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Inspired by the definition of Gowers norms we study integrals of products of multi-

variate functions. The Lp norms, certain trace norms, and the Gowers norms are all

defined by taking the proper root of one of these integrals. These integrals are important

from a combinatorial point of view as inequalities between them are useful in under-

standing the relation between various subgraph densities. Lovász asked the following

questions: (1) Which integrals correspond to norm functions? (2) What are the common

properties of the corresponding normed spaces? We address these two questions.

We show that such a formula is a norm if and only if it satisfies a Hölder type in-

equality. This condition turns out to be very useful: First we apply it to prove various

necessary conditions on the structure of the integrals which correspond to norm func-

tions. We also apply the condition to an important conjecture of Erdős, Simonovits,

and Sidorenko. Roughly speaking, the conjecture says that among all graphs with the

same edge density, random graphs contain the least number of copies of every bipartite

graph. This had been verified previously for trees, the 3-dimensional cube, and a few

other families of bipartite graphs. The special case of the conjecture for paths, one of the

simplest families of bipartite graphs, is equivalent to the Blakley-Roy theorem in linear

algebra. Our results verify the conjecture for certain graphs including all hypercubes,

one of the important classes of bipartite graphs, and thus generalize a result of Erdős

and Simonovits. In fact, for hypercubes we can prove statements that are surprisingly
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stronger than the assertion of the conjecture.

To address the second question of Lovász we study these normed spaces from a ge-

ometric point of view, and determine their moduli of smoothness and convexity. These

two parameters are among the most important invariants in Banach space theory. Our

result in particular determines the moduli of smoothness and convexity of Gowers norms.

In some cases we are able to prove the Hanner inequality, one of the strongest inequalities

related to the concept of smoothness and convexity. We also prove a complex interpola-

tion theorem for these normed spaces, and use this and the Hanner inequality to obtain

various optimum results in terms of the constants involved in the definition of moduli of

smoothness and convexity.
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Chapter 1

Overview

For a graph G, its vertex set and edge set will be denoted by V (G) and E(G), respectively.

Let H and G be graphs. A homomorphism from H to G is a mapping h : V (H) → V (G)

such that for each edge {u, v} of H, {h(u), h(v)} is an edge of G. Let tH(G) be the

probability that a random mapping from V (H) to V (G) is a homomorphism. In this

thesis we will always think of H as a fixed graph, and of tH(·) as a function from the

set of graphs to the interval [0, 1]. As we shall see in Section 2.2, for dense graphs G,

tH(G) is closely related to the density of H in G. In fact, in this chapter the reader

is advised to think of tH(G) as roughly being the density of H in G. The connection

to subgraph densities makes understanding the relations between the functions tH(·) for

different graphs H one of the main objectives of extremal graph theory.

If A is the adjacency matrix of the graph G, then it follows immediately from the

definition of tH(G) that

tH(G) = E


 ∏

{u,v}∈E(H)

A(xu, xv)


 , (1.1)

where {xu}u∈V (H) are independent random variables taking values in V (G) uniformly at

random. The expression in the right hand side of (1.1) is quite common. Such averages

appear as Mayer integrals in classical statistical mechanics, Feynman integrals in quantum

field theory [56] and multicenter integrals in quantum chemistry [9].
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Chapter 1. Overview 2

In recent years, several research programs have been emerging in the direction of

developing an efficient framework for studying the relations between tH functions. Re-

flection positivity characterizations [21, 57], the language of graph limits [41, 2], and

Razborov’s flag algebras [44] are some remarkable examples.

It turns out that for C4, the cycle of size 4, the function tC4(G) carries interesting

information about G. Denote by Kn, the complete n-vertex graph. If tC4(G)1/4 is close

to tK2(G), then G “looks random” in certain aspects [7]. Such graphs are usually re-

ferred to as pseudo-random graphs. These observations belong to the same circle of ideas

employed by Szemerédi [58, 59] to prove his famous theorem on arithmetic progressions.

In fact, the main idea in the proof of Szemerédi’s theorem led to the establishment of

Szemerédi’s regularity lemma in [48], which roughly speaking, says that every graph can

be decomposed into a small number of subgraphs such that most of them are pseudo-

random. Another interesting fact about tC4 is that it can be used to define the 4-trace

norm of a matrix. More generally, for an integer k > 0, the 2k-trace norm of a matrix

can be defined through the function tC2k
. This fact, which has been known for at least 50

years since Wigner’s work on random matrices [63], gives a combinatorial interpretation

of the 2k-trace norm with many applications in graph theory (see for example [22, 34]).

