

Biochemistry and Cell Biology Biochimie et biologie cellulaire

Reduced miR-144-3p expression in serum and bone mediates osteoporosis pathogenesis by targeting RANK

Journal:	Biochemistry and Cell Biology
Manuscript ID	bcb-2017-0243.R2
Manuscript Type:	Article
Date Submitted by the Author:	20-Dec-2017
Complete List of Authors:	Wang, Chunqing; Department of Orthopaedics, the Second Affiliated Hospital of Soochow University He, Hanliang; The Second Affiliated Hospital of Soochow University, Department of Orthopaedics Jiang, Yu; the Second Affiliated Hospital of Soochow University, Department of Orthopaedics Wang, Liang; the Second Affiliated Hospital of Soochow University, Department of Orthopaedics Xu, Youjia; The Second Affiliated Hospital of Soochow University
Is the invited manuscript for consideration in a Special Issue? :	N/A
Keyword:	osteoporosis, miR-144-3p, RANK, osteoclastogenesis

SCHOLARONE[™] Manuscripts

1	Reduced <i>miR-144-3p</i> expression in serum and bone mediates osteoporosis
2	pathogenesis by targeting RANK
3	
4	Chunqing Wang ¹ , Hanliang He ¹ , Liang Wang ¹ , Yu Jiang ¹ , Youjia Xu ¹
5	
6	
7	¹ Department of Orthopaedics, The Second Affiliated Hospital of Soochow University,
8	1055 Sanxiang Road, Suzhou 215004, China
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	Corresponding author: Youjia Xu
19	Email: xuyoujia@medmail.com.cn
20	Telephone: +86-0512-67783346
21	Fax: +86-0512-67783346
22	
23	

24 Abstract

25	Osteoblasts and osteoclasts are responsible for the formation and resorption of
26	bone, respectively. An imbalance between these two processes results in a disease
27	called osteoporosis, in which a decreased level of bone strength increases the risk of a
28	bone fracture. MicroRNAs (miRNAs) are small non-coding RNA molecules of 18-25
29	nucleotides that have been previously shown to control bone metabolism by
30	regulating osteoblast and osteoclast differentiation. In the present study, we detected
31	the expression pattern of 10 miRNAs in patient serum samples, and identified six
32	miRNAs altered expression in patients with osteoporosis relative to non-osteoporosis.
33	We selected <i>miR-144-3p</i> for further investigation, and showed that it regulates
34	osteoclastogenesis by targeting <i>RANK</i> and that it is conserved amongst vertebrates.
35	Disrupted expression of <i>miR-144-3p</i> in CD14+ PBMCs changed TRAP activity and
36	the osteoclast-specific genes TRAP, cathepsin K (CTSK), and NFATC. TRAP staining,
37	CCK-8 and flow cytometry analyses revealed that <i>miR-144-3p</i> also affects osteoclast
38	formation, proliferation and apoptosis. Together, these results indicate that
39	miR-144-3p critically mediates bone homeostasis, and thus, represents a promising
40	novel therapeutic candidate for the treatment of this disease.
41	
42	Keywords: osteoporosis, miR-144-3p, RANK, osteoclastogenesis
43	
44	

45 Introduction

46	The maintenance of bone homeostasis requires the correct balance between
47	osteogenesis and bone resorption, as mediated by osteoblasts and osteoclasts,
48	respectively (BENNETT et al. 2005) (MULARI et al. 2004). Imbalance between these
49	two processes results in osteoporosis, which is characterized by a decrease in bone
50	mineral density and by abNon-osteoporosis bone microarchitecture (BOLLERSLEV et
51	al. 2005; LI et al. 2010). As life expectancy increases worldwide, a greater number of
52	individuals suffer from osteoporosis; for example, almost half of the population in
53	China is affected by the condition, and affected individuals suffer an average fracture
54	ratio of almost 33% (WANG et al. 2015; ROUSE et al. 2016). Despite extensive
55	research, the underlying mechanisms for this disease, and novel osteoporosis therapies,
56	remain elusive (ADLER 2016).
57	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO
57 58	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO <i>et al.</i> 1998). The OPG/RANKL/RANK signalling pathway was recently identified as
57 58 59	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO <i>et al.</i> 1998). The OPG/RANKL/RANK signalling pathway was recently identified as a classical pathway associated with osteoclast differentiation (WRIGHT <i>et al.</i> 2009).
57 58 59 60	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO <i>et al.</i> 1998). The OPG/RANKL/RANK signalling pathway was recently identified as a classical pathway associated with osteoclast differentiation (WRIGHT <i>et al.</i> 2009). The pathway includes the receptor activator of the nuclear factor kappa-B (NF-κB)
57 58 59 60 61	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO <i>et al.</i> 1998). The OPG/RANKL/RANK signalling pathway was recently identified as a classical pathway associated with osteoclast differentiation (WRIGHT <i>et al.</i> 2009). The pathway includes the receptor activator of the nuclear factor kappa-B (NF-κB) ligand (RANKL), which is an osteoclast differentiation factor and receptor of the
57 58 59 60 61 62	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO <i>et al.</i> 1998). The OPG/RANKL/RANK signalling pathway was recently identified as a classical pathway associated with osteoclast differentiation (WRIGHT <i>et al.</i> 2009). The pathway includes the receptor activator of the nuclear factor kappa-B (NF-κB) ligand (RANKL), which is an osteoclast differentiation factor and receptor of the receptor activator of NF-κB (RANK) (SOBACCHI <i>et al.</i> 2007). RANK is located in the
57 58 59 60 61 62 63	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO et al. 1998). The OPG/RANKL/RANK signalling pathway was recently identified as a classical pathway associated with osteoclast differentiation (WRIGHT et al. 2009). The pathway includes the receptor activator of the nuclear factor kappa-B (NF- κ B) ligand (RANKL), which is an osteoclast differentiation factor and receptor of the receptor activator of NF- κ B (RANK) (SOBACCHI et al. 2007). RANK is located in the cell membrane of osteoclasts, and functions to accelerate osteoclast activation and
57 58 59 60 61 62 63 64	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO et al. 1998). The OPG/RANKL/RANK signalling pathway was recently identified as a classical pathway associated with osteoclast differentiation (WRIGHT et al. 2009). The pathway includes the receptor activator of the nuclear factor kappa-B (NF-κB) ligand (RANKL), which is an osteoclast differentiation factor and receptor of the receptor activator of NF-κB (RANK) (SOBACCHI et al. 2007). RANK is located in the cell membrane of osteoclasts, and functions to accelerate osteoclast activation and differentiation (HSU et al. 1999). Osteoprotegerin (OPG), also known as
57 58 59 60 61 62 63 64 65	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO et al. 1998). The OPG/RANKL/RANK signalling pathway was recently identified as a classical pathway associated with osteoclast differentiation (WRIGHT et al. 2009). The pathway includes the receptor activator of the nuclear factor kappa-B (NF-kB) ligand (RANKL), which is an osteoclast differentiation factor and receptor of the receptor activator of NF-kB (RANK) (SOBACCHI et al. 2007). RANK is located in the cell membrane of osteoclasts, and functions to accelerate osteoclast activation and differentiation (HSU et al. 1999). Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor (OCIF) or tumour necrosis factor receptor
57 58 59 60 61 62 63 64 65 66	Osteoclasts critically mediate bone building by enabling bone resorption (AMANO <i>et al.</i> 1998). The OPG/RANKL/RANK signalling pathway was recently identified asa classical pathway associated with osteoclast differentiation (WRIGHT <i>et al.</i> 2009).The pathway includes the receptor activator of the nuclear factor kappa-B (NF-кB)ligand (RANKL), which is an osteoclast differentiation factor and receptor of thereceptor activator of NF-кB (RANK) (SOBACCHI <i>et al.</i> 2007). RANK is located in thecell membrane of osteoclasts, and functions to accelerate osteoclast activation anddifferentiation (HSU <i>et al.</i> 1999). Osteoprotegerin (OPG), also known asosteoclastogenesis inhibitory factor (OCIF) or tumour necrosis factor receptorsuperfamily member 11B (TNFRSF11B), is a decoy receptor that binds RANKL, and

