

Applied Physiology, Nutrition, and Metabolism Physiologie appliquée, nutrition et métabolisme

Resveratrol Prevents Insulin Resistance Caused by Short-Term Elevation of Free Fatty Acids In Vivo

Journal:	Applied Physiology, Nutrition, and Metabolism
Manuscript ID:	apnm-2015-0075.R1
Manuscript Type:	Article
Date Submitted by the Author:	23-Jun-2015
Complete List of Authors:	Pereira, Sandra; University of Toronto, Physiology Park, Edward; University of Toronto, Physiology Moore, Jessy; Brock University, Health Sciences Faubert, Brandon; Brock University, Health Sciences Breen, Danna; University of Toronto, Physiology Oprescu, Andrei; University of Toronto, Institute of Medical Sciences Nahle, Ashraf; University of Toronto, Physiology Kwan, Denise; University of Toronto, Physiology Giacca, Adria; University of Toronto, Physiology Tsiani, Evangelia; Brock University, Health Sciences
Keyword:	insulin resistance, dyslipidemia < dyslipidemia, obesity < waist circumference, skeletal muscle < skeletal muscle, metabolism < metabolism

SCHOLARONE[™] Manuscripts

1 **Resveratrol Prevents Insulin Resistance Caused by Short-Term Elevation of Free Fatty Acids In Vivo** 2 3 4 Pereira Sandra^{1#}, Park Edward^{1#}, Moore Jessy⁴, Faubert Brandon⁴, Breen Danna M¹, Oprescu Andrei I³, Nahle Ashraf¹, Kwan Denise¹, Giacca Adria^{1, 2,3*}, Tsiani Evangelia^{4*} 5 6 7 ¹Departments of Physiology, University of Toronto, Toronto, Ontario, Canada 8 9 ²Department of Medicine, University of Toronto, Toronto ³Institute of Medical Sciences, University of Toronto, Toronto 10 ⁴Department of Health Sciences, Brock University, St.Catharines, Ontario, Canada 11 12 13 14 #: S. Pereira and E. Park contributed equally to this work and share first authorship 15 *: E.T. and A.G. are both last authors/share last authorship 16 17 Please address correspondence and reprint requests to: 18 Evangelia Tsiani Ph.D. 19 Department of Health Sciences 20 **Brock University** 21 St. Catharines, Ontario 22 L2S 3A1 23 Phone: (905) 688-5550 ext. 3881 Fax: (905) 688- 8954 24 25 E-mail: ltsiani@brocku.ca 26 27 28 Author email addresses 29 Pereira S: sandra.pereira@alum.utoronto.ca 30 Park E: edward7703@yahoo.ca 31 Moore J: jessy.moore@brocku.ca 32 Faubert B: brandon.faubert@mail.mcgill.ca 33 Breen DM: dbreensawatzky@gmail.com 34 Oprescu AI: a.oprescu@utoronto.ca 35 Nahle A: ash.nahle@mail.utoronto.ca 36 Kwan D: deniselp.kwan@gmail.com 37 Giacca A: adria.giacca@utoronto.ca 38 Tsiani E: ltsiani@brocku.ca 39 40

42 ABSTRACT

43 Elevated levels of plasma free fatty acids (FFA), which are commonly found in 44 obesity, induce insulin resistance. FFA activate protein kinases including the 45 proinflammatory I κ B α kinase β (IKK β), leading to serine phosphorylation of insulin 46 receptor substrate 1 (IRS-1) and impaired insulin signaling. In order to test whether 47 resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we 48 used a hyperinsulinemic-euglycemic clamp with tracer to assess hepatic and peripheral 49 insulin sensitivity in overnight-fasted Wistar rats infused for 7 hours with either saline, 50 Intralipid plus 20 U/ml heparin (IH, triglyceride emulsion that elevates FFA levels in *vivo*; 5.5 μ l/min) with or without resveratrol (3mg kg⁻¹ h⁻¹), or resveratrol alone. Infusion 51 52 of IH significantly decreased glucose infusion rate (GIR; P<0.05), peripheral glucose 53 utilization (P<0.05), and increased endogenous glucose production (EGP; P<0.05) during 54 the clamp compared with saline infusion. Resveratrol co-infusion, however, completely 55 prevented all these effects induced by IH infusion; it prevented the decreases in GIR 56 (P<0.05 vs IH), peripheral glucose utilization (P<0.05 vs IH), and insulin-induced 57 suppression of EGP (P<0.05 vs IH). Resveratrol alone had no effect. Furthermore, IH 58 infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (~30 fold, P<0.001), decreased total IRS-1 levels, and decreased I κ B α content consistent with 59 60 activation of IKK β . Importantly, all of these effects were abolished by resveratrol 61 (P<0.05 vs IH). These results suggest that resveratrol prevents FFA-induced hepatic and 62 peripheral insulin resistance and therefore, may help mitigate the health consequences of 63 obesity.

- Keywords: insulin resistance, dyslipidemia, obesity, skeletal muscle, metabolism
 - 2

66 INTRODUCTION

67	A close relationship between obesity, insulin resistance, and type 2 diabetes
68	mellitus has been shown by numerous studies. Fasting plasma FFAs are often increased
69	in obesity (Lewis et al. 2002). The expanded adipose tissue of obese individuals releases
70	products such as adipokines/cytokines and free fatty acids (FFA), contributing to insulin
71	resistance. Elevated levels of FFA have been shown to cause insulin resistance (Boden et
72	al. 2001; Kim et al. 2004; Lam et al. 2002; Roden et al. 1996; Yuan et al. 2001). Insulin
73	action leads to phosphorylation of insulin receptor substrates (IRS) and downstream
74	activation of Akt. FFA cause insulin resistance in skeletal muscle mainly via increased
75	serine (Copps & White 2012; Guo 2014) and reduced tyrosine phosphorylation of IRS-1
76	(Kim et al. 2001; Kim et al. 2004; Yu et al. 2002). Serine kinases, such as inhibitor of
77	κ Bα (I κ Bα) kinase β (IKK β), protein kinase C (PKC), mammalian target of rapamycin
78	(mTOR), p70S6 kinase, and c-jun NH2-terminal kinase (JNK) have been shown to
79	mediate this process (Copps & White 2012; Guo 2014).
80	IKK β is a member of the nuclear factor kappa B (NF- κ B) pathway involved in
81	inflammatory responses, activated by cytokines such as TNF- α and also is implicated in
82	insulin resistance. The transcription factor NF- κ B is kept inactive in the cytoplasm by an
83	inhibitory protein known as I κ B α . Activated IKK β phosphorylates I κ B α , leading to its
84	degradation by the ubiquitin proteasome pathway. This allows NF- κ B to translocate to
85	the nucleus and modify transcription (Gilmore 2006). FFA activate IKK β and thus NF-
86	κB mediated transcription of cytokines (Lee & Lee 2014; Sinha et al. 2004). In addition,
87	FFA-activated IKK β can directly phosphorylate rat IRS-1 on ser-307, and thus impair
88	insulin signaling (De Alvaro et al. 2004). In vivo studies showed that diet- and obesity-

