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Rationalitätskonzepte,

Entscheidungsverhalten und
ökonomische Modellierung

Universität Mannheim
L 13,15
68131 Mannheim

No. 04-28

Cumulative Prospect Theory and the St.Petersburg
Paradox

Marc Oliver Rieger∗

and Mei Wang∗∗

July 2004

Financial support from the Deutsche Forschungsgemeinschaft, SFB 504, at the University of
Mannheim, is gratefully acknowledged.
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Abstract

We find that in cumulative prospect theory (CPT) with a concave value
function in gains, a lottery with finite expected value may have infinite
subjective value. This problem does not occur in expected utility theory.
We characterize situations in CPT where the problem can be resolved.
In particular, we define a class of admissible probability distributions and
admissible parameter regimes for the weighting– and value functions. In
both cases, finiteness of the subjective value can be proved. Alternatively,
we suggest a new weighting function for CPT which guarantees finite
subjective value for all lotteries with finite expected value, independent
of the choice of the value function.

Keywords: Cumulative Prospect Theory, Probability Weighting Function,
St. Petersburg Paradox
JEL classification numbers: C91, D81.

1 Introduction

1.1 Review of Cumulative Prospect Theory (CPT)

Expected utility theory has been the foundation for our modern economic the-
ories. However, it has been challenged by more and more empirical results that
conflict with it. For example, it has been found that people tend to think of the
outcome as a relative change rather than the final status, they have different
risk attitudes towards gains and losses, and they tend to overweight unlikely
events but underweight highly possible events.

All these observations call for developments of alternative theories that
are psychologically more appealing and descriptively more valid. Cumulative
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Prospect Theory (CPT), introduced by Tversky and Kahnemann [15], stands
out as one of the most well-accepted descriptive theories. It has three important
features:

1. Instead of evaluating the final wealth, the payoffs are framed as gains or
losses as compared to some reference point.

2. The loss looms larger than the gain, hence the value function in losses is
steeper than the value function in gains.

3. A weighting function, in which the small probabilities are underweighted
and the moderate to large probabilities are overweighted, is introduced to
transform the cumulative probability distribution.

The first two features are reflected in the two-part S-shaped value function—
concave in gains and convex in losses. The prototypical example has been given
in [15]:

u(x) :=
{

xα, x ≥ 0
−λxβ , x < 0.

(1)

We mention that the distinction between α and β is not essential to our results.
The third feature is captured by weighting the (cumulative) probability dis-

tribution by an S-shaped function, the so-called weighting function w. The
original example is given by

w(F ) :=
F γ

(F γ + (1− F )γ)1/γ
. (2)

It is possible to assign different weighting functions for gains and losses (denoted
by w+ and w−), and we will use δ to denote the parameter in losses. Our results
extend to a large class of possible weighting functions, in particular including
the aforementioned and the alternative weighting function

w(F ) := exp(−(− ln(F ))γ)

for γ ∈ (0, 1), which has been suggested in [13].
We define the subjective utility by

U(p) :=
∫ 0

−∞
u(x)

d

dx
(w−(F (x))) dx +

∫ +∞

0

u(x)
d

dx
(w+(F (x))) dx,

where F (x) :=
∫ x

−∞ dp. This is a generalization of the original formulation in
[15]. The generalization allows for arbitrary (continuous) outcomes, and not
only for discrete values. Our formulation includes in particular the discrete
case of [15]. This can be seen easily by setting p(x) :=

∑
i piδxi , where δx is a

Dirac mass at x, the probabilities pi > 0 satisfy
∑

i pi = 1, and the (discrete)
outcomes are given by the real numbers xi. The classical formulation of the
St. Petersburg problem (as a discrete lottery) would correspond to this special
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case. Nevertheless, we prefer to take a little extra effort to use the more general
continuous setting. Readers who are not familiar with the continuous formula-
tion may just replace all integrals by sums to arrive at the more usual discrete
case.

A variant of expected utility theory can be obtained as a special case of CPT
by choosing w− and w+ to be the identity.

