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Abstract

Humans excel at confronting problems with little to no prior information about, and
with few interactions reasoning over the problems to propose adequate solutions. In
other terms, when a human encounters an unknown function, they are able to, with few
samples, find a variable such that the evaluation of this variable in the unknown function
produces a satisfactory result. However, as the unknown function becomes increasingly
non-linear, as well as the design space x becomes increasingly abstract, it becomes harder
for a human to utilise prior knowledge around this abstracted black-box function. Bayesian
Optimisation, on the other hand, provides a principled approach to reasoning over the,
typically expensive to evaluate, unknown function f and exploring regions of uncertainty
in an efficient manner. Ubiquitous applications of Bayesian Optimisation range from
hyper-parameter tuning, molecule design, sensor placement, antenna design and laser
optimisation. Thus improvements in the performance of Bayesian Optimisation can have
wide-ranging implications in many practical applications. Bayesian Optimisation also
offers the great potential to enable systems to autonomously tune their hyper-parameters,
as well as automatically design the machine learning architectures (AutoML).
In this thesis, we want to advance the success of Bayesian optimisation algorithms

through revisiting and contributing to the first two stages in detail. In the first stage,
the surrogate model is chosen and constructed typically based on certain assumptions
of the unknown function, such as whether the function is deterministic or stochastic?
and if it’s believed to be stochastic is its noise process homoscedastic or heteroscedastic?
Do we believe the unknown function to be stationary or non-stationary? To assess the
effect of these assumptions, we look at a broad range of applications of tuning machine
learning models in typically studied domains. We find that through revisiting these initial
assumptions imposed at the start of applying Bayesian Optimisation, we can construct a
novel algorithm HEBO that achieves state-of-the-art performance compared to existing
methods. HEBO is verified externally also, by the submission of our algorithm into the
NeurIPS 2020 Black-box Optimisation challenge, whereby our proposed method achieved
1st place when evaluated on a wide variety of held-out tasks. We then visit the second stage
of the optimisation process, and we look at new ways to optimise the acquisition functions
by framing them in a mathematically equivalent compositional format, which allows for
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the application of a new family of compositional optimisers. We show that on synthetic
and real-world experiments, that these compositional methods perform favourably in the
majority of applications. Lastly, we attempt to carry through a Bayesian optimisation
perspective towards safe sequential decision making and propose new acquisition functions
to determine the fitness value for safe reinforcement learning, and evaluate them on a
variety of challenging benchmarks such as constrained robotic car, constrained point robot,
constrained robotic arm control, constrained pendulum and constrained double pendulum.
Whereby all robotic actuators are tasked with reading a goal state whilst avoiding an unsafe
region defined within the state space. We find that the incorporation of an acquisition
function helps guide exploration and leading to improved sample complexity in acquiring
safe policies in training and evaluation.
To summarise, we have developed a new Bayesian optimisation algorithm that was

successfully shown to be state-of-the-art internally against prior Black-box optimisation
algorithms, as well as externally in the NeurIPS 2020 Black-box optimisation challenge.
HEBO was shown to be two orders of magnitude more sample efficient than random
search for certain black-box optimisation tasks. We also introduced novel formulations of
popular acquisition functions in a mathematically equivalent compositional framework,
allowing us to bridge the well-studied field of compositional optimisation together and
show the success of doing so across commonly studied synthetic and real-world Bayesian
optimisation benchmarks. Finally, we study the important problem of safe sequential
decision making and construct novel acquisition functions that allow agents to safely
explore their environments.
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1. Introduction

In Section 1.1 we will first motivate the research problem we dedicate a majority of this
thesis to tackling. We will then move on to discuss our approach in Section 1.2, followed
by a detailed outline in Section 1.3 and lastly by a summary of the thesis contributions in
Section 1.4.

1.1. Motivation For Bayesian Optimisation

Black-box

x

y

×××

×y

Black-box

Optimisation

fθ : ℝD → ℝ

x ∈ ℝD y ∈ ℝ
f

fθ

Input 

Output 

Surrogate

Optimisation

Figure 1.1.: Introduction to Black-box optimisation. Generally, black-box optimisation
aims to efficiently traverse an input domain to maximise, or minimise, the value output
by evaluating the input in the black-box function.
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Black-box optimisation (BBO) has ubiquitous applications, including but not restricted
to hyperparameter tuning of deep learning models [66, 121, 249, 72], where the black-box
objective is the unknown function mapping between a set of model hyperparameters x
and the validation set performance f(x) measure such as accuracy, negative log-likelihood
or mean squared error. Additional applications include automatic chemical design [84,
134, 165, 87], where the black-box objective is the unknown function mapping between a
molecule x and its suitability as a drug candidate f(x). Further examples of black-box
optimisation problems appear as subroutines of optimisation algorithms such as immune
optimisation [262, 154], ant colony optimisation [260, 224] and genetic algorithms [176],
in speech recognition [166] and more broadly across domains spanning architecture [51],
chemical engineering [180] and biology [210, 164].
The NeurIPS black-box optimisation challenge is a competition that evaluates black-box

optimisation algorithms on real-world score functions. The contest is constructed from
automated machine learning (AutoML) tasks [94] and the Bayesmark package, both of
which aim at tuning hyperparameters of models to improve validation set performance.
Given the importance of black-box optimisation and correctly tuning machine learning
algorithms [218], this challenge constitutes a major stepping-stone toward real-world
deployment of large-scale models. The challenge also highlights the use of hyperparameter
tuning tasks as a proxy for rigorous evaluation tools for black-box optimisation algorithms.
Performing learning on real-world datasets with unknown noise (homoscedastic or het-
eroscedastic) and unknown likelihood (Gaussian or non-Gaussian), with an array of linear
and non-linear learning algorithms which can be either differentiable or non-differentiable,
yield a non-trivial black-box optimisation test-bed.
In general, hyperparameter tuning can be formulated as a problem of optimising a

performance measure (score) for various hyperparameter configurations of ML algorithms.
For instance, these parameters can correspond to learning rates, layer depths andwidths, or
dropout rates during a neural network training step. The ’score’ that we would optimise in
this instance would be the validation loss. Among various challenges, the main difficulties
in optimising hyperparameters are; that performance measures are neither explicitly
available in closed form, nor do they necessarily adhere to differentiability assumptions,
they can typically be very computationally expensive to evaluate, and there is no precise
method to perform mixed variable optimisation. Nonetheless, one can still exploit a low
number of model re-training for a better exploration of the hyperparameter space. We can
alternatively look at the problem of hyperparameter tuning as an instance of black-box
optimisation.

min
x∈X

f(x), (1.1)

with x denoting optimisation variables that correspond to mixed (continuous and discrete)
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hyperparameter settings and the score function f(·) we wish to minimise.
It is this NeurIPS test-bed, which inspire a majority of the experimentation conducted

in this thesis to advance the state-of-art in black-box optimisation. We focus our attention
on Bayesian optimisation (BO) methods to tackle black-box optimisation problems due to
their data efficiency and overall high-quality performance, in contrast to other black-box
optimisation techniques which are typically data-hungry and can result in low-quality
suggestions. This property is especially useful when evaluation of the objective f(x)
is costly, which is usually the case for a validation performance of current ML models
and especially the case for black-box optimisation tasks such as conducting the wet lab
experiments to evaluate new chemical designs [180].

1.2. Bayesian Optimisation Introduction

Bayesian optimisation [140, 163, 117] presents a sample-efficient methodology for black-
box optimisation. Bayesian optimisation is of particular interest to the machine learning
research community due to its ability for sample-efficient and derivative-free optimisation
of objectives. Whilst machine learning models become increasingly complex, as does the
difficulty in efficiently identifying hyperparameters. Within the general Bayesian optimi-
sation framework, a crucial performance-determining subroutine is the maximisation of
the acquisition function, a task complicated by the fact that acquisition functions tend to
be non-convex and thus nontrivial to optimise. The two core components of the BO algo-
rithm are a probabilistic surrogate model and an acquisition function. The probabilistic
surrogate model facilitates data efficiency by making use of the full optimisation history to
represent the black-box function and additionally leverages uncertainty estimates to guide
exploration. Given that the true sequential risk describing the optimality of a sequence of
queries is computationally intractable, an acquisition function is a heuristic which acts
as a proxy to the true sequential risk. The acquisition function measures the utility of a
query point x by its mean value under the surrogate model (exploitation) as well as its
uncertainty under the surrogate model (exploration). At each round of the BO algorithm,
the acquisition function is maximised to select the next query point. Gaussian process
regression [188] has proven to be a powerful and efficient tool in learning probabilistic
surrogate models of unknown functions from even small data - a property of utmost
importance in both safe sequential decision making (safe reinforcement learning) and
Bayesian optimisation. These probabilistic models place a Gaussian Process prior on
f , and infer the true latent relation. They are well studied probabilistic models, with
trusted aleatoric and epistemic uncertainty estimates. Clearly, maximising acquisition
functions plays a crucial role in Bayesian optimisation as this step constitutes the process
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by which the learner yields concrete exploratory actions to improve the guess for the
global optimum. The majority of acquisition functions, however, are often intractable,
posing formidable challenges during optimisation. In order to tackle these challenges,
researchers have proposed a plethora of methods that can generally be categorised into
three main groups. Approximation techniques, the first group, replace the quantity of
interest with a more readily-computable one e.g. [54] apply expectation propagation
[160, 159, 169] as an approximate integration method while [248] apply a mean field
approximation to enable a Gumbel sampling approximation to their max-value entropy
search acquisition function. As noted in [252], these methods tend to work well in practice
but may not converge to the true value of the optimiser. On the other hand, solutions
provided in the second group [44] derive near-analytic expressions in the sense that they
contain terms such as low-dimensional multivariate normal cumulative density functions
that cannot be computed exactly but for which high-quality estimators exist [78, 79]. As
noted again by [252], these methods rarely scale to high dimensions. Finally, the third
group comprises Monte Carlo (MC) methods [170, 102, 219] which provide unbiased
estimators to the acquisition function. MC methods have been successfully used in the
context of acquisition function maximisation to the extent that they form the backbone of
modern Bayesian optimisation libraries such as BoTorch [17]. Acquisitions can also be
used for other applications, such as Active Learning [73]. Herby, the acquisition function
is used to help determine which next point to choose in order to reduce entropy of the
surrogate model to a given system. Many successful Bayesian Optimisation algorithms
work well for Black-box tasks. However, there is no clear consensus about the best sur-
rogate model, acquisition function and method for maximising the acquisition function
to select — all important questions which we attempt to answer separately throughout
this thesis. Successful Bayesian Optimisation algorithms include TuRBO [65] utilises a
Gaussian Process surrogate model and Thompson sampling [253] with a novel trust region
method for expanding the search space for the acquisition maximisation, Hyperopt [23]
uses a Tree of Parzen Estimator [22] for the surrogate and expected improvement acquisi-
tion, BOHB [67] which combines Hyperband with successive halving and Skopt [155]
which utilises gradient boosting regression trees as the surrogate model and negative
expected improvement for acquisition maximisation. General frameworks exist for cre-
ating black-box optimisers for specific domains, such as Emukit [172] which is not a
modular library but rather specifies an API to be used with the other components, the
high dimensional and asynchronous Bayesian optimiser Dragonfly [122], BoTorch [18]
built on-top of GPyTorch [74] a Gaussian process library implemented in PyTorch [174].
The BO library Spearmint [218], one of the oldest open-source BO packages and is no
longer maintained. GPyOpt [15] and RoBO [129] were popular frameworks, but similarly
are no longer maintained. Cornell-MOE [256] is another popular BO algorithm imple-
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mented in C++. In this thesis, we chose to only compare against methods in the most
commonly used programming languages for Bayesian Optimisation/ Machine Learning —
python. Black-box optimisers that do not execute a Bayesian Optimisation are prevalent
in research, such as PySOT [63] which includes warped radial-basis function interpolation
for the surrogate model and SOP [137] for next candidate selection, OpenTuner [10] a
multi-armed bandit optimisation framework with a sliding window and area under the
curve credit assignment and Nevergrad [186] (by default OnePlus One [206, 60, 190])
directly on black-box functions.

1.3. Thesis Outline

In Chapter 3, we aim to understand the best practice for acquisition function maximisation
in Bayesian optimisation. We exploit the observation that most common acquisition
functions exhibit compositional structure and hence can be equivalently reformulated in a
compositional form [245]. Such a reformulation allows a broader class of optimisation
techniques to be applied for acquisition function optimisation [240, 80, 247] and in
practice can more often enable better numerical performance to be achieved in comparison
with standard first and second-order methods. The compositional form is achieved for
the expected improvement (EI), simple regret (SR), upper confidence bound (UCB)
and probability of improvement (PI) acquisition functions by first exposing the finite-
sum form of the re-parameterised acquisition functions derived by [252] and second
introducing a deterministic outer function when considering the problem from a matrix-
vector perspective. It should be noted that reformulating the acquisition function in
a compositional form is distinct from the setting where the black-box function has a
compositional form [13]. This compositional form allows us to benefit from the extensive
literature of compositional optimisation sanctioning new solvers not attempted before.
We highlight the empirical advantages of the compositional approach in 3958 individual
experiments comprising both synthetic tasks and tasks from the Bayesmark package. Our
results demonstrate that the adoption of compositional optimisers has the potential to
yield significant performance improvements in tasks where dimensionality varies between
16 and 120. Given the generality of the acquisition function maximisation subroutine, we
posit that the adoption of compositional optimisers has the potential to yield performance
improvements in all domains in which Bayesian optimisation is currently being applied.
In order to both improve and analyse the optimisation performance on the compositional
form of the acquisition function, we introduce several algorithmic adaptations. Firstly,
we present (C)L-BFGS; a modification to the L-BFGS algorithm to enable the handling
of nested compositional forms. Secondly, we develop AdamOS, a variant of the Adam
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Figure 1.2.: Overview of general approaches function optimisation. Whereby we dis-
tinguish white-box/ black-box functions based on whether they are differentiable/ non-
differentiable functions. For both differentiable and non-differentiable functions we have
both static, e.g. doesn’t change over time, to more challenging dynamic functions, which
change over time, that we wish to optimise. In terms of methods we can use to optimise,
we have an array of tools such as Bayesian Optimisation, Reinforcement Learning (such
as Bandit style approaches), Evolutionary methods and an array of first, second order
methods when functions are differentiable.

optimiser [126] which borrows the hyperparameter settings of CAdam [240] and facilitates
performance comparison between compositional and non-compositional optimisers. Lastly,
we formulate a generalised iterative update rule for first-order compositional optimisers
and show how the updates of a number of first-order optimisers may be expressed in this
manner. Inspired by the increasing desire to conclude what the best approach is for Black-
box optimisation. In Chapter 4, we use the test-bed of efficiently tune machine learning
hyperparameters to rigorously analyse conventional and non-conventional assumptions
inherent to Bayesian optimisation. To that end, we undertake our evaluation in 2140
experiments from 108 real-world problems from the UCI repository [61], which also
featured as a testbed in the NeurIPS 2020 black-box optimisation challenge. Across
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an extensive set of experiments we conclude that: 1) the majority of hyperparameter
tuning tasks exhibit heteroscedasticity and non-stationarity, 2) multi-objective acquisition
ensembles with Pareto-front solutions significantly improve queried configurations, and
3) robust acquisition maximisation affords empirical advantages relative to its non-robust
counterparts. We hope these findings may serve as guiding principles, both for practitioners
and for further research in the field. This work lead to the creation of a new Bayesian
Optimisation algorithm that won the NeurIPS 2020 black-box optimisation challenge.
In Chapter 5, we apply Gaussian processes for sequential decision-making tasks where
algorithms have been shown to solve games [162, 216, 161], and optimal control of
simulated and real robots [178, 132, 177, 9, 204, 203], similar to methods such as
PILCO [59], but we focus on safety tasks where there exists a dangerous region that an
agent may wish to avoid. For example, one could imagine an autonomous vehicle agent as
performing sequential decision-making to drive to the end destination, whilst maintaining
safety (constraints) by avoiding collisions with other vehicles. In the context of safe
Gaussian Process-based sequential decision making, we must mention [181, 182], which
still relies on moment matching to approximate gradients through sequences of decisions,
while our design relies purely on calculating gradients of immediate (one step) decisions.
We propose SAMBA, a novel framework for safe sequential decision-making that combines
aspects from probabilistic modelling and Bayesian optimisation. Our method builds upon
PILCO to enable active exploration using a novel acquisition functions for out-of-sample
Gaussian process evaluation. We evaluate our algorithm on a variety of safe dynamical
system benchmarks involving both low and high-dimensional state representations. Our
results show orders of magnitude reductions in samples and violations compared to state-
of-the-art methods. Lastly, we provide intuition as to the effectiveness of the framework by
a detailed analysis of our acquisition functions and how they relate to the safety constraints
from both toy and practical examples.

1.4. Major Contributions

In summary, in this thesis we re-visit popular design and model assumptions in Bayesian
Optimisation to successfully answer important questions such as what are the best choices
for the surrogate model?, which is the best acquisition function to use? and what method
for maximising the acquisition function should one select? By doing so, we introduced novel
formulations of popular acquisition functions in a mathematically equivalent compositional
framework, allowing us to bridge the well studied field of compositional optimisation
together. We apply a diverse range of compositional optimisers and shown their success
across commonly studied Bayesian optimisation benchmarks. In attempting to answer
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find the answers to these most general Bayesian Optimisation questions, we developed a
new algorithm HEBO that has successfully shown to be state-of-the-art during intrinsic
evaluation against prior Bayesian optimisation algorithms, as well in extrinsic evaluation
in the NeurIPS black-box optimisation competition. Finally, we study the important
problem of safe sequential decision making and construct novel acquisition functions
that allow our SAMBA agent to safely explore unknown regions. Our contributions have
already led to works such as [236], where it was shown that our algorithm, in 128 steps,
achieves a score that would take random search 15,512 steps to achieve. Overall, our
algorithm HEBO is two orders of magnitude (121.188 times) more sample efficient than
random search. We believe the strong follow up results highlight the significance of the
contribution of our work to the machine learning community. Additionally, HEBO was
used as the winning submission in the NeurIPS 2021 Machine Learning for Combinatorial
Optimisation challenge [77], showing its superiority and dominance for winning two
consecutive challenging optimisation challenges.
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2. Background

In Section 2.1 we will first introduce the relevant mathematical background needed to
understand typical Guassian Process regression (surrogate modelling) and commonly
used acquisition functions. Lastly, in Section 2.2 we dive into the latter, and very important
component, of acquisition functions and how we use them in a process named acquisition
maximisation to generate our next query point.

2.1. Bayesian Optimisation

We consider a sequential decision-making approach to the global optimisation of smooth
functions f : X → R over a bounded input domain X ⊆ Rd. At each decision round, i, we
select an input xi ∈ X and observe the value of the black-box function f(xi). We allow the
returned value to be either deterministic i.e., yi = f(xi) or stochastic with yi = f(xi) + ϵi,
where ϵi denotes a bounded-variance random variable. Our goal is to rapidly approach
the maximum x⋆ = argmaxx∈X f(x) in terms of cumulative regret RT =

∑︁T
t=1 rt where

rt = f(x⋆)−f(x(new)t ) is the distance between maximum function value f(x⋆) and function
value at the algorithm’s best recommendation at round t denoted as x(new)t . Since both
f(·) and x⋆ are unknown, solvers need to trade off exploitation and exploration during
the search process.
To reason about the unknown function, typical Bayesian optimisation algorithms assume

smoothness and adopt Bayesian modelling as a principle to carry out inference about
the properties of f(·) in light of the observations. Here, one introduces a prior to encode
beliefs over the smoothness properties and an observation model to describe collected
data, Di = {xl, yl}ni

l=1, up to the i
th round with ni denoting the total acquired data so far.

Using these two components in addition to Bayes rule, we can then compute a posterior
p(f(·)|Di) to encode all knowledge of f(·) allowing us to account for the location of the
maximum.
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2.1.1. Bayesian Optimisation with Gaussian Processes

A Gaussian process (GP) offers a flexible and sample-efficient procedure for placing priors
over unknown functions [188]. These models are fully specified by a mean function m(x)
and a covariance function, or kernel, k(x, x′) that encodes the smoothness assumptions on
f(·). Given any finite collection of inputs x1:ni , the outputs are jointly Gaussian given by

f(x1:ni)|θ ∼ N (m(x1:ni),Kθ(x1:ni , x1:ni)) ,

with mean vector denoted by [m(x1:ni)]k = m(xk), and covariance matrix Kθ(x1:ni , x1:i) ∈
Rni×ni with its (k, l)th entry computed as [Kθ(x1:ni , x1:ni)]k,l = kθ(xk, xl). Here, parame-
terised kernel represented as kθ(·, ·) with unknown hyperparameters θ corresponding to
lengthscales or signal amplitudes for example. For ease of presentation following [188],
we use a zero-mean prior in our notation here. In terms of the choice of Gaussian process
kernel, there are a wide array of options which encode prior modelling assumptions about
the latent function. Two of the most commonly-encountered kernels in the Bayesian
optimisation literature are the squared exponential (SE) and Matérn(5/2) kernels

[KSEθ (x1:ni , x1:ni)]k,l = kSEθ (xk, xl) = exp

(︃
−1

2
r2
)︃
,

[KMatérn(5/2)θ (x1:ni , x1:ni)]k,l = k
Matérn(5/2)
θ (xk, xl) = exp

(︂
−
√
5r
)︂(︃

1 +
√
5r +

5

3
r2
)︃
,

with d-dimensional hyperparameters denoted by r =

√︂
(xk − xl)T diag (θ2)−1 (xk − xl)

and θ ∈ Rd with θ2 executed element-wise. As noted in [188], both kernels are suited for
situations where little is known about the latent function in question. The Matérn kernel,
however, is arguably suitable for a broader class of real-world Bayesian optimisation
problems as it imposes less restrictive smoothness assumptions on f(·) [228]. Following
initial experimentation with linear, cosine, squared exponential and variousMatérn kernels,
we chose the Matérn(5/2) kernel to perform all experiments with.
Given the data Di, and assuming Gaussian-corrupted observations yi = f(xi) + ϵi with

ϵi ∼ N (0, σ2), we can write the joint distribution over the data and an arbitrary evaluation
input x as

[︃
y1:ni

f(x)

]︃ ⃓⃓⃓⃓
⃓ θ ∼ N

(︄
0,

[︄
K(i)
θ + σ2I k(i)θ (x)
k(i),Tθ (x) kθ(x, x)

]︄)︄
,
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with covariance matrix denoted by K(i)
θ = Kθ(x1:ni , x1:ni) and k

(i)
θ (x) = kθ(x1:ni , x). With

the above joint distribution derived, we can now easily compute the predictive posterior
through marginalisation [188] leading us to f(x)|Di,θ ∼ N

(︁
µi(x;θ), σi(x;θ)2

)︁
with

µi(x;θ) = k(i)θ (x)T(K(i)
θ + σ2I)−1y1:ni

,

σi(x;θ)2 = kθ(x, x)− k(i)θ (x)T(K(i)
θ + σ2I)−1k(i)θ (x).

Of course, the above can be generalised to the case when a predictive posterior over q
arbitrary evaluation points x⋆1:q needs to be computed as is the case in batched adaptations
of Bayesian optimisation. In such a setting f(x⋆1:q)|Di,θ ∼ N (µi(x⋆1:q;θ),Σi(x⋆1:q;θ)) with

µi(x⋆1:q;θ) = K(i)
θ (x⋆1:q, x1:ni)(K

(i)
θ + σ2I)−1y1:ni

,

Σi(x⋆1:q;θ) = K(i)
θ (x⋆1:q, x⋆1:q)− K(i)

θ (x⋆1:q, x1:ni)(K
(i)
θ + σ2I)−1K(i),T

θ (x⋆1:q, x1:ni).

The remaining ingredient needed in a GP pipeline is a process to determine the unknown
hyperparameters θ given a set of observation Di. In standard GPs [188], θ are fit by
minimising the negative log marginal likelihood (NLML) leading us to the following
optimisation problem

min
θ

J (θ) =
1

2
det
(︂
C(i)
θ

)︂
+

1

2
yT1:ni

C(i),−1
θ y1:ni

+
ni

2
log 2π, with C(i)

θ = K(i)
θ + σ2I. (2.1)

The objective in Equation (2.1) represents a non-convex optimisation problem making
GPs susceptible to local minima. Various off-the-shelf optimisation solvers ranging from
first-order [126, 31] to second-order [263, 7] methods have been rigorously studied in
the literature. In our experiments, we made use of a set of implementations provided
in GPyTorch [75] that relied on a scipy [243] implementation of L-BFGS-B [263] for
determining θ. It is also worth noting that gradients of the loss in Equation (2.1) require
inverting an ni × ni covariance matrix leading to an order of O(n3

i ) complexity in each
optimisation step. In large data regimes, variational GPs have proved to be a scalable
methodology through the usage of m << ni inducing points [233, 103].
In Bayesian optimisation however, data is typically sparse due to the expense of evalu-

ating even one query of the black-box function, which makes the application of sparse
GPs less attractive in these scenarios. While other scalable surrogate models such as
Bayesian neural networks (BNNs) and Random Forest have featured in the literature [221,
110], each come with disadvantages. Many BNN-based approaches rely on approximate
inference, and hence uncertainty estimates may deteriorate in quality relative to exact
GPs while the Random-Forest-based SMAC algorithm is not amenable to gradient-based
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optimisation due to a discontinuous response surface [109, 212]. As such, we restrict our
focus to exact GPs and direct the reader to external sources for discussion on alternative
surrogate models such as sparse GPs [158], BNNs [222, 225, 104], neural processes [125]
as well as heteroscedastic GPs [39, 88].