89	induced insulin resistance was reversed by targeted disruption of IKK β or treatment with
90	salicylate, an inhibitor of IKK β (Yuan <i>et al.</i> 2001). Similarly, we and other authors have
91	found that salicylate prevented hepatic and peripheral insulin resistance induced by lipid
92	infusion (Park et al. 2007b; Kim et al. 2001) and high dose aspirin (salicylate) treatment
93	improved insulin signaling and action also in diabetic patients (Hundal et al. 2002).
94	Resveratrol (trans3,4,5-trihydroxystilbene) is a naturally occurring polyphenol
95	compound, found in the skin of grapes and in high concentration in red wine, shown to
96	have antioxidant, anticancer, and anti-ageing properties and to protect against
97	cardiovascular disease (Baur & Sinclair 2006). Importantly, resveratrol has been shown
98	to have antidiabetic properties in vitro and in vivo (Park et al. 2007a; Breen et al. 2008;
99	Zygmunt et al. 2010; Baur et al. 2006; Lagouge et al. 2006; Su et al. 2006; Do et al.
100	2012). In skeletal muscle cells <i>in vitro</i> , resveratrol increased glucose uptake (Breen <i>et al.</i>
101	2008; Zygmunt et al. 2010; Park et al. 2007a) and abolished the palmitate-induced
102	decline in insulin-stimulated glucose uptake via inhibition of PTP1B expression (Sun et
103	al. 2007). In in vivo studies, resveratrol was shown to prevent high-fat-diet-induced
104	insulin resistance in mice (Lagouge et al. 2006; Sun et al. 2007), however the effect of
105	oral resveratrol supplements on insulin sensitivity in obese individuals is controversial
106	(Timmers et al. 2011; Poulsen et al. 2013). Resveratrol activates the NAD-dependent
107	deacetylase SIRT1 (Lagouge et al. 2006; Sun et al. 2007) and the energy sensor AMP-
108	dependent kinase (AMPK) (Breen et al. 2008; Park et al. 2007a; Um et al. 2010) and
109	these molecules have been proposed to play a significant role in resveratrol's action. In
110	the present study, we determined whether resveratrol has a protective effect against

111	insulin resistance caused by acute elevation of plasma FFA, which had not been
112	examined previously.
113	MATERIALS AND METHODS
114	Animal care and surgery
115	For all experiments female Wistar rats (Charles River, Quebec, Canada) weighing
116	250-300g were used. The rats were exposed to a 12h light-dark cycle and were fed rat
117	chow (Teklad 2018, 18% fat, Harland Teklad Global Diets, Madison, WI, USA) and
118	water ad libitum. Animals were housed in the University of Toronto's Department of
119	Comparative Medicine and were cared for in accordance to the Animal for Research Act
120	of the Government of Canada. The Animal Care Committee of the University of Toronto
121	approved all procedures.
122	Rats were allowed 3-5 days to adapt to the facility. Thereafter, they underwent
123	vessel cannulation under isofluorane anesthesia as previously described (Park et al.
124	2007b). Polyethylene catheters (PE-50; Cay Adams, Boston, MA), each extended with a
125	segment of silastic tubing (internal diameter of 0.58 mm, length of 3 cm; Dow Corning,
126	Midland, MI), were inserted into the right atrium via the jugular vein for infusion and
127	into the aortic arch via the carotid artery for blood sampling. Both catheters were
128	tunneled subcutaneously, exteriorized, filled with heparin (1,000 U/ml) in 60%
129	polyvinylpyrrolidone to maintain patency and finally closed with a metal pin. The rats
130	were allowed a minimum of 3 day recovery from surgery before experiments were
131	carried out.

132 Experimental Design

133	Following an overnight fasting, the animals (n=6-8 rats/group) received a 7 hour
134	i.v. infusion (5.5 μ l/min) of either saline (SAL), Intralipid plus Heparin (IH) (20%
135	Intralipid + 20 U/ml heparin), IH plus resveratrol (RSV; 3 mg kg ⁻¹ h ⁻¹), or RSV alone.
136	Just prior to onset of resveratrol infusion a bolus of resveratrol (6mg/kg) was given. At 3-
137	hour point of the infusion period, i.v. infusion of $[3-^{3}H]$ glucose was initiated (8 μ Ci,
138	bolus + 0.15 μ Ci/min infusion). To assess hepatic and peripheral insulin sensitivity, a
139	hyperinsulinemic-euglycemic clamp was performed with tracer infusion during the last 2
140	hours of the 7-hour infusion period. Preceding the clamp ("basal period") and for a period
141	of 30 minutes, blood samples were taken every 10 minutes for measurements of plasma
142	glucose, insulin, FFA, and [3- ³ H] glucose specific activity. The same was done during the
143	last 30 min of the hyperinsulinemic clamp ("clamp period"). At the 5-hour point of the
144	infusion period, an i.v. infusion of porcine insulin (5 mU kg ⁻¹ min ⁻¹) resulting in plasma
145	insulin levels in the postprandial range was initiated. To maintain euglycemia during
146	insulin infusion, an i.v. infusion of 20% glucose was given i.v. and adjusted according to
147	frequent glycemic determinations (every 5 min). The glucose infusate was radiolabelled
148	with 48 μ Ci/g [3- ³ H] glucose to maintain plasma glucose specific activity constant. Total
149	blood withdrawal was ~3.8 ml. After plasma separation, the red blood cells were diluted
150	1:1 in heparinized saline (4 U/ml) and re-infused into the rats. Upon completion of the
151	experiments, the rats were anesthetized with i.v. administration of an anesthetic cocktail
152	(ketamine: xylazine: acepromazine (87: 1.7: 0.4 mg/ml) and soleus skeletal muscle was
153	collected.

154 Plasma Assays

155	Plasma insulin levels were determined by radioimmunoassays (RIAs) using kits
156	specific for rodent insulin (but with 100% cross reactivity with porcine insulin used for
157	infusion) as previously described (Park et al. 2007b). Plasma glucose levels were
158	measured using a Beckman Glucose Analyzer II (Beckman, Fullerton, CA). Plasma
159	radioactivity from the [3- ³ H] glucose tracer was measured after deproteinization with
160	$Ba(OH)_2$ and $ZnSO_4$ and evaporation to dryness. Aliquots of the [3- ³ H] glucose tracer
161	and of the radiolabeled glucose infusate were assayed together with the plasma samples
162	(Lam et al. 2002). Plasma FFA levels were assayed using a colorimetric kit from Wako
163	Industrials (Osaka, Japan) as previously described (Park et al. 2007b; Lam et al. 2002).
164	Immunoblot Analysis
165	Soleus muscle samples (40 mg) were ground in a glass-on-glass tissue grinder
166	containing ice-cold lysis buffer (50 mM Tris pH 7.5, 1% Nonidet P-40, 150 mM NaCl,
167	1 mM MgCl ₂ , 1 mM CaCl ₂ , 2 mM EGTA, 1 mM Na ₃ VO ₄ , 100 mM NaF, 10 mM
168	Na ₄ P ₂ O ₄ , 1 μ M okadaic acid, 1 mM PMSF, 10 μ g/ml aprotinin, 10 μ g/ml leupeptin).
169	Insoluble materials were removed by centrifugation at 2000 rpm for 10 min at 4 °C. The
170	protein concentration in all samples was determined by the detergent-compatible
171	modified Lowry method, using bovine serum albumin as standard. Fifty μg of protein in
172	all samples were mixed with equal volumes of 3X sample-loading buffer (6.86 M urea,
173	4.29% sodium dodecyl sulphate (SDS), 300 mM dithiothreitol, 43 mM Tris-HCl pH 6.8)
174	and left at room temperature for 30 min. The mixture was vortexed and proteins were
175	separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
176	Proteins were then transferred to polyvinylidene fluoride membranes (Biorad) followed
177	by incubation for 1h at room temperature in Tris-Tween normal saline (TTNS) buffer