Inspired by the fact that the cycles of even length correspond to norms, and the nu-

merous applications of these norms in graph theory, László Lovász posed the problem of

characterizing all graphs that correspond to norms.

Recently Gowers [26, 27] defined hypergraph generalizations of the C4 norm. The(kth

Gowers norm corresponds to k-uniform hypergraphs. These norms are sometimes referred

to as octahedral norms as they are defined through the densities of the face hypergraphs

of higher dimensional generalizations of octahedra. The first Gowers norm is the usual

L2 norm, and since graphs are 2-uniform hypergraphs, the second Gowers norm coin-

cides with the C4 norm. Subsequently Gowers [28] used these norms to established a

hypergraph regularity lemma, and a so-called counting lemma which roughly speaking
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says that a sufficiently pseudo-random graph contains small subhypergraphs with fre-

quencies that are the same as in a random hypergraph. This counting lemma easily

implies Szemerédi’s theorem [20] in its full generality, and even stronger theorems such

as Furstenberg-Katznelson’s multi-dimensional arithmetic progression theorem [55] (see

also [28]). The only previously known proof of the latter was through ergodic theory [25].

In fact, the arithmetic version of the Gowers norms has interesting interpretations in er-

godic theory, and has been studied from that aspect [35]. The discovery of the Gowers

norms led to a better understanding of the concept of pseudo-randomness, and provided

strong tools. For example, this norm plays an essential role in Green and Tao’s proof [32]

that the primes contain arbitrarily long arithmetic progressions. Also, the current best

bounds for the quantified version of Szemerédi’s theorem is through the so called “in-

verse theorems” for these norms [31, 29, 30, 27]. With all the known applications for the

Gowers norms, it seems natural to believe that studying the norms defined through tH(·)
for other graphs and hypergraphs might also lead to some interesting applications.

The purpose of this thesis, is to develop a common framework to study the norms

that are defined in a similar fashion. Our setting will be sufficiently general to include

all the Lp norms, arguably the most important class of norms. In fact, we establish that

the class of norms studied in this thesis, which we refer to as hypergraph norms, are a

natural generalization of the Lp norms, and we prove that they share many of the nice

properties of the Lp norms.

Among the key tools developed in this thesis is a Hölder type inequality. This inequal-

ity is extremely useful in the sequel and shall be applied frequently. One can think of it

as a common generalization of the classical Hölder inequality and the Gowers-Cauchy-

Schwarz inequality.

A rather surprising application of the above mentioned Hölder type inequality is to a

conjecture of Erdős, Simonovits and Sidorenko. Razborov used his flag algebras to prove
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a previously conjectured explicit formula for the function

f(p) = inf{tK3(G) : tK2(G) ≥ p},

which gives a tight asymptotic lower-bound for the density of triangles in G, in terms of

the edge density of G. What about graphs other than K3? In other words given a graph

H, what is the explicit formula for inf{tH(G) : tK2(G) ≥ p}? Despite all the powerful

machinery that has been developed in recent years [46, 45], finding a complete solution to

this question in its full generality seems to be far beyond reach at the moment. But when

H is a bipartite graph it seems that there is more hope. The Erdős-Simonovits-Sidorenko

conjecture says that for every bipartite graph H,

tH(G) ≥ tK2(G)|E(H)|.

For the random graph G(n, p), with high probability

tH(G(n, p)) = p|E(H)| ± o(1). (1.2)

So the Erdős-Simonovits-Sidorenko conjecture is equivalent to the statement that for

every bipartite graph H,

inf{tH(G) : tK2(G) ≥ p} = p|E(H)|,

where the infimum is taken over all finite graphs with tK2(G) ≥ p. Thus, roughly speak-

ing, the conjecture says that random graphs contain the smallest number of copies of

every bipartite graph. This had been verified previously for trees, the 3-dimensional

cube, and a few other families of bipartite graphs. As we shall see in Chapter 6, the

special case of the conjecture for paths, one of the simplest families of bipartite graphs, is

equivalent to the Blakley-Roy theorem [4] about matrices. What follows from our results

is that for certain graphs H, including all hypercubes, and for every subgraph K ⊆ H,

we have

inf{tH(G) : tK(G) ≥ p} = p|E(H)|/|E(K)|.
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This gives a sharp lower-bound for tH(G) in terms of not only tK2(G), but in terms of

every tK(G) for every subgraph K ⊆ H. For a constant 0 < q ≤ 1, setting p := q1/|E(K)|

in (1.2) we have tK(G(n, p)) = q ± o(1) and tK2(G(n, p)) = q|E(H)|/|E(K)| ± o(1). This

shows that random graphs are extremal in this case too. We hope that the application to

the Erdős-Simonovits-Sidorenko conjecture promises the discovery of more applications

of our results to problems in extremal combinatorics.

