present in high density, thrombin can promote perlecan synthesis [175, 176] and may act in 

concert with mechanical strain and angiotensin II [177-179]. This suggests that perlecan expression is 

tightly linked to limiting SMC activation and proliferation. In the vasculature this suppression of SMC 
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activation is mediated by thrombin and factor Xa [177]. The mechanisms by which perlecan is anti-

proliferative for vascular SMCs is via both HS and protein core, particularly domain III [13, 42], that is 

mediated by the tumor suppressor phosphatase and tensin homolog (PTEN), which inhibits growth 

factor receptor signaling [43]. Furthermore, perlecan has been implicated in inhibiting growth of vascular 

SMCs via Oct-1, a member of a family of transcription factors involved in cell growth processes and 

suggest that breakdown of the basement membrane and loss of interaction with perlecan activates cells 

from their quiescent state [173]. Plaque development is also attributed to the HS chains on perlecan as 

demonstrated by mice lacking HS in the N-terminal domain of perlecan on an ApoE-deficient 

background exhibit reduced plaque development [172]. Thus the ability of perlecan to suppress SMC 

proliferation may contribute to plaque instability as it is the SMCs that produce the fibrous cap that 

stabilizes the lipid plaques.  

Cadmium is an environmental risk factor for atherosclerosis and has been found to induce changes 

in the expression of endothelial perlecan with markedly shorter HS chains that were able to stimulate 

the proliferation of vascular SMCs in the presence of FGF2 [180]. Heparin has also been reported to 

upregulate perlecan expression in vascular SMCs [42] and hypothesized to promote FGF2 signaling. 

Perlecan expression is increased in late stages of atherosclerosis and modulated by apolipoprotein E 

(apoE) [59, 174] as demonstrated by reduced perlecan expression in apoE deficient mice [160]. A 

murine model of atherosclerosis exhibited enhanced perlecan expression in apoE deficient mice fed a 

chow diet and was expressed in both early and advanced plaques [181]. Nitric oxide may be an 

important intermediate signaling molecule in the induction of perlecan by apoE in SMCs as both are 

required for the modulation of SMC proliferation [174]. 

Myeloperoxidase and peroxynitrous acid released from activated leukocytes selectively degrade the 

core protein of perlecan [182, 183]. The precise degradation site(s) on the core protein await 

identification however, there is evidence for the presence of peroxynitrite-modified perlecan fragments 

in human atherosclerotic lesions [184]. Proteolytic processing of perlecan by chymase, MMPs, and 

cathepsins which can cleave in perlecan domain IV has been reported to generate perlecan fragments 

encompassing endorepellin [47]. Endothelial cell apoptosis triggers a caspase-dependent release of 

the LG3 containing fragment of perlecan suggesting that proteases are responsible for the cleavage of 

perlecan to release this bioactive fragment. This fragment supports the proliferation of vascular SMCs 

and fibroblasts and inhibits their apoptosis [185] through PI3K [65], whilst increasing the expression of 

αSMA through OI3K and collagen types I and III expression in these cells [49, 63, 64]. Interestingly, the 

EGF peptide motif in perlecan domain V together with 4-sulfated CS could replicate this inhibition of 

apoptosis of fibroblasts and vascular SMC [64]. However, an increase in collagen secretion was not 

observed in response to endorepellin alone, indicating that additional apoptotic factors act coordinately 

to induce all features of myofibroblast differentiation [185].  

Endorepellin interacts with VEGF receptor 2 providing evidence for its ability to control cell adhesion 

and VEGF-mediated mitogenic activities [186]. The C-terminal domain V of perlecan has either anti-

angiogenic [187, 188] or angiogenic [10, 15] activities in line with the action of the parent molecule. 

Endorepellin has been shown to be anti-angiogenic when added to cultures of endothelial cells by either 

interfering with the interactions between VEGF receptor 2 and the LG1/2 regions in domain V [189] or 
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sterically competing with the α2β1 integrin mechanism of attachment in domain V [39]. Endorepellin 

binds to the N-terminal fragment of type XVIII collagen, known as endostatin, where it counteracts its 

anti-angiogenic activities [47].  

Interestingly, TGFβ is upregulated during the initiation of early atherosclerosis when perlecan 

expression is downregulated, potentially by PDGF that decreases perlecan expression in the 

vasculature [190], suggesting that in the vasculature, perlecan expression is regulated independently 

of TGFβ expression [191]. Concomitant with this decrease in perlecan expression is an increase in the 

levels of CS/DS proteoglycans [160]. Oxidized LDL and lysolecithin, a product of LDL oxidation, both 

decrease endothelial HS proteoglycan expression [35]. While the mechanism is unclear, activation of 

signal transducer and activator of transcription 1 (STAT1) are key signaling molecules involved in 

inhibition of perlecan transcription by oxidants and inflammatory cytokines [35].  

Restenosis is a scarring that occurs in the vasculature following a vascular intervention and involves 

a change in phenotype of the quiescent contractile SMCs to proliferate and produce ECM [192]. This is 

accompanied by a downregulation of their contractile proteins, which is in contrast to fibroblasts in 

fibrosis which upregulate αSMA to become myofibroblasts [193]. Perlecan expression has been 

reported to be low in uninjured blood vessels and immediately following injury which corresponded to 

maximal SMC proliferation, while perlecan has been reported to increase later in advanced lesions that 

coincided with an arrest of SMC proliferation [170]. Interestingly, heparinase treatment promoted SMC 

growth [170] suggesting that the temporal expression of perlecan is important for fibrogenesis.  