178	(pH 7.4) containing 0.1% Tween-20 (Sigma) mixed with 7.5% non-fat dried milk for
179	blocking. Thereafter, membranes were incubated overnight with an affinity-purified
180	polyclonal antibody specific for IRS-1 (1:500 dilution; Upstate Cell Signaling Solutions),
181	phospho (ser307) IRS-1 (1:1000 dilution; Biosource), ΙκΒα (1:2000 dilution; Santa Cruz
182	Biotechnology), phospho (ser32/36) I κ B α (1:500 dilution; Santa Cruz), β -actin (Santa
183	Cruz), or the following antibodies (1:1000 dilution; Cell Signaling): phospho (ser 473)
184	Akt, Akt, phospho(thr172) AMPK, AMPK, phospho (ser2448) mTOR, mTOR, phospho
185	(thr389) p70S6K, p70S6K , phospho(thr183/tyr185) JNK and JNK. After washing with
186	TTNS buffer three times for 20 min each, membranes were incubated with horseradish
187	peroxidase-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology) for one hour at
188	room temperature. The membranes were then washed three times with Millipore water
189	and developed using enhanced chemiluminescence reagent (Amersham). The bands
190	obtained from immunoblotting were quantified by densitometry.
191	MDA assay: The MDA assay was carried out as previously described (Pereira et al.
192	2015)

193 **Plasma resveratrol measurements**

194 Resveratrol was extracted from rat plasma samples using ethyl acetate and

195 centrifuging at 8000 rpm for 1 minute at 4°C. Supernatant was collected and dried using a

196 speed vacuum. The dried product was then dissolved in 200µL of 100% methanol,

filtered with 0.2µm syringe for LC-MS analysis. Waters Acquity ultra-performance liquid 197

- 198 chromatography (UPLC) consisting of binary solvent manager, sample manager,
- 199 photodiode array detector, mass spectrometer and MassLynx 4.1 software were used. The
- 200 injection volume was 3 µL for all samples. The UPLC profiling was performed on a 50

8

201	mm X 2.1 mm BEH C18 column packed with 1.7 μm particles (Waters) following a
202	gradient elution profile. The mobile phase consisted of 0.1% formic acid in water (solvent
203	A) and 100% acetonitrile (solvent B). The shape of the gradient used was as follows: 0
204	min, 100% A; 0.6 min, 92% A; 6.0 min, 70% A; 6.50 min, 50% A; 7.0 min, 70% A; 7.50
205	min, 92% A; 8.0 min, 100% A. The column temperature was maintained at 40 °C with a
206	constant flow rate of 0.3 mL/min. Mass spectrometry was done as ESI spray in the
207	negative ion mode for <i>trans</i> -resveratrol, at a capillary voltage 3.50 kV, cone voltage 50 V,
208	source temperature 150 °C with a gas flow rate of 600 L/hr.
209	Calculations
210	Steele's equation (Steele et al. 1956) as modified by Finegood (Finegood et al.
211	1987) to take into account the extra tracer infused with the glucose infusate, was used to
212	calculate the glucose turnover (rate of appearance of glucose). In the basal state, the rate
213	of appearance of glucose corresponds to the endogenous glucose production (EGP).
214	During the clamps, EGP was obtained by subtracting the infusion rate of exogenous
215	glucose from the total rate of glucose appearance (endogenous + exogenous). At steady
216	state, glucose disappearance is equal to glucose appearance. Data are average values of
217	the basal period and the last 30 min of the clamp.
218	Statistical analysis
219	One-way analysis of variance (ANOVA) followed by Tukey's t test was used to
220	compare differences between treatments groups. Significance was accepted at P<0.05.
221	Statistical calculations were performed using the statistical program SPSS (IBM
222	Corporation, Armonk, NY, USA).

224 **RESULTS**

225	Plasma insulin levels, as expected, were markedly elevated from basal during the
226	clamp due to infusion of exogenous insulin (Table 1). There was no difference in plasma
227	insulin levels between groups during the basal period or during the clamp. Plasma
228	glucose levels were not different between groups during the basal period and during the
229	clamp (Table 1). Plasma FFA levels during the basal period were \sim 2-fold higher in the
230	IH and IH plus RSV groups compared to the SAL group. As expected, plasma FFA
231	levels were lower during the hyperinsulinemic clamp than during the basal period in all
232	groups due to plasma FFA-lowering effect of insulin, but remained higher in the IH and
233	IH+RSV groups compared to controls.
234	Steady-state glucose infusion rate (GIR) during the last 30 minutes of the
235	hyperinsulinemic-euglycemic clamp is an indication of whole body insulin sensitivity.
236	Infusion of IH decreased GIR ($86\pm11 \mu mol kg^{-1} min^{-1}$) (P<0.05) compared to SAL
237	infusion (160 <u>+</u> 16 μ mol kg ⁻¹ min ⁻¹) (Figure 1). Co-infusion of resveratrol with IH
238	prevented the IH-induced decrease in GIR ($151\pm6 \mu mol \text{ kg}^{-1} \min^{-1}$) (P<0.05 vs IH) while
239	resveratrol infusion alone $(162\pm8 \mu mol kg^{-1} min^{-1})$ had no effect.
240	During the basal period, no differences in endogenous glucose production (EGP)
241	(Figure 2A) between treatment groups were observed. Hepatic insulin sensitivity is
242	measured as the ability of insulin to suppress EGP from basal. In the SAL group, EGP
243	was suppressed by 40% during the last 30 min of hyperinsulinemic clamp (Figure 2A and
244	2B). In contrast, in the IH group, the suppression of EGP during the clamp was only 2%,
245	i.e. significantly less than the EGP suppression in the SAL group (P<0.05; Figure 2B).
246	Co-infusion of resveratrol with IH resulted in insulin-induced suppression of hepatic

247	glucose production (43.5%) to similar levels seen in the SAL group, clearly indicating an
248	action of resveratrol (P<0.05 vs IH) to prevent the IH effect. Resveratrol infusion alone
249	did not have any effect (Figure 2B).
250	As expected, peripheral glucose utilization increased during the clamp (186 ± 15)
251	μ mol kg ⁻¹ min ⁻¹) compared to basal period (47 <u>+6</u> μ mol kg ⁻¹ min ⁻¹) (Figure 3). IH infusion
252	significantly decreased peripheral glucose utilization during the clamp (131 \pm 12 µmol kg ⁻¹
253	min ⁻¹) when compared with SAL infusion ($186\pm15 \mu mol \text{ kg}^{-1} \text{ min}^{-1}$) (P<0.05; Figure 3)
254	an indication of peripheral insulin resistance. This decrease was completely abolished in
255	the group receiving infusion of both IH and resveratrol ($176\pm6 \mu mol kg^{-1} min^{-1}$). These
256	data indicate an ability of resveratrol to prevent fat-induced peripheral insulin resistance.
257	Resveratrol infusion alone had no effect.
258	In an attempt to understand the mechanism of resveratrol action to prevent the IH-
259	induced peripheral insulin resistance we examined total and ser 307 phosphorylation
260	levels of IRS-1 in soleus skeletal muscle.
261	IH infusion markedly increased serine (307) phosphorylation of IRS-1 (P<0.001)
262	(Figure 4A) and decreased total IRS-1 protein levels (P<0.05) (Figure 4B). Co-infusion
263	of resveratrol with IH however, completely prevented these effects (P< 0.001 and P< 0.05
264	vs IH, respectively. Resveratrol alone did not have any effect. Next, we examined total
265	and phosphorylated levels of Akt. IH infusion decreased phosphorylation of Akt and
266	resveratrol co-infusion prevented this decline (Figure 4C). Total Akt levels were not
267	changed by any treatment.
268	Different kinases have been suggested to increase ser 307 phosphorylation of IRS-
269	1, including IKK β . Since we previously found that the IKK β inhibitor salicylate