2.1.2. Acquisition Functions

Having introduced a distribution over latent black-box functions and specified mechanisms
for updating hyperparameters, we now discuss the process by which novel query points are
suggested for collection in order to improve the surrogate model’s best guess for the global
optimiser x⋆. In Bayesian optimisation, proposing novel query points is performed through
maximising an acquisition function α(·|Di) that trades off exploration and exploitation
by utilising statistics from p(f(·)|Di), i.e., xi+1 = argmaxx α(x|Di). Acquisition functions
can be taxonomised into myopic and non-myopic forms [86]. The former class involves
integrals defined in terms of beliefs over unknown outcomes from the black-box function,
while the latter class constitutes more complicated nested integrals. In this thesis, we focus
on representative examples of standard myopic acquisitions whilst considering entropy
search as a widely-used non-myopic acquisition. We detail these acquisitions next.

Expected Improvement: One of the most popular acquisition functions is expected
improvement [163, 117], which determines new query points by maximising expected
gain relative to the function values observed so far. Formally, denote by x+i an input point
in Di for which f(·) is maximised, i.e., x+i = argmaxx∈x1:ni

f(x). Given x+i , we define an
expected improvement acquisition to compute the expected positive gain in function value
compared to the best incumbent point in Di as

αEI(x|Di) = Ef(x)|Di,θ

[︁
max{(f(x)− f(x+i )), 0}

]︁
= Ef(x)|Di,θ

[︁
ReLU(f(x)− f(x+i ))

]︁
,

with ReLU represents a rectified linear unit with ReLU(a) = max{0, a}. The above can be
generalised to support a batch form generating query points x1:q as introduced in [81].
Here, we first compute the multi-dimensional predictive posterior f(x1:q)|Di,θ as described
in Section 2.1.1 and then define the maximal gain across all q-batches as

αq-EI(x1:q|Di) = Ef(x1:q)|Di,θ

[︃
max
j∈1:q

{ReLU(f(x1:q)− f(x+i )1q)}
]︃
, (2.2)

with a q-dimensional vector of ones denoted 1q and as such, the ReLU(·) is to be executed
element-wise. In words, Equation (2.2) simply computes the expected maximal improve-
ment across all q-dimensional predictions compared to the best incumbent point in Di.
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This form of acquisition is termed joint parallel acquisition function maximisation in [252]
(other forms being greedy and incremental) and is chosen for the experiments in this
thesis due to its usage in the BoTorch library [17]. In joint parallel acquisition function
maximisation, each query point is treated as a dimension of the acquisition surface and
the set of batch points is optimised on this surface cf. figure 2 of [252] for an illustration.

Probability of Improvement: Another commonly-used acquisition function in Bayesian
optimisation is the probability of improvement criterion which measures the probability
of acquiring gains in the function value compared to f(x+i ) [140]. Such a probability is
measured through an expected Heaviside step function as follows

αPI(x|Di) = Ef(x)|Di,θ

[︁
11{f(x)− f(x+i )}

]︁
,

with the Heavy side step function 11{f(x)−f(x+i )} = 1 if f(x) ≥ f(x+i ) and zero otherwise.
Analogous to expected improvement, we can extend the acquisition function αPI(x|Di) to
a batch form by generalising the step function to support-vectored random variables in
addition to adopting maximal gain across all batches as an improvement metric

αq-PI(x1:q|Di) = Ef(x1:q)|Di,θ

[︃
max
j∈1:q

{︁
11{f(x1:q)− f(x+i )1q}

}︁]︃
, (2.3)

with a q-dimensional binary vector 11{f(x1:q)− f(x+i )1q} with [11{f(x1:q)− f(x+i )}]j = 1
if [f(x1:q)]j ≥ [f(x+i )1q]j and zero otherwise for all j ∈ {1, . . . , q}.

Simple Regret: In simple regret, new query points are determined by maximising
expected outcomes, i.e., αSR(x|Di) = Ef(x)|Di,θ[f(x)]. This acquisition function can also
be generalised to a batch mode by considering the maximal improvement across all q
batches leading to

αq-SR(x1:q|Di) = Ef(x1:q)|Di,θ

[︃
max
j∈1:q

{f(x1:q)}
]︃
.

Upper Confidence Bound: In this type of acquisition, the learner trades off the mean
and variance of the predictive distribution to gather new query points for function eval-
uation [227]. In the standard form, an upper-confidence bound acquisition can simply
be written as: αUCB(x|Di) = µi(x;θ) +

√
βσi(x;θ) with β ∈ R being a free tuneable

hyperparameter. Although widely used, such a form of the upper-confidence bound is not
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directly amendable to parallelism. To circumvent this problem, the authors in [252] have
shown an equivalent form for the expectation by exploiting reparameterisation leading to

αUCB(x|Di) = µi(x;θ) +
√︁

βσi(x;θ) = Ef(x)|Di,θ

[︂
µi(x;θ) +

√︁
βπ/2|γi(x;θ)|

]︂
,

with variance γi(x;θ) = f(x) − µi(x;θ). Given such a formulation, we can now follow
similar reasoning to previous generalisations of acquisition functions and consider a
batched version by taking the maximum over all q query points

αq-UCB(x1:q|Di) = Ef(x1:q)|Di,θ

[︃
max
j∈1:q

{︂
µi(x1:q;θ) +

√︁
βπ/2|γi(x1:q;θ)|

}︂]︃
,

with variance γi(x1:q;θ) = f(x1:q)− µi(x1:q;θ).

Entropy Search: In [102] the authors introduce an information-theoretic approach
to select novel query points based on an approximation of the posterior entropy for the
global optimiser x⋆. The next point xi+1 is chosen to minimise the posterior entropy
Ef(x|Di,),θ [H[p(x∗|Di ∪ {x, f(x)})]] and hence minimises the uncertainty over the location
of x+. In [252] a parallel implementation is introduced via a q−batch form for the entropy
search acquisition function

αq-ES(x1:q|Di) = −Ef(x1:q)|Di,θ

[︃
H
[︃
E
f
(︂
x(g)1:u

)︂
|Di∪{x1:q ;f(x1:q)},θ

[︃
11{f(x(g)1:u)−max

j∈1:u
f(x(g)j )1u}

]︃]︃]︃
,

with a grid of u discrete locations x(g)1:u sampled from the input domain X according
to a discretisation measure U(·|Di), H[·] is the Shannon entropy and a u-dimensional
binary vector 11{f(x(g)1:u)−maxj∈1:u f(x(g)j )1u} with [11{f(x(g)1:u)−maxj∈1:u f(x(g)j )1u}]ℓ = 1

if f(x(g)ℓ ) = maxj∈1:u f(x(g)j ) and zero otherwise for all ℓ ∈ {1, . . . , u}.
Following the introduction of GP surrogate models and acquisition functions, we are

now ready to present a canonical template for the Bayesian optimisation algorithm. The
main steps are summarised in the pseudocode of Algorithm 1.
First, a GP model is fit to the available data (see line 3 of Algorithm 1) enabling the

computation of the predictive distribution needed to maximise the acquisition function.
Having acquired new query points, the learner then updates the dataset Di after which
the above process repeats until a total number of iterations N is reached. At the end of the
main loop, Algorithm 1 outputs x⋆, the best performing input from all acquired data DN .
Clearly, maximising acquisition functions plays a crucial role in Bayesian optimisation as

this step constitutes the process by which the learner yields concrete exploratory actions
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Algorithm 1 General algorithm detailing Batched Bayesian Optimisation with Gaussian
Process’s. Firstly; we collect (or begin) with an initial dataset of input-output pairs, fit a
surrogate model to this dataset (such as a Gaussian Process), maximise an acquisition
function in order to get new query points for evaluation in the black-box, evaluate said
query points and append the new input-output pairs to our current dataset and repeat.
After executing this for N steps, we then return the best-performing query point from our
dataset.
Inputs: Total number of outer iterations N , initial randomly-initialised dataset D0 =
{xl, yl ≡ f(xl)}n0

l=1, batch size q, acquisition function type
for i = 0 : N − 1:
Fit the GP model to the current dataset Di by minθ J (θ) from Equation (2.1)
Find q points by solving x(new)1:q = argmaxx1:q αq-type(x1:q|Di) )
Evaluate new inputs by querying the black-box to acquire y(new)1:q = f(x(new)1:q )

Update the dataset creating Di+1 = Di ∪ {x(new)l , y
(new)
l }ql=1

end for
Output: Return the best-performing query point from the data x⋆ = argmaxx∈DN

f(x)

to improve the guess for the global optimum x⋆. The majority of acquisition functions,
however, are often intractable, posing formidable challenges during the optimisation step
in Algorithm 1. In order to tackle these challenges, researchers have proposed a plethora
of methods that can generally be categorised into three main groups. Approximation
techniques, the first group, replace the quantity of interest with a more readily-computable
one e.g. [54] apply expectation propagation [160, 159, 169] as an approximate integration
method while [248] apply a mean field approximation to enable a Gumbel sampling
approximation to their max-value entropy search acquisition function. As noted in [252],
these methods tend to work well in practice but may not converge to the true value of
the optimiser. On the other hand, solutions provided in the second group [44] derive
near-analytic expressions in the sense that they contain terms such as low-dimensional
multivariate normal cumulative density functions that cannot be computed exactly but
for which high-quality estimators exist [78, 79]. As noted again by [252], these methods
rarely scale to high dimensions. Finally, the third group comprises Monte Carlo (MC)
methods [170, 102, 219] which provide unbiased estimators to α(·|Di). MC methods have
been successfully used in the context of acquisition function maximisation to the extent
that they form the backbone of modern Bayesian optimisation libraries such as BoTorch
[17]. As such, given their prevalence in present-day implementations, we restrict our
attention to MC techniques and note three classes of widely-used optimisers. Zeroth-order
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procedures [101, 72], such as evolutionary algorithms [194, 28], only use function value
information for determining the maximum of the acquisition. First-order methods [126,
31], on the other hand, utilise gradient information during the ascent step, while second-
order methods exploit (approximations to) Hessians [38, 263, 34, 239, 238] in their
update. During the implementation of first and second-order optimisers, one realises
the need for differentiating through an MC estimator with respect to the parameters of
the generative distribution P(·). As described in [252], this can be achieved through
reparameterisation in two steps: 1) reparameterising samples from P(·) as draws from a
simpler distribution P̂(·), and 2) interchanging integration and differentiation by exploiting
sample-path derivatives. After reparameterisation, the designer faces two implementation
choices which we refer to as ERM-BO and FSM-BO akin to the distinction between
empirical risk minimisation [85] and finite sum [200] optimisation forms1. In an ERM-
BO construction, samples from P̂(·) are acquired at every iteration of the optimisation
algorithm as needed. In contrast, in an FSM-BO setting, all samples from P̂(·) are obtained
upfront and mini-batched during gradient computations. Due to memory consideration,
especially in high-dimensional scenarios, the ERM-BO version has been mostly preferred
and studied in the literature [131, 17].
In this thesis, however, we are interested in both views and desire to shed light on

best practices when optimising acquisition functions. To accomplish such a goal, we
carefully probe both settings and realise that an FSM-BO implementation enables a novel
connection to a compositional (nested expectation) formulation that sanctions new com-
positional solvers not previously attempted. Next, we derive such a connection, present
memory-efficient optimisation algorithms for FSM-BO, and demonstrate empirical gains
in large-scale experiments. For ease of exposition, we summarise the acquisition function
derivations of coming work in Figure 2.1 to demonstrate the three steps of reparameteri-
sation, Monte-Carlo estimation for finite-sum forms, and matrix-vector considerations for
compositional objectives.

2.2. Acquisition Function Maximisation

The first step in investigating different implementations of BO is to derive relevant repa-
rameterised forms of the acquisition functions in Section 2.1.2. When reparameterising
one reinterprets samples yk ∼ P(y;θ) as a deterministic map λθ(·) of a simpler random
variable zk ∼ P̂(z), that is y = λθ(z). Under these conditions, the expectation of some loss
L(·) under y can be rewritten in terms of P̂(z) as Ey∼P(y;θ)[L(y)] = Ez∼P̂(z)[L(λθ(z))] al-

1Of course, an empirical risk and a finite sum formulation become equivalent as samples grow large. In
reality, infinite samples cannot possibly be acquired hence our two-class categorisation.
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Figure 2.1.: Hierarchy of acquisition function derivations in this thesis. Acquisitions
lower in the hierarchy may be written as instances of those above them in the hierarchy.
We have the top, most encompassing, form of acquisition function studied in this work
being Reparametrised Acquisition Function (Section 2.2), which encompasses Finite-Sum
Acquisitions (Section 3.1.1), the middle form, which lastly encompasses Compositional
Acquisitions (Section 3.1.1), the last form which is introduced by this thesis.
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lowing us, under further technical conditions [252], to push gradients inside expectations
when needed.
Before diving into ascent direction computation, we first present reparameterised

acquisition formulations as derived in [252]. First, we realise that all batched acquisi-
tion functions in Section 2.1.2 involve an expectation over the GP’s predictive posterior
f(x1:q)|Di,θ ∼ N (µi(x1:q;θ),Σi(x1:q;θ)). Second, we recall that if a random variable is
Gaussian distributed, one can reparameterise by choosing z ∼ N (0, I) and then applying
λθ(z) = µi(x1:q;θ) + Li(x1:q;θ)z with Li(x1:q;θ)LTi (x1:q;θ) = Σi(x1:q;θ). Using such a
deterministic transformation λθ(z), the original random variable’s distribution remains
unchanged indicating a mean µi(x1:q;θ) and covariance Σi(x1:q;θ). Now, we can easily
replace λθ(z) in each of the expected improvement, simple regret, upper confidence
bound, and entropy search acquisitions leading us to the following batch-reparameterised
formulations

αrq-EI(x1:q|Di) = Ez∼N (0,I)

[︃
max
j∈1:q

{︁
ReLU

(︁
µi(x1:q;θ) + Li(x1:q;θ)z− f(x+i )1q

)︁}︁]︃
,

(2.4)

αrq-SR(x1:q|Di) = Ez∼N (0,I)

[︃
max
j∈1:q

{µi(x1:q;θ) + Li(x1:q;θ)z}
]︃
, (2.5)

αrq-UCB(x1:q|Di) = Ez∼N (0,I)

[︃
max
j∈1:q

{︂
µi(x1:q;θ) +

√︁
βπ/2|Li(x1:q;θ)z|

}︂]︃
. (2.6)

When it comes to probability of improvement, the direct insertion of λθ(z) into Equa-
tion (2.3) is difficult due to the discrete nature of the utility measure that violates differen-
tiablity assumptions in reparameterisation [114]. To overcome this issue, we follow [252]
and adopt the concrete (continuous to discrete) approximation to replace the discontinu-
ous mapping [153] such that transformed and original variables are close in distribution.
Sticking to the formulation presented [252], we loosen the indicator part of αq-PI(·) from
Equation (2.3) and write

max
j∈1:q

{︁
11{f(x1:q)− f(x+i )1q}

}︁
≈ max

j∈1:q

{︃
Sig
(︃
f(x1:q)− f(x+i )1q

τ

)︃}︃
,

with the component-wise sigmoid function Sig(·) and temperature parameter τ ∈ R+.
It yields an exact approximation as τ → 0. Given the approximation above and using a
multivariate standard normal (instead of a uniform, see [153]) as P̂(z), we derive the
following reparameterised form for the probability of improvement acquisition

αrq-PI(x1:q|Di) = Ez∼N (0,I)

[︃
max
j∈1:q

{︃
Sig
(︃
µi(x1:q;θ) + Li(x1:q;θ)z− f(x+i )1q

τ

)︃}︃]︃
. (2.7)
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Finally, for the entropy search acquisition function, the above reparametrisation
trick should be applied twice: for the outer posterior distribution f(x1:q)|Di,θ ∼
N (µi(x1:q;θ),Σi(x1:q;θ)) and for the inner posterior distribution f

(︂
x(g)1:u

)︂
|Di ∪

{x1:q; f(x1:q)},θ ∼ N (µ
(g)
i (x(g)1:u; f(x1:q),θ),Σ

(g)
i (x(g)1:u;θ)) with

µ
(g)
i (x(g)1:u; f(x1:q),θ) = K(i)

θ (x(g)1:u,Di ∪ x1:q)⏞ ⏟⏟ ⏞
K(g),(i)
θ

[︄
K(i)
θ + σ2I K(i)

θ (Di, x1:q)
K(i),T
θ (Di, x1:q) K(i)

θ (x1:q, x1:q)

]︄−1 [︃
y1:ni

f(x1:q)

]︃
,

Σ
(g)
i (x(g)1:u;θ) = K(i)

θ (x(g)1:u, x
(g)
1:u)− K(g),(i)

θ

[︄
K(i)
θ + σ2I K(i)

θ (Di, x1:q)
K(i),T
θ (Di, x1:q) K(i)

θ (x1:q, x1:q)

]︄−1

K(g),(i),T
θ .

Due to the nested expectation structure of the entropy search acquisition function
αq-ES(x1:q|Di), in order to rewrite it in the reparametrised form we consider two de-
terministic transformations. The two deterministic transformations we consider are
λ
(i)
θ (z) = µi(x1:q;θ) + Li(x1:q;θ)z with Cholesky decomposition Li(x1:q;θ)LTi (x1:q;θ) =

Σi(x1:q;θ) and ϱ(i)
θ (ω) = µ

(g)
i (x(g)1:u; f(x1:q),θ)+L(g)i (x(g)1:u;θ)ω with Cholesky decomposition

L(g)i (x1:u;θ)L(g),Ti (x1:u;θ) = Σ
(g)
i (x(g)1:u;θ). Choosing random vectors z ∼ N (0q, Iq×q) and

ω ∼ N (0u, Iu×u)
2 in the above transformations λ(i)

θ (·), ϱ(i)
θ (·) respectively, and applying

the following smooth approximation for the step function

11{f(x(g)1:u)−max
j∈1:u

f(x(g)j )1u} ≈ SM

(︄
µ

(g)
i (x(g)1:u;λ

(i)
θ (z),θ) + L(g)i (x(g)1:u;θ)ω

τ

)︄

with softmax function SM(·) and a temperature parameter τ ∈ R+ controlling the approx-
imation accuracy. Using the above, we now arrive to the batch-reparametrised form for
the entropy search acquisition function

αrq-ES(x1:q|Di) = −Ez

[︄
H

[︄
Eω

[︄
SM

(︄
µ

(g)
i (x(g)1:u;λ

(i)
θ (z),θ) + L(g)i (x(g)1:u;θ)ω

τ

)︄]︄]︄]︄
, (2.8)

Given reparameterised acquisitions, we now turn our attention to ERM- and FSM-BO
depicting both implementations. We present novel compositional procedures that are
sample and memory efficient.

2Here 0a and Ia×a denote a−dimensional vector of zeros and a by a identity matrix respectively
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2.2.1. ERM-BO using Stochastic Optimisation

Mainstream implementations of BO cast the inner optimisation problem (in Algorithm 1)
in an empirical risk form maxx1:q Ez∼N (0,I)[L(x1:q; z)] with L(x1:q; z) dependent on the
acquisition’s type, e.g., maxj∈1:q {µi(x1:q;θ) + Li(x1:q;θ)z} in the simple regret case. Such
a connection enables tractable optimisation through the usage of numerous zero, first,
and second-order optimisers developed in the literature [194, 32, 229]. Since such an
implementation is fairly common in practice [131, 17] and not to burden the reader with
unnecessary notation, we defer the exact details of the optimisers used in our experiments
to [91]. Here, we briefly mention that we surveyed three zero-order optimisers, eight
first-order algorithms and one well-known approximate second-order method.

Zeroth-Order Optimisers in ERM-BO: Zeroth-order methods optimise objectives based
on function value information and have emerged from many different fields. In the online
learning literature, for example, development of zeroth-order methods is mostly theoretical
aiming at efficient and optimal regret guarantees [101, 142, 72] – a challenging topic in
itself. Empirical successes of such procedures have been achieved in isolated instances [213,
242, 50, 43, 35, 12, 98]. Mainstream implementation of zeroth-order optimisers for BO,
however, are of the evolutionary type updating generations of x through a process of
adaptation and mutation [20].

In our experiments, we used three such strategies, varying from simple to advanced. The
most simple among the three was random search (RS) which acts as a low-memory, low-
compute baseline. The second, corresponds to a covariance matrix evolutionary strategy
(CMA-ES) that generates updates of the mean and covariance of a multivariate normal
based on average sample ranks gathered from function value information [100, 194]. The
third and final algorithm was differential evolution (DE) which is widely considered a
go-to in evolutionary optimisation [185, 16], e.g., NSGA I and II [58] as implemented
in [28]. DE continuously updates a population of candidate solutions via component-wise
mutation performing selection according to a mutation probability pmutation. More details
are available in [91].

First-Order Optimisers in ERM-BO: First-order optimisation techniques rely on gradi-
ent information to compute updates of x. They are iterative in nature running for a total
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of T iterations and executing a variant of the following rule at each step3

x1:q,t+1 = δtx1:q,t + ηt

φ
(1)
t

(︃
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di),

{︂
β
(1)
k

}︂t

k=0

)︃
φ

(2)
t

(︃
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
,
{︂
β
(2)
k

}︂t

k=0
, ϵ

)︃
⏞ ⏟⏟ ⏞

(General update)

(2.9)

where δt is a weighting that depends on the type of algorithm used, ηt is a typically
decaying learning rate, φ(1)

t (·) and φ
(2)
t (·) are history-dependent mappings that vary

between algorithms with the ratio executed element-wise,
{︂
β
(1)
k

}︂t

k=0
and

{︂
β
(2)
k

}︂t

k=0
are

history-weighting parameters, and ϵ a small positive constant used to avoid division by zero.
Additionally, ∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di) represent sub-sampled gradient estimators
that are acquired using Monte-Carlo samples of z ∼ N (0, I). It is also worth noting that
differentiating through the max operator that appears in all acquisitions can be performed
either using sub-gradients or by propagating through the max value of the corresponding
vector.
To elaborate our generalised form, we realise that one can easily recover Adam’s [126]

update equation by setting δ1 = · · · = δT = 1, β(1)
1 = · · · = β

(1)
T = β1, β(2)

1 = · · · = β
(2)
T =

β2, and φ(1)
t and φ(2)

t to

φ
(1)
t

(︂
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di), β1

)︂
=

1− β1

1− βt
1

t∑︂
k=0

βk
1∇α(x1:q,t−k|Di),

φ
(2)
t

(︂
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, β2, ϵ

)︂
=

⌜⃓⃓⎷1− β2

1− βt
2

t∑︂
k=0

βk
2∇α(x1:q,t−k|Di)

2
+ ϵ.

Of course, Adam is yet another special case of Equation (2.9). For notational convenience,
we defer the detailed derivations of other optimisers including SGA [196], RProp [193],
RMSprop [106], AdamW [151], AdamOS (an Adam adaptation with new hyperparameters
that we propose in this thesis), AdaGrad [62], and AdaDelta [261] to [91].

3For simplicity in the notation for acquisition functions α(x1:q,0|Di) we drop the subscript with the type.
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3. CompBO: Compositional Bayesian
Optimisation

In this chapter we will detail our first contribution, a new family of compositional acquisi-
tion functions [91]. Firstly, in Section 3.1 we will introduce the compositional form of
popular acquisition functions, building on the background introduced in Section 2.1. In
Section 3.2 we analyse experimental results from compositional vs non-compositional
acquisition functions and lastly summarise the work in the conclusions in Section 3.3.

3.1. Introduction

Bayesian optimisation is a method for optimising black-box objective functions [140, 163,
117]. The black-box optimisation (BBO) problem describes the search for the global
maximiser x∗ of an unknown objective function f(x). The objective function is unknown
in the sense that an analytical form is unavailable. However, the objective may still be
evaluated pointwise at arbitrary query locations within the bounds of the design space. A
further characteristic of the BBO problem is that each query is expensive in terms of time,
and as such, it is desirable to query as few points as possible in the search for the global
maximiser.
Real world examples of BBO problems are ubiquitous. Illustrative examples include

hyperparameter tuning in machine learning [66, 121, 249, 72], where the black-box
objective is the mapping between a set of model hyperparameters x and the validation
set performance f(x), as well as automatic chemical design [84, 134, 165, 87], where
the black-box objective is the mapping between a molecule x and its suitability as a drug
candidate f(x). Further examples of BBO problems appear as subroutines of optimisation
algorithms such as immune optimisation [262, 154], ant colony optimisation [260, 224]
and genetic algorithms [176], in reinforcement learning when accounting for safety [53,
2], in multi-agent systems to compute Nash equilibria [257, 11], in speech recognition
[166] and more broadly across domains spanning architecture [51], chemical engineering
[180] and biology [210, 164].
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Figure 3.1.: Summary plot for 3100 synthetic BBO experiments. We average for each
seed over all optimisers within that class and plot the normalised regret across each seed
for each class. Note for certain optimisers that are not an nth-order compositional/ non-
computational optimiser, for any n, we allow them to represent themselves (e.g. BOHB, TS,
RS etc). Lower regret is indicative of better performance. This experiment shows that first-
order compositional optimisers outperform others, whilst first-order non-compositional
and BOHB perform similarly well, with the worst performing method being TS.