68	recent study successfully induced circulating CD14+ peripheral blood mononuclear
69	cells (CD14+ PBMCs), which are early osteoclast progenitors, to differentiate into
70	osteoclasts in vitro by activating either macrophage colony-stimulating factor (M-CSF)
71	or RANKL (SHALHOUB et al. 2000; SORENSEN et al. 2007). This was possible because
72	CD14+ PBMCs express RANK, which is activated by binding RANKL and
73	subsequently induces osteoclast differentiation (HSU et al. 1999).
74	MicroRNAs (miRNAs) are a class of small noncoding single stranded RNAs
75	composed of 18–25 nucleotides (BARTEL 2004), which were first identified in C .
76	elegans, but that have now been reported to play various crucial roles in cell
77	development, proliferation, and differentiation (EBERT and SHARP 2012; MENDELL
78	and OLSON 2012). Each miRNA regulates a given target gene by recognizing a 'seed
79	sequence' site, (located in either the 3' untranslated region (3'UTR) or coding
80	sequence (CDS) of the target gene), to promote degradation or inhibit translation of
81	the target gene (RANA 2007; PAL et al. 2015). Recent research revealed that miRNA
82	activity mediates bone homeostasis by regulating the expression of key osteoblast and
83	osteoclast differentiation genes (VAN WIJNEN et al. 2013). For instance, miRNA-145
84	targets Sp7 to suppress osteogenic differentiation (JIA et al. 2013), miR-21 has been
85	reported to mediate mesenchymal stem cell (MSC) proliferation and differentiation
86	during bone formation (ZHAO et al. 2015), and similarly, miR-214 targets FGFR1 to
87	attenuate osteogenic MSC differentiation (SHI et al. 2013). miRNAs have also been
88	shown to affect osteoclast function, for example, overexpression and silencing of
89	miR-503 in CD14+ PBMCs was recently found to inhibit and promote

90	RANK-induced osteoclastogenesis, respectively, via the targeting of RANK (CHEN et
91	al. 2014). In contrast, miRNAs are themselves targets of many regulators that affect
92	bone differentiation. For instance, <i>DLX3</i> is a crucial regulator of hair follicle
93	differentiation and cycling, but also targets <i>miR-124</i> in bone tissue to negatively
94	regulate osteoclastic differentiation (ZHAO et al. 2016). Thus, miRNAs have been
95	identified to regulate bone homeostatic processes, and in fact, the importance and
96	complexity of this miRNA network suggests that continued research is required to
97	elucidate the extent to which it affects osteoporosis pathogenesis.
98	In the clinical setting, diagnosis of osteoporosis was predominantly achieved by
99	measuring bone mineral density and bone quality, where a loss of bone mineral
100	density is indicative of osteoporosis. Early diagnosis is beneficial in facilitating an
101	optimal treatment regime. Serum or systemically circulating miRNAs have been
102	described in many diseases, including many types of cancer, as well as myocardial
103	conditions, endometriosis, gastrointestinal disease, and/or diabetes mellitus (DEVAUX
104	et al. 2015). Various miRNAs have been previously reported as serum biomarkers for
105	osteoporosis; for example, Seeliger et al. reported miRNA-21, -23a, -24, -25, -100,
106	and $-125b$ to be expressed at a significantly higher level in the serum and bone tissues
107	of patients with osteoporosis as compared to healthy individuals (SEELIGER et al.
108	2014). Very recently, Chen et al. described 15 serum miRNAs that were differentially
109	expressed in OVX rats (an osteoporosis animal model), as identified and validated by
110	microarray analysis and quantitative real-time PCR (qRT-PCR) (CHEN et al. 2016).
111	Taken together, these previous studies suggest that miRNAs are promising biomarkers

112 for the early diagnosis of osteoporosis.

- In the present study, we used qRT-PCR to reveal that miR-144-3p is
- downregulated in osteoporotic serum and bone tissues, and thus is a likely biomarker
- for the diagnosis of osteoporosis. We also identified conserved *miR-144-3p* target sites
- 116 in the *RANK* 3'UTR via bioinformatics analysis, and demonstrated that
- 117 overexpression of *miR-144-3p* inhibited *RANK* expression *in vitro* to mediate
- osteoclast formation, proliferation, and apoptosis. Thus, we conclude that *miR-144-3p*
- 119 targets osteoclasts via *RANK*. Our research provides a novel candidate biomarker for
- 120 the diagnosis of osteoporosis in the clinical setting.
- 121

122 Materials and Methods

123 **Primary human samples**

- Recruited patients admitted to our clinic with hip fractures were separated into
- two groups, comprising patients with osteoporosis who had a fracture (subject group),
- and patients non-osteoporosis but who had a fracture (control group). Blood and bone
- samples were collected during implantation of a total endoprosthesis or gamma nail
- 128 into the proximal femur. The Local Ethical Review Committee of The Second
- 129 Affiliated Hospital of Soochow University approved the present study.