270	prevented insulin resistance due to lipid infusion (Park et al. 2007b) we examined the
271	levels of IkB α , a marker of IKK β activation. IH infusion increased phosphorylation and
272	decreased muscle content of total I κ B α , suggesting activation of IKK β . Interestingly,
273	resveratrol co-infusion with IH prevented this effect (P<0.05 for IH vs other groups;
274	Figure 5). We also examined mTOR, p70S6 kinase, and JNK all of which have been
275	shown to increase serine phosphorylation of IRS-1 and are implicated in insulin
276	resistance. Total and phosphorylated levels of mTOR, p70S6 kinase, and JNK were not
277	changed by any treatment (Figure 6). In addition, total and phosphorylated levels of
278	AMPK, the upstream regulator of mTOR and p70S6 kinase, were not changed by any
279	treatment (Figure 6).
280	To investigate whether IH and resveratrol had an effect on oxidative stress, we
281	measured MDA levels in skeletal muscle and found that IH did not affect MDA levels in
282	muscle compared to SAL and that MDA levels were higher in the IH+RSV group
283	compared to the IH group (Figure 7).
284	Using UPLC we measured resveratrol levels in rat plasma samples. The average
285	resveratrol level in the plasma of 3-rats infused with resveratrol for 7h at the dose of the
286	present study was 1.064 μ M while no resveratrol was detected before resveratrol infusion.
287	
288	DISCUSSION
289	Although the precise mechanism of FFA-induced insulin resistance remains
290	elusive, a consensus exists that impaired post-receptor signaling is involved with serine
291	phosphorylation of IRS-1 being a key event (Le Marchand-Brustel et al. 2003; Copps &
292	White 2012; Guo 2014; Gao et al. 2002). The present study was performed to investigate

293 the effect of the polyphenolic compound resveratrol on insulin resistance caused by acute 294 elevation of circulating FFA *in vivo*. We have shown that resveratrol stimulates glucose 295 uptake in L6 myotubes (Breen et al. 2008). Based on this, we hypothesized that resveratrol may prevent insulin resistance caused by our model of short-term (7h) fat 296 297 infusion. The results of the present study show that resveratrol is effective in preventing 298 fat-induced hepatic and peripheral insulin resistance and suggest that a part of the 299 mechanism may involve restoration of insulin signaling in skeletal muscle. 300 As expected, infusion of Intralipid + heparin markedly elevated plasma FFA 301 levels, which decreased during the clamp in all groups due to the FFA-lowering effect of 302 insulin. Intralipid is a triglyceride emulsion that is broken down into non-esterified fatty 303 acids and glycerol *in vivo* by lipoprotein lipase, activated by heparin. It is thus possible 304 that glycerol derived from the triglyceride emulsion affects EGP measured in the present 305 study; however, we have previously shown (Lam et al. 2002) that glycerol infusion 306 resulting in plasma glycerol levels similar to 7h infusion of IH has no effect on EGP 307 compared with saline infusion. 308 The infusion rate of exogenous glucose is an indication of whole body insulin

sensitivity and was reduced by lipid infusion, consistent with previous studies (Boden
1997; Boden *et al.* 2001; Boden *et al.* 2005; Kim *et al.* 2001; Kim *et al.* 2004; Lam *et al.*2002; Lam *et al.* 2003; Yu *et al.* 2002). The whole body insulin resistance caused by IH
infusion was completely prevented when resveratrol was co-infused. Infusion of [3-³H]
glucose enabled us to separately assess hepatic and peripheral insulin resistance. IH
infusion decreased insulin-induced suppression of endogenous glucose production (EGP)

and insulin-stimulated peripheral glucose utilization, suggesting that lipids caused both

316	hepatic and peripheral insulin resistance, in accordance with our previous findings (Park
317	et al. 2007b). More importantly, resveratrol co-infusion was able to completely prevent
318	the IH-induced insulin resistance at both sites. Our study is in agreement with other in
319	vivo studies showing a prevention of diet-induced insulin resistance in mice (Lagouge et
320	al. 2006; Um et al. 2010) and monkeys (Jimenez-Gomez et al. 2013) treated with
321	resveratrol. Plasma levels of resveratrol resulting from consumption of resveratrol in the
322	diet of rodents depend on the dose, and resveratrol concentrations of 10-120ng/ml (44-
323	530nM) in plasma have been reported (Lagouge et al. 2006). In humans, dietary
324	supplements of resveratrol have been shown to result in plasma levels of approximately
325	180ng/ml (0.78µM) (Timmers et al. 2011). We decided to infuse resveratrol in order to
326	increase the probability of seeing an effect, since the oral bioavailability of resveratrol
327	has been reported to be poor in rats (Kapetanovic et al. 2001). Resveratrol levels in the
328	plasma of animals infused with resveratrol was 1.064 μ M which is not far from the
329	theoretical concentration of 0.6 μ g/ml (2.62 μ M) calculated from the infused dose
330	(3mg/kg/h= 0.75mg/h for a 250g rat) and the published clearance (1.24 L/h) of RSV in
331	rats (Colom et al. 2011). Colom et al (Colom et al. 2011) found that IV bolus
332	administration of 2mg/kg of resveratrol in rats resulted in resveratrol levels of 0.1 μ M
333	after 2 h. Similarly, IV bolus administration of 20mg/kg of resveratrol in rats resulted in
334	mean resveratrol concentration of $0.1 \mu g/ml$ (0.43 μ M) after 2 h (He <i>et al.</i> 2006). Overall
335	the levels of plasma resveratrol in our study although are higher than the levels achieved
336	by oral resveratrol administration in rats, they are not very different from the levels
337	achieved by IV bolus administration of resveratrol in rats in previous studies and
338	importantly are close to the levels seen after oral supplementation in humans.