Various strategies exist for optimising black-box objective functions including zero-order
methods [241, 90, 72], resource allocation methods [145, 66] and surrogate model-based
methods [219, 212, 71]. In this paper, we focus on Bayesian optimisation, a sequential,
data-efficient, surrogate model-based approach that is particularly effective when function
evaluations are costly. The two core components of the Bayesian optimisation algorithm
are a probabilistic surrogate model and an acquisition function. The probabilistic surro-
gate model facilitates data efficiency by making use of the full optimisation history to
represent the black-box function and additionally leverages uncertainty estimates to guide
exploration. Given that the true sequential risk describing the optimality of a sequence of
queries is computationally intractable, an acquisition function is a myopic heuristic which
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acts as a proxy to the true sequential risk. The acquisition function measures the utility
of a query point x by its mean value under the surrogate model (exploitation) as well as
its uncertainty under the surrogate model (exploration). At each round of the Bayesian
optimisation algorithm, the acquisition function is maximised to select the next query
point.
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Figure 3.2.: Bayesmark regression summary amalgamating the results from 54 Bayesmark
regression tasks, we compare compositional and non-compositional optimisers. Higher
score is better. Boxplots show median, lower and upper quartiles of the scores. Results
show compositional optimisers outperforming non-compositional optimisers on half the
tasks and vice versa for non-compositional optimisers.

It has been argued that maximisation of the acquisition function is an important, yet
neglected determinant of the performance of Bayesian optimisation schemes [252]. The
vast majority of acquisition functions however, constitute a serious challenge from the
standpoint of optimisation; a characteristic exacerbated in the batch setting, where acqui-
sition functions are routinely non-convex, high-dimensional and intractable [252]. Many
strategies exist for optimising acquisition functions including gradient-based methods
[62, 106, 126], evolutionary methods [111, 116, 99] as well as variations of random
search [207, 202, 21]. In this work, we choose to focus on gradient-based methods which
were recently shown to be highly effective for optimising a wide class of Monte Carlo
acquisition functions [252].
The most commonly-used acquisition functions in practical applications [219] are Monte

Carlo acquisition functions in the sense that they are formulated as integrals with respect
to the current probabilistic belief over the unknown function f [212, 252]; these integrals
are typically intractable and as such are approximated by the corresponding Monte Carlo
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(MC) estimate. In order to admit gradient-based optimisation, a reparametrisation trick
[127, 192], introduced first as infinitesimal perturbation analysis [42, 82], is applied
to facilitate differentiation through the MC estimates with respect to the parameters of
the surrogate model. It was shown in [252] that acquisition functions estimated via MC
integration are consistently amenable to gradient-based optimisation via standard first
and second-order methods including SGA [31], Adam [126], RMSprop [106], AdaGrad
[62] and L-BFGS-B [263].
In this work, we exploit the observation that most common acquisition functions exhibit

compositional structure and hence can be equivalently reformulated in a compositional
form [245]. Such a reformulation allows a broader class of optimisation techniques to be
applied for acquisition function optimisation [240, 80, 247] and in practice can more often
enable better numerical performance to be achieved in comparison with standard first and
second-order methods. The compositional form is achieved for the expected improvement
(EI), simple regret (SR), upper confidence bound (UCB) and probability of improvement
(PI) acquisition functions by first exposing the finite-sum form of the reparameterised
acquisition functions derived by [252] and second introducing a deterministic outer
function when considering the problem from a matrix-vector perspective. It should be
noted that reformulating the acquisition function in a compositional form is distinct
from the setting where the black-box function has a compositional form [13]. In order
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Figure 3.3.: Bayesmark classification summary amalgamating the results from 54
Bayesmark classification tasks, we compare compositional and non-compositional op-
timisers. Higher score is better. Boxplots show lower, median and upper quartiles of the
data. Results show compositional optimisers outperforming non-compositional optimisers
across all tasks.

26



to both improve and analyse the optimisation performance on the compositional form
of the acquisition function, we introduce several algorithmic adaptations. Firstly, we
present (C)L-BFGS; a modification to the L-BFGS algorithm to enable the handling of
nested compositional forms. Secondly, we develop AdamOS, a variant of the Adam
optimiser [126] which borrows the hyperparameter settings of CAdam [240] and facilitates
performance comparison between compositional and non-compositional optimisers. Lastly,
we formulate a generalised iterative update rule for first-order compositional optimisers
and show how the updates of a number of first-order optimisers may be expressed in
this manner. In our empirical study, we seek to identify the most effective means of
optimising the acquisition function under a range of experimental conditions including
input dimensionality, presence or absence of observation noise and choice of acquisition
function. We investigate twenty-eight optimisation schemes, spanning zeroth, first and
second-order optimisers as well as both compositional and non-compositional methods.
Additionally, we seek to answer the following questions: Are there benefits to the finite-
sum formulation of the reparameterised acquisition functions compared to the more
frequently-encountered empirical riskminimisation formulation? Are compositional or non-
compositional approaches to optimisation more effective and if so, under what conditions
are they more effective? What are the performance-related trade-offs in memory-efficient
implementations of compositional acquisition functions? How does the wall-clock time of
compositional optimisation methods compare to non-compositional optimisation methods,
and how does this vary with the dimensionality of the input space? How do compositional
optimisers fare when faced with noisy observations?
In order to answer these questions, we first perform a set of experiments across five

noiseless synthetic function tasks. Using this set of noiseless experiments as a filter for the
most effective optimisers, we then perform a second set of experiments on the Bayesmark
datasets which are noisy and bear a closer resemblance to real-world problems than the
synthetic tasks. Our results for the synthetic experiments are summarised in Figure 3.1
whilst our results for the Bayesmark datasets are summarised in Figure 3.2 and Figure 3.3
for the regression and classification challenges respectively. In sum total, our empirical
study comprises 3958 individual experiments.
The paper is organised as follows: First, we introduce the necessary background on

the Bayesian optimisation framework. Second, we hone in on the acquisition function
maximisation subroutine of Bayesian optimisation with the intent to understand the
efficacy of compositional optimisation schemes. We provide a general overview of compo-
sitional optimisation and derive compositional forms for the four most popular myopic
acquisition functions. Third, we discuss state-of-the-art compositional solvers, namely
CAdam, NASA, SCGA and ASCGA. Fourth, we detail our experimental setup and present
the empirical results. Fifth, we analyse the experimental results, draw conclusions and
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indicate avenues for future work as well as descriptions of open problems in acquisition
function maximisation.

3.1.1. FSM-BO & Connections to Compositional Optimisation

Rather than considering the problem of acquisition function maximisation as an instance
of empirical risk minimisation, we can follow an alternative route and focus on finite sum
approximations. To do so, imagine we acquireM independent and identically-distributed
samples from N (0, I), {zm}Mm=1, upfront before the beginning of any acquisition function
optimisation step. Assuming fixed samples for now, we can write finite-sum forms of the
reparameterised acquisition functions (those from Section 2.2) using a simple Monte
Carlo estimator as follows

α
(FSM)
rq-EI (x1:q|Di) =

1

M

M∑︂
m=1

max
j∈1:q

{︁
ReLU

(︁
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+i )1q

)︁}︁
, (3.1)

α
(FSM)
rq-SR (x1:q|Di) =

1

M

M∑︂
m=1

max
j∈1:q

{µi(x1:q;θ) + Li(x1:q;θ)zm} , (3.2)

α
(FSM)
rq-UCB(x1:q|Di) =

1

M

M∑︂
m=1

max
j∈1:q

{︂
µi(x1:q;θ) +

√︁
βπ/2|Li(x1:q;θ)zm|

}︂
, (3.3)

α
(FSM)
rq-PI (x1:q|Di) =

1

M

M∑︂
m=1

max
j∈1:q

{︃
Sig
(︃
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+i )1q

τ

)︃}︃
. (3.4)

As for the entropy search acquisition function given in Equation (2.8), due to its nested ex-
pectation form simply replacing both expectations with their corresponding MC estimates
leads to a biased estimate of αrq-ES(x1:q|Di). Instead, we use a collection of independent
random vectors {zm}Mm=1 sampled from N (0q, Iq×q) to construct a Monte Carlo estimate
for the outer expectation

α
(FSM)
rq-ES (x1:q|Di) = − 1

M

M∑︂
m=1

H

[︄
Eω

[︄
SM

(︄
µ

(g)
i (x(g)1:u;λ

(i)
θ (zm),θ) + L(g)i (x(g)1:u;θ)ω

τ

)︄]︄]︄
.

(3.5)

At this stage, we can execute any off-the-shelf optimiser to maximise the finite sum version
of the acquisitions as shown in Section 2.2.1. Contrary to ERM-BO which samples new z
vectors at each iteration, the FSM formulation fixes {zm}Mm=1 and mini-batches from this
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fixed pool to compute necessary gradients and Hessian estimates for first and second-order
methods respectively. At first sight, one might believe that ERM and FSM are the only
plausible approximation forms of acquisition functions in BO. Upon further investigation,
however, we realise that finite sum myopic acquisitions adhere to yet another configuration
that is still to be (well-) explored in the literature. Not only does this new form allow for
novel solvers not yet attempted in acquisition function maximisation, but also seems to
significantly outperform both ERM-and FSM-BO in practice, cf. Section 3.2.

Comp-BO: A Compositional Form for Myopic Acquisition Functions

Recently, the optimisation community has displayed an increased interest in developing
specialised algorithms for compositional (or nested) objectives due to their prevalence in
subfields of machine learning, e.g., in model-agnostic-meta-learning [240], semi-implicit
variational inference [259], dynamic programming and reinforcement learning [247].
In each of these examples, compositional solvers have demonstrated efficiency advan-
tages when compared to other algorithms which begs the question as to whether these
improvements can be ported to Bayesian optimisation.
From a definition perspective, compositional problems involve maximising an objective

that consists of a non-linear nesting of expectations of random variables:

max
x1:q

Eν [fν(Eω[gω(x1:q)])], (3.6)

with (not necessarily iid) random variables ν and ω are sampled from Pν(·) and Pω(·),
respectively [246], stochastic function fν(·), and stochastic map gω(·). Hence to benefit
from such techniques, our first step consists of transforming the finite-sum versions
of the acquisition functions above into a composed (or nested) form that abides by
the structure in Equation (3.6). Interestingly, this can easily be achieved if we look
at the problem from a matrix-vector perspective. To illustrate, consider α(FSM)

rq-EI (x1:q|Di)

and define g(EI)ω (x1:q) to be a q × M matrix such that the ωth column is set to v(EI)ω =
ReLU

(︁
µi(x1:q;θ) + Li(x1:q;θ)zω − f(x+i )1q

)︁
∈ Rq with ω uniformly distributed in [1 : M ],

and set the other columns to 0q

g(EI)ω (x1:q) = [0q, . . . , v(EI)ω , . . . ,0q].

Clearly, if we consider the expectation with respect to ω ∼ Uniform([1 : M ]), we arrive at
the following matrix that sums all information across {zm}Mm=1

Eω[g(EI)ω (x1:q)] =
1

M
[v(EI)1 , . . . , v(EI)m , . . . , v(EI)M ],
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with a q-dimensional vector v(EI)m = ReLU
(︁
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+i )1q

)︁
. To attain

the original form of α(FSM)
rq-EI (·), we further introduce a deterministic outer function f (EI) :

Rq×M → R as follows

α
(Comp)
rq-EI (x1:q|Di) = f (EI)(Eω[g(EI)ω (x1:q)]) =

1

M

M∑︂
m=1

max
j∈1:q

v(EI)m = α
(FSM)
rq-EI .

Importantly, the above shows that a finite-sum expected improvement acquisition can be
written in a compositional (nested) form with α(FSM)

rq-EI = f(Eω[gω(x)]). In our derivations,
we have considered a deterministic outer function f(·) leading us to a special case of
Equation (3.6) where Pν(·) is Dirac. Such a consideration is mostly due to the fact that q
is typically in the order of tens or hundreds in BO allowing for exact outer summations.
In the case of large batch sizes, our formulation can easily be generalised to a stochastic
setting exactly matching a compositional form as shown in [91].
Following the same strategy above, we can now reformulate all other acquisition func-

tions as instances of compositional optimisation. Next, we list these results and refer the
reader to [91] for a detailed exposition. First, we choose ω ∼ Uniform([1 : M ]) and then
consider the following inner matrix mappings

g(PI)ω (x1:q) = [0q, . . . , v(PI)ω , . . . ,0q] ∈ Rq×M ,

g(SR)ω (x1:q) = [0q, . . . , v(SR)ω , . . . ,0q] ∈ Rq×M ,

g(UCB)ω (x1:q) = [0q, . . . , v(UCB)ω , . . . ,0q] ∈ Rq×M ,

and for the entropy search acquisition ω ∼ N (0u, Iu×u)

g(ES)ω (x1:q) = [v(ES)1,ω , v(ES)2,ω , . . . , v(ES)M,ω] ∈ Ru×M .

Here the q−dimensional vectors v(PI)m , v(SR)m , and v(UCB)m are defined as (for m ∈ [1 : M ])

v(PI)m =
1

τ

[︁
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+i )1q

]︁
,

v(SR)m = µi(x1:q;θ) + Li(x1:q;θ)zm,
v(UCB)m = µi(x1:q;θ) +

√︁
βπ/2 |Li(x1:q;θ)zm| .

and u−dimensional vector v(ES)m,ω is defined as (for m ∈ [1 : M ] and ω ∼ N (0u, Iu×u))

v(ES)m,ω = SM

(︄
µ

(g)
i (x(g)1:u;λ

(i)
θ (zm),θ) + L(g)i (x(g)1:u;θ)ω

τ

)︄
.
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Now, properly selecting the outer functions f (PI)(·), f (SR)(·), and f (UCB)(·) gives us

α
(Comp)
rq-PI (x1:q|Di) = f (PI)(Eω[g(PI)ω (x1:q)]) =

1

M

M∑︂
m=1

max
j∈1:q

{︂
Sig
(︂
v(PI)m

)︂}︂
= α

(FSM)
rq-PI (x1:q|Di),

α
(Comp)
rq-SR (x1:q|Di) = f (SR)(Eω[g(SR)ω (x1:q)]) =

1

M

M∑︂
m=1

max
j∈1:q

{︂
v(SR)m

}︂
= α

(FSM)
rq-SR (x1:q|Di),

α
(Comp)
rq-UCB (x1:q|Di) = f (UCB)(Eω[g(UCB)ω (x1:q)]) =

1

M

M∑︂
m=1

max
j∈1:q

{︂
v(UCB)m

}︂
= α

(FSM)
rq-UCB(x1:q|Di).

Finally, properly selecting the stochastic outer function f (ES)
ν (·) with ν ∼ Uniform([1 : M ])

gives us

α
(Comp)
rq-ES (x1:q|Di) = Eν

[︂
f (ES)
ν

(︂
Eω

[︂
g(ES)ω (x1:q)

]︂)︂]︂
= − 1

M

M∑︂
m=1

H
[︂
Eω

[︂
v(ES)m,ω

]︂]︂
= α

(FSM)
rq-ES (x1:q|Di).

Clearly, the results above recover the formulations of the acquisition functions given in
Equations 3.2 - 3.4 while making them amenable to compositional solvers, a new class of
optimisers not yet well-studied in the Bayesian optimisation literature. We detail such
compositional optimisers next.

Zeroth-Order Compositional Solvers for BO: Of course, the compositional forms pre-
sented above are still suitable for zeroth-order methods (Section 2.2.1). The distinguishing
factor from non-compositional forms is the evaluation process of nested objectives which
requires careful consideration. In the case of α(Comp)

rq-EI (x1:q|Di), for example, the inner ex-
pectation Eω[g(EI)ω (x)] in Equation 3.6 can be evaluated using a Monte Carlo approximation

Eω[g(EI)ω (x1:q)] ≈
1

K

K∑︂
m=1

g(EI)ωm
(x1:q), with K < M being a mini-batch of {zm}Mm=1.

Furthermore, the outer function is estimated by f (EI)(Eω[g(EI)ω (x1:q)]) ≈
f (EI)

(︂
1
K

∑︁K
m=1 g

(EI)
ωm (x1:q)

)︂
, where such an estimate asymptotically (K → ∞) con-

verges to the true expectation due to the continuity of f (EI)(·)

lim
K→∞

f (EI)

(︄
1

K

K∑︂
m=1

g(EI)ωm
(x1:q)

)︄
= f (EI)(Eω[g(EI)ω (x1:q)]).
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Clearly, this observation allows us to straightforwardly apply any of the three considered
zero-order methods (CMA-ES, DE, and RS) for determining updates of x1:q. Certainly,
such Monte Carlo approximations are not distinctive for α(Comp)

rq-EI (x1:q|Di), allowing us to
follow the same scheme for α(Comp)

rq-PI (x1:q|Di), α(Comp)
rq-SR (x1:q|Di), and α(Comp)

rq-UCB (x1:q|Di).

First-Order Compositional Solvers for BO: In contrast to zeroth-order compositional
methods, where the only difference between them and their non-compositional counter-
parts is in the evaluation of the objective function, first-order compositional optimisers
require more sophisticated techniques due to the difficulty associated in acquiring unbi-
ased gradients of nested objectives. To elaborate, let us carry on with our running example
and consider the gradient of α(Comp)

rq-EI (x1:q|Di) = f (EI)(Eω[g(EI)ω (x1:q)]). Using the chain rule,
we can easily see that such a gradient involves a product of the Jacobian of gω(x1:q) with
the gradient of f (EI)(·) that is to be evaluated around the inner mapping1

∇vec(x1:q)α
(Comp)
rq-EI (x1:q|Di) = Eω[∇vec(x1:q)g

(EI)
ω (x1:q)]T∇ζf

(EI)(ζ) |
ζ=Eω [g(EI)ω (x1:q)]

,

with an unrolled vector across all dimensions d and batch sizes q denoted by vec(x1:q) ∈ Rdq.
When attempting to acquire an unbiased estimate of ∇vec(x1:q)α

(Comp)
rq-EI (x1:q|Di), we realise

that the first term can be approximated by simple Monte Carlo

Eω[∇vec(x1:q)g
(EI)
ω (x1:q)] ≈

1

K1

K1∑︂
m=1

∇vec(x1:q)g
(EI)
ωm

(x1:q),

with batch size K1 < M . The second part, however, is tougher to estimate as it involves a
gradient of a non-linear nesting of an expected value, i.e., ∇ζf

(EI)(ζ) |
ζ=Eω [g(EI)ω (x1:q)]

. To
resolve this problem, in the compositional optimisation literature [245, 240], typically
an auxiliary variable u is introduced and an exponentially-weighted average of ζ is used,
resulting in asymptotically-vanishing biases. To acquire such behaviour, not only do we
need to update x1:q but we also need to modify u and our estimation of ζ. As such, most
compositional solvers execute three subroutines (main x1:q, auxiliary u and ζ) between
iterations t and t+1 – the first to generate x1:q,t+1, the second for ut+1 and the third for ζt+1.
Rather than presenting every subroutine for all utilised algorithms across all acquisition
functions, here we keep the exposition general and provide a set of unifying update rules,

1Of course, a simple solution corresponds to a Nested Monte Carlo approach that approximates both
inner and outer mappings with samples from ω and ν and then executes standard off-the-shelf algorithms. In
our experiments, we make use of such a technique which we refer to as Adam-Nested (see Section 3.2) but
realise that dedicated first-order compositional solvers tend to outperform such a scheme.
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deferring exact details to [91]. To that end, we introduce four history-dependent mappings
φ

(1)
t (·), φ(2)

t (·), φ(3)
t (·) andφ(4)

t (·). φ(1)
t (·) andφ(2)

t (·) act on sub-sampled gradient histories,
and their corresponding squares, for updating x1:q,t as follows

x1:q,t+1 = x1:q,t + ηt

φ
(1)
t

(︃{︂
∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di)

}︂t

k=0
,
{︂
γ
(1)
k

}︂t

k=0

)︃
φ

(2)
t

(︃{︂
∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di)

2
}︂t

k=0
,
{︂
γ
(2)
k

}︂t

k=0
, ϵ

)︃ , (3.7)

with learning rate ηt, history-dependent weightings that vary across algorithms {γ(1)
k }tk=0

and {γ(2)
k }tk=0. In Equation (3.7), we also denote compositional gradient estimates by

∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di) that can be written as

∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di) =

[︄
1

K1

K1∑︂
m=1

∇vec(x1:q)g
(type)
ωm

(x1:q,k)

]︄T
∇ζf

(type)(ζk), (3.8)

with inner and outer mapping of a compositional formulation denoted by g(type)ωm and f (type)

where type ∈ {EI,PI,SR,UCB}. With x1:q,t+1 computed, the next step is to update ut and
ζt which can be achieved through φ(3)

t (·) and φ(4)
t (·) in the following manner

ut+1 = φ
(3)
t+1

(︁
x1:q,0, . . . , x1:q,t+1, {βk}tk=0

)︁
, (3.9)

ζt+1 = φ
(4)
t+1

(︂
g(type)(u1), . . . , g(type)(ut+1), {βk}tk=0, ζ0,u0

)︂
, (3.10)

with a set of free parameters2 {βk}tk=0, initialisations u0 and ζ0 that in turn depend on
x1:q,0. Furthermore, in Equation (3.10) for Monte Carlo estimate of the inner mapping we
use g(type)(·)

g(type)(·) = 1

K2

K2∑︂
m=1

g(type)ωm
(·),

2It is worth noting that in [91] we provide a complete set of all hyperparameters used across all 28
optimisers.
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with batch size K2 < M and type ∈ {EI,PI,SR,UCB}. As an illustrative example, we note
that one can recover CAdam [240] by instantiating the above as follows

φ
(1)
t

(︃{︂
∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di)

}︂t

k=0
,
{︂
γ
(1)
k

}︂t

k=0

)︃
=

t∑︂
k=0

(1− γ
[1]
k )

t∏︂
j=k+1

γ
[1]
j ∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di),

φ
(2)
t

(︃{︂
∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di)

2
}︂t

k=0
,
{︂
γ
(2)
k

}︂t

k=0
, ϵ

)︃
=⌜⃓⃓⎷ t∑︂

k=0

(1− γ
[2]
k )

t∏︂
j=k+1

γ
[2]
j ∇vec(x1:q)α(Comp)(x1:q,k, ζk|Di)

2
+ ϵ,

φ
(3)
t

(︁
x1:q,0, . . . , x1:q,t, {βk}t−1

k=0

)︁
= (1− β−1

t−1)x1:q,t−1 + β−1
t−1x1:q,t,

φ
(4)
t

(︂
g(type)(u1), . . . , g(type)(ut), {βk}t−1

k=0, ζ0,u0

)︂
=

t∑︂
k=1

βk−1

t−1∏︂
j=k

(1− βj)g(type)(uk).

Of course, CAdam is just an instance of the generic update rules presented in Equa-
tions 3.7- 3.10. Other first-order compositional methods, such as NASA [80], ASCGA
[245], SCGA [245] and Adam applied to a nested Monte Carlo objective can all be derived
from our general form as demonstrated in [91].
We will now discuss memory efficient implementations of all compositional acquisition
functions introduced.

Memory-Efficient Implementations for Comp-BO

Although the ERM-BO and FSM-BO strategies discussed in Sections 2.2.1 and 3.1.1 share
commonalities such as the sampling of the reparametrisation variable z ∈ Rq and the use
of Monte Carlo estimates, one important difference between the approaches is memory
complexity - the total amount of space in storage (be that disk or cloud) needed for the
complete execution of an optimisation method. It is worthwhile mentioning that the key
difference between memory and time resources is that the former can be erased and
reused multiple times while the latter cannot, and this distinction plays an important role
in the analysis of applied optimisation algorithms.
For ERM-BO methods, the total amount of required memory is defined by the size of the

largest mini-batch sampled during the execution and the memory needed for the iterative
update. Since in all ERM-BO algorithms we use mini-batches of a constant size K = 128,
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and at each iteration t we store only the current iterative value x1:q,t ∈ Rdq the overall
memory complexity is therefore bounded by O(Kq + dq).
Similarly to empirically-founded techniques, in FSM-BO methods we also store at each

step t the current value of the iterate x1:q,t ∈ Rdq and utilise a mini-batch of samplings
of size K ≪ M . However in contrast to the ERM-BO case, the upfront sampling of M
reparameterisation random variables z used in the FSM-BO scenario leads to anO(Mq+dq)
bound for the overall memory capacity. On one hand, large values ofM are preferable as
they provide a better approximation to the true acquisition functions given in Equations
2.4 - 2.7, yet on the other hand, such values of M make finite-sum methods memory
stringent.
To remedy this problem, we propose memory-efficient adaptations of compositional

methods: CAdam-ME, NASA-ME and Nested-MC-ME. In a nutshell, all these methods
exploit the observation that at any given iteration, stochastic compositional optimisers only
require uniform sub-sampling from the fixed collection ofM reparametrisation variables z.
Hence instead of storingM samples upfront, one can drawK of them fromN (0, I) at each
iteration resulting in an overall memory complexity given by O(Kq + dq). For a detailed
description of the memory-efficient methods CAdam-ME, NASA-ME and Nested-MC-ME,
we refer the reader to [91].

3.2. Experiments & Results

Having presented a comprehensive set of optimisation techniques suitable for maximising
acquisition functions, we now wish to systematically evaluate their empirical performance.
Specifically, we design our experimental setup with the intention of answering the following
questions:

1. Do Finite-Sum Minimisation acquisition functions provide any benefits compared to
the more frequently-used Empirical Risk Minimisation versions?