1.2 A remark on the monotonicity of the weighting func-
tion

The weighting function w is usually assumed to be a strictly increasing function.
This follows from the basic fact that people weigh higher probabilities stronger
than lower probabilities. However, to our knowledge it hasn’t been pointed out
so far that the oldest and most widely used form of the weighting function

w(F ) :=
F γ

(F γ + (1− F )γ)1/γ
,

as suggest by [15], does not satisfy this condition for all γ ∈ (0, 1). In fact,
numerical computations show that the function w is partially decreasing for
γ ≤ 0.278, compare Figure 1. The problem disappears for larger values of γ. It
is surprising that it hasn’t been found earlier (to our knowledge). This can only
be explained with the analytical difficulties which the complicated structure of
w poses.

Other weighting functions, in particular the ones defined by [13] and [10]
are strictly increasing for all values of γ ∈ (0, 1). This observation seems to
suggest that for experimental studies alternative forms should be preferred over
the original form of (2). The problem, however, is not too severe, since previ-
ous studies mostly measured values of γ ≥ 0.3, and in this parameter regime,
the weighting function w is indeed strictly increasing. (There seems to be no
mathematical proof for this, but at least there is sufficient numerical evidence.)

In our paper we will nevertheless consider the weighting function w as given
by (2), since it is the most frequently studied version, and the problems we are
concerned with are independent of the non-monotonicity for small values of the
parameter γ. Moreover, we will provide general results covering all classes of
weighting functions, hence the function w will only be a specific example for us.

1.3 The classical St. Petersburg paradox

The St. Petersburg paradox is usually explained with the following example:
the player Paul is reluctant to pay enormous amounts of money for a gamble
that Peter offers him—he will get 2i ducats when the coin lands “heads” on the
ground for the first time at the ith throw—which has an infinitely large expec-
tation value. This example already dates back to Bernoulli [4]. The solution of
this problem is usually to replace the formula of expected value with the one of
expected utility, in which a strictly concave utility function makes the subjective
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Figure 1: The classical weighting function defined in (2) and introduced by [15]
is not monotone for small values of γ. (Here: γ = 0.2.)

utility of the large outcome no longer high enough to compensate the very low
probability associated with it.

It is, however, important to keep in mind that for gambles with infinite expec-
tation value, the strict concavity of the utility function alone cannot guarantee
the expected utility to be finite. For example, if Peter offers Paul 22i ducats
when the coin lands “heads” at the i-th throw, then with a strictly concave util-
ity function like u(x) := x0.8, the expected utility is still infinitely large. (Even
in the original example, the strictly concave utility function u(x) := x−e−x still
leads to an infinite expected utility.) Such insight was first made by Menger
[12] with his illustration of the “Super-Petersburg Paradox”. He concluded that
unless the utility function is bounded, it is impossible to discriminate all pos-
sible probability distributions. One could argue, however, it is not necessary
to discriminate all possible probability distributions, because no individuals or
organizations can offer a lottery with unlimited expectation value. Actually,
Arrow [3] pointed out that if we only consider distributions with finite expecta-
tion value, we can still guarantee finite expected utility even though the utility
function is unbounded. More precisely he found the following result:

Proposition 1.1 Let p be a probability measure with finite expectation value
E(p) < ∞ and let u : R → R be a strictly increasing, concave utility function,
then the utility U(p) :=

∫
u dp is finite.
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(We remark again that this statement is a generalization of the case of dis-
crete outcomes where the integral is replaced by a sum. Hence the usual formu-
lation of the St. Petersburg problem in terms of a discrete lottery is included.)

In other words, the St. Petersburg paradox can be resolved by allowing only
for “realistic” lotteries, i.e., under the assumption of a finite expectation value,
a (not necessarily strictly) concave utility function is sufficient to guarantee that
the expected utility is finite.

Even though this fundamental statement is mathematically easy in the
framework of expected utility theory, it turns out to be false in the context of
CPT. In fact, we will show in the following section that in cumulative prospect
theory a gamble with a finite expectation value can have an infinite subjective
value—independent of the concavity of the value function u.