The length and sulfation pattern of perlecan HS chains are cell type specific [194], and it is therefore 

likely that these features play a role in the tissue-specific functions of perlecan. Deletion of the 

glycosaminoglycan attachment sites in domain I of mouse perlecan supported the proliferation of SMCs 

following flow cessation of the carotid artery [195] further supporting the role of both the HS and perlecan 

protein core in the modulation of SMC activation and proliferation. In a separate study, HS 

proteoglycans were more effective in inhibiting neointima formation in a rabbit model of restenosis than 

heparin [196] supporting the synergistic role of HS together with the perlecan protein core. These 

studies indicate that during tissue remodeling perlecan promotes desirable cell proliferation whilst 

simultaneously inhibiting undesirable proliferation activities of SMCs. 

 

 

3. Therapies for fibrosis that alter perlecan expression 

While therapies exist which delay fibrogenesis, the contribution of these treatments to the structure 

or abundance of perlecan in fibrosis is less clear. Of the fibrosis treatments explored, sulodexide, a 

mixture of non-anticoagulant low molecular weight heparin/HS and DS, has been shown to increase 

perlecan expression in a rat model of diabetic nephropathy, whilst the expression of collagens I and IV 

decreased suggesting that TGFβ may be controlled by interacting with the glycosaminoglycans [143]. 

Additionally, in vitro culture of tubular cells treated with sulodexide reduced expression of αSMA, 

heparanase-1 and MMP9 suggesting that this treatment inhibited the epithelial-mesenchymal transition 

characteristic of fibrosis [197]. Additionally, perlecan expression is upregulated via treatment of murine 

atherosclerosis with telmisartan, an angiotensin II receptor antagonist [198]. 
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 With the concept of the multifaceted roles of perlecan in fibrosis, the effect of the following fibrosis 

treatments warrant further investigation for their effect on perlecan expression. Nintedanib, a tyrosine 

kinase inhibitor, is approved for the treatment of IPF [199]. It inhibits a variety of receptors including the 

PDGF receptor, VEGF receptors 1 and 2, and FGF receptors 1–3 [200]  and affects the binding partners 

for perlecan that are involved in cell proliferation in fibrosis, although analysis of the effect on perlecan 

expression has not been examined. Nintedanib inhibits the progression of processes in fibrosis 

including the migration of fibroblasts, their transformation into myofibroblasts and the deposition of 

extracellular matrix [201, 202] thus it is possible to speculate that this treatment affects perlecan 

expression. Through a similar approach, sorafenib targets the PDGF receptor and is effective in 

reducing fibrosis in animal models of liver fibrosis [203] and many also affect perlecan expression.  

Adenoviral vectors expressing an antisense mRNA of the PDGF β-chain delivered to an animal 

model of induced liver fibrogenesis down-regulated endogenous PDGF β -chain expression [204, 205], 

which is likely to lead to increased perlecan expression [190] with a positive outcome for modulating 

the progression of fibrosis. Pirfenidone inhibits TGFβ1 stimulated collagen expression [206] and in vitro 

experiments have shown that it can inhibit the proliferation of HSCs and lung fibroblasts [207-209] and 

is thus worthy of further exploration for its effect on perlecan expression. 

Statins are effective in lowering LDL cholesterol [210] and also reduced plaque volume when used 

at high dose [210]. ApoE deficient mice treated with statins also display reduced plaque volume with 

increased decorin and biglycan expression and a more condensed collagen rich ECM, however 

perlecan expression was not altered in these mice [211] even though it has a major role in LDL retention 

and has been shown to modulate HS proteoglycan expression [35]. The renin-angiotensin system 

(RAS) is a central regulatory system for cardiovascular function and critically connected to 

atherosclerosis and mediated by angiotensin II. RAS blockade has been shown to attenuate the 

progression of atherosclerotic lesions in animals and is thus a promising therapy for human 

cardiovascular diseases [191]. A novel perlecan-inducing compound, RUS310, is a potent inhibitor of 

SMC activity and has been trialed for the treatment of in-stent restenosis [212]. So far this compound 

has not been trialed for the treatment of fibrosis, but may be a rewarding approach to modulate perlecan 

expression.  

 

 

4. Final Considerations 

The literature provides ample evidence for the roles of perlecan in controlling / modulating 

fibrogenesis (Fig. 1). Perlecan has key roles in promoting tissue repair whilst limiting damaging fibrosis 

even though many of the tissue repair activities can also contribute to fibrogenesis if not resolved in a 

timely fashion (Fig. 3). The anti-fibrotic activities of perlecan are mediated through modulating cell 

adhesion, proliferation and migration of key inflammatory and ECM producing cells.  In contrast, 

perlecan contributes to fibrogenesis through growth factor binding and signaling, LDL binding, ECM 

interactions and activities of the C-terminal region of perlecan that inhibit the apoptosis of fibroblasts. 

These multifaceted roles of perlecan suggest that it plays a role in each phase of fibrogenesis, with 

particularly important roles in modulating the activity of growth factors, chemokines and cytokines for 
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cell activation, infiltration and proliferation. These activities can be attributed to either the 

glycosaminoglycan or protein core components of perlecan. The glycosaminoglycan chains change 

dynamically as a result of changes in the microenvironment enabling temporal and spatial control over 

growth factor, chemokine and cytokine activity. While the precise mechanisms involved in the roles of 

perlecan involved in fibrogenesis remain unclear, the current evidence suggests that it is an important 

candidate worthy of further development of more effective treatments for fibrosis.  

 

 

 

Fig. 3. The anti- and pro-fibrotic activities of perlecan that are open to therapeutic manipulation. 
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