2. Do compositional optimisers provide any advantages over non-compositional opti-
misers?

3. What are the practical savings for using memory-efficient implementations of com-
positional acquisition functions?

4. Are compositional methods more computationally expensive than non-compositional
optimisation methods and how does runtime scale as a function of the input dimen-
sionality?
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5. How do compositional optimisers perform when optimising real-world black-box
functions with noisy evaluations?

In order to answer Questions 1-4, we run twenty-eight optimiser variants on five synthetic,
noiseless BBO problems for which the true maxima are known. Knowing the true maxima
allows for exact computation of the normalised immediate regret

rt =
|f(xt̃)− f(x∗)|
|f(x0̃)− f(x∗)|

, (3.11)

with the function value at the global optimiser x∗ denoted by f(x∗), xt̃ is the algorithm’s
recommendation at round t and f(x0̃) is the regret upon initialisation at round 0. The use
of analytic functions also facilitates the treatment of input dimensionality as an experiment
variable. In order to answer question 5, we focus on the tasks from Bayesmark. These
tasks possess noise in the evaluations and are more representative of real-world BBO
problems. For these latter experiments we take forward the best-performing optimisers
observed in the synthetic function experiments. A pictorial summary of the experimental
setup is provided in Figure 3.4.

Surrogate Model: For all tasks, we use a GP with constant mean function set to the
empirical mean of the data, and a Matérn(5/2) kernel with lengthscale parameter θ. At
each acquisition step k, the hyperparameters of the GP kernel are estimated based on the
current observed input-output pairs Dk by optimising the negative log marginal likelihood
with a Gamma prior over θ. To facilitate the fitting procedure of the surrogate model,
we standardise the outputs and apply an affine transformation to the inputs so that the
search domain lies in [0, 1]d. At the beginning of each experiment, three points are drawn
uniformly at random within the search domain to initialise the surrogate model.
Additionally, in order to provide some indication as to how the GP-based surrogate

model schemes, endowed with compositional optimisation of the acquisition function,
perform against other surrogates, we also compare against the BOHB algorithm [66], a
hybrid approach based on Bayesian optimisation and the Hyperband algorithm [145].
BOHB has recently been demonstrated to outperform Bayesian optimisation across a range
of problems in the multi-fidelity setting, that is where multiple objective functions exist
possessing varying degrees of accuracy and cost associated with querying them [223]. In
order to enable comparison in the single-fidelity contexts considered in our experiments,
we simply ignore the budget handling from Hyperband.
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Figure 3.4.: Experiment Overview: Top Left: Synthetic functions (noiseless). Top Right:
Bayesmark data (noisy). Bottom Left: Five classes of acquisition function in ERM, Finite-
Sum, and Compositional forms. Bottom Right: Four classes of optimiser. Each experiment
tuple comprises a dataset, an acquisition function and an optimiser. The study comprises
3958 experiments in total.

Acquisition Functions: We consider the batched versions of each acquisition function
presented in Section 2.1.2, namely EI, PI, SR and UCB under ERM, FSM and compositional
forms. Additionally, we employ Thompson sampling [232] as a baseline in order to
provide an indication as to how the compositionally-optimised acquisition functions
perform against another popular batch acquisition function.

Optimisers: Acquisition function maximisation is carried out using the zero-order opti-
misers RS, CMA-ES and DE from the pymoo library [28], the non-compositional first-order
optimisers Adadelta, Adagrad, Adam, AdamW, RMSprop, Rprop and SGA taken from
PyTorch [174], the second-order optimiser L-BFGS-B from the SciPy library [243], as
well as the compositional optimisers ASCGA, CAdam, Nested-MC, NASA and SCGA that we
implemented on top of the BoTorch library [17]. Except when using non-memory-efficient
compositional methods, we used quasi-MC normal Sobol sequences [171] instead of i.i.d.
normal samples in order to obtain lower variance estimates of the value and gradient
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of the acquisition function as recommended by [17]. For the L-BFGS-B optimiser, the
minibatch of samples was fixed in all cases. To ensure fairness in performance comparison,
the same number of optimisation steps T (set to 64) and minibatch size m (set to 128),
is used for each method at each acquisition step. As acquisition function maximisation
is a non-convex problem, it is sensitive to the initialisation set. As such, we use multiple
restart points [244] that we first obtain by drawing 1024 batches uniformly at random in
the modified search space [0, 1]q×d, and second using the default heuristic from [17] to
select only 32 promising initialisation batches. Consequently, at each inner optimisation
step of BO, the Random Search optimisation strategy is granted 32× T ×m evaluations
of the acquisition function at random batches. Similarly, CMA-ES and DE are run for 64
evolution and mutation steps, and the aforementioned initialisation strategy is used to
generate the 32 members of the initial population.
It is known that first-order stochastic optimisers can be very sensitive to the choice of

hyperparameter settings [17, 201]. Therefore, to limit the effect of choice of hyperparam-
eter settings for the different optimisers, we conducted each experiment in two phases.
An experiment in this instance is characterised by the 3-tuple consisting of a black-box
function, an acquisition function and an optimiser.
In the first phase, we ran BO hyperparameter tuning to identify the best optimiser

hyperparameters, in the sense that these hyperparameters provide the lowest final regret
for the given task. This first phase allows us to compare optimisers in their most favourable
settings, and therefore we hope that under-performance cannot be the result of a poor
choice of hyperparameters but would reflect a real weakness of the considered method in
tackling BO’s inner optimisation problem.
In the second phase, we ran the black-box maximisation task using the acquisition

function and optimiser with hyperparameters fixed to be the best ones identified during
the first phase. The set and range of the considered hyperparameters for non-compositional
optimisers and compositional optimisers are detailed in [91].

3.2.1. FSM vs. ERM

In the following experiment, we consider five non-separable, non-convex, synthetic black-
box functions chosen to have a variety of optimisation landscapes and that are commonly-
used benchmarks for optimisation algorithms [113, 141]. We include the unimodal
functions Dixon-Price and Powell as well as the multimodal Levy, Ackley and Styblinski-Tang
functions. We run experiments for (negative) versions of these functions with search
domain specified as in [113, 141]. We consider optimisation problems across dimensional-
ities in the set (16D, 40D, 60D, 80D, 100D and 120D) in order to observe the impact of the
input space dimension on the optimisers’ performance. At each acquisition step, a batch
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Figure 3.5.: Summary plot comparing the evolution of the normalised immediate regret
averaged over all tasks when using first-order methods with either the ERM or FSM
formulation of the acquisition function. The results of 960 experiments are summarised.
We observe a small advantage of the FSM formulation over the ERM formulation across
every optimiser. Statistical significance is discussed in [91].

of q = 16 points is acquired as a result of batch acquisition function maximisation. We
run each BO algorithm with 32 acquisition steps and observe the normalised immediate
regret from Equation 3.11 as the performance metric.

Results Summary: Figure 3.5 aggregates by optimiser category, (zero-order non-
compositional, first-order compositional,. . .), the results of 960 experiments involving
each combination of optimisation task, acquisition function and optimiser. The best per-
formances obtained inside each category are accounted for. Specifically, given a category
and an acquisition step, the lowest normalised immediate regrets obtained at this step
by an optimiser belonging to this category are included and the average and standard
deviation obtained over all optimisation tasks and all acquisition functions, are reported.
In light of these results we will now answer Question 1:
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Question 1

Do Finite-Sum Minimisation acquisition functions provide any benefits compared
to the more frequently-used Empirical Risk Minimisation versions?

When looking at the top four first-order non-compositional optimisers, Figure 3.5
shows in all cases that the FSM version outperforms the ERM version when averaging the
normalised immediate regret scores over all optimisation tasks and acquisition functions.
This can be seen in an un-aggregated breakdown in Figure 3.6. FSM outperforming ERM
is an interesting discovery, and to the best of our knowledge, we are the first to observe
this. We now proceed to our second question.

3.2.2. Compositional vs. Non-Compositional Optimisation

To synthesise the results obtained over all combinations of synthetic function (Levy, Ackley,
Powell, Dixon-Price, Styblinski-Tang), input dimensionality (16D, 40D, 60D, 80D, 100D and
120D), and acquisition function (EI, PI, SR, UCB), we show in Figure 3.1 the evolution of the
normalised immediate regret for each category of optimiser. We confirm the observation
of [252] that gradient-based approaches outperform zero-order methods. Evolutionary
strategies perform comparably to Random Search (which we exclude from its category as
a global baseline). The poor performance of zero-order methods can be explained by the
dimensionality of the acquisition function domain, ranging from 16× 16 to 16× 120 and
the strict limitation on the number of optimisation steps. Results obtained with BOHB are
also similar to Random Search, although it is worth mentioning that the experimental
setting is single-fidelity and not multi-fidelity where BOHB has been observed to perform
well. The performance of Thompson sampling (TS) coincides with the observation in the
literature that TS has difficulty scaling beyond 8-10 dimensions [254]. We run GPflow
[57] implementations of function-space, weight-space and decoupled TS with the default
hyperparameters from [254]. We report these results in our summary plots and note that
scaling such information-based acquisition functions constitutes an important direction
for future work, see Section 3.3.
On examining gradient-based methods, we observe that quasi-Newton (C)L-BFGS-B

is consistently outperformed by first-order methods, which was not observed in [17]
where only a small-dimensional experiment with no batch acquisition (i.e. q = 1) was
presented. From this global summary, our results favour first-order optimisers, with
a relative advantage being given to compositional methods associated with the FSM
approximation. On the other hand, non-compositional optimisers do not seem to be
amenable to ERM or FSM formulation.
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To show a breakdown of all experiments, we present in Figure 3.6 the best performances
yielded by each category of optimiser for each input dimensionality and acquisition
function considered. Each row corresponds to a domain dimension (16D, 40D, 60D, 80D,
100D and 120D) and each column is associated with an acquisition function (EI, PI, SR
and UCB). Relative improvements yielded by BOHB and TS are also reported (there is
no variation across columns as they do not depend on the acquisition function), leading
the number of experiments aggregated on this figure to be 3100. On each row, the graph
corresponding to the acquisition function that achieved the lowest regret for the given input
dimension has a thick grey border. In 40, 60, 80 and 120 dimensions, the best performance
is achieved using UCB with a first-order optimiser, while in 16 and 100 dims, it is SR with
a first-order compositional optimiser that led to the largest relative improvement. From
this figure, we can first observe that the dimensionality of the BO problem does not seem
to have a significant impact on the relative performances between the different types of
methods, that is, for any dimension, the best first-order gradient method outperforms the
second-order methods, which achieve lower regret than zero-order ones. Aside from this
trend at the level of the optimiser order, we do not notice any lower-level trend that may
be driven by the input dimensionality.

Moreover, Figure 3.6 provides some insight into the comparatively better performance
of first-order compositional optimisers observed in the global summary Figure 3.1. Lower
regrets are obtained when the PI acquisition function is used. Nevertheless, the shading of
the graphs corresponding to the best acquisition function for each dimensionality indicates
that PI yields consistently higher regrets than UCB or SR, which encourages the use
of these alternative acquisition functions in place of PI with a first-order compositional
optimiser.

Returning to our second question:

Question 2

Do compositional optimisers provide any advantages over non-compositional opti-
misers?

The global summary Figure 3.1 in addition to Figure 3.6 indicate that there are a signif-
icant number of optimisation task and acquisition function pairs where a compositional
optimiser is preferable and as such, compositional schemes warrant much more attention
than they are currently receiving in the Bayesian optimisation community. We will now
proceed to answer our third question.

41



3.2.3. Memory Efficiency

Compositional acquisition function maximisation requires considerably larger memory
relative to ERM. However, by introducing a simple trick whereby we do not store all the
auxiliary variables and adopt an alternative sampling scheme, we can dramatically reduce
the memory requirements to be equivalent to those of ERM. In answer to question 3:

Question 3

What are the practical savings for using memory-efficient implementations of com-
positional acquisition functions?

Figure 3.7, which aggregates results obtained on tasks in 80, 100 and 120 dimensions
using both memory-efficient and standard versions of CAdam, NASA and Nested-MC
to maximise the acquisition function, shows that CAdam is negatively impacted by the
ME implementation, whereas NASA and Nested-MC are positively impacted by memory
efficiency. In all cases, the impact on going from standard to memory-efficient implemen-
tations is minor enough that we believe it warrants the use of the ME implementation as
the de facto standard. We now proceed to answer Question 4:

3.2.4. Runtime Efficiency

Runtime efficiency is of great importance for many applications. As such, we wish to
see how the execution time required for a single acquisition function optimisation varies
across compositional optimisers and input dimensionality. We fix the acquisition function
to UCB as this choice has negligible effect on overall timings and we run the BO algorithm
for 32 acquisition steps on two black-box maximisation tasks using all available optimisers,
repeating each experiment five times. In answer to Question 4:

Question 4

Are compositional methods more computationally expensive than non-
compositional optimisation methods and how does runtime scale as a function of
the input dimensionality?

There is a marked difference between the execution times reported in Figure 3.8a for
compositional and non-compositional methods with compositional methods being slower
relative to non-compositional. Additionally, ME methods are faster than standard compo-
sitional methods. We can also see that as the input dimensionality increases, a steeper
incline in the execution time for compositional methods relative to non-compositional
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methods may be observed; a feature to be expected given the extra backward passes
required by compositional optimisers. Due to these additional backward passes, composi-
tional methods are 1.5-2 times slower per iteration in terms of wall-clock time. It should
be noted that compositional optimisers may require fewer iterations in total to converge
to a specified accuracy and in this case overall wall-clock time could be comparatively
better for them. Finally, if the black-box system evaluation wall-clock time is factors larger
than the optimisation wall-clock time, which is the case in many real-world problems such
as molecule synthesis where a single query can take 2-3 weeks [231], then the differences
in runtime between compositional and non-compositional schemes becomes negligible.
We now proceed to answer our final question.

3.2.5. Real-World Problems: Noisy Evaluations

We now examine the performance of optimisers on Bayesmark tasks. All tasks involve
hyperparameter tuning for machine learning models. In contrast to the synthetic functions,
the Bayesmark datasets possess noise in the evaluations of the black-box function, a feature
inherent in the vast majority of real-world BBO problems. As such, these experiments are
designed to assess whether the observations derived from the synthetic experiments are
relevant for noisy problems.

Hyperparameter Tuning Tasks: The Bayesmark tasks consist of both regression and
classification tasks on the Boston and Diabetes UCI datasets [61] respectively. In terms
of hyperparameter tuning the following six models are considered: Decision Tree (DT),
Random Forest (RF), K-Nearest Neighbours (kNN), Support Vector Machine (SVM), Linear
and Lasso models. the dimensionality of each task varies from 2 to 9. In contrast to the
synthetic functions, we only have access to noisy evaluation of the black-box functions in
this instance. We apply Bayesian optimisation using 16 iterations of 8-batch acquisition
steps, to optimise the validation loss, mean-squared error (MSE), mean absolute error
(MAE), negative log likelihood (NLL) or accuracy depending on the task, plotting the
normalised validation loss score (Eq 3.12) for performance comparison. We ran all six
models on regression tasks (both MAE and MSE objectives) and we run three models (DT,
RF and SVM) on classification tasks (both NLL and accuracy objectives) due to a limited
computation budget. The score achieved after t acquisition steps is given by:

scoret =
Lt − L∗

Lrandt − L∗
(3.12)

where Lt is the best-achieved loss at batch t. L∗ is the estimated optimal loss for the task
and Lrand is the mean loss (across multiple runs) acquired from random search at batch t.
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Experiment Setup: The top three non-compositional optimisers (Adam, RMSprop,
Rprop) were selected for performance comparison against compositional optimisers (NASA,
CAdam, Nested-MC). We show results for the four top-performing acquisition functions
(SR, EI, PI and UCB) from the synthetic function experiments. We use the same GP
surrogate model as in Sec 3.2.1, with rounding of integer values when either integer
or categorical variables are present. Although more sophisticated methods exist to deal
with categorical/integer variables [198, 56, 76] we do not consider them here as we are
interested in solely in performance on acquisition function maximisation. We sample
2 × D points uniformly at random to initialise the model. We run the same form of
hyperparameter tuning for the initialisation as in the synthetic experiments, repeating
each experiment 5 times in order to compute the variance for individual tasks.

Results Summary: In answer to our final question:

Question 5

How do compositional optimisers perform when optimising real-world black-box
functions with noisy evaluations?

Figure 3.2 shows a high-level breakdown of compositional and non-compositional optimiser
performance on the Bayesmark regression tasks. The best final scores for the model
undergoing tuning are pooled across optimisers, tasks, loss functions and acquisition
functions. We observe that compositional and non-compositional optimisers perform
comparably, with compositional methods performing slightly better for DT, RF and SVM.
We see that the mean scores are roughly equivalent for optimiser classes across the kNN,
Lasso, linear and AdaBoost models. In an analogous fashion, Figure 3.3 pools the scores for
all classification experiments. For the DT, and RF models, compositional methods achieve
higher mean scores wheraeas comparable performance is observed when tuning the SVM
model. In conclusion, compositional vs. non-compositional optimiser performance appears
to vary depending on both the model class undergoing tuning as well as the performance
metric.

Detailed Results: Figure 3.9 depicts a finer-grained breakdown of the pooled results for
the Bayesmark regression tasks. Pooling in this case is carried out using the best, median
and average optimiser performances across all intra-class optimisers and acquisition
functions, where for example the best compositional optimiser for a given model would
be the top-scoring optimiser-acquisition pair. For DT and RF, the best results are produced
from compositional optimisers, whereas for SVM, AdaBoost, kNN and the linear model,
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non-compositional methods exhibit better performance. For compositional optimisation of
the Lasso model we observe better median performance for a higher number of black-box
function evaluations, but deteriorating performance under the best grouping. Figure 3.10
similarly shows a finer-grained breakdown of the Bayesmark classification tasks. We
observe that for certain models, such as RF, compositional methods perform better in
each of best, median and average groupings at all steps in the optimisation, namely
8, 16 and 128 evaluations of the black-box system. In the DT experiments we again
observe that compositional optimisers perform better in the latter optimisation steps (16
& 128 evaluations), but worse in the initial stages of the optimisation (8 evaluations).
In summary, compositional methods yield better performance in two-thirds of the cases
considered in Figure 3.10.

3.3. Future Work

In this paper, we presented an in-depth study of acquisition function maximisation in
Bayesian optimisation. Apart from conventional forms typically used in literature, we
demonstrated that acquisition functions adhere to a compositional structure enabling
numerous new algorithms that led to favourable empirical results. We verified our claims
in a rigorous experimental study involving 3958 tasks and twenty-eight optimisers. We
used both synthetic and real-world data gathered from Bayesmark. We demonstrated that
compositional optimisers outperform traditional solvers in 67 % of the time. In the future,
we plan to extend our analysis to cover non-myopic acquisition functions, constrained and
safe BO, high-dimensional BO [92] as well as to investigate compositional structures of
causal BO.
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Dim. 16 40 60 80 100 120 Tot.

#
Best(%

)
N
FR

#
Best(%

)
N
FR

#
Best(%

)
N
FR

#
Best(%

)
N
FR

#
Best(%

)
N
FR

#
Best(%

)
N
FR

#
Best(%

)
N
FR

Order Optimiser Ref.

Non- 0 RS [91] 0 .33 0 .51 0 .60 0 .64 0 .68 0 .75 0 .59
Comp CMA-ES [91] 0 .30 0 .49 0 .76 0 .80 0 .81 0 .85 0 .67

DE [91] 0 .29 0 .45 0 .61 0 .66 0 .66 0 .70 0 .56

Subtot. 0 .31 0 .48 0 .66 0 .70 0 .72 0 .77 0 .61

1 SGA Details [91] 0 .18 0 .28 0 .33 0 .42 0 .35 0 .48 0 .34
Adagrad Details [91] 5 .36 5 .55 5 .66 5 .75 5 .87 10 .89 6 .68
RMSprop Details [91] 10 .29 5 .45 15 .47 0 .58 0 .53 15 .64 8 .49
Adam Details [91] 5 .35 15 .46 5 .51 5 .53 20 .61 10 .70 10 .52
Adadelta Details [91] 0 .20 0 .44 5 .32 0 .46 0 .45 0 .48 1 .39
Rprop Details [91] 0 .36 0 .49 10 .57 5 .61 0 .59 10 .66 4 .55
AdamW Details [91] 0 .18 0 .24 5 .22 5 .22 5 .25 5 .23 3 .22
Adamos Details [91] 0 .17 0 .26 0 .26 0 .28 5 .30 5 .34 2 .27

Subtot. 20 .26 25 .40 45 .42 20 .48 35 .49 55 .55 33 .43

2 L-BFGS-B Details [91] 0 .19 0 .29 0 .39 0 .45 0 .45 0 .51 0 .38

Subtot. 0 .19 0 .29 0 .39 0 .45 0 .45 0 .51 0 .38

Tot. 20 .27 25 .41 45 .48 20 .53 35 .55 55 .60 33 .47

Comp 0 CMA-ES Details [91] 0 .30 0 .49 0 .76 0 .82 0 .83 0 .87 0 .68
DE Details [91] 0 .30 0 .46 0 .61 0 .64 0 .67 0 .71 0 .57

Subtot. 0 .30 0 .47 0 .69 0 .73 0 .75 0 .79 0 .62

1 SCGA Details [91] 10 .12 0 .18 0 .33 0 .44 0 .52 0 .62 2 .37
ASCGA Details [91] 5 .11 5 .17 0 .34 0 .48 0 .53 0 .60 2 .37
CAdam Details [91] 20 .09 25 .12 35 .19 25 .14 20 .14 10 .22 22 .15
NASA Details [91] 45 .08 35 .21 15 .31 20 .39 10 .40 5 .55 22 .32
Nested-MC Details [91] 0 .17 10 .22 5 .23 5 .26 5 .29 0 .38 4 .26
CAdam-ME Details [91] - - - - - - 20 .14 15 .16 20 .24 18 .18
NASA-ME Details [91] - - - - - - 10 .35 10 .40 5 .52 8 .43
Nested-MC-ME Details [91] - - - - - - 0 .28 5 .29 5 .32 3 .29

Subtot. 80 .12 75 .18 55 .28 80 .31 65 .34 45 .43 67 .28

2 CL-BFGS-B Details [91] 0 .20 0 .28 0 .34 0 .36 0 .44 0 .50 0 .35

Subtot. 0 .20 0 .28 0 .34 0 .36 0 .44 0 .50 0 .35

Tot. 80 .17 75 .27 55 .39 80 .39 65 .43 45 .50 67 .36

Table 3.1.: Marginal results over acquisition functions and synthetic black-box optimisation
tasks (i.e., 20 tasks per dimension).
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Figure 3.6.: Each row corresponds to a domain dimension (16D, 40D, 60D, 80D, 100D
and 120D) and each column is associated with an acquisition function (EI, PI, SR and
UCB). On each row, the graph corresponding to the acquisition function that achieved
the lowest regret for the given input dimension has a thick grey border. In 40, 60, 80 and
120 dimensions, the best performance is achieved using UCB with a first-order optimiser,
while in 16 and 100 dims, it is SR with a first-order compositional optimiser that led to
the largest relative improvement.
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Figure 3.7.: (3.7) Summary plot comparing the evolution of the normalised immediate
regret averaged over all considered acquisition functions, and optimisation tasks in 80, 100
and 120 dimensions, when using standard (Sd) and memory-efficient (ME) compositional
first-order optimisers. From this figure, aggregating the results of 360 experiments, we can
see that memory-efficient optimiser versions perform comparably to standard optimisers,
thus making it worthwhile to use memory-efficient implementations due to the large
memory savings.
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Figure 3.8.: (3.8a) Execution time of UCB maximisation run on 4 CPUs. We report the
time it takes an optimiser to carry out a single UCB maximisation, and we show the
mean and standard deviation observed over 5 seeds, 32 acquisition steps and 2 synthetic
black-box functions in 16, 40, 80 and 120 dims. From this figure, aggregating results of
152 experiments, we observe that compositional methods take about 1.5-2x the CPU time
taken by non-compositional methods. We do not report the execution times measured for
(C)L-BFGS-B and CMA-ES as they are an order of magnitude greater than those observed
for non-compositional, first-order methods. We provide complementary results in [91].
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Figure 3.9.: The boxplot shows the quartiles of compositional and non-compositional opti-
miser performance on the regression hyperparameter tuning task, where the performance
metrics are MAE and MSE. For each model, we show a further split of the optimiser class
for different aggregation methods. This plot summarises all 672 experiments conducted
on regression tasks on the Bayesmark dataset. We observe performance benefits for DT,
RF and AdaBoost when using a compositional optimiser, with SVM and kNN showing per-
formance benefits when using a non-compositional optimiser. When to use compositional
and when to use non-compositional?
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Figure 3.10.: The boxplot shows the quartiles of compositional and non-compositional
optimiser performance on the classification hyperparameter tuning task, where the per-
formance metrics are NLL and accuracy. For each model, we show a further split of
the optimiser class against different aggregation methods. This plot summarises all 288
experiments conducted on classification tasks for the Bayesmark datasets. We observe
that for the DT and RF models, compositional optimisers offer modest performance gains
relative to non-compositional optimisers, yet non-compositional optimisers perform better
on SVM hyperparameter tuning.
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4. HEBO: Pushing the Limit of
Sample-Efficient Hyper-parameter
Optimisation

In this chapter we will conduct an empirical study of assumptions in Bayesian Optimisation
applied to hyperparameter tuning tasks, and through this we will uncover key algorithmic
components that lead to a SOTA algorithm, named Heteroscedastic Evolutionary Bayesian
Optimisation [52] (HEBO). Firstly, in Section 4.1 we will introduce the motivation for black-
box optimisation for hyperparameter tuning. In Section 4.3 we introduce common design
choices and assumptions in black-box optimisation and in Section 4.4 we detail the research
questions we wish to answer around these common design choices and assumptions. We
introduce improvements to alleviate the limitations of existing assumptions in Section 4.5
and discuss their impact in the experimental Section 4.6. We discuss related work in
Section 4.2 and draw conclusions on the improvements in Section 4.8.