Generalizing this idea, we find special cases in CPT under which the problem
can be resolved. In particular we will define a class of admissible probability
distributions and admissible parameter regimes (Section 2.3) and we will suggest
an alternative weighting function which allows for an extension of Theorem 1.1
to CPT (Section 2.4).

In the final Section 3 we summarize our results and discuss the possible
modifications of CPT that resolve the paradox.

2 The St. Petersburg paradox in CPT

2.1 A counterexample to finite subjective utility

We start this section by explicitly giving an example for a probability distribu-
tion of outcomes which has a finite expectation value, but an infinite subjective
utility.

Theorem 2.1 Let γ, α ∈ (0, 1), q > 2. Let the probability measure p of possible
outcomes be given by

p(x) :=
{

0, x ≤ 1
Cx−q, x > 1,

where C :=
∫∞
0

x−q dx.
Let the weighting function w+: [0, 1] → [0, 1] be given by (2) and the value

function on u: R+ → R be given by (1). Let F (x) :=
∫ x

−∞ dp be the total
probability for an outcome less than x. Then we have E(p) < +∞ and u strictly
concave, but for α > γ and q sufficiently close to 2 the subjective utility is
infinite, i.e.

U(p) :=
∫

u(x)
d

dx
(w(F (x))) dx = +∞.

This result shows that it is not possible to resolve the St. Petersburg paradox
in the framework of CPT in the same way as in the utility theory: Even if we
assume strict concavity of the value function (corresponding to a risk-averse
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behavior) and a finite expectation value for the probability distribution of out-
comes (thus excluding unrealistic situations with infinite average outcome), the
subjective utility can still be infinite!

A similar paradox has been observed independently by Blavatskyy [5] in the
context of discrete lotteries.

The problem does not arise from the convex-concave structure of the value
function in CPT, since in our example we have only positive outcomes (i.e., we
work only in the concave part). It does also not arise from a specific choice of the
weighting function, since we have chosen the standard form already introduced
by [15], and could as well use alternative form as suggested, e.g., in [13]. We
will specify later the general conditions under which the problem occurs.

Proof of Theorem 2.1:
First we prove that E(p) < +∞ using that q > 2:

E(p) =
∫ ∞

1

xp(x) dx =
∫ ∞

1

x−q+1 dx =
1

2− q
< +∞.

The concavity of u on R+ is clear from the definition, so we only need to show
that the utility U(p) is infinite. We compute F (x) =

∫ x

1
p(x) dx = 1

q+1 (1−x1−q).
Denote C := 1

q+1 ∈ (0, 1
3 ). Now we can calculate U(p):

U(p) =
∫

u(x)
d

dx
(w(F (x))) dx

=
∫ ∞

1

xα d

dx

(
F (x)γ

(F (x)γ + (1− F (x))γ)1/γ

)
dx

=
∫ ∞

1

xα d

dx

(
Cγ(1− x1−q)γ

(Cγ(1− x1−q)γ + (1− C)γx(1−q)γ)1/γ

)
dx

=
∫ ∞

1

Cγ
[
γ(1− x1−q)γ−1xα−q(q − 1)(

Cγ(1− x1−q)γ + (1− C)γxγ−qγ
)−1/γ

+(1− x1−q)γ
(
Cγ(1− x1−q)γ + (1− C)γxγ−qγ

)− 1
γ−1(

Cγ(1− x1−q)γ−1xα−q − (1− C)γ(1− q)xγ+α−qγ−1
) ]

dx. (3)

Now we prove the following estimates for positive numbers c1, c2:

(1− x1−q)γ−1 ≥ 1, (4)(
c1(1− x1−q)γ + c2x

γ−qγ
)−1/γ ≥ (c1 + c2)−1/γ . (5)(

c1(1− x1−q)γ + c2x
γ−qγ

)−1/γ−1 ≥ (c1 + c2)−1/γ−1. (6)