130

131 Sample processing, miRNA extraction, and qRT-PCR

- miRNAs from serum were extracted using the miRNeasy Serum/Plasma Kit
- 133 (Qiagen), according to the manufacturer's instructions. miRNA and mRNA were

134	extracted from bone tissue using TRIzol, as per the manufacturer's instructions.
135	miRNA was subsequently transcribed to generate $cDNA$ using the PrimeScript TM One
136	Step cDNA Synthesis Kit (Takara), and mRNA was transcribed to first strand cDNA
137	using the First Strand cDNA Synthesis Kit (Takara) for gene expression analysis in
138	bone tissue. qRT-PCR was performed using the ABI 7000 RT-PCR system (ABI,
139	USA), with the listed primers (Table 1) and PrimeScript TM RT reagent kit (Takara,
140	Japan), according to the manufacturer's instructions.
141	
142	CD14+ PBMC cultures
143	Whole blood was obtained using a protocol approved by the Local Research
144	Ethics Committee, and PBMCs were isolated as previously described (SORENSEN et al.
145	2007). CD14+ PBMCs were purified using CD14 antibody-coated magnetic cell
146	sorting (MACS) MicroBeads (Miltenyi Biotec), and the purity of these cells was
147	assessed using flow cytometry. When the CD14+ PBMCs purity was more than 90%,
148	subsequent experiments were carried out. CD14+ PBMCs (density 2.5×10^5
149	cells/well, in a 48-well cluster plate) were cultured (37 °C, in a humidified
150	atmosphere with 5% CO ₂) in alpha minimum essential medium (a-MEM)
151	supplemented with 10% foetal bovine serum (FBS), penicillin (50 IU/mL), and
152	streptomycin (50 mg/mL). Osteoclastic differentiation was induced by replacing this
153	medium with that supplemented with 25 ng/mL recombinant M-CSF and 25 ng/mL
154	human RANKL (R&D Systems, Minneapolis).

156 Luciferase activity assay

157	A segment of the wild type (WT) RANK 3'UTR cloned into the pMir-reporter
158	vector (Ambion), and a mutant RANK 3'UTR was generated by altering the predicted
159	miR-144-3p RANK 3'UTR binding site via a two-step PCR approach. HEK 293T cells
160	were co-transfected with either a WT or mutant RANK 3' UTR reporter vector, and the
161	miR-144-3p mimic or negative control constructs, cultured for 24 h, and then assessed
162	to ascertain their exhibited luciferase activity using a dual-luciferase reporter assay
163	system (Promega).
164	Tartrate-resistant acid phosphatase (TRAP) staining
165	TRAP staining was performed using a commercially available TRAP staining kit
166	according to the manufacturer's instructions (Sigma). Osteoclasts were identified as
167	TRAP-positive multinucleated (more than or equal to three nuclei) cells. The number
168	of TRAP-positive multinucleated giant cells were counted in a 48-well culture plate
169	using a Leica DM4000B microscope and photographed using a Leica DFC450c
170	camera.
171	
172	Cell proliferation assay
173	Cell proliferation was analysed using the Cell Counting Kit 8 (CCK-8; Dojindo).
174	After 6 days, CD14+ PBMCs were inducible, differently treated cells were then
175	incubated for another 24 h. The optical density (OD) of each group was measured at
176	450 nm using a BioTek microplate reader.

178	
179	Cell apoptosis assay
180	CD14+ PBMC apoptosis was analysed via the flow cytometry method (FCM),
181	using an Annexin V-PI Apoptosis Detection Kit (Abcam). Briefly, cells were collected
182	six days after the induction of differentiation, washed with phosphate-buffered saline
183	(PBS), and suspended in 500 μ l of binding buffer. They were then incubated (37°C,
184	10 min) with Annexin V, stained with propidium iodide (PI), and analysed via the
185	FCM to determine their relative quantitative rate of apoptosis.
186	
187	Statistical analyses
188	Data are presented as the mean \pm SD. Statistical differences between two or more
189	groups were determined using the Student's <i>t</i> -test and one-way ANOVA followed by
190	Student-Newman-Keuls test, respectively. All experiments were repeated at least
191	three times, and representative results are shown. A p-value <0.05 was considered to
192	indicate statistical significance.
193	
194	
195	Results
196	qRT-PCR screening of differential miRNA expression in serum and bone samples
197	of patients with and without osteoporosis
198	We selected 10 candidate miRNAs, which were reportedly related to bone
199	metabolism, to undergo qRT-PCR analysis to examine their differential expression in

200	serum and bone samples of patients with and without osteoporosis (Fig. 1A).15
201	non-osteoporosis and 45 osteoporosis sample was used. The non-osteoporosis sample
202	we label with Non-osteoporosis and osteoporosis patient label with osteoporosis in the
203	next experiments. All the sample clinic data was provided in the supplementary. The
204	results of this analysis showed no difference in <i>miRNA-7-5p</i> or <i>miR-211-5p</i> expression,
205	but a significant upregulation of miR-24-3p, 27a-3p, 100, 125b, and 122a expressions
206	in both the serum and bone samples of osteoporosis with as compared to
207	non-osteoporosis. The expression of <i>miR-128</i> was found to be upregulated in bone
208	tissue, but unchanged in the serum of osteoporosis with as compared to without
209	non-osteoporosis. Conversely, miR-145 was upregulated only in the serum but not the
210	bone tissue of osteoporosis. While <i>miR-144-3p</i> has not been previously reported to be
211	associated with osteoporosis, the results of the present study show that it was
212	significantly downregulated in both the serum and bone samples of patients with as
213	compared to non-osteoporosis (Fig. 1B, C). Thus, the generated data clearly
214	demonstrate differential miRNA expression in osteoporosis, as compared to those not
215	affected by the disease.
216	

217 miRNA-144-3p mediates gene expression in osteoporosis

We selected *miR-144-3p* as the focus for our subsequent analyses investigating 218

- 219 the effects of miRNA activity on the pathogenesis of osteoporosis. We first used
- 220 TargetScan online software (http://www.targetscan.org/vert-71/) to predict
- 221 miR-144-3p targets and refined the resultant list to include only those candidate genes