4.1. Introduction

Although achieving significant success across numerous applications [29, 148, 68, 120,
53], the performance of machine learning models chiefly depends on the correct setting
of hyperparameters. As models grow larger and more complex, efficient and autonomous
hyperparameter tuning algorithms become crucial determinants of performance. A
variety of methods from black-box and multi-fidelity optimisation [119, 208] have
been adopted for hyperparameter tuning with varying degrees of success. Techniques
such as Bayesian optimisation (BO), for example, enable sample efficiency (in terms of
black-box evaluations) at the expense of high computational demands, while “unguided”
bandit-based approaches can fail to converge [67]. Identifying such failure modes, the
authors in [67] built on [146] and proposed a combination of bandits and BO that
achieves the best of both worlds; fast convergence and computational scalability. More
recently in the context of the 2020 NeurIPS competition on Black-Box Optimisation,
many BO variants have been convincingly demonstrated to be superior to random search
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for the task of hyperparameter tuning [237]. Though impressive, such successes of BO
and alternative black-box optimisers, belie a set of restrictive modelling and acquisition
function assumptions. We begin by describing these assumptions.

Modelling Assumptions: A core determinant of BO performance is the set of data mod-
elling assumptions required to specify an appropriate probabilistic model of the black-box
objective (e.g., the choice of validation loss in hyperparameter tuning tasks). The model
should not only provide accurate point estimates, but should also maintain calibrated
uncertainty estimates to guide exploration of the objective. Amongst many possible sur-
rogates [225, 109], Gaussian processes [250] (GPs) are the default choice due to their
flexibility and sample efficiency. Growing interest in applications of Bayesian optimisation
has catalysed engineering feats that enhance scalability and training efficiency of GP
surrogates by exploiting graphical processing units [131, 18].
Similar to any other framework, the correct specification of a GP model is dictated

by the data modelling assumptions imposed by the user. For instance, a homoscedastic
GP suffers from misspecification when required to model data with heteroscedastic
noise whilst stationary GPs fail to track non-stationary targets. The aforementioned
shortcomings are not unnatural across a range of real-world problems [123, 89] and
hyperparameter tuning of machine learning algorithms is no exception, as illustrated
in our hypothesis tests of Section 4.4.2. Hence, even if one succeeds in improving
computational efficiency, frequently-made assumptions such as homoscedasticity and
stationarity can easily inhibit the performance of any BO-based hyperparameter tuning
algorithm. Despite the importance of these assumptions in practice, GPs that presume
homoscedasticity and stationarity still constitute the most common choice of surrogate.

Acquisition Function & Optimiser Assumptions: Modelling choices such as those
described above are not unique to the GP fitting procedure but rather transcend to
other steps in the BO algorithm. Precisely, given a model that adheres to some (or
all) assumptions mentioned above, the second step involves maximising an acquisition
function to query novel input locations that are then evaluated. Hence, practitioners
introduce additional constraints relating to the category of optimisation variables and
the choice of acquisition function. When it comes to variable categories, mainstream
implementations [131, 18] assume continuous domains and employ first and second-order
optimisers such as LBFGS [149] and ADAM [126] to propose query locations. Real-valued
configurations cover but a subset of possible machine learning hyperparameters rendering
discrete variable categories out of scope, an example being the hidden layer size in deep
networks. Moreover, from the point of view of acquisition functions, libraries tend to
presuppose that one unique acquisition performs best in a given task, while research
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has shown that benefits that can arise from a combined solution [211, 212, 152] as we
demonstrate in Section 4.6.

Contributions: Having identified important modelling choices in BO, our goal in this
paper is to provide empirical insight into the impact of modelling choice on empirical
performance. As a case study, we consider best practices for hyperparameter tuning.
We wish for our findings to be applicable across a broad range of tasks and datasets, be
attentive to the effect of random initialisation on algorithmic performance, and naturally,
be reproducible. As such, we prefer to build on established benchmark packages, especially
those that facilitate fast and scalable evaluations with multi-seeding protocols. To that end,
we undertake our evaluation in 2140 experiments from 108 real-world problems from the
UCI repository [61], which was also the testbed of choice for the NeurIPS 2020 Black-Box
Optimisation challenge [237]. Our findings point towards the following conclusions:

1. hyperparameter tuning tasks exhibit significant levels of heteroscedasticity and
non-stationarity.

2. Input and output warping mitigate the effects of heteroscedasticity and non-
stationarity giving rise to better performing tuning algorithms with higher mean
and median performance across all 108 black-box functions under examination.

3. Individual acquisition functions tend to conflict in their solution (i.e., an optimum
for one acquisition function can be a sub-optimal point for another and vice versa).
Using a multi-objective formulation significantly improves performance;.

To verify our principal conclusions, we conduct additional ablation studies on our pro-
posed solution method, Heteroscedastic and Evolutionary Bayesian Optimisation (HEBO)
which attempts to address the shortcomings identified in our analysis and placed first in
the 2020 NeurIPS Black-Box Optimisation Challenge. We obtain a ranked order of impor-
tance for significant components of HEBO, finding that output warping, multi-objective
acquisitions and input warping lead to the most significant improvements followed by
robust acquisition function formulations.

4.2. Related Work

We introduce work on the following topics relating to modelling, acquisition and
optimisers in Bayesian optimisation:
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Heteroscedasticity with output transforms: Among various approaches to handling
heteroscedasticity [123, 143, 138, 39, 89], transforming the output variables is a
straightforward option giving rise to warped Gaussian processes [217]. More recently,
output transformations have been extended to compositions of elementary functions
[195] and normalising flows [191, 156]. Output transformations have not featured
prominently in the Bayesian optimisation literature, perhaps due to the commonly-held
opinion that warped GPs require more data relative to standard GPs in order to function
as effective surrogates [167]. Rather than introduce additional hyperparameters to the
GP, we enable efficient output warping through methods that only require pre-training.
Recent work [64] has also investigated Gaussian copula transforms which may prove to
be particularly effective in situations where there are outliers.

Non-stationarity with input warping: Many surrogate models with input warping exist
for optimising non-stationary black-box objectives [220, 40, 168] and have enjoyed
particular success in hyperparameter tuning where the natural scale of parameters is often
logarithmic. Traditionally, a Beta cumulative distribution function is used. In this paper,
we adopt the Kumaraswamy warping which is another instance of the generalised Beta
class of distributions which we have observed to achieve superior performance [220] 1;
confirming results reported in [18].

Multi-objective acquisition ensembles: Multi-objective acquisition ensembles were first
proposed in [152] and are closely related to portfolios of acquisition functions [107, 211,
18]. In this form, the optimisation problem involves at least two conflicting and expensive
black-box objectives and as such, solutions are located along the Pareto-efficient frontier.
The multi-objective acquisition ensemble employs these ideas to find a Pareto-efficient
solution amongst multiple acquisition functions. Although we utilised the multi-objective
acquisition ensemble, we note that our framework is solver agnostic in so far as any
multi-objective optimiser [1] may be applied.

Robustness of Acquisitions: Methods achieving robustness with respect to either surro-
gates [173] or the optimisation process [30, 27] have been previously proposed. Most
relevant to our setting, is the approach of [30] that introduces robustness to BO by solving
a maxmin objective to determine optimal input perturbations. Their method, however,
relies on gradient ascent-descent-type algorithms that require real-valued variables and
are not guaranteed to converge in the general non-convex, non-concave setting [147]. On
the other hand, our solution possesses two advantages: 1) simplicity of implementation as

1For clarity we note that the input warping function used in [220] is the same one used in this work.
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we merely require random perturbations of acquisition functions to guarantee robustness,
and 2) support for mixed variable solutions through the use of evolutionary solvers.

4.3. Standard Design Choices in BO

As discussed earlier, the problem of hyperparameter tuning can be framed as an instance
of black-box optimisation

argmax
x∈X

f(x), (4.1)

with x denoting a configuration choice, X a (potentially) mixed design space, and f(x)
a validation accuracy we wish to maximise. In this paper, we focus on BO as a solution
concept for black-box problems of the form depicted in Equation (4.1). BO considers a
sequential decision approach to the global optimisation of a black-box function f : X → R
over a bounded input domain X . At each decision round, i, the algorithm selects a
collection of q inputs x(new)

1:q ∈ X q and observes values of the black-box function y(new)
1:q =

f(x
(new)
1:q ). The goal is to rapidly approach the maximum x⋆ = argmaxx∈X f(x). Since

both f(·) and x⋆ are unknown, solvers need to trade off exploitation and exploration
during this search process.
To achieve this goal, BO algorithms operate in two steps. In the first, a Bayesian

model is learned, while in the second an acquisition function determining new query
locations is maximised. Next, we survey frequently-made assumptions in mainstream BO
implementations and contemplate their implications for performance.

4.3.1. Modelling Assumptions

When black-boxes are real-valued, Gaussian processes [188] are effective surrogates due
to their flexibility and ability to maintain calibrated uncertainty estimates. In established
implementations of BO, designers place GP priors on latent functions, f(·), which are fully
specified through a mean function, m(x), and a covariance function or kernel kθ(x,x′)
with θ representing kernel hyperparameters. The model specification is completed by
defining a likelihood. Here, practitioners typically assume that observations yl adhere to a
Gaussian noise model such that yl = f(xl) + ϵl where ϵl ∼ N (0, σ2

noise). This assumption
generates a Gaussian likelihood of the form yl|xl ∼ N (fl, σ

2
noise) where we use fl to denote

f(xl) with f(x) ∼ GP(m(x), kθ(x,x
′)). Additionally, a further design choice commonly

made by practitioners is that the GP kernel is stationary, depending only on the norm
between x and x′, ||x− x′||. From this exposition, we conclude two important modelling
assumptions stated as data stationarity and homoscedasticity of the noise distribution. If

57



the true latent process does not adhere to these assumptions, the resultant model will
be a poor approximation to the black-box. Realising the potential empirical implica-
tions of these modelling choices, we identify the first two questions addressed by this paper

Q.I. Are hyperparameter tuning tasks stationary?

Q.II. Are hyperparameter tuning tasks homoscedastic?

Q.III. Can acquisition function solutions conflict in hyperparameter tuning tasks?

In Section 4.4.2, we show that even amongst the simplest hyperparameter tuning tasks, the
null hypothesis may be rejected in the case of statistical hypothesis tests for heteroscedas-
ticity and non-stationarity.

4.3.2. Acquisition Function & Optimisation Assumptions

Acquisition functions trade off exploration and exploitation by utilising statistics from
the posterior pθ(f(·)|D) with D denoting the data (hyperparameter configurations as
inputs and validation accuracy as outputs) collected so far. Under a GP surrogate with
Gaussian-corrupted observations yℓ = f(xℓ) + ϵℓ where ϵℓ ∼ N (0, σ2), and given a data
set D = {x,y}, the joint distribution of D and an arbitrary set of input points x1:q is given
by

[︃
y

f(x1:q)

]︃ ⃓⃓⃓⃓
⃓ θ ∼ N

(︃[︃
m(x)
m(x1:q)

]︃
,

[︃
Kθ + σ2I kθ(x1:q)
kT
θ (x1:q) kθ(x1:q,x1:q)

]︃)︃
,

where Kθ = Kθ(x,x) and kθ(x1:q) = kθ(x,x1:q). From this joint distribution
one can derive though marginalisation [188] the posterior predictive p(f(x1:q)|D) =
N (µθ(x1:q),Σθ(x1:q)) with

µθ(x1:q) = m(x1:q) + kθ(x1:q)
⊤(Kθ + σ2I)−1(y −m(x))

Σθ(x1:q) = Kθ(x1:q,x1:q)− kθ(x1:q)
⊤(Kθ + σ2I)−1kθ(x1:q).

As such we note that p(f(x1:q)|D) = N (µθ(x1:q),Σθ(x1:q)). In this paper, we focus on
three widely-used myopic acquisition functions which in a reparameterised form can be
written as [251]
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Expected Improvement (EI):

αθ
EI(x1:q|D) = Epost.

[︄
max
j∈1:q

{ReLU(f(xj)− f(x+))}

]︄
,

where the subscript ’post.’ is the predictive posterior of a GP [188], xj is the jth vector of
x1:q, and x+ is the best performing input in the data so far.

Probability of Improvement (PI):

αθ
PI(x1:q|D) = Epost.

[︄
max
j∈1:q

{11{f(xj)− f(x+)}}

]︄
,

where 11{·} is the left-continuous Heaviside step function.

Upper Confidence Bound (UCB):

αθ
UCB(xj) = Epost.

[︄
max
j∈1:q

{︄
µθ(xj) +

√︁
βπ/2|γθ(xj)|

}︄]︄
,

where µθ(xj) is the posterior mean of the predictive distribution and γθ(xj) =
f(xj) − µθ(xj). When it comes to practicality, generic BO implementations make
additional assumptions during the acquisition maximisation step. First, it is assumed
that one of the aforementioned acquisitions works best for a specific task, and that
the GP model is an accurate approximation to the black-box. However, when it comes
to real-world applications, both of these assumptions are difficult to validate; the
best-performing acquisition is challenging to identify upfront and GP models may easily
be misspecified. With this in mind, we identify a third question that we wish to address.

In the following section, we affirm that acquisitions can conflict even on the simplest
of hyperparameter tuning tasks. Moreover, we show that a robust formulation to tackle
misspecification of acquisition maximisation can improve overall performance (see Sec-
tion 4.5.2).

4.4. Modelling Assumption Analysis

Before discussing the improvements afforded to BO via our solution method, we detail
analyses conducted to answer questions (Q.I., Q.II., and Q.III.) posed in the previous
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section. Our analyses indicate

A.I.: Even simple hyperparameter tuning tasks exhibit significant heteroscedastic-
ity.
A.II.: Even simple hyperparameter tasks exhibit significant non-stationarity.
A.III.: Acquisition functions conflict in their optima, occasionally leading to opposing
solutions.

Experiment Setting: We create a wide range of hyperparameter tasks (108) across a
variety of classification and regression problems. We use nine models, (e.g. multilayer
perceptrons, support vector machines) and six datasets (two regression and four classifica-
tion) from the UCI repository, and two metrics per dataset (such as negative log-likelihood
or mean squared error). Each model possesses tuneable hyperparameters, e.g. the
number of hidden units of a neural network. The goal is to fit these hyperparameters so
as to maximise/minimise one of the specified metrics. Values of the black-box objective
are stochastic with noise contributions originating from the train-test splits used to
compute the losses. Experimentation was facilitated by the Bayesmark2 package.
Full hyperparameter search spaces are defined in Table 4.1 and Table 4.2 of the Appendix 3.

Statistical Hypothesis Testing for Heteroscedasticity and Non-Stationarity: We de-
scribe here the statistical hypothesis tests we use to answer Q.II.. GP regression typically
considers a conditional normal distribution of the observations y|· ∼ N (f(·), σ2(·)) and in
most cases σ(·)2 is assumed to be constant, in which case the GP is termed homoscedastic.
To assess whether the homoscedasticity assumption holds for the tasks under examination,
we make use of Levene’s test and the Fligner-Killeen test. To run these tests on a given task,
we evaluate k = 50 distinct sets of hyperparameters {xi}1≤i≤k for n = 10 times and obtain
scores {Yij}1≤i≤k,1≤j≤n, where Yij is the jth score observed when evaluating the ith config-
uration. For i = 1, . . . , k, let σ2

i denote the observed variance of y|xi, then both Levene’s
test and the Fligner-Killeen test share the same null hypothesis of homoscedasticity

H0 : σ
2
1 = · · · = σ2

k.

In all 108 tests, we see a p-value significantly lower than 0.05 in 72 tasks using
Levene’s test, and in 73 tasks using Fligner-Killeen test. Such results (shown in detail
in [52]) imply that at least 66% of the experimental tasks exhibit heteroscedastic behaviour.

2https://github.com/uber/bayesmark
3It is these search spaces that are used by the random search baseline.

60

https://github.com/uber/bayesmark


Table 4.1.: Search spaces for hyperparameter tuning on classification tasks. We specify the
variable type of each hyperparameter (with R for real-valued and Z for integer- valued)
as well as the search domain. We specify log−U (resp. logit− U) to indicate that a log
(resp. logit) transformation is applied to the optimisation domain.

Model Parameter Type Domain

kNN n_neighbors Z U(1, 25)
p Z U(1, 4)

Support Vector Machine C R log−U(1, 103)
gamma R log−U(10−4, 10−3)
tol R log−U(10−5, 10−1)

Decision Tree max_depth Z U(1, 15)
min_samples_split R logit− U(0.01, 0.99)
min_samples_leaf R logit− U(0.01, 0.49)
min_weight_fraction_leaf R logit− U(0.01, 0.49)
max_features R logit− U(0.01, 0.99)
min_impurity_decrease R U(0, 0.5)

Random Forest max_depth Z U(1, 15)
max_features R logit− U(0.01, 0.99)
min_samples_split R logit− U(0.01, 0.99)
min_samples_leaf R logit− U(0.01, 0.49)
min_weight_fraction_leaf R logit− U(0.01, 0.49)
min_impurity_decrease R U(0, 0.5)

MLP-Adam hidden_layer_sizes Z U(50, 200)
alpha R log−U(10−5, 101)
batch_size Z U(10, 250)
learning_rate_init R log−U(10−5, 10−1)
tol R log−U(10−5, 10−1)
validation_fraction R logit− U(0.1, 0.9)
beta_1 R logit− U(0.5, 0.99)
beta_2 R logit− U(0.9, 1− 10−6)
epsilon R log−U(10−9, 10−6)

MLP-SGD hidden_layer_sizes Z U(50, 200)
alpha R log−U(10−5, 101)
batch_size Z U(10, 250)
learning_rate_init R log−U(10−5, 10−1)
power_t R logit− U(0.1, 0.9)
tol R log−U(10−5, 10−1)
momentum R logit− U(0.001, 0.999)
validation_fraction R logit− U(0.1, 0.9)

AdaBoost n_estimators Z U(10, 100)
learning_rate R log−U(10−4, 101)

Lasso C R log−U(10−2, 102)
intercept_scaling R log−U(10−2, 102)

Linear C R log−U(10−2, 102)
intercept_scaling R log−U(10−2, 102)
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Table 4.2.: Models and search spaces for hyperparameter tuning on regression tasks.
Models having the same search spaces for classification and regression tasks are omitted
(cf. Table 4.1).

Model Parameter Type Domain

AdaBoost n_estimators Z U(10, 100)
learning_rate R log−U(10−4, 101)

Lasso alpha R log−U(10−2, 102)
fit_intercept Z U(0, 1)
normalize Z U(0, 1)
max_iter Z log−U(10, 5000)
tol R log−U(10−5, 10−1)
positive Z U(0, 1)

Linear alpha R log−U(10−2, 102)
fit_intercept Z U(0, 1)
normalize Z U(0, 1)
max_iter Z log−U(10, 5000)
tol R log−U(10−4, 10−1)

Levene’s Test Levene’s test statistic is defined as

W =
N − k

k − 1
·
∑︁k

i=1 n(Z̄i· − Z̄ ··)
2∑︁k

i=1

∑︁n
j=1(Zij − Z̄i·)2

,

where N = k× n, Zij = |Yij − 1
n

∑︁n
j=1 Yij |, Z̄i· =

1
n

∑︁n
j=1 Zij and Z̄ ·· =

1
k

∑︁k
i=1 Z̄i·, for all

i = 1, . . . , k, j = 1, . . . , n. Levene’s test rejects the null hypothesis of homoscedasticity H0

if
W > Fα,k−1,N−k,

where Fα,k−1,N−k is the upper critical value at a significance level α of the F distribution
with k − 1 and N − k degrees of freedom. The Fligner-Killeen test is an alternative to
Levene’s test that is particularly robust to outliers.

Fligner-Killeen Test: Computation of the Fligner-Killeen test involves ranking all the
absolute values {|Yij − Ỹ i|}1≤i≤k,1≤j≤n, where Ỹ i is the median of {Yij}1≤j≤n. Increasing

scores aN,r = Φ−1

(︃
1+

r
N+1
2

)︃
are associated with each rank r = 1, . . . , N , where N = kn

and Φ(·) is the cumulative distribution function for a standard normal random variable.
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We denote the rank score associated with Yij as rij . The Fligner-Killeen test statistic is
given by

χ2
o =

∑︁k
i=1 n

(︁
Āi − ā

)︁2
V 2

,

where Āi =
1
n

∑︁n
j=1 aN,rij , ā = 1

N

∑︁N
r=1 aN,r and V 2 = 1

N−1

∑︁N
r=1(aN,r − ā)2. As χ0 has

an asymptotic X 2 distribution with (k − 1) degrees of freedom, the test rejects the null
hypothesis of homoscedasticity H0 if

χ0 > X 2
α,k−1

with the upper critical value at a significance level α of the X 2 distribution with k − 1
degrees of freedom denoted by X 2

α,k−1 .

Table 4.3.: Hypothesis Testing for 108 tasks. We find that output transformations which
tackle heteroscedasticity significantly improve GP modelling capabilities. Similarly, in-
put transformations which tackle non-stationarity significantly improve GP modelling
capabilities.

Better Sig. Better Worse Sig. Worse
Heteroscedasticity (Output Transform) 70 (65%) 58 (54%) 38 (35%) 25 (23%)
Non-Stationarity (Input Warping) 106 (98%) 79 (73%) 2 (2%) 0 (0%)

4.4.1. Answer A.I.: Simple Hyperparameter Tuning Tasks are
Non-Stationary

To assess the impact of the extent of non-stationarity on BO performance, we conduct
probabilistic regression experiments to gauge the predictive performance of a stationary
GP on the hyperparameter tuning tasks with and without input warping transformations
which correct for non-stationarity. We contend that the quality of the surrogate model is
a good proxy for BO performance. We first run a two-sided paired t-test for each of the
108 tasks where the null hypothesis is that the application of the input warping yields
no difference in the log probability metric. In Table 4.3 significance tests show that in
106/108 tasks, the log probability metric is more favourable when input warping is applied.
In 79/108 tasks, the gain is significant at the 95% level of confidence (p-value < 0.025).
We thus conclude that non-stationarity is an important consideration for BO performance
due to the observed effect on the log probability metric.
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4.4.2. Answers A.II.: Simple Hyperparameter Tuning Tasks are
Heteroscedastic

We perform an analogous hypothesis test as in Section 4.4.1, assessing a vanilla GP’s
performance with and without output transformations (Box-Cox/ Yeo-Johnson). We run
a two-sided paired t-test for each of the 108 tasks where the null hypothesis is that the
application of the output transform yields no difference in the log probability metric.
In Table 4.3 significance tests show that in 70/108 tasks, the log probability metric is
more favourable when output transformations are applied. In 58/108 tasks, the gain
is significant at the 95% level of confidence (p-value < 0.025). We thus conclude that
heteroscedasticity is an important consideration for BO performance due to its impact on
the log probability metric.
Furthermore, to gauge the level of heteroscedasticity in the underlying data, we use

the Fligner-Killeen [70] and Levene [144] tests. For both tests, the null hypothesis is that
the underlying black-box function noise process is homoscedastic. In all 108 tests, we
see a p-value significantly lower than 0.05 in 72 tasks using Levene’s test, and in 73 tasks
using Fligner-Killeen. Such results (shown in detail in [52]) imply that at least 66% of the
experimental tasks exhibit heteroscedastic behaviour.

4.4.3. Answer A.III.: No Clear Winner
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Figure 4.1.: Examples depicting conflicting acquisitions across data sets (Wine, Boston
Housing, and Iris) and models (AdaBoost, Multilayer perceptron, K-Nearest neighbours,
and support vector machines).
It has previously been observed that acquisition functions can conflict in their op-

tima [211]. To provide further support for the answer to Q.III., we collect 128 samples
from each task by evaluating various hyperparameter configurations across metrics. We
then assemble a data set D = {hyper-parami, yi}32i=1, where hyper-parami is a vector
with dimensionality dependent on the number of hyperparameters in a given model, and
yi is an evaluation metric, (e.g., mean squared error) We subsequently fit a GP surrogate
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model and consider each of the three acquisition functions from Section 4.3.2. Given the
difficulty involved in the graphical depiction of an acquisition function conflict in more
than two dimensions, we examine a simple, two-dimensional illustrative example. From
Figure 4.1, it is apparent that even in the simplest 2D case, many examples of conflicting
acquisitions exist. Thus, in higher dimensions this behaviour will also occur.

4.5. Optimising Bayesian Optimisation

In this section we describe the component design choices that may mitigate for het-
eroscedastic and non-stationary aspects of commonly-encountered BO problems. Input
and output transformations as well as multiobjective acquisition functions have been
introduced in isolation previously, whilst acquisition function robustness is unique to
this work. We synthesise the design choices in a single solution method which we term
Heteroscedastic and Evolutionary Bayesian Optimisation (HEBO).