Inequality (4) simply follows from 1−x1−q ≤ 1 and γ−1 ∈ (−1, 0), whereas
(5) and (6) follow from (1 − x1−q)γ ≤ 1 and xγ−qγ ≤ 1. (Here we use that
x ≥ 1.)
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We apply these inequalities to (3) with c1 := Cγ and c2 := (1−C)γ to derive

U(p) ≥
∫ ∞

1

Cγγ(q − 1)(Cγ + (1− C)γ)−1/γxα−q

+C2γ(1− x1−q)γ(Cγ + (1− C)γ)−1/γ−1xα−q

+Cγ(1− C)γ(q − 1)xα+γ−qγ−1 dx. (7)

We use that for x ≥ 2 we have (1 − x1−q)γ ≥ (1 − 21−q)γ and since q > 2
we even have (1 − x1−q)γ ≥ (1 − 2−1)γ = 2−γ . Furthermore we estimate the
integral in (7) by the integral from 2 to +∞, using that the integrant is positive:

U(p) ≥
∫ ∞

2

Cγγ(q − 1)(Cγ + (1− C)γ)−1/γxα−q

+C2γ2−γ(Cγ + (1− C)γ)−1/γ−1xα−q

+Cγ(1− C)γ(q − 1)xα+γ−qγ−1 dx.

Writing K := Cγ + (1− C)γ and collecting terms with the same expression
in x we arrive at

U(p) ≥
∫ ∞

2

Cγ
(
γ(q − 1)K−1/γ + Cγ2−γK−1/γ−1

)
xα−q

+(q − 1)Cγ(1− C)γxα+γ−qγ−1 dx. (8)

We remember that a function xs is integrable on (2,+∞) if and only if s < −1.
hence the first term in this integral is integrable if and only if α − q < −1

which is always the case by the assumptions α < 1 and q > 2. However, the
second term is only integrable if α+γ−qγ < 0. Since we can choose q arbitrarily
close to 2, this is only the case if α < γ. In other words, if we choose q close
to 2 and α > γ, e.g. q := 3, α := 3/4, γ := 1/4, then (8) becomes +∞ and we
have proved that U(p) = +∞. �

2.2 Results on finite utility from CPT

We have seen in the previous section that in standard CPT the St. Petersburg
paradox cannot be resolved. However, there are specific situations in which the
problem does not occur. In this section we will discuss such situations. The
results will be presented in a more general form (together with proofs) in the
following section.

We first consider conditions on the probability distribution of the outcomes.
The St. Petersburg paradox can obviously not occur if we restrict ourselves to
a finite set of possible outcomes, but even a bounded set of possible outcomes
suffices to prevent infinite utility:

Theorem 2.2 Let U be a CPT subjective utility functional and p be a probabil-
ity distribution with bounded support, i.e. supp p := {x ∈ R; p(x) > 0} ⊂ [a, b],
where a > −∞ and b < +∞. Then U(p) is finite.
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Proof: This follows from the general result, Theorem 2.5, but it can also be
seen directly. We assume for simplicity that w := w− = w+, use the monotonic-
ity of u and that w(F ) ∈ [0, 1]:

U(p) =
∫ b

a

u(x)
d

dx
w(F (x)) dx ≤ u(b)

∫ b

a

d

dx
w(F (x)) dx

= u(b)(w(F (b))− w(F (a))) ≤ u(b) < ∞.

�
Many interesting probability distributions (e.g. normal Gauss distributions) do
not have a bounded support. Therefore the following extension is useful:

Theorem 2.3 Let U be a CPT subjective utility functional and p be a prob-
ability distribution with exponential decay at +∞, i.e. there exist a, b, c > 0
such that p(x) ≤ ae−bx for all x ≥ c. Then U(p) < +∞. (The corresponding
condition for −∞ would ensure that U(p) > −∞.)

Proof: This result is an immediate consequence of Theorem 2.6. �

If one wants to allow for arbitrary probability distributions, a general finite-
ness result can be given for bounded value functions:

Theorem 2.4 Let U be a CPT subjective utility functional with bounded value
function |u(x)| ≤ C and let p be a probability distribution. Then U(p) is finite.