We also study the hypergraph norms from a geometric point of view. A large portion

of Banach space theory is devoted to the study of local properties of normed spaces.

These are the properties that depend only on finite dimensional subspaces of a normed

space. The two dual concepts of uniform convexity and uniform smoothness are among

the most important invariants in local theory of Banach spaces. Roughly speaking, a

normed space is uniformly convex if its unit ball is uniformly free of “flat spots”, and

a normed space is uniformly smooth if its unit ball is uniformly free of “corners”. The

notions of uniform smoothness and uniform convexity are local properties as they depend

only on the structure of the two-dimensional subspaces of a norm space. These notions

are first defined by Clarkson in [8], where he studied the smoothness and convexity of

Lp spaces. Clarkson [8] defined the modulus of smoothness and modulus of convexity

as quantified versions of the notions of uniform smoothness and uniform convexity, and

computed the modulus of smoothness of Lp spaces for 1 < p ≤ 2, and the modulus of

convexity of Lp spaces for 2 ≤ p < ∞. Later Hanner [33] completed Clarkson’s work

by computing the modulus of convexity of Lp spaces for 1 < p ≤ 2, and the modulus

of smoothness of Lp spaces for 2 ≤ p < ∞. For most examples of the natural normed

spaces, one can deduce the most important local invariants of a normed space from its

moduli of smoothness and convexity. Hence from the perspective of local theory it is

very desirable to compute these parameters. We shall discuss this further in Chapter 4.

Gowers norms are a very special case of hypergraph norms. But surprisingly some

of their key properties, and ideas from pseudo-randomness theory, will be needed in the
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study of the geometric properties of the hypergraph norms.

In Chapter 4 we determine the moduli of smoothness and convexity of hypergraph

norms. Our results in particular determine the moduli of smoothness and convexity of

Gowers norms. They also provide a unified proof for some previously known facts about

Lp and Schatten spaces, and generalize them to a wider class of norms. In certain cases

we can show a stronger result. Namely that the corresponding normed space satisfies

the so called Hanner inequality. This inequality has been proven to hold only for a few

spaces, namely the Lp spaces by Hanner [33], and the Schatten spaces Sp for p ≥ 4 and

1 ≤ p ≤ 4/3 by Ball, Carlen and Lieb [1]. We also prove a complex interpolation theorem,

and use it together with the Hanner inequality to obtain various optimum results in terms

of the constants involved in the definition of moduli of smoothness and convexity.

The rest of this thesis is organized as follows: Chapter 2 is a brief review of the

theorems and results of the elementary functional analysis and graph theory which we

will use in the subsequent chapters. In Chapter 3 we define the hypergraph norms,

and prove various results including the aforementioned Hölder type inequality in the

direction of obtaining a characterization theorem. Chapter 4 is devoted to the study

of the geometric properties of hypergraph norms. In Chapter 5 we translate some of

the results about hypergraph norms to the language of graphs, and also show that n-

dimensional cubes can be used to define norms. In Chapter 6 we apply the results from

Chapter 5 to the Erdős-Simonovits-Sidorenko conjecture. In Chapter 7 we discuss some

open problems.

Throughout this thesis we assume that the reader is familiar with the very basic

concepts and notations of graph theory, real analysis, and probability theory such as

graphs and subgraphs, path, cycle, Lebesgue integration, event, and random variables.

To see the definitions of the basic concepts of graph theory, refer to any textbook on

graph theory (such as [62, 5]), for real analysis see for example [19], and for probability

theory see [47].



Chapter 2

Background

The aim of this chapter is to introduce the necessary definitions, notations, and basic

results from functional analysis and graph theory for this thesis.

For n ∈ N, let [n] := {1, . . . , n}. For two disjoint sets X and Y , we shall sometimes

denote their union by X∪̇Y to emphasis the fact that they are disjoint.