339 Serine 307 phosphorylation of IRS-1 caused by short-term fat infusion was 340 associated with decreased tyrosine phosphorylation of IRS-1 and impairment of insulin 341 signaling in rat skeletal muscle, although the serine kinase responsible was not identified 342 (Yu et al. 2002). Soleus muscle and gastrocnemius muscle are typically used in the 343 literature to determine the extent of insulin sensitivity in skeletal muscle. It has been 344 reported that i.v. lipid infusions impair insulin-stimulated glucose uptake by the soleus 345 muscle (Kim *et al.* 2001) and by the gastrocnemius muscle (Kim *et al.* 2004) in rodents. 346 These two muscles consist of a different proportion of muscle fiber types, with the soleus 347 muscle being considered the more insulin sensitive muscle of the two (Holmang *et al.*) 348 1992). Therefore, we chose to study soleus muscle to maximize the probability of finding 349 differences in insulin sensitivity. 350 In the present study, we show that IH infusion causes a marked increase in serine 351 307 phosphorylation of IRS-1 in rat soleus muscle, which was completely abolished by 352 resveratrol co-infusion. Furthermore, resveratrol prevented IH-induced reduction in IRS-353 1 protein levels, which is observed in various animal models of insulin resistant states 354 (Anai et al. 1998; Kerouz et al. 1997; Saad et al. 1992) and has been associated with 355 serine/threonine phosphorylation of IRS-1 (Pederson et al. 2001). Decrease in IRS-1 356 protein levels leading to insulin resistance has also been linked to suppressor of cytokine 357 signaling-mediated ubiquitination and degradation (Rui et al. 2002; Ueki et al. 2004). 358 Interestingly, phosphorylation of Akt was reduced by IH and restored by resveratrol co-359 infusion. Together, these findings suggest that the effect of resveratrol to prevent IH-360 induced peripheral insulin resistance may, at least in part, be due to restoration of insulin-

induced tyrosine phosphorylation of IRS-1 and consequent activation of the insulinsignaling cascade.

363 In muscle, we show that a marker of IKK β activation, namely decreased I κ B α 364 content, is induced by IH, but resveratrol administration prevents this effect. Numerous 365 studies (Arkan et al. 2005; Boden et al. 2005; Cai et al. 2005; Kim et al. 2001) have 366 implicated activation of IKK β -NF κ B- inflammatory pathway in fat-induced insulin 367 resistance, although it is not clear whether insulin resistance is due to the direct effect of 368 IKKβ on insulin signaling or to the indirect effect of NFκB-mediated production of pro-369 inflammatory cytokines. However, some studies including ours (Park et al. 2007b) 370 provide strong evidence implicating IKKβ activation and downstream IRS-1 serine 371 phosphorylation in fat-induced insulin resistance (Kim et al. 2001; Itani et al. 2002; 372 Boden et al. 2005). Despite the fact that a number of studies have examined the anti-373 diabetic effects of resveratrol, to our knowledge, our study is the first to examine the 374 effect of resveratrol on short-term lipid infusion model of insulin resistance and the first 375 study ever to show an effect of resveratrol on skeletal muscle IkBa levels. Our study is in 376 agreement with other studies which have demonstrated that resveratrol can inhibit IKK^β 377 and/or NFkB activated by cytokines and lipopolysaccharide (LPS) in vitro (Birrell et al. 378 2005; Estrov et al. 2003). Indeed resveratrol was shown to inhibit LPS-induced IkBa 379 phosphorylation in human intestinal (Cianciulli et al. 2012), and microglia (Capiralla et 380 al. 2012) cells. In agreement with our study Do et al (Do et al. 2012) recently found 381 decreased phosphorylated IKK^β levels in the liver of db/db mice treated with resveratrol 382 for 6 weeks. Since short-term fat infusion activates IKKβ (Boden *et al.* 2005; Kim *et al.* 2001) and IKKβ may directly phosphorylate serine (307) residue of IRS-1 (Gao et al. 383

384 2002), it is possible that resveratrol prevents fat-induced peripheral insulin resistance 385 directly through prevention of IKK β activity. Alternatively, it is also plausible that IKK β 386 activation is inhibited via resveratrol-induced amelioration of oxidative stress by the 387 virtue of IKKB activation occurring downstream of oxidative stress in the mechanism of 388 FFA-induced insulin resistance (Pereira *et al.* 2014). Support for this comes from a study 389 which showed that oxidative stress can directly activate IKKB (Kamata *et al.* 2002). 390 However, we found that IH infusion did not increase levels of MDA, a marker of 391 oxidative stress, in skeletal muscle and that MDA levels were higher in the IH+RSV 392 group compared to the IH group. Based on this marker of oxidative stress, we suggest 393 that oxidative stress is not a key mediator of IH-induced insulin resistance in skeletal 394 muscle and the ability of resveratrol to act as an antioxidant does not play a protective 395 role in our study. We cannot exclude the possibility that the mechanisms through which 396 resveratrol improves insulin sensitivity differ depending on the duration of resveratrol 397 administration. For example, it has been reported that the ability of resveratrol to elevate 398 antioxidant enzyme activity occurs after prolonged exposure (Martins et al. 2014), and 399 therefore, resveratrol's antioxidant properties may not explain how it improves insulin 400 sensitivity in our acute model. Liver tissue was not collected in the present study and 401 therefore whether resveratrol has similar effects on liver IRS and $I\kappa B\alpha$ remains to be 402 determined. 403 Although the serine kinases mTOR, p70S6 kinase, and JNK have been shown to 404 increase serine phosphorylation of IRS-1 and are implicated in insulin resistance, they 405 were not affected by IH infusion and do not appear to be involved in our model of

406 insulin resistance induced by short-term lipid infusion.

407	Some studies suggested that resveratrol provides protection from insulin
408	resistance caused by high-fat diet in mice via activation of SIRT1 (Lagouge et al. 2006;
409	Sun et al. 2007) and SIRT1 was found to inhibit NF κ B (Yang et al. 2007), while we
410	(Breen et al. 2008; Zygmunt et al. 2010) and others (Park et al. 2007a) have shown that
411	AMPK is activated by resveratrol and AMPK can inhibit IKK β (Bess <i>et al.</i> 2011).
412	Furthermore, in AMPK deficient mice fat-induced insulin resistance was not prevented
413	by resveratrol (Um et al. 2010). High-fat diet used in these studies is typically
414	associated with chronically elevated plasma FFA. We found no changes in total and
415	phosphorylated AMPK levels, indicating that AMPK is not activated by resveratrol in our
416	short-term lipid infusion insulin resistance model.
417	In conclusion, the present study demonstrates that resveratrol prevents hepatic and
418	peripheral insulin resistance caused by acute elevation of circulating FFA in association
419	with prevention of FFA-induced increase in serine (307) phosphorylation of IRS-1 and
420	decrease in total IRS-1 levels in skeletal muscle. Resveratrol prevented the FFA-induced
421	reduction in IkB α levels in skeletal muscle, suggesting inhibition of IKK β an effect
422	similar to salicylate treatment. Based on the results of the present study, resveratrol
423	represents a potential treatment for FFA-associated insulin resistance.
424	
425	
426	
427	
428	
429	

430	ACKNOWLEDGEMENTS
431	This work was supported by research grants to E. Tsiani and A. Giacca from the Natural
432	Sciences and Engineering council (NSERC discovery grants 301047-04, 301047-07) and
433	by a grant to A. Giacca from the Canadian Institutes of Health Research (CIHR) (MOP-
434	89929). The authors thank Xinyu Guan and Loretta Lam for excellent technical support.
435	Thank you to Kyung-Hee Kim and Dr. Vincenzo De Luca (Brock University), for
436	performing the UPLC sample preparation and plasma resveratrol measurements.
437	
438	
439	
440	
441	REFERENCES
442	Anai, M., Funaki, M., Ogihara, T., Terasaki, J., Inukai, K., Katagiri, H., et al. 1998.
443	Altered expression levels and impaired steps in the pathway to Phosphatidylinositol 3-
444	Kinase activation via Insulin Receptor Substrates 1 and 2 in Zucker Fatty Rats. Diabetes
445	47(1): 13–23. doi: 10.2337/diab.47.1.13.
446	
447	Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, ZW., Long, J.M., et al. 2005.
448	IKK- β links inflammation to obesity-induced insulin resistance. Nat Med 11(2): 191–198.
449	doi: 10.1038/nm1185.
450	
451	Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., et al. 2006.
452	Resveratrol improves health and survival of mice on a high-calorie diet. Nature

453 444(7117): 337–342. doi: 10.1038/nature05354.