Proof: Again, this is a corollary of Theorem 2.5, but a direct proof, following
the ideas of the proof of Theorem 2.2 is also easy. �

Under the restriction of finite expectation values, one can also obtain finite-
ness if the constant of the value function is smaller than the parameter of the
weighting function, i.e. max(α, β) < γ, as we will show in Section 2.3. (In a
certain sense, the value function has to be “sufficiently concave”.) However,
for the classical functions used in [15] this condition has been violated in most
studies, compare Table 1.

Nevertheless this result is important, in that it can be used to derive sev-
eral methods to fix the problem: We have already seen one of them, namely
considering bounded value functions (setting asymptotically α = 0). Another
approach is to work with alternative weighting functions (setting for values of
F close to 0 and 1 the constant γ = 1). We will explain this idea in Section 2.4.

2.3 General results

The central result of this section is the following theorem:

Theorem 2.5 Let U be a CPT subjective utility given by

U(p) :=
∫ 0

−∞
u(x)

d

dx
(w−(F (x))) dx +

∫ +∞

0

u(x)
d

dx
(w+(F (x))) dx,
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Study Estimate Estimate α < γ
for α,β for γ, δ β < δ

Tversky and Kahnemann [15]
gains: 0.88 0.61 no
losses: 0.88 0.69 no

Camerer and Ho [7] 0.37 0.56 yes
Tversky and Fox [14] 0.88 0.69 no
Wu and Gonzalez [8]

gains: 0.52 0.71 yes
Abdellaoui [1]

gains: 0.89 0.60 no
losses: 0.92 0.70 no

Bleichrodt and Pinto [6] 0.77 0.67/0.55 no
Kilka and Weber [9] 0.76-1.00 0.30-0.51 no
Abdellaoui et al. [2] 0.91 0.76 no

Table 1: Experimental values of α, β and γ, δ from various studies.

where the value function u is continuous, monotone, convex for x < 0 and
concave for x > 0. Assume that there exists constants α, β ≥ 0 such that

lim
x→+∞

u(x)
xα

= u1 ∈ (0,+∞), lim
x→−∞

|u(x)|
|x|β

= u2 ∈ (0,+∞), (9)

and that the weighting functions w± are continuous, strictly increasing functions
from [0, 1] to [0, 1] such that w±(0) = 0 and w±(1) = 1. Moreover assume that
w± are continuously differentiable on (0, 1) and that there are constants δ, γ > 0
such that

lim
x→0

w′−(x)
xδ−1

= w1 ∈ (0,+∞), lim
x→1

1− w′+(x)
(1− x)γ−1

= w2 ∈ (0,+∞). (10)

Let p be a probability distribution with E(p) < ∞. Then U(p) is finite if α < γ
and β < δ. This condition is sharp as can be seen from Theorem 2.1.

Proof: To keep things simple we assume that p is absolutely continuous, i.e.
we can represent it by a finite function p: R → R≥0. (If this is not the case, the
proof can be concluded by a simple approximation argument.)

In order to prove that U(p) is finite we need to prove that it is neither −∞
nor +∞. For notational reasons we prove the former statement. The latter
then follows by the symmetry of the problem. Thus we assume without loss of
generality that p(x) = 0 for all x > 0.

We define a sequence {xi}, i = 0, 1, 2, . . . as follows:
First, let x0 := 0. Then define xi such that∫ xi−1

xi

p(x) dx = 2−i. (11)
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Since
∑∞

i=1 2−i = 1, we have limi→∞ xi = −∞.
The assumption that p has a finite expectation value leads to the following

estimate, using (11):

∞∑
i=1

−xi−12−i =
∞∑

i=1

−xi−1

∫ xi−1

xi

p(x) dx

≤
∞∑

i=1

−
∫ xi−1

xi

xp(x) dx

= −E(p) < +∞.

Denoting yi := −xi−12−i we obtain the useful estimate

∞∑
i=1

yi < +∞. (12)

We estimate the subjective utility U(p) using (9) and (10). We denote by η
all terms that converge to zero as x → −∞.