222 a	ssociated with bone metabolism; the list comprised of BMPR1A, COL11A, SMAD4,
223 E	ESRRG, and RANK. To investigate the expression patterns of these candidate genes,
224 to	otal mRNA was extracted from patient samples and subjected to qRT-PCR. The
225 r	esults of this analysis showed that BMPR1A, COL11A, and ESRRG expression was
226 u	inchanged between patients with and without osteoporosis (Fig 2A, B, D); however,
227 tl	he expression of SMAD4 and RANK was significantly upregulated in patients with
228 0	steoporosis as compared to those without the disease (Fig 1C, E). A previous report
229 d	lemonstrated that miR-144-3p regulates osteogenic differentiation, as well as the
230 p	proliferation of murine MSCs by specifically targeting Smad4; thus, we selected
231 <i>k</i>	<i>CANK</i> to be the focus of our subsequent analyses. We used ELISA to examine the
232 F	ANK content in patient serum samples, and resultantly showed that the
233 c	oncentration of RANK was significantly higher in patients with osteoporosis than in
234 tl	hose without osteoporosis (Fig 1F). This suggests that RANK concentration is
235 r	egulated by <i>miR-144-3p</i> .
236	
237 k	RANK is a direct <i>miR-144-3p</i> target gene
238	TargetScan online software was used to identify a probable single <i>miR-144-3p</i>
239 ta	arget site in the RANK 3'UTR that was comprised of nine nucleotides homologous
240 v	with the miR-144-3p consensus seed sequence. Furthermore, this RANK 3'UTR

242 lizards (Fig 3A).

To investigate the potential differential expression of *miR-144-3p* during

Page 12 of 31

244	osteoclastogenesis, CD14+ PBMCs from patients unaffected by osteoporosis were
245	induced to differentiate via M-CSF and RANKL treatment. These cells were cultured
246	for 6 days, and then analysed via qRT-PCR to determine their <i>miR-144-3p</i> expression.
247	The results of this analysis showed that the CD14+ PBMC miR-144-3p expression
248	was significantly downregulated in response to the induction of differentiation as
249	compared to undifferentiated cells (at 0 days) (Fig 3A). The miR-144-3p negative
250	control, inhibitor, and mimic were next transfected into CD14+ PBMCs, which were
251	subsequently induced to differentiate via treatment with M-CSF and RANKL, and
252	collected after 6 days of culture. qRT-PCR analysis of RANK expression at this point
253	revealed it to be increased and decreased in the inhibitor- and mimic-transfected cells,
254	respectively, compared with the negative control-transfected cells (Fig 3C). These
255	data suggest that <i>RANK</i> is a <i>miR-144-3p</i> target in CD14+ PBMCs.
256	To validate this hypothesis, we cloned a WT and mutant (seed sequence) RANK
257	3'UTR into the pMir-reporter vector to generate a CMV-luciferase-WT and
258	CMV-luciferase-mutant RANK 3'UTR expression vector, respectively (Fig 3D).
259	Dual-luciferase reporter assays were then conducted by co-transfecting HEK 293T
260	cells with these expression vectors and the <i>miR-144-3p</i> negative control, mimic,
261	and/or inhibitor. The results of these analyses showed that luciferase activity was
262	significantly decreased in response to co-transfection of the CMV-luciferase-WT
263	<i>RANK</i> 3'UTR and <i>miR-144-3p</i> mimic, as compared to co-transfection of the
264	CMV-luciferase-WT RANK 3'UTR and the miR-144-3p negative control. In contrast,
265	co-transfection of the CMV-luciferase-mutant RANK 3'UTR and miR-144-3p mimic

266	failed to inhibit luciferase activity (Fig 3E). Similarly, western blot analysis of RANK
267	protein levels in CD14+ PBMCs transfected with the <i>miR-144-3p</i> negative control,
268	inhibitor, and/or mimic showed RANK production to be increased and decreased in
269	response to transfection of the <i>miR-144-3p</i> inhibitor and mimic, respectively, as
270	compared to RANK levels in the negative control (Fig 3F). Together, these data
271	confirm <i>RANK</i> as a <i>miRNA-144-3p</i> target.
272	
273	<i>miR-144-3p</i> regulates the osteoclastogenesis of CD14+ PBMCs following M-CSF
274	and RANKL treatment
275	To investigate the role of <i>miRNA-144-3p</i> during osteoclastogenesis, CD14+
276	PBMCs from a patient unaffected by osteoporosis were transfected with the
277	miR-144-3p negative control, mimic, and/or inhibitor, treated with M-CSF and
278	RANKL, cultured for 6 days, and then analysed to evaluate their expression of the
279	osteoclast-specific genes TRAP, cathepsin K (CTSK), and NFATC, and for their
280	exhibited TRAP activity. The results of these analyses showed that treating the
281	CD14+ PBMCs with the <i>miR-144-3p</i> mimic and inhibitor significantly decreased and
282	increased TRAP activity, respectively, as compared with the negative control (Fig 4A).
283	Similarly, the qRT-PCR analysis demonstrated that TRAP, CTSK, and NFATC mRNA
284	expression was down- and up-regulated in response to treating the CD14+ PBMCs
285	with the <i>miR-144-3p</i> mimic and inhibitor, respectively, as compared to treating them
286	with the negative control (Fig 4B–D). These results suggest that <i>miR-144-3p</i>
287	negatively regulates osteoclastogenesis.

288 *miR-144-3p* affects osteoclast formation following the M-CSF and RANKL

289 treatment of CD14+ PBMCs

- 290 To explore the role of *miR-144-3p* in osteoclast formation, TRAP staining
- experiments were performed. The results showed that the number of TRAP-positive
- cells decreased in the *miR-144-3p* mimic group, and the number of TRAP-positive
- cells increased in the *miR-144-3p* inhibitor group as compared with the negative
- control group (Fig. 5A B). These results demonstrated that *miR-144-3p* affects
- 295 osteoclast formation.

- 297
- *miR-144-3p* mediates the proliferation and apoptosis of M-CSF/RANKL-induced
 osteoclasts
- To investigate the role of miR-144-3p in cell proliferation and apoptosis during
- 301 osteoclastogenesis, CD14+ PBMCs were transfected with the *miRNA-144-3p* negative
- 302 control, inhibitor, and/or mimic, and induced to differentiate via treatment with
- 303 M-CSF and RANKL. These cells were cultured for 6 days, and then subjected to
- 304 CCK-8 assay and flow cytometric analysis (Fig 5A). The results of the CCK-8 assay
- revealed that treatment with the *miR-144-3p* mimic and inhibitor reduced and
- 306 increased CD14+ PBMC proliferation, respectively, as compared to treatment with the
- negative control (Fig 5B). Similarly, the results of the flow cytometric analysis
- showed that transfection of the *miR-144-3p* mimic increased CD14+ PBMC apoptosis
- as compared to transfection with the negative control; however, no difference was