4.5.1. Tackling Heteroscedasticity and Non-Stationarity

To parsimoniously handle heteroscedasticity and non-stationarity, we leverage ideas from
the warped GP literature [217] where output transformations facilitate the modelling
of complex noise processes. We observe that the well-known Box-Cox [33] and Yeo-
Jonhson [258] output transformations in conjunction with the Kumaraswamy [139]
input transformation, offer a balance between simplicity of implementation and empirical
performance. In our ablation study (Section 4.6), we demonstrate that the addition of
these two modelling components alone yields large performance gains.

Output Transformation for Heteroscedasticity: We consider the Box-Cox transforma-
tion most frequently used as a corrective mapping for non-Gaussian data. The transform
depends on a tuneable parameter ζ and applies the following map to each of the labels:
Tζ(yl) = yζl − 1/ζ for ζ ̸= 0 and Tζ(yl) = log yl if ζ = 0, where in our case yl denotes the
validation accuracy of the lth hyperparameter configuration. ζ must be fit based on the
observed data such that the distribution of the transformed labels closely resembles a
Gaussian distribution. The transform is achieved by minimising the negative Box-Cox
likelihood function

log

[︄
n∑︂

l=1

(Tζ(yl)− Tζ(y))2

n

]︄n
2

+

n∑︂
l=1

log [Tζ(yl)](1−ζ) ,
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where n is the number of datapoints and Tζ(y) is the sample mean of the transformed
labels. Box-Cox transforms only consider strictly positive (or strictly negative) labels yl.

When labels take on arbitrary values, we use the Yeo-Johnson transform in place of
the Box-Cox transform. The Yeo-Johnson transform is defined as follows

Y.J.ζ(yl) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(yl+1)ζ−1

ζ if ζ ̸= 0, yl ≥ 0,

log(yl + 1) if ζ = 0, yl ≥ 0,
(1−yl)

2−ζ−1
ζ−2 if ζ ̸= 2, yl < 0,

− log(1− yl) if ζ = 2, yl < 0.

In an analogous fashion to the Box-Cox transform, the Yeo-Johnson’s parameter is fit
based on the observed data through solving the following 1-dimensional optimisation
problem

max
ζ

− n

2
log

[︄∑︁n
j=1(Y.J.ζ(yl)− Y.J.ζ(y))

2

n− 1

]︄
+ (ζ − 1)

n∑︂
i=1

[sign(yl) log(|yl|+ 1)] ,

with Y.J.ζ(y) the sample average computed after applying the Yeo-Johnson transfor-
mation.

Input Transformations for Non-Stationarity: As a general solution concept for cor-
recting for non-stationarity, we consider input warping see [218]. We rely on the
Kumaraswamy input warping transform as used in [218], which operates as follows
for each input dimension

[Kumaraswamyγ(xl)]k = 1− (1− [xl]
ak
k )

bk ∀k ∈ [1 : d],

where d is the dimensionality of the decision variable (i.e. the number of free
hyperparameters), ak and bk are tuneable warping parameters for each of the dimensions,
and γ is a vector concatenating all free parameters, i.e., γ = [a1:d, b1:d]

T. γ is fit based on
the observed data. Similar to [18], we optimise γ under the marginal likelihood objective
used to fit the GP surrogate.

All Modelling Improvements Together: Combining the above corrective measures for
heteroscedasticity and non-stationarity leads us to an improved GP surrogate with more
flexible modelling capabilities. The implementation of such a model is relatively simple
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and involves maximising a new marginal likelihood which may be written as

max
θ,γ

− 1

2
Tζ⋆(y)T(Kγ

θ + σnoiseI)
−1Tζ⋆(y)−

1

2
|Kγ

θ + σ2
noiseI| − const,

with GP hyperparameters θ, γ indicates the use of non-stationary transformations, and ζ⋆
denotes the solution to a Box-Cox likelihood objective. It is worth noting that we use
Box-Cox as a running example but as mentioned previously we interchange Box-Cox
with Yeo-Johnson transforms based on the properties of the label yl. We useKγ

θ ∈ Rn×n

to represent a matrix such that each entry depends on both θ and γ, where kγθ(x,x′) =
kθ(Kumaraswamyγ(x),Kumaraswamyγ(x

′)).

4.5.2. Tackling Acquisition Conflict & Robustness

Having proposed modifications to the surrogate model component of the Bayesian op-
timisation scheme, we now turn our attention to the acquisition maximisation step. In
particular, we focus on two considerations, the first related to the assumption of a perfect
GP surrogate, and the second centred on conflicting acquisitions.

A Robust Acquisition Objective

As mentioned in Section 4.3.2, the acquisition maximisation step assumes that an adequate
surrogate model is readily available. During early rounds of training especially, where data
is scarce, such a property is often violated, leading to potentially severe model misspecifica-
tion. One way to tackle such model misspecification is to adopt a robust formulation [128,
130] which attempts to identify the best-performing query location under the worst-case
GP model, i.e., solving maxxminθ α

θ(x|D). Though such a formulation admits a solution
x⋆ that is robust to worst-case misspecification in θ, having a maxmin acquisition is
problematic for several reasons. From a conceptual perspective maxmin formulations are
known to lead to very conservative solutions if not correctly constrained or regularised
since the optimiser possesses the power to impair the GP fit while updating θ4. From
the perspective of implementation, one encounters two further issues. First, no global
convergence guarantees are known for the non-convex, non-concave case that we [147],
and second, ensuring gradients can propagate through the computation graph restricts
surrogates and acquisition functions to be within the same programming framework.

4One can make a case for augmenting the objective with a constraint such that updates for θ remain
close to θ⋆ of the marginal likelihood. The ideal enforced proximity value however remains unclear in the
robust acquisition literature to date [3, 128].
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To avoid worst-case solutions and engender independence between acquisition func-
tions and surrogate models, we leverage ideas from domain randomisation [234] and
consider an expected formulation instead: maxx αrob.(·) ≡ maxx Eϵ∼N (0,σ2

ϵ I)

[︁
αθ+ϵ(x|D)

]︁
.

Importantly, this problem seeks to find new query locations that perform well on average
over a distribution of surrogate models in favour of assuming a perfect surrogate.
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Figure 4.2.: Analysis of the results on 108 tuning tasks. (Left) Normalised score comparison
demonstrating that HEBO (i.e., BO with improvements from Section 4.5) outperforms
competitor algorithms. We observe a 5% relative improvement to SOTA optimisers such
as TuRBO. (Right) HEBO yields an 8% improvement compared to random search.

Multi-Objective Acquisition functions

As a final component of our general framework, we propose the use of multi-objective
acquisitions seeking a Pareto-front solution. This formulation facilitates the process of
“hedging” between different acquisitions such that no single acquisition dominates the
solution [152]. Formally, we solve

max
x

(︁
ᾱθ
EI(x|D), ᾱθ

PI(x|D), ᾱθ
UCB(x|D)

)︁
, (4.2)

with a robust acquisition of type ∈ {EI,PI,UCB} denoted by ᾱθ
type(x|D), as introduced in

the previous section. We also note that our formulation is designed to admit the use of a
robust objective value of αθ(x|D) = αθ(x|D) + ηkσn with ηk being a sample from N (0, 1)
at each iteration of the evolutionary solver.
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Figure 4.3.: HEBO compared against all baselines for 16 iterations and a batch size of
8 query points per iteration. Each experiment is repeated with 20 random seeds. We
average each seed over both metrics in all tasks and display a subset of 36 summary plots
for the 108 black-box functions. HEBO achieves the highest normalised mean score in
68.5% of the 108 black-box functions.

Although solving the problem in Equation (4.2) is a formidable challenge, we note the
existence of many mature multi-objective optimisation algorithms. These range from first-
order [127] to zero-order [150, 72] and evolutionary methods [99, 58]. Due to the discrete
nature of hyperparameters in machine learning tasks, we advocate the use of evolutionary
solvers that naturally handle categorical and integer-valued variables. In our experiments,
we employ the non-dominated sorting genetic algorithm II (NSGA-II) which allows
for mixed variable crossover and mutation to optimise real-valued and integer-valued
inputs [58]. We use the implementation of NSGA-II found in the Pymoo [28] library.
Alternatively, one may use the GP Hedge acquisition as used in Dragonfly [122] in
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[108] or in SkOpt to select between acquisitions. We however, observed this formulation
to perform poorly when compared against individual acquisitions.

4.6. Experiments and Results

In this section, we continue our empirical evaluation and validate gains (if any) that
arise from the improvements proposed in Section 4.5. The experimental setup remains
as described in Section 4.4. To assess performance, we use the normalised task score5.
We run experiments on either 16 iterations with a batch of 8 query points per iteration
or 100 iterations with 1 query point. Each experiment is repeated for 20 random seeds.
We baseline against a wide range of solvers that either rely on BO-strategies or follow
zero-order techniques such as differential evolution or particle swarms. These include
SkOpt [175] 6 pySOT 7 a parallel global optimisation package [63], HyperOpt [23] 8,
OpenTuner 9 a package for ensembling methods [10], NeverGrad [186] 10 a
gradient-free optimisation toolbox (with the One Plus One optimiser), BOHB [67] 11
and Dragonfly [122] 12. Additionally, we carried our modelling improvements to
TuRBO 13 [65], augmenting the standard GP with mitigation strategies from Section 4.5
producing a new baseline that we entitle TuRBO+. Finally, we introduce Heteroscedastic
Evolutionary Bayesian Optimisation (HEBO), in which we construct an optimiser with the
improvements introduced in Section 4.5.

Implementation Details for BOHB: BOHB is a scalable hyperparameter tuning algorithm
introduced in [67] mixing bandits and BO approaches to achieve both competitive anytime
and final performances. Contrary to the other solvers considered in this paper, BOHB is
specifically designed to tackle multi-fidelity optimisation and uses the Hyperband [146]
routine to define the fidelity levels under which points are asynchronously evaluated. The
selection of points follows a BO strategy based on the Tree Parzen Estimator (TPE) method.
Given a data set D of observed data points and a threshold α ∈ R, the TPE models p(x|y),

5Note, we don’t report the time to compute query points per algorithm as this was under 20 seconds per
query point batch.

6https://github.com/scikit-optimize/scikit-optimize
7https://github.com/dme65/pySOT
8https://github.com/hyperopt/hyperopt
9https://github.com/jansel/opentuner
10https://github.com/facebookresearch/nevergrad
11https://github.com/automl/HpBandSter
12https://github.com/dragonfly/dragonfly
13https://github.com/rdturnermtl/bbo_challenge_starter_kit/

70

https://github.com/scikit-optimize/scikit-optimize
https://github.com/dme65/pySOT
https://github.com/hyperopt/hyperopt
https://github.com/jansel/opentuner
https://github.com/facebookresearch/nevergrad
https://github.com/automl/HpBandSter
https://github.com/dragonfly/dragonfly
https://github.com/rdturnermtl/bbo_challenge_starter_kit/


using kernel density estimates of

ℓ(x) = p(y < α|x,D),

g(x) = p(y ≥ α|x,D).

In the TPE algorithm, maximising the expected improvement criterion

αEI(x) =

∫︂
max(0, α− p(y|x))p(y|x)dy

is equivalent to maximising the ratio r(x) = ℓ(x)
g(x) which is carried out to select a single

new candidate point at a time.
In the absence of a multi-fidelity setup in our experiments, we run a modified version

of the BOHB algorithm implemented in the HpBandSter package. We leave the TPE
method for modelling unchanged but ignore the fidelity level assignment from Hyperband.
Moreover, as our experimental setup involves batch acquisitions, we tested two alternatives
to the standard BOHB acquisition procedure to support synchronous suggestion of multiple
points. In the first approach, we run q independent maximisation processes of r(x)
from random starting points and recover a single candidate from each process to form
the q-batch suggestion. In the second approach, we obtain one point as a result of a
single maximisation of r(x) and we sample q − 1 random points to complete the q-batch
suggestion. As the latter method yields better overall performance, the results reported
under the BOHB label are obtained using the second approach.

4.6.1. Black-Box Functions

As discussed in Section 3, we evaluate black-box optimisation solvers on a large set of
tasks from the Bayesmark package. Each task involves optimising the hyperparameters
of a machine learning algorithm to minimise the cross validation loss incurred when this
model is applied in a regression (reg) or a classification (clf) setting for a given data set.
Thus, a task is characterised by a model, a data set and a loss function (metric) quantifying
the quality of the regression or classification performance. In total, 108 distinct tasks can
be defined from the valid combinations of the nine models specified in Table 4.1, the
following six real-world UCI datasets [61], Boston (reg), Breast Cancer (clf), Diabetes
(reg), Digits (clf), Iris (clf) and Wine (clf); the following two regression metrics, negative
mean-squared error (MSE), negative mean absolute error (MAE), and two classification
metrics, negative log-likelihood (NLL) and negative accuracy (ACC). The results reported
in Figures 3 and 4 have been obtained by applying each black-box optimisation method
using 16 iterations of 8-batch acquisition steps on all of the 108 tasks. In order to provide
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a reliable evaluation of the different solvers, we repeated each run with 20 random seeds
and considered the normalised score given by
with the best-achieved cross validation loss denoted by L at the end of the 16 acquisition
steps, L∗ is the estimated optimal loss for the task and Lrand is the mean loss (across
multiple runs) obtained using random search with the same number of acquisition steps.
The normalisation procedure permits aggregation of the scores across tasks despite the
different cross-validation loss functions used.

4.6.2. Black-Box Optimisation Input Variables

We provide in Table 4.1 and Table 4.2 the list of the hyperparameters controlling the
behaviour of each model along with their optimisation domains, which can differ depend-
ing on whether the model is used for a classification or a regression task. The search
domain may include a mix of continuous and integer-valued variables (e.g. the MLP-SGD
hyperparameter set includes an integer-valued hidden layer size, and a continuous-valued
initial learning rate that can take on values between 10−5 and 10−1). The dimensionality
of the input space, i.e. the number of hyperparameters to tune, ranges from 2 to 9. We
specify in the final column of the tables whether the search domain is modified through a
standard transformation ( log or logit) in order to facilitate optimisation.
Table 4.4 synthesises the performance achieved on the 108 tasks by the black-box

optimisation solvers considered in our experiments. We note that the distribution of
the scores attained by HEBO has the largest mean and the smallest standard deviation,
indicating that HEBO significantly outperforms competitor algorithms.
Algorithm Mean Std Median 40th Centile 30th Centile 20th Centile 5th Centile

HEBO 100.12 8.70 100.01 100.00 99.88 98.64 85.71
PySOt 98.18 9.03 100.00 99.81 98.60 95.36 80.00
TuRBO 97.95 10.80 100.00 99.88 98.75 95.26 78.63
HyperOpt 96.37 8.79 99.31 98.16 95.94 92.38 78.52
SkOpt 96.18 11.51 99.78 98.66 96.73 91.62 74.77
TuRBO+ 95.29 10.93 98.97 97.60 95.27 90.92 74.77
OpenTuner 94.32 14.18 98.44 96.93 93.84 89.97 68.96
NeverGrad 93.20 17.52 99.65 97.84 94.57 88.28 55.34
BOHB 92.03 11.16 96.02 93.55 90.14 85.71 67.82
Random-Search 92.00 11.71 96.18 93.55 90.05 85.16 69.55

Table 4.4.: Mean and n-th percentile normalised scores over 108 black-box functions, each
repeated with 20 random seeds. We observe significant mean improvements from HEBO
compared to all competitor algorithms.
Figure 4.2 demonstrates gains from adopting the general HEBO framework. In
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Table 4.5.: Number of tasks for which each optimiser performed best.
HEBO TuRBO PySOT Skopt Nevergrad (1+1) BOHB-BO Opentuner Hyperopt TuRBO+

71 (65.7%) 14 (13.0%) 7 (6.5 %) 5 (4.6 %) 4 (3.7 %) 3 (2.8%) 2 (1.9%) 1 (0.9%) 1 (0.9%)

Figure 4.4, we compare HEBO against baselines and report up to an 8% performance
gain relative to a random search strategy. It is also worth noting that TuRBO+ tends
to underperform 14, achieving ca. 4% improvement relative to random search. We
believe such a result is related to the interplay between our approach’s capabilities to
address heteroscedasticity and non-stationarity as well as the size of the trust regions; an
interesting avenue that we plan to explore in future work. Overall, HEBO achieves the
highest normalised mean scores on 71 of the 108 datasets, as shown in the summary
Table 4.5. Complete results for each task can be found in [52].

Comparison to Asynchronous BO Algorithms: We perform a comparison to black-box
optimisers, such as Dragonfly and BOHB, which operate in the asynchronous setting.
We run each method for 100 iterations of data collection with a single query location per
iteration. We label the asynchronous algorithms without their multi-fidelity components
with an addition BB for black-box optimiser (Dragonfly-BB and BOHB-BB) to assess
black-box optimisation performance only. The results of Figure 4.4a show that in the
asynchronous setting, both Dragonfly-BB and BOHB-BB under-perform relative to other
black-box optimisers, with HEBO performing best. However, this result is not surprising
as asynchronous methods trade off sample efficiency with speed. Nevertheless, this
experiment reveals a large gap in suggestion power between SOTA asynchronous and
synchronous methods.

4.6.3. Ablation Results

To better understand the relative importance of each component of the HEBO algorithm,
we conduct an ablation study by first removing each component of HEBO and testing the
remaining components and second, by starting with basic BO and sequentially adding
and testing each component of HEBO. The components comprise the consideration of
heteroscedasticity, non-stationarity and robustness, as well as the use of a multiobjec-
tive acquisition function. We report average normalised scores in Figure 4.4b. The
precedence order observed is: heteroscedasticity, multi-objective acquisition functions,
non-stationarity and robustness.

14We believe this due to the trust region not being modelled correctly with input warping.
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(b) Ablation Study

Figure 4.4.: (a) We compare HEBO against several popular hyperparameter tuning ap-
proaches including BOHB-BB and Dragonfly-BB, running all methods for 100 iterations
with a batch size of 1 (i.e. one set of hyperparameters queried per iteration). BOHB-BB
and Dragonfly-BB feature asynchronous queries, suggesting a batch of one set of hy-
perparameters at each iteration. We remove the multi-fidelity components from BOHB and
Dragonfly to assess Black-Box optimisation alone, hence the additional BB appended to
their label. (b) Ablation study where X denotes a general component of HEBO. HEBO w/o
X takes one component X out at a time and BO Base w X adds one component X in at a
time. We show TuRBO as a baseline and refer to HEBO with all significant components re-
moved as BO Base. The ablation demonstrates that the corrections for each misspecified
modelling assumption yield a tangible gain in empirical performance.

4.7. NeurIPS 2020 Black-Box Optimization Competition
Results

Insights and analysis were released [237] from the organisers of the NeurIPS 2020 Black-
box Optimization Challange (BBO). We highlight the strength of HEBO when deployed in
a truly black-box task versus many existing SOTA baselines, as well as improved versions
submitted to the competition by leading research labs.
Table 4.7, which is taken from [237], shows the top 20 submissions to BBO,

as well as a collection of (at the time) SOTA Black-box optimizers. Firstly, in Ta-
ble 4.7, we observe that HEBO is the best performing algorithm in the competi-
tion. This result was from evaluating all methods on a held out test set of tasks,
for 20 seeds per method. Firstly, HEBO has the largest margin of difference for

74



Table 4.6.: Table from [237]. Variation in competition rankings from bootstrapping rank-
ings. Ranking frequency shown as percentage, results demonstrate near 100% confidence
in HEBO being the dominant algorithm. See [237] for details of how bootstrapped
rankings are calculated.

Most likely ranking 2nd most likely ranking 3rd most likely ranking

Huawei Noah’s Ark Lab (HEBO) Huawei Noah’s Ark Lab (HEBO) Huawei Noah’s Ark Lab (HEBO)
NVIDIA RAPIDS.AI NVIDIA RAPIDS.AI NVIDIA RAPIDS.AI
JetBrains Research JetBrains Research Duxiaoman DI
Duxiaoman DI Optuna Developers JetBrains Research
Optuna Developers Duxiaoman DI Optuna Developers

90% 5.2% 4.5%

mean normalised score out of all top 5 algorithms. Secondly, we notice HEBO is
the only optimizer that is two orders of magnitude more efficient than random search.
[237] illustrate the relationship between the top ranking methods and baselines and

random search. Specifically, they shows the mean normalised score achieved after 128
samples and time taken for random search to reach their mean normalised scores. HEBO
is in fact the only algorithm which is two orders of magnitude more efficient than random
search, taking random search >100 times more samples to reach its mean score.

4.8. Conclusion & Future Work

In this paper, we presented an in-depth empirical study of Bayesian optimisation. We
demonstrated that even the simplest among machine learning problems can exhibit
heteroscedasticity and non-stationarity. We also reflected on the affects of misspecified
models and conflicting acquisition functions. We augmented BO algorithms with various
enhancements and revealed that with a revised set of assumptions BO can in fact act as a
competitive baseline in hyperparameter tuning. We hope this paper’s findings can guide
the community when employing BO in practice.
In the future, we wish to extend our analysis to high-dimensional domains, considering

latent space optimisation [235, 93], investigate performance gains achievable through the
choice of acquisition function optimiser [253, 91] and explore beyond hyperparameter
tuning contexts such as molecule design [84, 87, 165, 93] and robotics [40].
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Table 4.7.: Table from [237]. The top 20 results of the black-box optimisation challenge plus
SOTA baselines. Results represent the 16 iterations of batches of size 8 (128 evaluations
in total). RS Iters represents the number of iterations it took random search to reach
the same mean score (as each method achieved in 128 evaluations). RS Efficiency is
calculated through the ratio of RS Iters divided by 128.
Rank Team Score Median RS Iters. RS Efficiency

1 Huawei Noah’s Ark Lab (HEBO) 93.519 99.166 15,512 121.188
2 NVIDIA RAPIDS.AI 92.928 98.616 12,089 94.445
* AutoML.org 92.551 98.693 10,353 80.883
3 JetBrains Research 92.509 99.131 10,179 79.523
4 Duxiaoman DI 92.212 99.027 9,032 70.562
5 Optuna Developers 91.806 99.156 7,698 60.141
6 Ambitious Audemer 91.107 96.668 5,899 46.086
7 jumpshot 91.089 97.056 5,861 45.789
8 KAIST OSI 90.872 98.659 5,409 42.258
9 Able Anteater 90.302 95.954 4,405 34.414
10 Oxford BXL 90.143 98.792 4,165 32.539
11 Innovatrics 90.081 97.062 4,076 31.844
12 IBM AI RBFOpt 90.050 96.117 4,032 31.500
13 Jim Liu 89.996 97.279 3,957 30.914
14 Jzkay 89.969 99.037 3,920 30.625
15 Better call Bayes 89.846 97.395 3,757 29.352
16 dannynguyen 89.706 98.800 3,581 27.977
17 AlexLekov 89.403 99.099 3,232 25.250
18 ABO 89.354 97.893 3,180 24.844
19 a2i2team 89.237 98.781 3,058 23.891
20 Tiny, Shiny & Don 89.229 96.513 3,050 23.828
- TuRBO 88.921 98.927 2,756 21.531
- pySOT 88.419 97.324 2,346 18.328
- Scikit-Optimize 88.085 96.054 2,114 16.516
- Ax 86.977 97.042 1,516 11.844
- GpyOpt 85.384 94.443 978 7.641
- hyperopt 82.389 93.506 477 3.727
- Nevergrad (1+1) 80.012 92.681 288 2.250
- pycma 78.658 95.285 220 1.719
- OpenTuner 76.854 90.073 156 1.219

Random Search (RS) 75.815 88.746 128 1.000

76



5. SAMBA: Safe Model-Based Active
Reinforcement Learner

In this chapter we will introduce Safe Model Based Active Learner [53] ( SAMBA), a model
based reinforcement learning agent that is able to handle complex safety constraint effi-
ciently. We first introduce model based/ constrained reinforcement learning in Section 5.2.
In Section 5.3 we introduce the full framework, analyse the performance of the purposed
framework in Section 5.4 and conclude with remarks in Section 5.5.