U(p) =
∫ 0

−∞
u(x)w′(F (x))p(x) dx

=
∫ 0

−∞
−(1 + η)u2x

βw1F (x)δ−1p(x) dx

=
∞∑

i=1

∫ xi−1

xi

−(1 + η)u2x
βw1F (x)δ−1p(x) dx

≥
∞∑

i=1

∫ xi−1

xi

−(1 + η)u2x
β
i−1w1F (xi)δ−1p(x) dx

≥
∞∑

i=1

−(1 + η)u2x
β
i−1w1F (xi)δ−12−i.

We use the estimate

F (xi) =
∫ xi

−∞
p(x) dx =

∞∑
j=j+1

∫ xj−1

xj

p(x) dx = 2−i

to obtain:

U(p) ≥
∞∑

i=1

−(1 + η)u2 xβ
i−1w1 2−δi.

Using the definition of yi we derive

U(p) ≥
∞∑

i=1

(1 + η)u2 w1 yβ
i 2i(β−δ). (13)
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By (12) we know that limi→−∞ yi = 0 and hence yβ
i is bounded. Using the

assumption δ > β and that limx→−∞ η = 0, it is clear that the infinite sum in
(13) converges. Thus U(p) is finite. �

Instead of posing conditions on the value– and the weighting functions, we
can also impose conditions on the class of admissible probability distributions
and in particular their decay at infinity:

Theorem 2.6 Let U be an arbitrary CPT subjective utility with value function
u satisfying (9) and weighting function w satisfying (10). Let p be an (absolutely
continuous) probability distribution such that for all q < 0 there exists C > 0
such that p(x) ≤ |x|−q for all |x| ≥ C. Then U(p) is finite.

Proof: Due to the symmetry of the problem (see above), we can assume
without loss of generality that p(x) = 0 for all x > 0. By assumption there exist
δ ∈ (0, 1] and β ∈ (0, 1) corresponding to (9) and (10). Define

q :=
δ + β

δ
+ 1 > 0.

By the assumption on p, there exists a C > 0 such that p(x) ≤ |x|−q for all
|x| ≥ C. We rewrite:

U(p) =
∫ 0

−∞
u(x)w′(F (x))p(x) dx

=
∫ −C

−∞
u(x)w′(F (x))p(x) dx︸ ︷︷ ︸

=:I1

+
∫ 0

−C

u(x)w′(F (x))p(x) dx︸ ︷︷ ︸
=:I2

.

The integral I2 is obvious finite, hence it is sufficient to consider I1. Since
p(x) ≤ |x|−q for all x ≤ −C, we have

F (x) ≤ 1
1− q

|x|1−q.

Using the same asymptotic estimates as in the proof of Theorem 2.5 we obtain

I1 =
∫ −C

−∞
−(1 + η)|x|β |x|(1−q)(γ−1)|x|−q dx

=
∫ −C

−∞
−(1 + η)|x|δ+β−1−qδ dx.

Now, using the above definition for q, this simplifies to

I1 =
∫ −C

−∞
−(1 + η)|x|−1−δ dx.

Since δ > 0, this is integrable, and thus U(p) is finite. �
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2.4 Alternative weighting functions

Using the general results of the previous section, it is easy to suggest a new
type of weighting functions that avoids infinite values for the subjective utility.
By Theorem 2.5 we only need to find functions w−, w+: [0, 1] → [0, 1] with the
following properties:

(i) w±(0) = 0, w±(1) = 1,

(ii) w± are strictly increasing on [0, 1]. (This condition is violated for the
classical weighting function (for small values of γ) as suggested by [15],
compare Section 1.2.)

(iii) w± are continuously differentiable on [0, 1], i.e. w′±(0) and w′±(1) are finite.
(This condition is violated by all usual weighting functions, e.g., [15] and
[13].)