310	observed in response to transfecting CD14+ PBMCs with the <i>miR-144-3p</i> inhibitor
311	(Fig 5C). Together, these data indicate that <i>miR-144-3p</i> mediates apoptosis and cell
312	proliferation during osteoclastogenesis.
313	
314	Discussion
315	Osteoporosis is a disorder characterised by a loss of balance between osteoblast
316	and osteoclast activities (LI et al. 2010). An increasing proportion of aging individuals
317	worldwide are affected by this condition; thus, study into novel therapeutic
318	interventions is urgently required to mitigate the increasing medical and
319	socioeconomic burden caused by osteoporosis (WANG et al. 2015). miRNAs critically
320	mediate osteoporosis pathogenesis, and many previous studies have revealed that this
321	occurs via their exerted effects on both osteoblasts and osteoclasts (VAN WIJNEN et al.
322	2013). In the present study, we identified $miR-144-3p$ as an osteoporosis-associated
323	miRNA that targets RANK to mediate osteoclastogenesis, and whose differential
324	expression likely contributes to the pathogenesis of this disease.
325	
326	<i>miR-144-3p</i> is a novel serum biomarker for osteoporosis
327	Extensive research into the use of serum-based miRNAs as disease biomarkers
328	has been conducted over the last several years (DEVAUX et al. 2015; ROUSE et al.
329	2016). Furthermore, various osteoporosis miRNA biomarkers have been investigated
330	as potential diagnostic tools in the clinical setting (MENG et al. 2015). For example, in
331	2014, Seeliger et al. reported five freely circulating serum and bone tissue-contained

332	miRNAs (miR-21, 23a, 24, 25, 100, and 125b) that were associated with osteoporotic
333	fractures (SEELIGER et al. 2014), and more recently, Chen et al. identified 15 serum
334	miRNA osteoporosis biomarkers (CHEN et al. 2016). Meng et al. and Zat et al.
335	identified miR-194-5p and miR-422a, respectively, as potential biomarkers for
336	postmenopausal osteoporosis (CAO et al. 2014; MENG et al. 2015), and similarly,
337	Wang et al. reported miR-133a in human circulating monocytes as an additional
338	candidate biomarker associated with postmenopausal osteoporosis (WANG et al.
339	2012).
340	In the present study, we selected and assessed the expression of 10 miRNAs in
341	patients with osteoporosis, two of which (miR-100 and miR-125b) were previously
342	evaluated by Seeliger et al. (SEELIGER et al. 2014). The results of the present study are
343	consistent with those of Seeliger et al., which showed that both miR-100 and
344	miR-125b were upregulated in patients with osteoporosis. miR-122a was also found in
345	the present study to be upregulated in both the serum and bone samples of patients
346	with, as compared to Non-osteoporosis. Conversely, miR-128 and miR-145a were
347	shown to be elevated only in the bone and serum samples, respectively, of patients
348	with osteoporosis. Of these, miR-145a has been previously shown to suppress
349	osteogenic differentiation by targeting Sp7 (JIA et al. 2013). In the present study, we
350	found <i>miR-144-3p</i> to be differentially expressed in osteoporotic serum and bone
351	samples, suggesting that it is a promising novel biomarker for the diagnosis of
352	osteoporosis in the clinical setting. Although many miRNAs have, to date, been
353	identified as candidate osteoporosis biomarkers, their effect on osteoporosis

354 pathogenesis is not well understood.

355 *RANK* is a direct target of *miRNA-144-3p*

- miRNAs regulate gene expression by recognising the 3'UTR or CDS of various
- target genes (BARTEL 2004). Of these target genes, *SMAD4* and *RANK* were
- established to exhibit differential expression in patients with osteoporosis via
- qRT-PCR. We selected *RANK* for further analysis, since *SMAD4* has been previously
- reported to be targeted by *miR-144-3p* during its regulation of murine MSC
- 361 osteogenic differentiation and proliferation (HUANG *et al.* 2016). RANK exists in the
- 362 cell membrane, and after binding to its ligand, mediates osteoclast differentiation. Our
- loss-of-function and overexpression experiments revealed that RANK is a target gene

364 for *miR-144-3p*.

365 *miR-144-3p* targets *RANK* to regulate osteoclastogenesis

miR-144-3p regulates osteoclastogenesis by targeting *RANK*. This was shown in

the present study with both loss-of-function and overexpression experiments for

368 *miR-144-3p in vitro*. As a known type II membrane protein and a member of the

tumour necrosis factor (TNF) superfamily (BOYCE and XING 2007; WRIGHT *et al.*

2009), RANKL induces osteoclast differentiation by binding and activating RANK in

- myeloid-lineage cells (BOYCE and XING 2007; BOYCE and XING 2008). RANK may
- also bind to OPG, which is a protein secreted predominantly by cells of the osteoblast
- 373 lineage that potently inhibits osteoclast formation by preventing the binding of
- 374 RANKL to RANK (WRIGHT *et al.* 2009). In the present study, we revealed that
- 375 *miR-144-3p* inhibits TRAP activity. It is well established that the bone matrix

376	phosphoproteins osteopontin and bone sialoprotein are highly efficient in vitro TRAP
377	substrates that bind to osteoclasts when phosphorylated (HAYMAN 2008). Furthermore,
378	TRAP activity has been previously shown to be an osteoclast marker (HALLEEN et al.
379	2006; WU et al. 2009), and increased TRAP activity is considered to be indicative of a
380	high rate of osteoclast differentiation. In the present study, we also examined the
381	expression of two key genes, NFATC1 and CTSK, in PBMCs after the transfection
382	with the <i>miR-144-3p</i> mimic and inhibitor. <i>NFATC1</i> is involved in the NFATC1
383	signalling pathway, which is critical to the regulation of osteoclast differentiation and
384	maturation (CROTTI et al. 2006; KIM and KIM 2014). CTSK has been shown to be
385	predominantly involved in degrading the organic bone matrix and controlling
386	osteoclast population size by regulating apoptosis (HENRIKSEN et al. 2006; FULLER et
387	al. 2008). In the present study, transfection of the miR-144-3p mimic and inhibitor
388	induced a significant decrease and increase, respectively, in the expression of both
389	NFATC1 and CTSK. Furthermore, transfection of both constructs affected cell
390	proliferation and apoptosis, strongly suggesting that <i>miR-144-3p</i> affects
391	osteoclastogenesis by targeting RANK.
392	The results of the present study also identified SMAD4 as being differentially
393	expressed in response to modulating miRNA-144-3p expression. SMAD4 is known to
394	be activated by BMP signalling and to predominantly mediate osteoblastogenesis. In
395	fact, a recent study showed that <i>miRNA-144-3p</i> could target <i>SMAD4</i> to regulate
396	osteoblastogenesis (HUANG et al. 2016); thus, miR-144-3p appears to not only
397	participate in osteoclastogenesis, but also osteoblastogenesis.