454

- 455 Baur, J.A., and Sinclair, D.A. 2006. Therapeutic potential of resveratrol: the in vivo
- 456 evidence. Nat Rev Drug Discov 5(6): 493–506. doi: 10.1038/nrd2060.

457

- 458 Bess, E., Fisslthaler, B., Frömel, T., and Fleming, I. 2011. Nitric oxide-induced activation
- 459 of the AMP-Activated Protein Kinase α2 subunit attenuates IκB Kinase activity and
- 460 inflammatory responses in endothelial cells. PLoS One 6(6): e20848. doi:
- 461 10.1371/journal.pone.0020848.

462

- 463 Birrell, M.A., McCluskie, K., Wong, S., Donnelly, L.E., Barnes, P.J., and Belvisi, M.G.
- 464 2005. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway
- 465 neutrophilia and inflammatory mediators through an NF-κB-independent mechanism.
- 466 FASEB J 19(7): 840–841. doi: 10.1096/fj.04-2691fje.
- 467
- Boden, G. 1997. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM.
- 469 Diabetes 46(1): 3–10. doi: 10.2337/diab.46.1.3.

470

- 471 Boden, G., Lebed, B., Schatz, M., Homko, C., and Lemieux, S. 2001. Effects of acute
- 472 changes of plasma free fatty acids on intramyocellular fat content and insulin resistance
- 473 in healthy subjects. Diabetes 50(7): 1612–1617. doi: 10.2337/diabetes.50.7.1612.

474

475 Boden, G., She, P., Mozzoli, M., Cheung, P., Gumireddy, K., Reddy, P., et al. 2005. Free

476	fatty acids produce insulin resistance and activate the proinflammatory Nuclear Factor-
477	κB pathway in rat liver. Diabetes 54(12): 3458–3465. doi: 10.2337/diabetes.54.12.3458.
478	
479	Breen, D.M., Sanli, T., Giacca, A., and Tsiani, E. 2008. Stimulation of muscle cell
480	glucose uptake by resveratrol through sirtuins and AMPK. Biochemical Biophys Res
481	Commun 374(1): 117–122. doi: 10.1016/j.bbrc.2008.06.104.
482	
483	Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., et al. 2005. Local
484	and systemic insulin resistance resulting from hepatic activation of IKK- β and NF- κ B.
485	Nat Med 11(2): 183–190. doi: 10.1038/nm1166.
486	
487	Capiralla, H., Vingtdeux, V., Zhao, H., Sankowski, R., Al-Abed, Y., Davies, P., et al.
488	2012. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial
489	inflammation by inhibiting the TLR4/NF- κ B/STAT signaling cascade. J Neurochem
490	120(3): 461–472. doi: 10.1111/j.1471-4159.2011.07594.
491	
492	Cianciulli, A., Calvello, R., Cavallo, P., Dragone, T., Carofiglio, V., and Panaro, M.A.
493	2012. Modulation of NF-κB activation by resveratrol in LPS treated human intestinal
494	cells results in downregulation of PGE2 production and COX-2 expression. Toxicol in
495	Vitro 26(7): 1122–1128. doi: 10.1016/j.tiv.2012.06.015.
496	
497	Colom, H., Alfaras, I., Maijó, M., Emília Juan, M., Planas, J.M. 2011. Population
498	pharmacokinetic modeling of <i>trans</i> - resveratrol and its glucuronide and sulfate conjugates

499 after oral and intravenous administration in rats. Pharm Res 28(7): 1606-1621.

500 doi:10.1007/s11095-011-0395-8.

501

502 Copps, K.D., and White, M.F. 2012. Regulation of insulin sensitivity by serine/threonine

503 phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia

504 55(10): 2565–2582. doi: 10.1007/s00125-012-2644-8.

505

506 De Alvaro, C., Teruel, T., Hernandez, R., and Lorenzo, M. 2004. Tumor Necrosis Factor

507 α produces insulin resistance in skeletal muscle by activation of Inhibitor κB Kinase in a

508 p38 MAPK-dependent manner. J Biol Chem 279(17): 17070–17078. doi:

509 10.1074/jbc.M312021200.

510

511 Do, G.-M., Jung, U.J., Park, H.-J., Kwon, E.-Y., Jeon, S.-M., McGregor, R.A., et al. 2012.

512 Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-

513 activated protein kinase and its downstream targets in db/db mice. Mol Nutr Food Res

514 56(8): 1282–1291. doi: 10.1002/mnfr.201200067.

515

516 Estrov, Z., Shishodia, S., Faderl, S., Harris, D., Van, Q., Kantarjian, H.M., et al. 2003.

517 Resveratrol blocks interleukin-1 β -induced activation of the nuclear transcription factor

518 NF-κB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute

519 myeloid leukemia cells. Blood 102(3): 987–995. doi: 10.1182/blood-2002-11-3550.

520

521 Finegood, D.T., Bergman, R.N., and Vranic, M. 1987. Estimation of endogenous glucose

522	production during hyperinsulinemic-euglycemic glucose clamps: comparison of
523	unlabeled and labeled exogenous glucose infusates. Diabetes 36(8): 914-924. doi:
524	10.2337/diab.36.8.914.
525	Gao, Z., Hwang, D., Bataille, F., Lefevre, M., York, D., Quon, M.J., et al. 2002. Serine
526	phosphorylation of Insulin Receptor Substrate 1 by Inhibitor κB Kinase complex. J Biol
527	Chem 277(50): 48115-48121. doi: 10.1074/jbc.M209459200.
528	
529	Gilmore, T.D. 2006. Introduction to NF-kB: players, pathways, perspectives. Oncogene
530	25(51): 6680-6684. doi: 10.1038/sj.onc.1209954.
531	
532	Guo, S. 2014. Insulin signaling, resistance, and metabolic syndrome: insights from mouse
533	models into disease mechanisms. J Endocrinol 220(2): T1-T23. doi: 10.1530/JOE-13-
534	0327.
535	
536	He, H., Chen, X., Wang, G., Wang, J., Davey, A.K. 2006. High-performance liquid
537	chromatography spectrometric analysis of trans-resveratrol in rat plasma. J Chrom B
538	832(2): 177-180. doi: 10.1016/j.jchromb.2005.12.021.
539	
540	Holmäng, A., and Björntorp, P. 1992. The effects of testosterone on insulin sensitivity in
541	male rats. Acta Physiol Scand 146(4): 505-510. doi: 10.1111/j.1748-1716.1992.tb09452.
542	
543	Hundal, R.S., Petersen, K.F., Mayerson, A.B., Randhawa, P.S., Inzucchi, S., Shoelson,
544	S.E., et al. 2002. Mechanism by which high-dose aspirin improves glucose metabolism in

	545	type 2 diabetes.	J Clin Invest 109	(10)): 1321–1326.	doi: 1	10.1172/JCI14955
--	-----	------------------	-------------------	------	---------------	--------	------------------

546

- 547 Itani, S.I., Ruderman, N.B., Schmieder, F., and Boden, G. 2002. Lipid-induced insulin
- resistance in human muscle is associated with changes in diacylglycerol, protein kinase C,
- 549 and IκB-α. Diabetes 51(7): 2005–2011. doi: 10.2337/diabetes.51.7.2005.
- 550
- 551 Jimenez-Gomez, Y., Mattison, J.A., Pearson, K.J., Martin-Montalvo, A., Palacios, H.H.,
- 552 Sossong, A.M., et al. 2013. Resveratrol improves adipose insulin signaling and reduces
- the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar
- 554 diet. Cell Metab 18(4): 533–545. doi: 10.1016/j.cmet.2013.09.004.