For two functions f, g : R→ R+, we write f = o(g), if and only if

lim
x→∞

f(x)/g(x) = 0.

We write f = O(g), if there exists constants C, N > 0 such that f(x) ≤ Cg(x), for every

x ≥ N .

2.1 Functional analysis

2.1.1 Measure spaces

A σ-algebra over a set Ω is a nonempty collection F of subsets of Ω which includes ∅,
and is closed under complementation and countable unions of its members.

A measure space is a triple (Ω,F , µ) where F is a σ-algebra over Ω and µ : F →
R+ ∪ {+∞} satisfies the following axioms:

7
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• Null empty set: µ(∅) = 0.

• Countable additivity: if {Ei}i∈I is a countable set of pairwise disjoint sets in F ,

then

µ(∪i∈IEi) =
∑
i∈I

µ(Ei).

The function µ is called a measure, and the elements of F are called measurable sets.

A measure space M = (Ω,F , µ) is called σ-finite, if Ω is the countable union of

measurable sets of finite measure.

Every measure space in this thesis is assumed to be σ-finite.

Definition 2.1.1 For a set Ω, a collection R of subsets of Ω is called a ring if

• ∅ ∈ R.

• A,B ∈ R, then A ∪B ∈ R.

• A,B ∈ R, then A \B ∈ R.

The following theorem, due to Carathéodory, is one of the fundamental theorems in

measure theory.

Theorem 2.1.2 (Carathéodory’s extension theorem) Let R be a ring of subsets of

a given set Ω. One can always extend every σ-finite measure defined on R to the σ-algebra

generated by R; moreover, the extension is unique.

Consider two measure spaces M := (Ω,F , µ) and N := (Σ,G, ν). The product measure

µ×ν on Ω×Σ is defined in the following way: For F ∈ F and G ∈ G, define µ×ν(F×G) =

µ(F )×ν(G). So far we defined the measure µ×ν on A := {F ×G : F ∈ F , G ∈ G}. Note

that A is a ring in that ∅ ∈ A, and A is closed under complementation and finite unions

of its members. However, A is not necessarily a σ-algebra, as it is possible that A is not

closed under countable unions of its members. Let F × G be the σ-algebra generated
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by A, i.e. it is obtained by closing A under complementation and countable unions. It

should be noted that F × G is not the cartesian product of the two sets F and G, and

instead it is the σ-algebra generated by the cartesian product of F and G. Theorem 2.1.2

shows that µ × ν extends uniquely from A to a measure over all of F × G. We denote

the corresponding measure space by M×N which is called the product measure of M
and N .

Consider two measure spacesM = (Ω,F , µ) andN = (Σ,G, ν). A function f : Ω → Σ

is called measurable if the preimage of every set in G belongs to F . This in particular

implies that a function f : Ω → K (where K = R or K = C) is measurable if for every

x0 ∈ K and ε > 0, the preimage of the set {x : |x− x0| < ε} belongs to F .

2.1.2 Metric spaces

A metric space is an ordered pair (M, d) where M is a set and d is a metric on M , that

is, a function d : M ×M → R+ such that

• Non-degeneracy: d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x), for every x, y ∈ M .

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ M .

A sequence {xi}∞i=1 of elements of a metric space (M,d) is called a Cauchy sequence if

for every ε > 0, there exist an integer Nε, such that for every m,n ≥ Nε, we have

d(xm, xn) ≤ ε. A metric space (M, d) is called complete if every Cauchy sequence has a

limit in M . A metric space is compact if and only if every sequence in the space has a

convergent subsequence.

2.1.3 Basic inequalities

The most frequently used inequalities in functional analysis are due to Cauchy and

Schwarz, and Hölder.
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Theorem 2.1.3 (Cauchy-Schwarz inequality) Consider a measure spaceM = (Ω,F , µ).

For two measurable functions f, g : Ω → C we have

∣∣∣∣
∫

f(x)g(x)dµ(x)

∣∣∣∣ ≤
(∫

|f(x)|2dµ(x)

)1/2 (∫
|g(x)|2dµ(x)

)1/2

.

The Hölder inequality is a generalization of the Cauchy-Schwarz inequality.

Theorem 2.1.4 (Hölder’s inequality) Consider a measure space M = (Ω,F , µ). For

two functions f, g : Ω → C, and two reals 1 < p, q < ∞ with 1
p

+ 1
q

= 1, we have

∣∣∣∣
∫

f(x)g(x)dµ(x)

∣∣∣∣ ≤
(∫

|f(x)|pdµ(x)

)1/p (∫
|g(x)|qdµ(x)

)1/q

.