The constants δ, γ in Theorem 2.5 will then be δ = γ = 1 and the conditions
α < γ and β < δ will be trivially satisfied since α < 1, β < 1 by assumption.
As a particular example we give a polynomial function and prove the following
result:

Proposition 2.7 Let a ∈ (0, 1), b ∈ (0, 1). Let the weighting function w: [0, 1] →
[0, 1] be given by

w(F ) :=
3− 3b

a2 − a + 1
(
F 3 − (a + 1)F 2 + aF

)
+ F.

Then w satisfies the conditions (i)–(iii) for all δ ∈ [0, 1). Moreover, it satisfies
w(F ) ≥ F for all F ≤ a and w(F ) ≤ F for all F ≥ a (overweighting of small
probabilities and underwaiting of large probabilities). Furthermore, assume that
there exists a constant α ∈ [0, 1) such that (9) holds for a value function u
and let p be a probability distributions with finite expectation value. Then the
subjective utility U(p) is always finite.

The function w is not arbitrarily chosen: It is actually the simplest polynomial
that satisfies all of the above conditions. It has the feature that the two param-
eters a and b have the following easy interpretation: a is the point on which w
changes from overweighting to underweighting, i.e. where w(a) = a. The sec-
ond parameter b corresponds (like the parameter γ in the original model) to the
curvature of w. (One can easily see that there exists no polynomial of degree
less than three which has a concave–convex structure. A standard ansatz with
a polynomial of degree three then leads to the above formula for w.)

A one-parameter model can be obtained by assuming that a = 1/2. The
formula then simply reads

w(F ) = (4− 4b)F 3 − (6− 6b)F 2 + (3− 2b)F.

Proof: All properties can be easily checked, since w is a polynomial. (This is a
big technical advantage compared to other weighting functions.) The finiteness
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of the subjective utility then follows immediately from Theorem 2.5. �

In Figure 2 we present plots of w for different values of a and b. Of course
the definition of the weighting function w as a polynomial is just a suggestion,
there are other possibilities if one allows for more complicated functions.

Figure 2: Alternative weighting functions w, avoiding the paradox of infinite
subjective utility, for some choices of the parameters a and b.

3 Conclusions

We have seen that the standard cumulative prospect theory can lead to a strange
result, namely an infinite subjective utility for a probability distribution of out-
comes which has only a finite expectation value. To conclude, we list four
possible ways to fix the problem and discuss them briefly:

1. If we allow only for probability distributions with exponential decay at
infinity (or even with bounded support), the problem does not occur, as
we have proved in Theorem 2.3 and Theorem 2.2. In many applications,
this is the case. However, it seems to be somehow dissatisfying to work
with this restriction. In particular in problems where we are interested in
finding the optimal probability distribution (subject to some constraints),
it might well happen that we obtain a “solution” with infinite subjective
utility, compare [16].
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2. It is possible to assume that γ > α and δ > β, where γ, δ are the parame-
ters of the weighting function and α, β are the growth rates of the value
functions. By Theorem 2.5 this is sufficient to ensure finite subjective
utility. Unfortunately, this assumptions seems to contradict many of the
measured parameters in experiments (compare Table 1).

3. The value function can be modified for large gains and losses such that it is
globally bounded. This again ensures a finite subjective utility (compare
Theorem 2.4). There are also other theoretical reasons in favor of this
modification, compare, e.g., [11].

4. The final idea is to modify the weighting function w as has been suggested
in Section 2.4. This guarantees a finite subjective utility, independently
of the choice of the value function (as long as it has a convex–concave
structure). It would be interesting to test alternative weighting functions
to experimental data.

As a last remark we mention the problem regarding the non-monotonicity of
the classical weighting function by [15] which we had pointed out in Section 1.2.
This problem suggests strongly to use an alternative weighting function—not
necessarily the one that we introduce in Section 2.4, but, e.g., one of the already
existing variants listed in Section 1.2—in further experimental and theoretical
studies.
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04-19 Cornelia Betsch Präferenz für Intuition und Deliberation (PID):
Inventar zur Erfassung von affekt- und
kognitionsbasiertem Entscheiden

04-18 Alexander Zimper Dominance-Solvable Lattice Games