555

- 556 Kamata, H., Manabe, T., Oka, S., Kamata, K., and Hirata, H. 2002. Hydrogen peroxide
- 557 activates IkB kinases through phosphorylation of serine residues in the activation loops.
- 558 FEBS Lett 519(1–3): 231–237. doi: 10.1016/S0014-5793(02)02712-6.
- 559
- 560 Kapetanovic, I.M., Muzzio, M., Huang, Z., Thompson, T.N., McCormick, D.L. 2011.
- 561 Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its
- 562 dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol 68(3): 593-601.
- 563 doi: 10.1007/s00280-010-1525-4.

- 565 Kerouz, N.J., Hörsch, D., Pons, S., and Kahn, C.R. 1997. Differential regulation of
- 566 insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase
- 567 isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest 100(12):

569

- 570 Kim, J.K., Fillmore, J.J., Sunshine, M.J., Albrecht, B., Higashimori, T., Kim, D.-W., et al.
- 571 2004. PKC-θ knockout mice are protected from fat-induced insulin resistance. J Clin
- 572 Invest 114(6): 823–827. doi: 10.1172/JCI200422230.
- 573
- 574 Kim, J.K., Kim, Y.-J., Fillmore, J.J., Chen, Y., Moore, I., Lee, J., et al. 2001. Prevention
- 575 of fat-induced insulin resistance by salicylate. J Clin Invest 108(3): 437–446. doi:
- 576 10.1172/JCI11559.
- 577
- 578 Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., et al.

579 2006. Resveratrol improves mitochondrial function and protects against metabolic

580 disease by activating SIRT1 and PGC-1α. Cell 127(6): 1109–1122. doi:

- 581 10.1016/j.cell.2006.11.013.
- 582
- 583 Lam, T.K.T., Werve, G.V. de, and Giacca, A. 2003. Free fatty acids increase basal

584 hepatic glucose production and induce hepatic insulin resistance at different sites. Am J

585 Physiol Endocrinol Metab 284(2): E281–E290. doi: 10.1152/ajpendo.00332.2002.

- 586
- Lam, T.K.T., Yoshii, H., Haber, C.A., Bogdanovic, E., Lam, L., Fantus, I.G., et al. 2002.
- 588 Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C- δ .
- 589 Am J Physiol Endocrinol Metab 283(4): E682–E691. doi: 10.1152/ajpendo.00038.2002.
- 590

- 591 Lee, B.-C., and Lee, J. 2014. Cellular and molecular players in adipose tissue
- 592 inflammation in the development of obesity-induced insulin resistance. BBA Mol Basis
- 593 Dis 1842(3): 446–462. doi: 10.1016/j.bbadis.2013.05.017.
- 594
- 595 Le Marchand-Brustel, Y., Gual, P., Grémeaux, T., Gonzalez, T., Barrès, R., and Tanti, J.-
- 596 F. 2003. Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine
- 597 phosphorylation in the retroregulation of insulin signalling. Biochemical Society
- 598 Transactions 31(6): 1152. doi: 10.1042/BST0311152.
- 599
- 600 Lewis, G.F., Carpentier, A., Adeli, K., Giacca, A. 2002. Disordered fat storage and
- 601 mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev
- 602 23(2): 201–229.
- 603
- Martins, L.A.M., Coelho, B.P., Behr, G., Pettenuzzo, L.F., Souza, I.C.C., Moreira,
- J.C.F., Borojevic, R., Gottfried, C., Guma, F.C.R. 2014. Resveratrol induces pro-oxidant
- 606 effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells.
- 607 Cell Biochem Biophys 68(2): 247-257. doi: 10.1007/s12013-013-9703-8.
- 608
- Park, C.E., Kim, M.-J., Lee, J.H., Min, B.-I., Bae, H., Choe, W., et al. 2007a. Resveratrol
- 610 stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein
- 611 kinase. Exp Mol Med 39(2): 222–229. doi: 10.1038/emm.2007.25.
- 612
- 613 Park, E., Wong, V., Guan, X., Oprescu, A.I., and Giacca, A. 2007b. Salicylate prevents

- 614 hepatic insulin resistance caused by short-term elevation of free fatty acids in vivo. J
- 615 Endocrinol 195(2): 323–331. doi: 10.1677/JOE-07-0005.
- 616
- 617 Pederson, T.M., Kramer, D.L., and Rondinone, C.M. 2001. Serine/Threonine
- 618 phosphorylation of IRS-1 triggers its degradation possible regulation by tyrosine
- 619 phosphorylation. Diabetes 50(1): 24–31. doi: 10.2337/diabetes.50.1.24.
- 620
- 621 Pereira, S., Shah, A., Fantus, G., Joseph, J.W., Giacca, A. 2015. Effect of N-acetyl-L-
- 622 cysteine on insulin resistance caused by prolonged free fatty acid elevation. J Endocrinol
- 623 225: 1-7. doi: 10.1530/JOE-14-0676.
- 624
- 625 Pereira, S., Park, E., Mori, Y., Haber, C.A., Han, P., Uchida, T., et al. 2014. FFA-induced
- 626 hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative
- 627 stress. Am J Physiol Endocrinol Metab 307(1): E34–E46. doi:
- 628 10.1152/ajpendo.00436.2013.
- 629
- 630 Poulsen, M.M., Vestergaard, P.F., Clasen, B.F., Radko, Y., Christensen, L.P., Stødkilde-
- Jørgensen, H., et al. 2013. High-dose resveratrol supplementation in obese men an
- 632 investigator-initiated, randomized, placebo-controlled clinical trial of substrate
- 633 metabolism, insulin sensitivity, and body composition. Diabetes 62(4): 1186–1195. doi:
- 634 10.2337/db12-0975.
- 635
- 636 Roden, M., Price, T.B., Perseghin, G., Petersen, K.F., Rothman, D.L., Cline, G.W., et al.

1996. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest

638	97(12): 2859–2865.
639	
640	Rui, L., Yuan, M., Frantz, D., Shoelson, S., and White, M.F. 2002. SOCS-1 and SOCS-3
641	block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol
642	Chem 277(44): 42394-42398. doi: 10.1074/jbc.C200444200.
643	
644	Saad, M.J., Araki, E., Miralpeix, M., Rothenberg, P.L., White, M.F., and Kahn, C.R.
645	1992. Regulation of insulin receptor substrate-1 in liver and muscle of animal models of
646	insulin resistance. J Clin Invest 90(5): 1839–1849.
647	
648	Sinha, S., Perdomo, G., Brown, N.F., and O'Doherty, R.M. 2004. Fatty Acid-induced
649	Insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear
650	localization of Nuclear Factor κB. J Biol Chem 279(40): 41294–41301. doi:
651	10.1074/jbc.M406514200.
652	
653	Steele, R., Wall, J.S., De Bodo, R.C., and Altszuler, N. 1956. Measurement of size and
654	turnover rate of body glucose pool by the isotope dilution method. Am J Physiol. 187(1):
655	15–24.
656	
657	Su, HC., Hung, LM., and Chen, JK. 2006. Resveratrol, a red wine antioxidant,
658	possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol
659	Endocrinol Metab 290(6): E1339-E1346. doi: 10.1152/ajpendo.00487.2005.