2.1.4 Normed spaces

By a normed space we mean a pair (V, ‖ · ‖), where V is a vector space over R or C, and

‖ · ‖ is a function from V to nonnegative reals satisfying

• (non-degeneracy): ‖x‖ = 0 if and only if x = 0.

• (homogeneity): For every scalar λ, and every x ∈ V , ‖λx‖ = |λ|‖x‖.

• (triangle inequality): For x, y ∈ V , ‖x + y‖ ≤ ‖x‖+ ‖y‖.

We call ‖x‖, the norm of x. A semi-norm is a function similar to a norm except that it

might not satisfy the non-degeneracy condition.

The spaces (C, | · |) and (R, | · |) are respectively examples of 1-dimensional complex

and real normed spaces.

Every normed space (V, ‖ · ‖) has a metric space structure where the distance of two

vectors x and y is ‖x− y‖. A complete normed space is called a Banach space.

Two norms ‖ · ‖ and ‖ · ‖′ over a vector space V are called equivalent, if there exist

constants C1, C2 > 0 such that for every x ∈ V , we have

C1‖x‖ ≤ ‖x‖′ ≤ C2‖x‖.
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When two norms are equivalent, their metric space structures induce the same topology

on the underlying vector space. The following theorem shows that in the finite dimen-

sional case all norms are equivalent.

Theorem 2.1.5 Let V be a finite dimensional vector space. Then all norms on V are

equivalent.

It can be deduced from Theorem 2.1.5 that every finite dimensional normed space is

complete and thus is a Banach space.

Consider two normed spaces X and Y . A bounded operator from X to Y , is a linear

function T : X → Y , such that

‖T‖ := sup
x6=0

‖Tx‖Y

‖x‖X

< ∞. (2.1)

The set of all bounded operators from X to Y is denoted by B(X,Y ). Note that the

operator norm defined in (2.1) makes B(X, Y ) a normed space.

A functional on a normed space X over C (or R) is a bounded linear map f from X

to C (respectively R), where bounded means that

‖f‖ := sup
x 6=0

|f(x)|
‖x‖ < ∞.

The set of all bounded functionals on X endowed with the operator norm, is called the

dual of X and is denoted by X∗. So for a normed space X over complex numbers,

X∗ = B(X,C), and similarly for a normed space X over real numbers, X∗ = B(X,R).

For a normed space X, the set BX := {x : ‖x‖ ≤ 1} is called the unit ball of X.

Note that by the triangle inequality, BX is a convex set, and also by homogeneity it

is symmetric around the origin, in the sense that ‖λx‖ = ‖x‖ for every scalar λ with

|λ| = 1. The non-degeneracy condition implies that BX has non-empty interior.

Every compact symmetric convex subset of Rn with non-empty interior is called a

convex body. Convex bodies are in one-to-one correspondence with norms on Rn. A
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convex body K corresponds to the norm ‖ · ‖K on Rn, where

‖x‖K := sup{λ ∈ R+ : λx ∈ K}.

Note that K is the unit ball of ‖ · ‖K . For a set K ⊆ Rn, define its polar conjugate as

K◦ = {x ∈ Rn :
∑

xiyi ≤ 1, ∀y ∈ K}. (2.2)

The polar conjugate of a convex body K is a convex body, and furthermore (K◦)◦ = K.

Consider a normed space X on Rn. For x ∈ Rn define Tx : Rn → R as Tx(y) :=

∑n
i=1 xiyi. It is easy to see that Tx is a functional on X, and furthermore every functional

on X is of the form Tx for some x ∈ Rn. For x ∈ Rn define ‖x‖∗ := ‖Tx‖. This shows

that we can identify X∗ with (Rn, ‖ · ‖∗). Let K be the unit ball of ‖ · ‖. It is easy to see

that K◦, the polar conjugate of K, is the unit ball of ‖ · ‖∗.

2.1.5 Hilbert Spaces

Consider a vector space V over K, where K = R or K = C. Recall that an inner product

〈·, ·〉 on V , is a function from V × V to K that satisfies the following axioms.

• Conjugate symmetry: 〈x, y〉 = 〈y, x〉.

• Linearity in the first argument: 〈ax+z, y〉 = a〈x, y〉+〈z, y〉 for a ∈ K and x, y ∈ V .