In summary, we conclude from the results of the present study that *miR-144-3p*

399	should be considered as a serum osteoporosis biomarker for use in the clinical setting.
400	miR-144-3p via direct targeting of RANK mediates osteoclastogenesis. Thus,
401	<i>miRNA-144-3p</i> may be a promising novel therapeutic candidate for the treatment
401	militari 177 55 may be a promong nover alerapeate canarate for the deathent
402	osteoporosis.
403	
404	Acknowledgments
405	This work was supported by grants from the National Natural Science Foundation
406	of China (81572179), and the Science and Technology Foundation of Guiyang
407	(20161001-46).
408	
409	Conflict of interest
410	All authors have no conflicts of interest.
411	References
412	Adler, R. A., 2016 Osteoporosis treatment: complexities and challenges. J Endocrinol Invest 39:
413	719-720.
414	Amano, H., S. Yamada and R. Felix, 1998 Colony-stimulating factor-1 stimulates the fusion process in
415	osteoclasts. J Bone Miner Res 13: 846-853.
416	Bartel, D. P., 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
417	Bennett, C. N., K. A. Longo, W. S. Wright, L. J. Suva, T. F. Lane et al., 2005 Regulation of
418	osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102: 3324-3329.
419	Bollerslev, J., S. G. Wilson, I. M. Dick, F. M. Islam, T. Ueland <i>et al.</i> , 2005 LRP5 gene polymorphisms
420	predict bone mass and incident fractures in elderly Australian women. Bone 36: 599-606.
421	Boyce, B. F., and L. Xing, 2007 Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9 Suppl
422	1:51.
423	Boyce, B. F., and L. Xing, 2008 Functions of KANKL/KANK/OPG in bone modeling and remodeling. Arch
424 125	DIULIICIII DIULIIVS 473; 133-140.
425	cau, z., b. i. would, i. wally, A. H. Felly, J. W. Lappe <i>et al.</i> , 2014 Wirk-422a as a potential cellular
420	Chen C P Cheng H Xie H D Zhou X P Wu et al 2014 MiR-503 regulates estabolastogenesis via
761	
	19

428	targeting RANK. J Bone Miner Res 29: 338-347.
429	Chen, J., K. Li, Q. Pang, C. Yang, H. Zhang et al., 2016 Identification of suitable reference gene and
430	biomarkers of serum miRNAs for osteoporosis. Sci Rep 6: 36347.
431	Crotti, T. N., M. Flannery, N. C. Walsh, J. D. Fleming, S. R. Goldring et al., 2006 NFATc1 regulation of the
432	human beta3 integrin promoter in osteoclast differentiation. Gene 372: 92-102.
433	Devaux, Y., M. Mueller, P. Haaf, E. Goretti, R. Twerenbold et al., 2015 Diagnostic and prognostic value
434	of circulating microRNAs in patients with acute chest pain. J Intern Med 277: 260-271.
435	Ebert, M. S., and P. A. Sharp, 2012 Roles for microRNAs in conferring robustness to biological
436	processes. Cell 149: 515-524.
437	Fuller, K., K. M. Lawrence, J. L. Ross, U. B. Grabowska, M. Shiroo et al., 2008 Cathepsin K inhibitors
438	prevent matrix-derived growth factor degradation by human osteoclasts. Bone 42: 200-211.
439	Halleen, J. M., S. L. Tiitinen, H. Ylipahkala, K. M. Fagerlund and H. K. Vaananen, 2006 Tartrate-resistant
440	acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin Lab 52: 499-509.
441	Hayman, A. R., 2008 Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell
442	dichotomy. Autoimmunity 41: 218-223.
443	Henriksen, K., M. G. Sorensen, R. H. Nielsen, J. Gram, S. Schaller et al., 2006 Degradation of the
444	organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. J Bone
445	Miner Res 21: 58-66.
446	Hsu, H., D. L. Lacey, C. R. Dunstan, I. Solovyev, A. Colombero et al., 1999 Tumor necrosis factor
447	receptor family member RANK mediates osteoclast differentiation and activation induced by
448	osteoprotegerin ligand. Proc Natl Acad Sci U S A 96: 3540-3545.
449	Huang, C., J. Geng, X. Wei, R. Zhang and S. Jiang, 2016 MiR-144-3p regulates osteogenic differentiation
450	and proliferation of murine mesenchymal stem cells by specifically targeting Smad4. FEBS
451	Lett 590: 795-807.
452	Jia, J., Q. Tian, S. Ling, Y. Liu, S. Yang et al., 2013 miR-145 suppresses osteogenic differentiation by
453	targeting Sp7. FEBS Lett 587: 3027-3031.
454	Kim, J. H., and N. Kim, 2014 Regulation of NFATc1 in Osteoclast Differentiation. J Bone Metab 21:
455	233-241.
456	Li, W. F., S. X. Hou, B. Yu, M. M. Li, C. Ferec et al., 2010 Genetics of osteoporosis: accelerating pace in
457	gene identification and validation. Hum Genet 127: 249-285.
458	Mendell, J. T., and E. N. Olson, 2012 MicroRNAs in stress signaling and human disease. Cell 148:
459	1172-1187.
460	Meng, J., D. Zhang, N. Pan, N. Sun, Q. Wang et al., 2015 Identification of miR-194-5p as a potential
461	biomarker for postmenopausal osteoporosis. PeerJ 3: e971.
462	Mulari, M. T., Q. Qu, P. L. Harkonen and H. K. Vaananen, 2004 Osteoblast-like cells complete
463	osteoclastic bone resorption and form new mineralized bone matrix in vitro. Calcif Tissue Int
464	75: 253-261.
465	Pal, M. K., S. P. Jaiswar, V. N. Dwivedi, A. K. Tripathi, A. Dwivedi et al., 2015 MicroRNA: a new and
466	promising potential biomarker for diagnosis and prognosis of ovarian cancer. Cancer Biol Med
467	12: 328-341.
468	Rana, T. M., 2007 Illuminating the silence: understanding the structure and function of small RNAs.
469	Nat Rev Mol Cell Biol 8: 23-36.
470	Rouse, R., B. Rosenzweig, K. Shea, A. Knapton, S. Stewart et al., 2016 MicroRNA biomarkers of
471	pancreatic injury in a canine model. Exp Toxicol Pathol.