5.1. Introduction

Reinforcement learning (RL) has seen successes in many problems such as video and board
games [162, 216, 161], and control of simulated robots [9, 204, 203]. Though successful,
these applications assume idealised simulators and require tens of millions of agent-
environment interactions, typically performed by randomly exploring policies. However, on
the time scales of physical (i.e., real-world) systems, sample-efficiency naturally becomes
a more pressing concern due to time and cost burdens. Additionally, there are often
important safety considerations that one would like to integrate into the behaviour of
the system. These can often be formalised through constraints on system trajectories
(sequences of state and action pairs). For example, in autonomous drone navigation,
one may desire to avoid sharp manoeuvres in cluttered environments, especially where
there are people. A safety constraint can be integrated into the control optimisation
formulation by quantifying the risk of safety violation by encoding a formal risk measure
over the sequence of states (distance, velocity, acceleration, etc.), and actions (actuator
control signals). Thus, taken together, the need for RL algorithms to integrate safety and
sample-efficiency into a single coherent framework for real-world settings becomes clear.
To elaborate further on the issue of safety, there is a distinction to be made between

requiring that a controlling agent/policy is safe (however that may be defined), and
requiring that the learning process itself is safe. The latter generally requires assumptions
to be made about the dynamics of the system as well as starting conditions (such as
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access to a safe initial policy). For example, safety defined by constraining trajectories to
safe regions of the state-action space is studied in [5] and partially-known control-affine
dynamics with Lipschitz regularity conditions are assumed. In [14] and [133], strong
assumptions on dynamics and initial control policies are required to give theoretical
guarantees of safety. Safety in terms of Lyapunov stability [124] is studied in a model-free
setting in [46, 47], which require a safe initial policy. Likewise, Lyapunov stability in a
model-based setting is considered in [24], which requires Lipschitz dynamics and a safe
initial policy. In [55] a decision layer is added on top of the policy in order to perturb the
actions chosen by the policy so as to remain within safety constraints. The safety layer
relies on the dynamics being linearisable, and to be learnt by, e.g., a neural network prior
to policy training.
Whilst theoretical guarantees of safety are clearly appealing, the burden of extra as-

sumptions and requirements needed is one we seek to avoid in this paper. As a trade-off,
we are willing to tolerate some constraint violation during the learning process with the
benefit of not requiring stringent assumptions on dynamics or a safe initial policy.
With regard to the form of the constraint, expectation (i.e., risk-neutral) constraints,

which have a long history in the MDP literature [6], have been studied in a number of
recent RL papers, e.g., [4, 55, 46, 47]. Whilst expectation constraints are sufficient for
some purposes, they are somewhat limited as a risk measure. A more general risk measure,
and the one we exploit in this paper, is Conditional Value-at-Risk (CVaR) [197], which is
used in a number of RL papers, such as [48] (see discussion in Section 5.2.1). However,
their approach is based on model-free methods for finite MDPs, and in particular, is not
suitable for the continuous control use-cases considered in this paper.
Following the above discussion, in this paper we develop SAMBA, a model-based (deep)

RL algorithm suitable for learning control in continuous state and action spaces, and
which incorporates CVaR as a safety constraint. SAMBA exploits Gaussian processes [187]
for dynamics learning, similar to PILCO [59], but does not adopt the moment-matching
approach that PILCO takes in order predict forward-dynamics. Instead SAMBA performs
policy updates by sampling trajectories from learned dynamics and applying standard
deep RL techniques (policy gradient updates in an actor-critic framework). In the context
of safe GP-based RL we must mention [181, 182], which still relies on moment matching to
approximate the policy gradient, while our design relies on a stochastic gradient sampling
strategy based upon simulations of the learnt dynamics. Furthermore, we also leverage
active learning [73] to promote exploration near the starting state (Section 5.2.2), wherein
the agent is influenced to acquire states reducing model uncertainty.
Successful application of active learning is very much predicated upon the chosen

method of quantifying potential uncertainty reduction, i.e., what we refer to as the
acquisition function. Common acquisition functions are those which identify points in
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the model with large entropy or large variance, or where those quantities would be most
reduced in a posterior model if the given point were added to the data set [135, 136, 69,
209]. However, our desire for safety adds a complication, since a safe learning algorithm
will likely have greater uncertainty in regions where it is unsafe by virtue of not exploring
those regions [59, 118]. Attacking the above challenges, we propose two novel acquisition
functions for Gaussian processes that allow for exploration in novel areas while remaining
close to training data, thus avoiding unsafe regions. To enable effective and grounded
introduction of active exploration and safety constraints, we define a novel constrained
bi-objective formulation of RL and provide a policy multi-gradient solver that is proven
effective on a variety of safety benchmarks.
In short, our contributions can be stated as follows: 1) We define a novel constrained

bi-objective formulation that trades off cost minimisation, exploration maximisation, and
constraint feasibility. 2) We present a model-based deep RL algorithm for this constrained
bi-objective formulation that is suitable for continuous state and action spaces and which
exploits Gaussian processes. 3) We define safety-aware acquisition functions for explo-
ration. We test our algorithm on three stochastic dynamical systems after augmenting
these with safety regions and demonstrate a significant reduction in sample and cost
complexities compared to the state-of-the-art.
As a final note, an alternative approach to using reinforcement learning would be to use

model predictive control (MPC) [41] instead of computing a policy (i.e., general map from
states to actions), and this is the method of some of the aforementioned papers [133, 25,
14, 118]. However, it is typically argued that an MPC controller is less robust than a policy
controller [157]. In fact, robust MPC methods typically use a combination of a simple
policy to ensure some form of robustness and an action plan to guarantee constraint
satisfaction. Consequently, we chose to use a policy-based controller.

5.2. Background and notation

5.2.1. Reinforcement learning

We consider Markov decision processes (MDPs) with continuous states and action spaces;
M = ⟨X ,U ,P, c, γ⟩, where X ⊆ Rdstate denotes the state space, U ⊆ Rdact the action
space, P : X × U × X → [0,∞) is a transition density function, c : X × U → R is the
cost function and γ ∈ [0, 1] is a discount factor. At each time step t = 0, . . . , T , the
agent is in state xt ∈ X and chooses an action ut ∈ U transitioning it to a successor
state xt+1 ∼ P (xt+1|xt,ut), and yielding a cost c(xt,ut). Given a state xt, an action
ut is sampled from a policy π : X × U → [0,∞), where we write π(ut|xt) to represent
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the conditional density of an action. Upon subsequent interactions, the agent collects a
trajectory τ = [x0:T ,u0:T ], and aims to determine an optimal policy π⋆ by minimising total
expected cost: π⋆ ∈ argminπ Eτ∼pπ(τ )[C(τ ) :=

∑︁T
t=0 γ

tc(xt,ut)], where pπ(τ ) denotes
the trajectory density defined as: pπ(τ ) = µ0(x0)

∏︁T−1
t=0 P(xt+1|xt,ut)π(ut|xt), with µ0(·)

being an initial state distribution.

Constrained MDPs The above can be generalised to include various forms of constraints,
often motivated by the desire to impose some form of safety measures. Examples are
expectation constraints [4, 6] (which have the same form as the objective, i.e., expected
discounted sum of costs), constraints on the variance of the return [184], chance con-
straints (a.k.a. Value-at-Risk (VaR)) [48], and Conditional Value-at-Risk (CVaR) [45, 48,
183]. The latter is the constraint we adopt in this paper for reasons that will be elucidated
upon below. Adding constraints means we cannot directly apply standard algorithms like
policy gradient [230], and different techniques are required, e.g., via Lagrange multipli-
ers [26], as was done in [45, 48, 183] besides many others. Further, current methods
only consider cost minimisation with no regard to exploration as we do in this paper.

Model-Based Reinforcement Learning Current solutions to the problem described
above (constrained or unconstrained) can be split into model-free and model-based
methods. Though effective, model-free algorithms are highly sample inefficient [105].
For sample-efficient solvers, we follow model-based strategies that we now detail. To
reduce the number of interactions with the real environments, model-based solvers
build surrogate models, Psurr, to determine optimal policies. These methods, typically,
run two main loops. The first gathers traces from the real environment to update
Psurr, while the second improves the policy using Psurr [59, 96]. Among various can-
didate models, e.g., world models [95], in this paper, we follow PILCO [59] and adopt
Gaussian processes (GPs) as we believe that uncertainty quantification and sample ef-
ficiency are key for real-world considerations of safety. In this construction, one places
a Gaussian process prior on a latent function f to map between input-output pairs.
Such a prior is fully specified by a mean, m(x) = E [f(x)], and a covariance function
k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] [187]. We write f ∼ GP (m(·), k(·, ·)) to
emphasize that f is sampled from a GP [187]. Given a data-set of n1 input-output
pairs {(x(i), y(i))}n1

i=1, corresponding, respectively, to state-action and successor state
tuples, one can perform predictions on a query set of n2 test data points {x(j)

⋆ }n2
j=1.

Such a distribution is Gaussian with predictive mean-vectors and covariance matrices
given by: µ⋆ = Kn2,n1An1,n1yn1 and Σn2,n2 = Kn2,n2 − Kn2,n1An1,n1Kn1,n2 , where
An1,n1 = [Kn1,n1 + σ2

ωI]
−1 with σω being the noise covariance that is assumed to be
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Gaussian. In the above, we also defined yn1 as a vector concatenating all training labels,
Kn1,n1 = K(X,X) = [k(x(i),x(j))]ij , Kn1,n2 = KT

n2,n1
= K(X,X⋆) = [k(x(i),x

(j)
∗ )]ij ,

and Kn2,n2(X⋆,X⋆) = [k(x
(i)
∗ ,x

(j)
∗ )]ij , where X and X⋆ are feature matrices with

#input-dim× n1 and #input-dim× n2 sizes respectively. We executed training in GPy-
Torch [74], and used multi-output-GPs as defined in [255].

5.2.2. Active learning in dynamical systems

In active learning [69, 209], an agent chooses points to sample/query that best improve
learning or model updates. Choosing the new query point is often performed by optimising
an acquisition function, which gives some quantification of how much a model would
improve if a given data point were queried, e.g., points where the model has high entropy
or where variance can be most reduced. Active learning with GPs has been studied in the
static case, where points can be selected at will (see, e.g., [135, 136]). In the context
of dynamical systems, however, added complications arise as one is not always able to
directly drive the system into a desired state. Recent work has attempted to resolve this
problem, e.g., in [37] and [205], receding horizon optimisation is used to iteratively
update a model, and in [37], actions are favoured that maximise the sum of differential
entropy terms at each point in the mean trajectory predicted to occur by those actions.
Moreover, in [205], a sum of variance terms is optimised to improve Bayesian linear
regression. Again, for computational tractability, the predicted mean of states is used as
propagating state distributions in the model is difficult. Different to our paper, neither of
these works deal with safety, nor do they have additional objectives to maximise/minimise.
In [112] a GP model that is used for MPC is updated by greedily selecting points which
maximise information gain, i.e., reduction in entropy, as is done in [136]. Only very
recently, the authors in [19] proposed an active learning approach coupled with MBRL.
Similar to SAMBA, they use an adaptive convex combination of objectives, however their
acquisition function is based on reward variance computed from a (finite) collection of
models increasing the burden on practitioners who now need to predefine the collection of
dynamics. They do not use GPs as we do, and do not consider safety. Compared to [19],
we believe SAMBA is more flexible supporting model-learning from scratch and enabling
principled exploration coupled with safety consideration. Further afield from our work,
active learning has been recently studied in the context of GP time-series in [264], and
for pure exploration in [215], which uses a finite collection of models. Our functions
generalise the above to consider safe-regions and future information trade-off as we detail
in Section 5.3.2.
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5.3. SAMBA: Framework & solution

5.3.1. Solution Method

In designing SAMBA, we take PILCO [59] as a template and introduce two novel ingredients
allowing for active exploration and safety. Following PILCO, SAMBA runs a main loop
that gathers traces from the real environment and updates a surrogate model, PGP(·) :
X × U × X → [0,∞), encoded by a Gaussian process. Given PGP(·), PILCO and other
model-based methods [226] attempt to obtain a policy that minimises total-expect cost
with respect to traces, τ , sampled from the learnt model by solving

min
π

Eτ∼psurr(τ ) [C(τ )]

with C(τ ) =
∑︁T

t=0 γ
tc(xt,ut) and

psurr(τ ) = µ0(x0)

T−1∏︂
t=0

PGP(xt+1|xt,ut)π(ut|xt)

Given a (GP) model of an environment, we formalise our problem as a constrained MDP
with an additional active learning loss. We define a cost function c : X × U → R,
constraint cost function (used to encode safety) l : X × U → R, additional objective
function ζ : X × U → R, and discount factor γ ∈ [0, 1).1 In our setting, for instance, l
encodes the state-action’s risk by measuring the distance to an unsafe region, while ζ
denotes an acquisition function from these described in Section 5.3.2. To finalise the
problem definition, we need to consider an approachable constraint to describe safety
considerations. In incorporating such constraints, we are chiefly interested in those that are
flexible (i.e., can support different user-designed safety criteria) and allow us to quantify
events occurring in tails of cost distributions. When surveying constrained MDPs, we
realise that the literature predominately focuses on expectation-type constraints [4, 189] –
a not so flexible approach restricted to being safe on average. Others, however, make use of
conditional-value-at-risk (CVaR); a coherent risk measure [48] that provides powerful and
flexible notions of safety (i.e., can support expectation, tail-distribution, or hard – unsafe
state visitation – constraints) and quantifies tail risk in the worst (1−α)-quantile. Formally,
given a random variableZ, CVaRα(Z) is defined as: CVaRα(Z) = minν [ν+

1
1−αE[(Z−ν)+]],

where (Z − ν)+ = max(Z − ν, 0).
With such a constraint, we can write the optimisation problem as:

min
π

Eτ∼psurr(τ ) [C(τ ), ζ(τ )]
T s.t. CVaRα(L(τ )) ≤ ξ, (5.1)

1It is worth noting that the acquisition functions we develop in Section 5.3.2 map to R+ instead of R.
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with L(τ ) =
∑︁T

t=0 γ
tl(xt,ut) being total accumulated safety cost along τ , and ξ ∈ R+ a

safety threshold.
We transform this problem into a single objective one through a linear combination of

C(τ ) and ζLOO(τ ). This relaxed yet constrained version is given by

min
π

λπEτ∼psurr(τ )[C(τ )]− (1− λπ)Eτ∼psurr(τ )[ζLOO(τ )] s.t. CVaRα(L(τ )) ≤ ξ (5.2)

where λπ is a tuneable hyper-parameter in [0, 1] and ζLOO is an acquisition function defined
in Section 5.3.2. Please note that the negative sign in the linear combination is due to the
fact that we used −ζLOO(τ ).

From Constrained to Unconstrained Objectives Wewrite an unconstrained problem
using a Lagrange multiplier λCVaR:

min
π

λ⋆
πEτ∼psurr(τ )[C(τ )]− (1− λ⋆

π)Eτ∼psurr(τ )[ζLOO(τ )]+

λCVaR[CVaRα(L(τ ))− ξ] (5.3)

Due to non-convexity of the problem, we cannot assume strong duality holds, so in our
experiments, we schedule λCVaR proportional to gradients using a technique similar to
that in [203] that has proven effective.2 To solve the above optimisation problem, we first
fix ν and perform a policy gradient step in π.3 To minimise the variance in the gradient
estimator of the accumulated cost C(τ ) and the acquisition function ζLOO(τ ) (defined in
Section 5.3.2), we build two neural network critics that we use as baselines. The first
attempts to model the value of the standard cost, while the second learns information
gain values. For the CVaR’s gradient, we simply apply policy gradients. As CVaR is non-
Markovian, it is difficult to estimate its separate critic. In our experiments, a heuristic
where discounted safety losses as unbiased baselines was used and proved effective. In
short, our main update equations when using a policy parameterised by a neural network

2Note that a primal dual-method as in [49] is not applicable due to non-convexity. In the future, we plan
to study approaches from [83] to ease determining λCVaR.

3We resorted to policy gradients for two reason: 1) cost functions are not necessarily differentiable, and
2) better experimental behaviour when compared to model back-prop especially on OpenAI’s safety gym
tasks.
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with parameters θ can be written as:

θ[j][k+1] = θ[j][k] − ηk

(︂
Eτ

[︂∑︂
t≥1

∇θ log πθ(ut|xt)
(︂
λ⋆
π(QC(xt,ut)− V φ1

C (xt))

− (1− λ⋆
π)(Qζ(xt,ut)− V φ2

ζ (xt))
)︂]︂

+ λCVaR∇θCVaRα(L(τ ))
)︂
, (5.4)

where ηk is a learning rate, and V φ1
C (xt), V φ2

ζ (xt) are neural network critics with parame-
ters φ1 and φ2. We present the main steps in Algorithm 2 and more details in the Appendix.

Algorithm 2 SAMBA: Safe Model-Based & Active Reinforcement Learning
Inputs: λ⋆

π, λCVaR initialisation, initial random policy π1, D0 = {}, α-quantile, safety
threshold ξ
for j = 1 : #env-iterations do:
Sample traces from the real environment using πj , concatenate all data and update P [j]

GP(·)
for k = 1 : #control-iterations do:
Sample traces from P [j]

GP(·) and compute ζ
[j][k]
LOO (τ )

(§ 5.3.2) Update φ[j][k]
1 and φ

[j][k]
2 with Eτ [C(τ )] and Eτ [ζLOO(τ )] as targets, and

θ[j][k] (§ 5.3.1)
Set πj+1 = π#control-iterations
Output: Policy π#env-iterations

The updated policy is then used to sample new traces from the real system where the
above process repeats. During this sampling process, model-based algorithms consider
various acquisition functions in acquiring transitions that reveal novel information, which
can be used to improve the surrogate model’s performance. PILCO, for instance, makes
use of the GP uncertainty, while ensemble models [199, 8] explore by their aggregated
uncertainties. With sufficient exploration, this allows policies obtained from surrogate-
models to control real-systems. Our safety considerations mean we would prefer agents
that learn well-behaving policies with minimal sampling from unsafe regions of state-
action spaces; a property we achieve later by incorporating CVaR constraints as we
detail in Section 5.3.1. Requiring a reduced number of visits to unsafe regions, hence,
lessens the amount of “unsafe” data gathered in such areas by definition. Therefore,
model entropy is naturally increased in these territories and algorithms following such
exploration strategies are, as a result, encouraged to sample from hazardous states. As
such, a naive adaptation of entropy-based exploration can quickly become problematic
by contradicting safety requirements. To circumvent these problems, we introduce two
new acquisition functions in Section 5.3.2, that assess information beyond training-data
availability and consider input-output data distributions. Our acquisition functions operate
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under the assumption that during any model update step, “safe” transition data (i.e., a set
of state-action-successor states sampled from safe regions) is more abundant in number
when compared to “unsafe” triplets. Considering such a skew between distributions, our
acquisition functions yield increased values on test queries close to high-density training
data. Given such an acquisition function, we enable novel model-based algorithms that
attempts to minimise cost, while maximising active values and satisfying safety constraints.
Of course, the assumption of having skew towards safe regions in training data distribu-

tion is generally not true since solving the above only ensures good expected returns.
To frequently sample safe regions, we augment cost minimisation with a safety constraint

that is encoded through the CVaR of a user-defined safety cost function with respect to
model traces. Hence, SAMBA solves a constrained optimisation problem (§5.3.1) aimed at
minimising cost, maximising active exploration, and meeting safety constraints.

5.3.2. Functions for safe active exploration

In general, ζ can be any bounded objective that needs to be maximised/minimised in
addition to standard cost. Here, we choose one that enables active exploration in safe
state-action regions. To construct ζ, we note that a feasible policy – i.e., one abiding by
CVaR constraints – of the problem in Equation (5.1) samples tuples that mostly reside
in safe regions. As such, the training data distribution is skewed in the sense that safe
state-action pairs are more abundant than unsafe ones. Exploiting such skewness, we can
indirectly encourage agents to sample safe transitions by maximising information gain
functions that only grow in areas close-enough to training data.

ζLOO: Leave-One-Out acquisition Consider a GP dynamics model, PGP, that is trained
on a state-action-successor-state data set D = {⟨x̃(i), y(i)⟩}n1

i=1 with x̃(i) = (x(i),u(i)).4
Such a GP induces a posterior allowing us to query predictions on n2 test points x̃⋆ =

{(x(j)
⋆ ,u

(j)
⋆ )}n2

j=1. As noted in Section 5.2.1, the posterior is also Gaussian with the following
mean vector and covariance matrix:5 µ⋆ = Kn2,n1An1,n1yn1 and Σn2,n2 = Kn2,n2 −
Kn2,n1An1,n1Kn1,n2 . Our goal is to design a measure that increases in regions with dense
training-data (due to the usage of CVaR constraint) to aid agents in exploring novel yet
safe tuples. To that end, we propose using an expected leave-one-out acquisition function
between two Gaussian processes defined, for a one query data point x̃⋆, as:

ζLOO(x̃⋆) = Ei∼Uniform[1,n1] [KL (p(f⋆|D¬i)||p (f⋆|D))]

4As D changes at every outer iteration, we simply concatenate all data in one larger data set; see
Algorithm 2.

5For clarity, we describe a one-dimensional scenario.
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with D¬i being D with point i left-out. Importantly, such a measure will only grow in
regions which are close-enough to sampled training data, as posterior mean and covariance
of p(f⋆|D¬i) shift by a factor that scales linearly and quadratically, respectively, with the
total covariance between x̃⋆ and X¬i where X¬i denotes a feature matrix with the ith
row removed.6 In other words, such a acquisition function fulfils our requirement in
the sense that if a test query is distant (in distribution) from all training input data,
it will achieve low ζLOO score. Though appealing, computing a full-set of ζLOO can be
highly computationally expensive, of the order of O(n4

1) – computing An1¬i,n1¬i requires
O(n3

1) and this has to be repeated n1 times. A major source contributing to this expense,
well-known in GP literature, is related to the need to invert covariance matrices. Rather
than following variational approximations (which constitute an interesting direction), we
prioritise sample-efficiency and focus on exact GPs. To this end, we exploit the already
computed An1,n1 during the model-learning step and make-use of the matrix inversion
lemma [179] to recursively update the mean and covariances of p(f⋆|D¬i) for all i (see
Appendix): µ(i)

⋆ = µ⋆−Kn2,n1

aT
i ai

ai,i
yn1 and Σ

(i)
n2,n2 = Σn2,n2+Kn2,n1

aT
i ai

ai,i
Kn1,n2 , with ai

being the ith row of An1,n1 . Hence, updating the inverse covariance matrix only requires
computing and adding the outer product of the ith row An1,n1 , divided by the ith diagonal
element. By exploiting the matrix inversion lemma we can reduce our complexity from
O(n4

1) toO(n3
1). Note that now the main contributors to the computational cost of LOO are

repeated matrix-vector, vector-vector multiplications, which can be efficiently distributed.
Moreover, O(n3

1) is also the complexity of the exact GP we rely on for the surrogate model,
with the notable difference that the matrix inversions that are required for inference with a
GP cannot be distributed as efficiently as the operations detailed above. As a consequence,
one would not expect the computational budget to increase dramatically with the use of
this acquisition function.

ζBootstrap: Bootstrapped symmetric acquisition We also experimented with another
acquisition function that quantifies posterior sensitivity to bi-partitions of the data as
measured by symmetric KL-divergence7 (also called Jensen-Shannon divergence), averaged
over possible bi-partitions: ζBootstrap(x̃⋆) = E⟨D1,D2⟩[KLsym(p(f⋆|D1)||p(f⋆|D2))], where
⟨D1,D2⟩ is a random bi-partition of the data D. In practice, we randomly split the data in
half, and do thisK times (whereK is a tuneable hyper-parameter) to get a collection ofK
bi-partitions. We then average over that collection. Similar to ζLOO, ζBootstrap also assigns
low importance to query points far from the training inputs, and hence, can be useful

6Though intuitive, we provide a formal treatment of the reason behind such growth properties in the
Appendix.

7A symmetric KL-divergence between two distributions p, and q is defined as: (KL(p∥q) + KL(q∥p))/2.
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for safe-decision making. In our experiments, ζLOO provided better-behaving exploration
strategy, see Section 5.4.

Transforming ζ·(x̃⋆) to ζ·(τ ) Both introduced functions are defined in terms of query
test points x̃⋆. To incorporate in Equation (5.1), we define trajectory-based expected total
information gain as

ζLOO(τ ) =
T∑︂
t=0

γtζLOO(⟨xt,ut⟩),

ζBootstrap(τ ) =

T∑︂
t=0

γtζBootstrap(⟨xt,ut⟩).

Interestingly, this characterisation trades off long-term versus short-term information
gain similar to how cost trades-off optimal greedy actions versus long-term decisions. In
other words, it is not necessarily optimal to seek an action that maximises immediate
information gain since such a transition can ultimately drive the agent to unsafe states
(i.e., ones that exhibit low ζ·(x̃) values). In fact, such horizon-based definitions have also
recently been shown to improve modelling of dynamical systems [37, 215]. Of course,
our problem is different in the sense that we seek safe policies in a safe decision-making
framework, and thus require safely exploring acquisition functions.

5.4. Experiments

We assess SAMBA in terms of both safe learning (train) and safe final policies (test) on
five dynamical systems, two of which are adaptations of standard dynamical systems
for MBRL (Safe Pendulum and Safe Cart-Pole Double Pendulum), while the third (Fetch
Robot — optimally control end-effector to reach a 3D goal) we adapt from OpenAI’s
robotics environments [36]. Lastly, we use the car and point safe robotic task from OpenAI
Safety Gym [189]. All environments and respective unsafe (hazard) regions are visualised
in Figure 5.1. Total cost (TC) during training is the constraint cost the agent acquires
throughout all training interactions with the environment, and similarly total cost during
evaluation is the accumulated constraint cost at test time in the environment. Total
violation (TV) similarly is the total constraint violations through training/testing. Note,
constraints in general are not explicitly designed to minimise TV, and TV can be non-zero
even in the optimality.
We limit all environments to have a maximum horizon/ trajectory length of 100 steps.