• Positive-definiteness: 〈x, x〉 > 0 if and only if x 6= 0, and 〈0, 0〉 = 0.

A vector space together with an inner product is called an inner product space.

Example 1 Consider a measure space M = (Ω,F , µ), and let H be the space of mea-

surable functions f : Ω → C such that
∫ |f(x)|2dµ(x) < ∞. For two functions f, g ∈ H

define

〈f, g〉 :=

∫
f(x)g(x)dµ(x).

It is not difficult to verify that the above mentioned function is indeed an inner product.
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An inner product can be used to define a norm on V . For a vector x ∈ V , define

‖x‖ =
√
〈x, x〉.

Lemma 2.1.6 For an inner product space V , the function ‖ ·‖ : x 7→
√
〈x, x〉 is a norm.

Proof. The non-degeneracy and homogeneity conditions are trivially satisfied. It re-

mains to verify the triangle inequality. Consider two vectors x, y ∈ V and note that by

the axioms of an inner product:

0 ≤ 〈x + λy, x + λy〉 = 〈x, x〉+ |λ|2〈y, y〉+ λ〈x, y〉+ λ〈x, y〉.

Now taking λ :=
√

〈x,x〉
〈y,y〉 × 〈x,y〉

|〈x,y〉| will show that

0 ≤ 2〈x, x〉〈y, y〉 − 2
√
〈x, x〉〈y, y〉|〈x, y〉|,

which leads to the triangle inequality.

A Hilbert space is a complete inner-product space.

2.1.6 The Lp spaces

Consider a measure space M = (Ω,F , µ). For 1 ≤ p < ∞, the space Lp(M) is the space

of all functions f : Ω → C such that

‖f‖p :=

(∫
|f(x)|pdµ(x)

)1/p

< ∞.

Strictly speaking the elements of Lp(M) are equivalent classes. Two functions f1 and f2

are equivalent and are considered identical, if they agree almost everywhere or equiva-

lently ‖f1 − f2‖p = 0.

Proposition 2.1.7 For every measure space M = (Ω,F , µ), Lp(M) is a normed space.
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Proof. Non-degeneracy and homogeneity are trivial. It remains to verify the triangle

inequality. By applying Hölder’s inequality:

‖f + g‖p
p =

∫
|f(x) + g(x)|pdµ(x) =

∫
|f(x) + g(x)|p−1|f(x) + g(x)|dµ(x)

≤
∫
|f(x) + g(x)|p−1|f(x)|dµ(x) +

∫
|f(x) + g(x)|p−1|g(x)|dµ(x)

≤
(∫

|f(x) + g(x)|pdµ(x)

) p−1
p

‖f‖p +

(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

‖g‖p

= ‖f + g‖p−1
p (‖f‖p + ‖g‖p),

which simplifies to the triangle inequality

Consider the set of natural numbers N with the counting measure. We shall use the

notation `p := Lp(N).

2.1.7 Schatten norms

Let A be a real or complex matrix. For 1 ≤ p < ∞, the p-th Schatten norm of A is

defined as

‖A‖Sp = (Tr(A∗A)p/2)1/p.

The p-th Schatten norm is sometimes referred to as the p-th Schatten-von Neumann

norm, or p-trace norm. Note that when A is an n× n matrix, ‖A‖Sp is just the `p norm

that is applied to the eigenvalues of |A| = (A∗A)1/2. This fact generalizes by the spectral

theorem to the infinite case.

It is well-known (but not trivial) that ‖ · ‖Sp is a norm. This can be deduced from

Theorem 2.1.8 below due to Schatten and von Neumann [50, 51, 52].

Theorem 2.1.8 Suppose that 1 ≤ p, q, r < ∞ are such that 1
p

+ 1
q

= 1
r
. For two n × n

matrices A and B we have

‖AB‖Sr ≤ ‖A‖Sp‖B‖Sq .

For further reading about the Schatten norms we refer the reader to [10].
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2.1.8 The Hahn-Banach theorem

Consider a normed space X. Recall that X∗, the dual of X, is the set of bounded

functionals on X. In this section we want to answer the following question: Are there

enough elements in X∗ to distinguish the elements of X? Equivalently, given 0 6= x ∈ X,

is there an element f ∈ X∗ such that f(x) 6= 0? Since X is a normed space one wishes

more. We want to obtain information about X by looking at X∗. To be more precise we

know that

‖x‖ ≥ sup{f(x) : ‖f‖ = 1, f ∈ X∗},

but is the right-hand side equal to ‖x‖? In fact, based on what we have presented so far,

we do not even know that for every non-zero normed space X, X∗ 6= {0}.
The key to answer the above questions is the Hahn-Banach theorem.