28

660	
661	Sun, C., Zhang, F., Ge, X., Yan, T., Chen, X., Shi, X., et al. 2007. SIRT1 improves
662	insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab
663	6(4): 307–319. doi: 10.1016/j.cmet.2007.08.014.
664	
665	Timmers, S., Konings, E., Bilet, L., Houtkooper, R.H., van de Weijer, T., Goossens, G.H.,
666	et al. 2011. Calorie restriction-like effects of 30 days of resveratrol supplementation on
667	energy metabolism and metabolic profile in obese humans. Cell Metab 14(5): 612–622.
668	doi: 10.1016/j.cmet.2011.10.002.
669	
670	Ueki, K., Kondo, T., and Kahn, C.R. 2004. Suppressor of Cytokine Signaling 1 (SOCS-1)
671	and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of
672	insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24(12): 5434-
673	5446. doi: 10.1128/MCB.24.12.5434-5446.2004.
674	
675	Um, JH., Park, SJ., Kang, H., Yang, S., Foretz, M., McBurney, M.W., et al. 2010.
676	AMP-Activated Protein Kinase-deficient mice are resistant to the metabolic effects of
677	resveratrol. Diabetes 59(3): 554-563. doi: 10.2337/db09-0482.
678	
679	Yang, SR., Wright, J., Bauter, M., Seweryniak, K., Kode, A., and Rahman, I. 2007.
680	Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via
681	RelA/p65 NF-kB in macrophages in vitro and in rat lungs in vivo: implications for
682	chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 292(2): L567–

683 L576. doi: 10.1152/ajplung.00308.2006.

684

- 685 Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z.-W., Karin, M., et al. 2001.
- 686 Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted
- 687 disruption of Ikkβ. Science 293(5535): 1673–1677. doi: 10.1126/science.1061620.

688

- 689 Yu, C., Chen, Y., Cline, G.W., Zhang, D., Zong, H., Wang, Y., et al. 2002. Mechanism
- 690 by which fatty acids inhibit insulin activation of Insulin Receptor Substrate-1 (IRS-1)-
- 691 associated Phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52): 50230-
- 692 50236. doi: 10.1074/jbc.M200958200.

- 694 Zygmunt, K., Faubert, B., MacNeil, J., and Tsiani, E. 2010. Naringenin, a citrus
- flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res
- 696 Commun 398(2): 178–183. doi: 10.1016/j.bbrc.2010.06.048.

Table 1.

Blood insulin, glucose and FFA levels during the basal period and during the hyperinsulinemic clamp.

	Basal period				Hyperinsulinemic clamp			
	SAL	IH	IH+RSV	RSV	SAL	IH	IH+RSV	RSV
Insulin (pM)	104±22	159±37	206±53	161±36	1052±233	735±99	933±128	885±83
Glucose (mM)	6.64±0.39	6.78±0.30	7.05±0.43	7.33±0.27	6.82±0.31	6.21±0.51	7.06±0.37	7.23±0.33
FFA (µEq/l)	664±102	1251±215†	993±130	535±50	167±23	748±174†	524±47†	209±53

Data are mean ± SEM. SAL=Saline, IH=Intralipid plus heparin, IH+RSV=IH co-infused with

resveratrol, RSV=resveratrol alone. n=5-7/group. † P<0.05 vs SAL and RSV.

1 FIGURE CAPTIONS

2 3	Figure 1. Effect of IH and resveratrol on glucose infusion rate, an indicator of whole
4	body insulin sensitivity, during the last 30 min of the hyperinsulinemic-euglycemic
5	clamp. Data are mean ± SEM. SAL=Saline, IH=Intralipid plus heparin, IH+RSV=IH co-
6	infused with resveratrol, RSV=resveratrol alone. n=5-7/group. $*P<0.05$ vs other groups.
7	
8	Figure 2. Panel A: Effect of IH and resveratrol on endogenous glucose production (EGP)
9	during the basal period and during the last 30 min of the hyperinsulinemic-euglycemic
10	clamp. Panel B: Effect of IH and resveratrol on insulin-induced suppression of hepatic
11	glucose production from the basal period during the last 30 min of the hyperinsulinemic-
12	euglycemic clamp. Data are mean ± SEM. SAL=Saline, IH=Intralipid plus heparin,
13	IH+RSV=IH co-infused with resveratrol, RSV=resveratrol alone. n=5-7/group. *
14	P<0.05 vs other groups. \dagger P<0.05 vs. SAL and RSV.
15	
16	Figure 3. Effect of IH and resveratrol on peripheral glucose utilization during the basal
17	period and during the last 30 min of the hyperinsulinemic-euglycemic clamp. Data are
18	mean ± SEM. SAL=Saline, IH=Intralipid plus heparin, IH+RSV=IH co-infused with
19	resveratrol, RSV=resveratrol alone. n=5-7/group. $*P<0.05$ vs other groups.
20	
21	Figure 4. Effect of IH and resveratrol on phosphorylated and total IRS-1 and Akt. Soleus
22	muscle lysates were prepared, resolved by SDS-PAGE and immunoblotted using specific
23	antibodies. Representative immunoblots including β -actin for loading control are shown

25	Phosphorylated (Ser 473) and Total Akt. The immunoblots were scanned and the graph
26	values are arbitrary densitometric units. Data are mean±SEM. SAL=Saline,
27	IH=Intralipid plus heparin, IH+RSV=IH co-infused with resveratrol, RSV=resveratrol
28	alone. n=4-6/group. *P< 0.05 vs other groups.
29	
30	Figure 5. Effect of IH and resveratrol on phosphorylated and total $I\kappa B\alpha$. Soleus muscle
31	lysates were prepared, resolved by SDS-PAGE and immunoblotted using specific
32	antibodies. Panel A: Representative immunoblots. Panel B: Phosphorylated I κ B α . Panel
33	C: Total I κ B α . Immunoblots were scanned and the values are arbitrary densitometric
34	units. Data are mean ± SEM. SAL=Saline, IH=Intralipid plus heparin, IH+RSV=IH co-
35	infused with resveratrol, RSV=resveratrol alone. n=6-7/group. *P<0.05 vs other groups.
36	
37	Figure 6: Effect of IH and resveratrol on phosphorylated and total levels of AMPK,
38	mTOR, p70 S6K and JNK. Soleus muscle lysates were prepared, resolved by SDS-PAGE
39	and immunoblotted using specific antibodies. Representative immunoblots are shown.
40	β -actin blot is loading control.
41 42	
43	Figure 7. Effect of IH and resveratrol on soleus muscle MDA levels. Data are mean \pm
44	SEM. SAL=Saline, IH=Intralipid plus heparin, IH+RSV=IH co-infused with resveratrol,
45	RSV=resveratrol alone. n=7/group. $P<0.05$ vs IH.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