We implemented a safety cost function with the following settings; The unsafe region
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Safe Pendulum Safe Cartpole Double
Pendulum Safe Fetch Reacher

Goal

Hazard
Region

Robot

Safety point robot

Goal

Hazard
Region

Robot

Safety Car robot

Figure 5.1.: Environments with their respective unsafe regions visualised for evaluating
safe algorithms.
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started at USRmin = 20π/180 and ended at USRmax = 30π/180, therefore if θ1 was
in USRmin ≤ θ1 ≤ USRmax we would refer to this as a violation and safety cost
would be incurred. The Hazard Region contained within HZmin = USRmin − π/4 ≤
HZ ≤ USRmax + π/4 = HZmax. Where θ1 is transformed to always remain in the
region θ1 ∈ [−π, π]. Therefore, safety cost is linearly proportional to the distance from
the edge of the hazard region (HZmin or HZmax) to the centre of the hazard region
(HZmax +HZmin)/2. We also implemented batched versions of the pendulum reward
function as well as batched versions of the pendulum safety function using torch. We also
implement the unsafe region centre as the middle between the fetchers starting position
and its goal (with respect to the x position only), then the hazard region expands around
this point with respect to 1/4 of the total distance between the fetchers start state and
goal state. Note, we terminated Safe Pendulum once the last 5 rewards in a trajectory
were all ≤ −0.01, as this provides an adequately stabilised pendulum.
For the safety gym robots we take the following state values: velocities, magnetometer

measurements, centre of mass position of the robot (all in the x and y axes) and gyroscope
measurement (only in z axis). This choice is made to increase the dimension of the
observation space, while also making the environment more GP-friendly. For instance, we
remove the velocity, magnetometer and position readouts in the z axis as our car moves in
a two dimensional plane. Similarly, we include only the measurement of the yaw angle
rate, which is provided by the gyroscope measurement in the z axis. The robot’s initial
position is at (0, 0) coordinates, while the goal is placed at (3, 3) and marked in green in
Figure 5.1. The centre of the hazard region of radius 0.5 (marked in blue in Figure 5.1),
which the robot should avoid, is placed halfway between the robot’s initial position and
the goal. Note that we do not place other objects in the safety gym such as pillars, buttons
etc.
In each of the benchmark tasks, we define unsafe regions as areas in state space and

design the safety loss (i.e., L(τ )) to correspond to the (linearly proportional) distance
between the end-effector’s position (when in the hazard region) to the centre of the
unsafe region. SAMBA implemented a more stable proximal update of Equation (5.4)
following a similar method to [203]. We compare against algorithms from both model-
free and model-based literature. Model-free comparisons against TRPO [204], PPO [203],
CPO [4], STRPO (safety-constrained TRPO) [189] and SPPO (safety-constrained PPO)
[189] enable us to determine if SAMBA improves upon the following: sample complexity
during training (number of observations during training from the real system); total
violations (TV), that is, the total number of timesteps spent inside the unsafe region;
total accumulated safety cost.8 Comparison with model-based solvers (e.g., PlaNet [97],

8Note, we report safe learning process TC, which is the total incurred safety cost throughout all training
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PILCO [59], MBPO [115]) sheds light on the importance of our acquisition functions. We
use PlaNet and MBPO as generic model-based deep reinforcement learning algorithm that
use neural network dynamic models, i.e., we do not anticipate a considerably higher sample
efficiency from other methods with neural network dynamic models. It is important to
note that when implementing PILCO, we preferred a flexible solution that does not assume
moment-matching and specific radial-basis function controllers. Hence, we adapted PILCO
to support proximal policy updates, referred to as PPILCO in our experiments. In our
comparisons, we will also employ a variant of SAMBA, which does not use active learning
and call it SAMBA w/o active learning. This algorithm can be seen as a safety-constrained
adaptation of PPILCO (i.e., PPILCO with CVaR constraint). The adaptation of PPILCO with
active learning (i.e., SAMBA without CVaR constraints) performed very similarly to PPILCO
and therefore not presented. Note, we do not show time complexity analysis as we did
not observe significant differences between algorithms. As SAMBA introduces exploration
components to standard model-based learners, we analysed these independently before
combining them and reporting TV and TC (see Table 5.2).8 All policies are represented
by two-hidden-layer (32 units each) neural networks with tanh non-linearities, which
is one of the common choices for policy architectures in the RL literature. All hyper-
parameters to reproduce our results can be found in the Appendix, we typically fixed all
policy and critic parameters. The most crucial hyper-parameter to learning a safe policy
was the cost constraint, whereby a simple random search over the range [0.01, 0.05] led to
safe policies on all environments. We also invested resources in tuning the gamma used
in PPO, searching over the values γ ∈ [0.99, 0.98, 0.97, 0.96, 0.95], although this was not
detrimental to algorithms safety performance. We set λ⋆

π = 0.9, which provided reasonable
results for all experiments.

Acquisition Function Component Evaluating our (acquisition) functions, we con-
ducted an analysis that reports a 2D projection view of the state space at various intervals
in the data-collection process. We compare ζLOO(τ ) and ζBootstrap(τ ) against a Max En-
tropy [214] acquisition function and report the results on two systems in Figure 5.2. Our
results suggest that LOO is much more conservative and will aim to guide the policy
away from the dangerous area. At the same time, entropy encourages exploration into
the unsafe area, additionally encouraged with the increase of number of samples - a
highly undesirable property when safe active exploration is required. Similar results

environment interactions, and safe evaluation TC and TV, which similarly is the total incurred safety cost
during evaluation, and the total violations from the timesteps spent inside the unsafe region during evaluation.
Another metric used to compare safety algorithms is samples used for training, this is often referred to purely
as samples, and is defined as the numbers of observations of the real system.
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Figure 5.2.: Comparing acquisition function values across the entire state space. Note,
policies used within this framework are encouraged to visit regions with higher (yellow)
values. We first generate samples by random rollouts, as is typical in initial learning
stages for most deep reinforcement learning algorithms. A GP dynamics model for each
environment was then trained on 100 samples. The samples used to train the models are
marked with black crosses. We then plot the varying acquisition function values using this
GP for varying acquisition functions. We show Safe Cartpole Double Pendulum (top), Safe
Pendulum (bottom left) and Safe Fetch (bottom).
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Table 5.1.: Constraint satisfaction (✓) or constraint violation (×) on Safe Cart Pole Double
Pendulum and Safe Fetch of model-based (orange) and model-free (blue) solvers. We
evaluated expectation constraints (Exp.) and CVaR. Results show SAMBA satisfied safety
constraints, outperforming others in different quartiles. There is also a clear trade-off
between returns and safety for all algorithms. Interestingly, SAMBA is safer yet acquiring
acceptable expected returns – close to SPPO for instance. Note, all policies shown below
solve the given tasks, i.e., reach the target states.
Learner Safe Cart Pole Double Pendulum Safe Fetch Reach

Quartile Constraint Quartile Constraint

0.25 0.5 0.75 Exp. CVaRα Eτ [C(τ )] 0.25 0.5 0.75 Exp. CVaRα Eτ [C(τ )]

PPO 5.0 5.7 9.4 × × -19 0.95 1.25 1.88 × × -0.26
PPILCO 5.0 5.8 8.6 × × -21 0.91 1.22 1.45 × × -0.36
PlaNet 5.2 6.0 8.8 × × -21 0.64 1.09 1.88 × × -0.39
MBPO 4.4 5.9 9.6 × × -21 0.66 1.56 2.01 × × -0.37
TRPO 5.1 5.9 7.0 × × -22 0.69 0.79 0.92 × × -0.58
CPO 0.41 0.47 0.96 × × -23 0.81 0.92 1.02 × × -0.43
PlaNet w RS 0.83 0.94 1.11 × × -24 - - - - - -
SAMBA
(w/o active learning) 0.21 0.28 0.33 × × -25 0.45 0.77 1.13 ✓ × -0.57
STRPO 0.22 0.27 0.32 ✓ × -28 0.14 0.46 0.86 ✓ × -0.98
SPPO 0.19 0.24 0.29 ✓ × -27 0.27 0.44 0.71 ✓ ✓ -1.51
SAMBA 0.15 0.21 0.24 ✓ ✓ -27 0.00 0.05 0.19 ✓ ✓ -2.27

Learner Safety Gym Car Safety Gym Point

Quartile Constraint Quartile Constraint

0.25 0.5 0.75 Exp. CVaRα Eτ [C(τ )] 0.25 0.5 0.75 Exp. CVaRα Eτ [C(τ )]

PPO 7.1 7.8 8.0 × × 2.4 0.79 1.15 18.3 × × 0.24
PPILCO 7.5 7.7 8.1 × × 2.1 0.83 1.01 14.9 × × 0.13
PlaNet 2.7 6.0 6.5 × × 1.03 9.4 11.6 22.9 × × 0.44
TRPO 3.5 6.7 7.3 × × 2.14 0.02 12 23.3 × × 0.43
CPO 2.8 4.3 4.8 ✓ × 2.8 0.0 2.3 13.5 ✓ × 0.12
PlaNet w RS 1.3 5.2 6.7 × × 0.9 7.5 13.6 20.1 × × 0.4
SAMBA
(w/o active learning) 1.9 3.4 4.0 ✓ ✓ 1.1 1.8 2.2 5.4 ✓ × 0.6
STRPO 2.8 3.0 6.3 ✓ × 1.9 0.17 1.16 5.20 ✓ ✓ 0.13
SPPO 0.8 7.8 8.1 × × 1.1 0 1.02 4.49 ✓ ✓ 0.51
MBPO 1.7 7.4 8.2 × × 1.15 8.5 12.1 15.2 × × 0.39
SAMBA 0.7 2.7 3.5 ✓ ✓ 0.92 0.00 0.62 3.87 ✓ ✓ 0.58

Note: PlaNet w RS on Safe Fetch Reach diverged during training.

are demonstrated with the Fetch Reach robot task (in the Appendix). It is also worth
noting that due to the high-dimensional nature of the tasks, visual analysis can only give
indications. Still, empirical analysis supports our claim and performance improvements
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are clear; see Table 5.2.

Table 5.2.: Safe learning and safe evaluation for Safe Pendulum, Safe Cart Pole Double
Pendulum, Safe Fetch Reach, Safety Gym Car and Safety Gym Point. We averaged each
policy’s safe evaluation over three random seeds, and collected 10000 evaluation samples
per seed. 8

Learner Safe Pendulum Safe Cart Pole Double Pendulum Safe Fetch Reach

Learning Evaluation Learning Evaluation Learning Evaluation

Samples TC TV TC Samples TC TV TC Samples TC TV TC

TRPO 1000 110 4.3 4.9 1000 310 10 23 1000 790 1.8 2.7
PPO 1000 81 3.6 5 1000 140 5.5 35 1000 670 1.6 3.1
PlaNet 100 56 4.5 5.2 40 2.6 7.7 29 100 110 2.3 2.9
MBPO 90 49 4.3 5.6 50 3.2 6.9 31 80 101 2.7 3.1
PPILCO 2 0.04 2.8 4.5 6 0.097 7.1 33 5 0.49 1.9 3
PlaNet w RS 100 51 3.5 4.2 40 1.3 1.6 2.5 - - - -
CPO 1000 58 4.7 4.4 1000 95 1.1 5 1000 160 1.9 2.7
STRPO 1000 38 2.0 2.1 1000 83 2.1 2.7 1000 170 1.7 2.1
SPPO 1000 65 1.7 2.4 1000 68 1 1.8 1000 290 1.5 2
SAMBA
(w/o active learning) 1.8 0.02 1.7 2.1 6 0.062 1.2 1.6 5 0.37 1.4 2.2
SAMBA 1.6 0.01 1.5 2.0 5 0.054 0.85 1.4 5 0.23 1.2 1.9

Learner Safety Gym Car Safety Gym Point

Learning Evaluation Learning Evaluation

Samples TC TV TC Samples TC TV TC

TRPO 1000 202 3.7 5.6 1000 26.8 8.6 13
PPO 1000 205 7.4 11 1000 9 6.1 9.2
PlaNet 100 3.5 3.2 4.9 100 2.6 7.7 16
MBPO 90 3.4 4.3 5.6 100 3.2 6.9 21
PPILCO 2 0.47 7.4 11 8 0.31 5.4 8.9
PlaNet w RS 100 3.4 3.1 3.9 100 2.5 7.9 13
CPO 1000 49 4.7 4.4 1000 14 1.1 5
STRPO 1000 64 2.0 2.1 1000 17 2.1 2.7
SPPO 1000 66 1.7 2.4 1000 10 1 1.8
SAMBA
(w/o active learning) 0.8 0.13 1.4 4.8 0.7 0.56 1.8 2.5
SAMBA 0.6 0.01 1.3 2.2 0.5 0.04 1.3 1.5
The data is scaled by 103. Note: PlaNet w RS on Safe Fetch Reach diverged during training. We have stopped training
the model-free approaches (PPO, TRPO, CPO, SPPO, STRPO) after collecting 1000 · 103 samples.
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Learning and Evaluation Having seen initial results which highlight the benefit of
using our acquisition functions, we then conducted learning and evaluation experiments
comparing SAMBA against state-of-the-art methods.
Results reported in Table 5.2 demonstrate that SAMBA reduces the amount of training

TC, and samples 8 compared to others. This reduction in training TC is expected while
comparing SAMBA to model-free baselines (SPPO, CPO, STRPO), which are known to
be sample inefficient, and PlaNet w RS, which was designed for high-dimensional envi-
ronments. Interestingly, during safe evaluation (deploying learnt policy and evaluating
performance), we see SAMBA’s safety performance competitive with (if not significantly
better than) policies trained for safety in terms of TC and TV. 8 Such results are interesting
as SAMBAwas never explicitly designed to minimise test TV, 8 but it was still able to acquire
significant reductions. Of course, one might argue that these results do not convey a safe
final policy, as violations are still non-zero. Recall, however, that we define safety in terms
of CVaR constraints, which do not totally prohibit violations, rather, limit the average cost
of excess violations beyond a (user-defined) risk level α. Indeed, as mentioned above, it is
not possible to guarantee total safety without strong assumptions on dynamics and/or
an initial safe policy (and of course, none of the algorithms in Table 5.2 achieve zero
violations). Finally, note that SAMBA policies consistently deliver similar safety costs (TC
and TV) as SPPO and STRPO, which can be explained by similar policy updates for all
three methods.

Learning: Reducing Constraint Cost & Sample Complexity. Figure 5.3 shows that
SAMBA significantly reduces the total acquired constraint cost (top), and number of
samples used to train an agent. Figure 5.3 illustrates that sample efficiency does not come
as a trade-off to safety (the values of TC and TV) at the test or the evaluation time. We
can attribute this behaviour to use of a Gaussian Process being able to accurately model
the transition function in few samples, allowing us to transfer the dangerous learning
process from the real environment into the dynamics model.

Evaluation: Reducing Constraint Cost & Violations Figure 5.3 (top) shows large
percentage improvements of SAMBA’s constraint costs during evaluation in the real envi-
ronment, compared with baselines. From our ablation studies (Table 5.2), we can clearly
see these gains are due to the addition of both the CVaR metric and the active learning
component combined. Figure 5.3 (bottom) tells the same story as evaluation constraint
cost, although the raw numbers for violations are significantly lower than the constraint
costs acquired, to the violation region being much smaller than the constraint cost inducing
region.
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Figure 5.3.: (Top & second row) Percentage reduction of total constraint cost 8 acquired
to train SAMBA compared to baselines for train and test. (Third & last row) Percentage
reduction of samples 8 used to train SAMBA compared to baselines for train and test.

To evaluate risk performance, we conducted an in-depth study evaluating both expec-
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tation and CVaR constraints on the two most challenging environments, Safe Cart Pole
Double Pendulum and Safe Fetch Reach. We would expect all constrained methods to
satisfy their constraint at test time, which surprisingly is not what we observe for CPO,
seen in Table 5.1. Secondly, we observe that CVaR constrained methods are able to meet
their constraints, as we as the expectation constraints. Thirdly, it is clear that active
learning can play a crucial role in producing a constraint satisfying policy, as is seen in the
ablation study in Safe Fetch Reach. Overall, Table 5.1 demonstrates that SAMBA achieves
lower safety cost quartiles and lower expected safety cost, using cost limits ξ = 0.25 and
ξ = 0.75. Table 5.1 demonstrates that SAMBA significantly outperforms others with respect
to safety during evaluation, where we used a cost limit ξ = 5 and ξ = 10 for Safety Gym
Car and Safety Gym Point environments, respectively. These results suggest that SAMBA
produces safe-final policies in terms of its objective in Equation (5.1).

LOO performance analysis

This section empirically compares the typical entropy-based method with LOO. For com-
parison, we collected N random rollouts from Safe Pendulum to train our GP. Next, we
calculated the entropy/LOO acquisition function for unseen random rollouts totaling
20, 000 test samples. Figure 5.2 shows the result of this evaluation, where we compared
Entropy vs. LOO for differing sizes of training data N for the GP (N = 20, N = 40 and
N = 100). The red box contains the USR (Unsafe Region). The experiment suggests
that LOO is much more conservative and will aim to guide the policy away from the
dangerous area. At the same time, entropy encourages exploration into the unsafe area,
additionally encouraged with the increase of N - a highly undesirable property when safe
active exploration is required.

5.5. Future Work

We proposed SAMBA, a safe and active model-based learner that makes use of GP models
and solves an objective constraint problem to trade-off cost minimisation, exploration,
and safety. We evaluated our method on three benchmarks, including ones from Open AI’s
safety gym and demonstrated significant reduction in training cost and sample complexity,
as well as safe-final policies in terms of CVaR constraints compared to the state-of-the-art.
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6. Conclusion

Many real-world datasets are scarce and expensive to collect, thus developing methods
that are sample-efficient is crucial to practical application. The general aim of this thesis
was to improve the sample efficiency of impact-full algorithms within machine learning.
We have contributed to many aspects of sample-efficient optimisation, helping to bridge
the gap between high-performing data-hungry machine learning models and practical
machine learning models.

6.1. Summary of Contributions

In this thesis, we develop sample-efficient algorithms in two distinct sub-fields within
machine learning, bayesian optimisation and safe reinforcement learning. Both bayesian
optimisation and safe reinforcement learning require sample efficiency in maximising
or minimising an objective function, however, differing in their environments ranging
from static (bayesian optimisation) and dynamic (safe reinforcement learning). The
contributions of this thesis are organised into three core chapters which can be read
independently, however knowledge of the previous chapter will greatly help understand
the contributions of the following chapter.
In Chapter 1, we give an introduction to the thesis, which includes an introduction to

the core topic of Black-box optimisation and reinforcement learning. We then go on to
state the motivating questions we wanted to answer in the thesis, the contributions as
well as a general outline of the remainder of the thesis.
In Chapter 2, we give the formal mathematical background to understand all fur-

ther contributions, specifically, we give background to bayesian optimisation, the most
sample-efficient black-box optimisation strategy. We introduce all the components such as
acquisition functions, acquisition maximisation etc.
In Chapter 3, we introduced novel formulations of popular acquisition functions in a

mathematically equivalent compositional framework, allowing us to bridge the well-studied
field of compositional optimisation together and apply the diverse range of optimisers to
the acquisition maximisation step. We evaluate these newly create acquisition functions
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on a range of datasets, such as synthetic batch bayesian optimisation benchmarks ranging
from 16-120 dimensional tasks. We then extend evaluation to a suite of 180 unique,
and challenging, hyperparameter tuning tasks. Throughout the evaluation, we separate
optimisers by compositional/ non-compositional, as well as by their order, considering 0th,
1st and 2nd order optimizers. Overall, we show the benefits of utilising compositionality
during acquisition maximisation across all orders of optimizers, as well as all datasets
studies.
In Chapter 4, we first study popular hyperparameter optimisation tasks and highlight

certain assumptions which are violated in common optimisers applied to even the sim-
plest of tuning tasks, such as homoscedasticity and stationarity. We then develop a new
bayesian optimisation algorithm HEBO, that tries to eliminate the negative consequence
of these challenging properties of datasets/ tasks. We utilise a novel combination of some
well-known, and less well-known components from machine learning literature, such as
joint input and output warping, as well as multi-objective acquisition maximisation. We
then show HEBO to be state-of-the-art during intrinsic evaluation against prior bayesian
optimisation algorithms, as well as extrinsic evaluation where it won 1st place at the
NeurIPS 2020 Black-box Optimisation competition [237] (BBO). Lastly, the effectiveness
and superiority of HEBO led to it being used to tune a carefully selected subset of hyper-
parameters which results won the dual-task in the NeurIPS 2021 Machine Learning for
Combinatorial Optimisation competition [77] (ML4CO). It was shown in [237] that HEBO
was the only submission to be two orders of magnitude (128 times) more efficient for
black-box optimisation than random search. The fact that it consecutively won interna-
tional fame in two extremely challenging optimisation challenges, proves the significance
of HEBO as a contribution to the machine learning community.
In Chapter 5 we introduce the new problem of reinforcement learning and safe rein-

forcement learning. We then utilise knowledge of probabilistic modelling and acquisition
functions, to construct a novel model-based safe reinforcement learning algorithm named
SAMBA. Specifically, we introduce novel acquisition functions for safe reinforcement learn-
ing e.g. LOO and Bootstrap KL. SAMBA can maximise reward, whilst minimising unsafe
interactions through a constrained objective as well as attempting to simultaneously
maximise an acquisition function which promotes exploration in safe areas of the state
space that will improve the generalisation of the underlying model. We show through
extensive experimentation that when visualising the acquisition function over the entire
state space, for certain safety tasks it does indeed promote safer exploration. We study
the effect of the probabilistic sample-efficient model, the safety constrained objective
and the acquisition function on the overall sample efficiency and performance (in terms
of reward and safety) of the resulting algorithm. We study SAMBA across a range of
5 challenging safety tasks and show that all components have a significant impact on
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the overall safety of the algorithm during training and at deployment (test time). We
also highlight how SAMBA is the only algorithm able to consistently satisfy expectation
and CVaR safety constraints across the evaluated tasks, where most may only meet the
expectation constraint occasionally.
The overall contributions of this thesis are as follows;

• We have introduced a new family of acquisition functions, that will further allow
the development of novel acquisition maximisation methods (Chapter 3).

• An in-depth quantitative analysis of the dataset and task properties of common ma-
chine learning hyperparameter tuning tasks, leading to new insights and assumptions
required to successfully tackle tuning tasks (Chapter 4).

• We have introduced a new sample-efficient Black-box optimisation algorithm HEBO
(Chapter 4).

• Formed a unique connection between the fields of Bayesian optimisation and safe
reinforcement learning through utilising acquisition functions in the agent objective
function as an auxiliary loss (Chapter 5).

• Introduced a novel sample-efficient and safe reinforcement learning algorithm SAMBA
that reduces sample complexity by several orders of magnitude versus existing safe
methods (Chapter 5).

6.2. Future Work

While this thesis has made contributions towards sample-efficient optimisation ranging
from static to dynamic environments, there is much left to improve upon and explore.
HEBO. For future work on improving HEBO, we wish to merge it with a method that

trades sample-efficiency with speed, such as successive halving, and compare it to other
SOTA multi-fidelity methods such as BOHB for asynchronous batch bayesian optimisation.
Secondly, we wish to explore the use of the trust-region further in TuRBO and utilise a trust
region in HEBO. Initial experimentation of trust regions in HEBO was un-fruitful, however,
was under-explored due to time constraints. As we defined a hierarchical Bayesian model
for this work, we would like to give a fully Bayesian treatment to it by integrating out the
length-scales, noise and input and output warping parameters using Markov Chain Monte
Carlo for further sample-efficiency improvements. Lastly, we would like to further improve
the discrete kernels used in HEBO, such as utilising the transformed overlap kernel found
in many SOTA combinatorial bayesian optimisation algorithms.
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Compositional Bayesian Optimisation. In the future, we would like to see extensions
of compositional acquisition functions to cover non-myopic acquisition functions, con-
strained and safe BO, as well as to investigate compositional structures of causal BO. It
would prove useful to extend the evaluation of this work to a wider range of tasks, such
as deep network hyperparameter tuning (e.g. on Transformers), tuning of controllers as
well as various bayesian optimisation tasks found in life sciences such as protein design
and material design. Lastly, it would be interesting to uncover the relationship between
properties of black-box optimisation algorithms that might hint at whether a compositional
or non-compositional acquisition function will perform best.

Safe Model-Based Active Learner. Lastly, for sequential decision-making under un-
certainty with reinforcement learning, we wish to see other, more scalable, probabilistic
surrogate models used, such as variational GPs to scale to larger dimensional control
systems, and to apply our method in real-world robotics. Additionally, we would like to
further study the formal construction of the constrained multi-objective Markov decision
process, and the theoretical guarantees of SAMBA to support the empirical performance of
well-behaving, exploratory, and safe policies. One of the strengths of our approach is the
active learning component, which explores by sampling around the safe areas. The pitfalls
of this exploration technique are that it can lead to overly cautious sampling impeding the
task learning process. An overly cautious exploration can potentially be very restrictive
in complex environments, such as a humanoid robot learning to stand, walk and even-
tually run. In this case, a bold exploration outside the seen data may be needed. While
overcoming this limitation is outside the scope of this work, we wish to see this addressed
in future work. Lastly, we believe whilst the acquisition functions promote safety, they
have no inherent knowledge of safety, thus we would like to see further development
of acquisition functions that provably promote safety in all environments. This could be
done by constructing a probabilistic model of the safety function and then utilising an
additional auxiliary loss based on an acquisition function of this model, however, there
may be a more effective method for incorporating this safe knowledge jointly into the
acquisition function constructed around the reward model.

Appendices
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List of Algorithms

1. General algorithm detailing Batched Bayesian Optimisation with Gaussian
Process’s. Firstly; we collect (or begin) with an initial dataset of input-
output pairs, fit a surrogate model to this dataset (such as a Gaussian
Process), maximise an acquisition function in order to get new query points
for evaluation in the black-box, evaluate said query points and append the
new input-output pairs to our current dataset and repeat. After executing
this for N steps, we then return the best-performing query point from our
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. SAMBA: Safe Model-Based & Active Reinforcement Learning . . . . . . . . 84
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