Theorem 2.1.9 (Hahn-Banach theorem) Let X be a normed space over a field K

where K = R or K = C, and E be a subspace of X. Suppose that φ : E → K is a

functional with ‖φ‖ ≤ 1. It is possible to extend φ to a functional ψ : X → K such that

‖ψ‖ ≤ 1.

The following corollary to Theorem 2.1.9 answers the questions discussed above.

Corollary 2.1.10 Let X be a normed space over a field K where K = R or K = C, and

x0 ∈ X. There exists a functional ψ : X → K such that ‖φ‖ = 1, and ψ(x0) = ‖x0‖.

Proof. Let E be the 1-dimensional subspace of X generated by x0. There is a unique

φ : E → R with φ(x) = x0. Note that ‖φ‖ ≤ 1. Now one can apply Theorem 2.1.9 to

extend φ to a functional on X that satisfies the requirements of the corollary.

2.1.9 Finite representations of normed spaces

For a real λ ≥ 1, a normed space X is said to be λ-finitely representable in a normed space

Y , if for every finite dimensional subspace E ⊆ X, there exists a linear map T : E → Y
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such that ‖x‖ ≤ ‖Tx‖ ≤ λ‖x‖, for every x ∈ E. If for every λ > 1, X is λ-finitely

representable in Y , then we simply say X is finitely representable in Y . Roughly speaking

this means that for every finite dimensional subspace E of X, one can find a subspace

of Y that is an “almost” identical copy of E. Finite representations of normed spaces

are important when one studies the “local” properties of the normed spaces, i.e. the

properties that depend only on finite dimensional subspaces of a normed space. For

example, as we shall see in Chapter 4 a normed space is called uniformly convex if for

every ε > 0,

0 < inf

{
1−

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ 2ε

}
.

Note that being uniformly convex is a property that depends only on two-dimensional

subspaces of the normed space, so it is a local property. It is easy to see that if X is

not uniformly convex, and X is finitely representable in Y , then Y is also not uniformly

convex.

It is not difficult to see that for 1 ≤ p < ∞, every Lp space is finitely representable

in `p. The following beautiful theorem due to Dvoretzky [11] plays an important role in

local theory of normed spaces.

Theorem 2.1.11 (Dvoretzky’s theorem) The space `2 is finitely representable in ev-

ery infinite dimensional normed space.

For a proof we refer the reader to [43].

2.2 Graph theory

A graph G is a pair (V,E) comprising a finite set V of vertices, and a set E of edges, where

every edge is a 2-element subset of vertices. Sometimes for an edge {u, v} we abbreviate

it to just uv. The adjacency matrix of a graph G is a |V (G)| × |V (G)| matrix AG, where

rows and columns are indexed by vertices of G, and AG(u, v) is equal to 1 if uv ∈ E, and

it is equal to 0 otherwise.
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For an integer n ≥ 3, Cn denotes the cycle of length n, and for an integer n ≥ 1, Kn

denotes the complete graph on n vertices.

2.2.1 Graph homomorphisms

For two graphs H and G, a homomorphism from H to G is a mapping h : V (H) → V (G)

such that for each edge {u, v} of H, {h(u), h(v)} is an edge of G. An isomorphism from

G to H, is a bijection h : V (G) → V (H), such that h is a homomorphism from G to

H, and h−1 is a homomorphism from H to G. In other words uv ∈ E(G) if and only if

h(u)h(v) ∈ E(H).

Two graphs G and H are called isomorphic if there exists an isomorphism between

them. An isomorphism from G to itself is called an automorphism. Note that the set of

automorphisms of a graph G with the composition operator constitutes a group Aut(G)

which is called the automorphism group of G.

2.2.2 Graph densities vs homomorphism densities

Let hH(G) and hinj
H (G) be respectively the number of homomorphisms, and injective

homomorphisms from H to G. Since an injective homomorphism is a homomorphism

that maps vertices of H to distinct vertices of G, the number of copies of H inside G

is equal to 1
|Aut(H)|h

inj
H (G). Many classical theorems in extremal graph theory state some

fact about the relation between the functions hinj
H (·) for different graphs H. For example,

Turán’s theorem says that the maximum number of edges in an n-vertex triangle-free

graph is bn2/4c. In other words if hinj
K2

(G) > 2bn2/4c, then hinj
K3

(G) > 0.