472	Seeliger, C., K. Karpinski, A. T. Haug, H. Vester, A. Schmitt et al., 2014 Five freely circulating miRNAs and
473	bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:
474	1718-1728.
475	Shalhoub, V., G. Elliott, L. Chiu, R. Manoukian, M. Kelley et al., 2000 Characterization of osteoclast
476	precursors in human blood. Br J Haematol 111: 501-512.
477	Shi, K., J. Lu, Y. Zhao, L. Wang, J. Li et al., 2013 MicroRNA-214 suppresses osteogenic differentiation of
478	C2C12 myoblast cells by targeting Osterix. Bone 55: 487-494.
479	Sobacchi, C., A. Frattini, M. M. Guerrini, M. Abinun, A. Pangrazio et al., 2007 Osteoclast-poor human
480	osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39: 960-962.
481	Sorensen, M. G., K. Henriksen, S. Schaller, D. B. Henriksen, F. C. Nielsen et al., 2007 Characterization of
482	osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner
483	Metab 25: 36-45.
484	van Wijnen, A. J., J. van de Peppel, J. P. van Leeuwen, J. B. Lian, G. S. Stein et al., 2013 MicroRNA
485	functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 11: 72-82.
486	Wang, O., Y. Hu, S. Gong, Q. Xue, Z. Deng et al., 2015 A survey of outcomes and management of
487	patients post fragility fractures in China. Osteoporos Int 26: 2631-2640.
488	Wang, Y., L. Li, B. T. Moore, X. H. Peng, X. Fang et al., 2012 MiR-133a in human circulating monocytes:
489	a potential biomarker associated with postmenopausal osteoporosis. PLoS One 7: e34641.
490	Wright, H. L., H. S. McCarthy, J. Middleton and M. J. Marshall, 2009 RANK, RANKL and osteoprotegerin
491	in bone biology and disease. Curr Rev Musculoskelet Med 2: 56-64.
492	Wu, Y., J. W. Lee, L. Uy, B. Abosaleem, H. Gunn et al., 2009 Tartrate-resistant acid phosphatase (TRACP
493	5b): a biomarker of bone resorption rate in support of drug development: modification,
494	validation and application of the BoneTRAP kit assay. J Pharm Biomed Anal 49: 1203-1212.
495	Zhao, N., D. Han, Y. Liu, Y. Li, L. Zeng et al., 2016 DLX3 negatively regulates osteoclastic differentiation
496	through microRNA-124. Exp Cell Res 341: 166-176.
497	Zhao, W., Y. Dong, C. Wu, Y. Ma, Y. Jin et al., 2015 MiR-21 overexpression improves osteoporosis by
498	targeting RECK. Mol Cell Biochem 405: 125-133.

500 Tables

Gene	Forward primer	Reverse primer	Note
name			
BMPR1A	GCTTCATGGCACTGGGATG	CATCATCTGGACAGTGCCCT	qRT-PCR
COLIIA	CACCCTCATTGTTGACTGCA	GGCAGCAACCTCAAAGACTT	qRT-PCR
SMAD4	TGATCTATGCCCGTCTCTGG	CCAGGTGATACAACTCGTTCG	qRT-PCR
ESRRG	GAATGGCCATCAGAACGGAC	CACACTTGGTCTGGGGGATCT	qRT-PCR
RANK	ACTACACCAAGTACCTGCGT	ACGAACATGGAGCGGGAG	qRT-PCR
TRAP	ACCAATTCTGTGTCCTCGGA	TAATCGAGTGCAGGGGTTCC	qRT-PCR
NFATC1	GCCCGAAGACTACTCCTCTT	GCTCATGTAGGACGTAGGGG	qRT-PCR
CTSK	TGCAGAAGAACCGGGGTATT	AGGGCTTTCTCATTCCCCTC	qRT-PCR
RANK	TTCCTGGATGTTTGGAAAC	GAGACATGAAGGTGAAGTAC	3'UTR
			CLONE

501 **Table 1** List of primers used in this study

502

504	Figure legends
505	Fig. 1 miRNA expression patterns in bone and serum samples from
506	Non-osteoporosis and osteoporosis (A) Selected candidate miRNAs, and
507	corresponding qRT-PCR primer sequences. (B) Expression patterns of the selected
508	candidate miRNAs in patient serum samples. (C) Expression patterns of the selected
509	candidate miRNAs in patient bone samples. Expression levels are represented as the
510	mean \pm S.D, with statistical significance being assessed via the Student's <i>t</i> -test
511	(p<0.05).
512	
513	Fig. 2 Potential miR-144-3n target genes expression natterns in non-osteonorosis

rig. 2 rotential mik-144-3p target genes expression patterns in non-osteoporosis 513 514 and osteoporosis. Online software was used to predict miR-144-3p target genes, and 515 the resultant list of candidates was refined to include only those genes associated with bone homeostasis. Selected candidate genes were verified to be differentially 516 517 expressed between non-osteoporosis and osteoporosis, via qRT-PCR. (A-E) The 518 expression patterns of (A) BMPR1A, (B) COL11A, (C) SMAD4, (D) ESRRG, and (E) 519 RANK in non-osteoporosis and osteoporosis in bone tissue. (F) The level of RANK production in patient serum samples was assessed via ELISA. Expression levels are 520 521 represented as the mean \pm S.D., with statistical significance being assessed via the 522 Student's *t*-test (p < 0.05).

523

Fig. 3 RANK is a miR-144-3p target gene (A) Using TargetScans online software, 524 we identified a *miR-144-3p* target site (red colour) in the *RANK* 3'UTR that is 525

526	conserved in humans, chimps, mice, dogs, and lizards. (B) The expression of
527	miR-144-3p was measured in CD14+ PBMCs using qRT-PCR, six days after the cells
528	were induced to differentiate. (C) CD14+ PBMCs were transfected with the
529	miR-44-3p mimic or inhibitor, and their expression of RANKL was then assessed via
530	qRT-PCR. (D) A WT and mutant RANKL 3'UTR was cloned into the pMir-reporter
531	vector to generate the CMV-luciferase-RANKL and CMV-luciferase-RANKL mutant
532	3'UTR vectors. (E) A cell-transfection experiment was performed to demonstrate that
533	miR-144-3p inhibits RANKL expression in vivo. +, added; -, not added. (F) Western
534	blot analysis demonstrating that <i>miR-144-3p</i> affects RANKL protein levels <i>in vivo</i> . +,
535	added; -, not added. Data represent the mean \pm S.D., with statistical significance being
536	assessed by the Student's <i>t</i> -test ($p < 0.05$).

Fig. 4 miR-144-3p regulates the induction of CD14+ PBMCs to undergo 538 osteoclastogenesis via M-CSF and RANKL treatment (A) CD14+ PBMCs were 539 induced to differentiate via M-CSF and RANKL treatment and cultured for six days, 540 before they exhibited TRAP activity. Transfection of the miR-144-3p mimic and 541 inhibitor was shown to decrease and increase CD14+ PBMC TRAP activity, 542 543 respectively. (B–D) qRT-PCR analysis of (B) TRAP, (C) NFATC, and (D) CTSK mRNA expression in response to transfection of CD14+ PBMCs with the 544 miRNA-144-3p negative control, mimic, or inhibitor. Data represent the mean \pm S.D., 545 546 with statistical significance being assessed by the Student's t-test (p < 0.05).

548	Fig. 5 miR-144-3p regulates osteoclast formation following the M-CSF and
549	RANKL treatment of CD14+ PBMCs. (A) The cells were induced by the addition
550	of M-CSF+RANKL for 6 days, after which the miR-144-3p mimic and inhibitor was
551	added. (B) The statistics of the number of TRAP-positive cells. Statistical significance
552	was assessed using the Student's <i>t</i> -test ($p \le 0.05$).
553	Fig. 6 Effects of transfecting CD14+ PBMCs with the miR-144-3p mimic,
554	inhibitor, or negative control on cell proliferation and apoptosis (A) A CCK-8
555	assay was performed to evaluate the effect of transfecting CD14+ PBMCs with the
556	miR-144-3p mimic, inhibitor, and/or negative control on cell proliferation. (B) A
557	statistical analysis of the results revealed that the miR-144-3p mimic and inhibitor
558	inhibited and increased CD14+ PBMC proliferation, respectively. (C) The effects of
559	miR-144-3p mimic, inhibitor, and/or negative control transfection on CD14+ PBMC
560	apoptosis was analysed via flow cytometry. Data represent the mean \pm S.D., with
561	statistical significance being assessed by the Student's <i>t</i> -test ($p < 0.05$).

Fig. 1 miRNA expression patterns in bone and serum samples from Non-osteoporosis and osteoporosis (A) Selected candidate miRNAs, and corresponding qRT-PCR primer sequences. (B) Expression patterns of the selected candidate miRNAs in patient serum samples. (C) Expression patterns of the selected candidate miRNAs in patient bone samples. Expression levels are represented as the mean \pm S.D, with statistical significance being assessed via the Student's t-test (p<0.05).

146x233mm (300 x 300 DPI)

Fig. 2 Potential miR-144-3p target genes expression patterns in non-osteoporosis and osteoporosis. Online software was used to predict miR-144-3p target genes, and the resultant list of candidates was refined to include only those genes associated with bone homeostasis. Selected candidate genes were verified to be differentially expressed between non-osteoporosis and osteoporosis, via qRT-PCR. (A–E) The expression patterns of (A) BMPR1A, (B) COL11A, (C) SMAD4, (D) ESRRG, and (E) RANK in non-osteoporosis and osteoporosis in bone tissue. (F) The level of RANK production in patient serum samples was assessed via ELISA. Expression levels are represented as the mean ± S.D., with statistical significance being assessed via the Student's t-test (p<0.05).</p>

139x77mm (300 x 300 DPI)

Fig. 3 RANK is a miR-144-3p target gene (A) Using TargetScans online software, we identified a miR-144-3p target site (red colour) in the RANK 3'UTR that is conserved in humans, chimps, mice, dogs, and lizards. (B) The expression of miR-144-3p was measured in CD14+ PBMCs using qRT-PCR, six days after the cells were induced to differentiate. (C) CD14+ PBMCs were transfected with the miR-44-3p mimic or inhibitor, and their expression of RANKL was then assessed via qRT-PCR. (D) A WT and mutant RANKL 3'UTR was cloned into the pMir-reporter vector to generate the CMV-luciferase-RANKL and CMV-luciferase-RANKL mutant 3'UTR vectors. (E) A cell-transfection experiment was performed to demonstrate that miR-144-3p inhibits RANKL expression in vivo. +, added; -, not added. (F) Western blot analysis demonstrating that miR-144-3p affects RANKL protein levels in vivo. +, added; -, not added. Data represent the mean ± S.D., with statistical significance being assessed by the Student's t-test (p<0.05).

190x98mm (300 x 300 DPI)

Fig. 4 miR-144-3p regulates the induction of CD14+ PBMCs to undergo osteoclastogenesis via M-CSF and RANKL treatment (A) CD14+ PBMCs were induced to differentiate via M-CSF and RANKL treatment and cultured for six days, before they exhibited TRAP activity. Transfection of the miR-144-3p mimic and inhibitor was shown to decrease and increase CD14+ PBMC TRAP activity, respectively. (B–D) qRT-PCR analysis of (B) TRAP, (C) NFATC, and (D) CTSK mRNA expression in response to transfection of CD14+ PBMCs with the miRNA-144-3p negative control, mimic, or inhibitor. Data represent the mean ± S.D., with statistical significance being assessed by the Student's t-test (p<0.05).</p>

78x64mm (300 x 300 DPI)

Fig. 5 miR-144-3p regulates osteoclast formation following the M-CSF and RANKL treatment of CD14+ PBMCs. (A) The cells were induced by the addition of M-CSF+RANKL for 6 days, after which the miR-144-3p mimic and inhibitor was added. (B) The statistics of the number of TRAP-positive cells. Statistical significance was assessed using the Student's t-test (p<0.05).

125x56mm (300 x 300 DPI)

https://mc06.manuscriptcentral.com/bcb-pubs

Fig. 6 Effects of transfecting CD14+ PBMCs with the miR-144-3p mimic, inhibitor, or negative control on cell proliferation and apoptosis (A) A CCK-8 assay was performed to evaluate the effect of transfecting CD14+ PBMCs with the miR-144-3p mimic, inhibitor, and/or negative control on cell proliferation. (B) A statistical analysis of the results revealed that the miR-144-3p mimic and inhibitor inhibited and increased CD14+ PBMC proliferation, respectively. (C) The effects of miR-144-3p mimic, inhibitor, and/or negative control transfection on CD14+ PBMC apoptosis was analysed via flow cytometry. Data represent the mean ± S.D., with statistical significance being assessed by the Student's t-test (p<0.05).

220x66mm (300 x 300 DPI)