We also normalize hH and hinj
H in the following way.

Definition 2.2.1 For two graphs H and G, tH(G) is the probability that a random map-

ping from V (H) to V (G) is a homomorphism, and similarly tinj
H (G) is the probability that

a random injective mapping from V (H) to V (G) defines a homomorphism.



Chapter 2. Background 18

Remark 2.2.2 Note that

tinj
H (G) =

hinj
H (G)

|V (G)|(|V (G)| − 1) . . . (|V (G)| − |V (H)|+ 1)
.

which shows that the number of copies of H in G is equal to

(|V (G)|(|V (G)| − 1) . . . (|V (G)| − |V (H)|+ 1))

|Aut(H)| tinj
H (G).

Similarly

tH(G) = hH(G)/|V (G)||V (H)|.

The following easy lemma [41] shows that tH and tinj
H are close up to an error term of

o(1):

Lemma 2.2.3 For every two graphs H and G,

|tH(G)− tinj
H (G)| ≤ 1

|V (G)|
(|V (H)|

2

)
= o|V (G)|→∞(1).

Proof. Set n := |V (G)| and k := |V (H)|. Trivially hinj
H (G) ≤ hH(G), and

tH(G) =
hH(G)

nk
≥ hinj

H (G)

nk
= tinj

H (G)
n(n− 1) . . . (n− k + 1)

nk
.

But

tinj
H (G)

n(n− 1) . . . (n− k + 1)

nk
= tinj

H (G)
k−1∏
i=0

(
1− i

n

)
≥ tinj

H (G)

(
1−

(
k

2

)
1

n

)
,

which shows that

tH(G) ≥ tinj
H (G)

(
1−

(
k

2

)
1

n

)
≥ tinj

H (G)−
(

k

2

)
1

n
. (2.3)

On the other hand, by the beginning of the inclusion-exclusion formula, we have

hinj
H (G) ≥ hH(G)−

∑

H′
hH′(G),
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where the sum is over all graphs H ′ that are obtained from H by identifying two of the

vertices. The number of such graphs is
(

k
2

)
, and hence

tinj
H (G) ≥ hinj

H (G)

nk
≥ tH(G)−

∑

H′

hH′(G)

nk
≥ tH(G)−

(
k

2

)
1

n
. (2.4)

The assertion of the lemma follows from (2.3) and (2.4).

Although tH(G) itself is an object of interest, extremal graph theory more often

concerns tinj
H (G). However, Lemma 2.2.3 shows that in many situations one can study

tH(·) instead, and the results will be automatically translated to statements about tinj
H (·).

There are major advantages in working with tH as it behaves much more nicely than tinj
H .

This will become clear in the sequel.

Let us start by looking at an example. Consider C3, the cycle of length 3, and an

arbitrary graph G. We have

hinj
C3

(G) :=
∑

{AG(x1, x2)AG(x2, x3)AG(x3, x1) : xi ∈ V (G) and xi’s are distinct},
(2.5)

while

hC3(G) :=
∑

x1,x2,x3∈V (G)

AG(x1, x2)AG(x2, x3)AG(x3, x1) = Tr(A3
G). (2.6)

Since the trace of a symmetric matrix is the sum of its eigenvalues, Tr(A3
G) =

∑
λ3

i ,

where {λi}|V (G)|
i=1 are eigenvalues of AG. Note that (2.6) has a nice formula which, for

example, relates hC3(G) to the eigenvalues of AG. But the condition that the xi’s are

distinct in (2.5) prevents us from getting such a nice formula.

For graphs H and G, let xu (u ∈ V (H)) be independent random variables that take

values in V (G) uniformly at random. We have

tH(G) := E
∏

uv∈E(H)

AG(xu, xv), (2.7)

If in (2.7) we take the expectation conditioned on xu being distinct, then we obtain a

formula for tinj
H (G). However, we then lose the independence of the random variables xu.
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2.2.3 Tensors and Blowups

Consider an arbitrary graph G, and a positive integer k. The k-blowup of G is the graph

obtained by replacing every vertex of G with k different vertices, and a copy of u is

adjacent to a copy of v in the blowup graph if and only if u is adjacent to v in G.

Let H and G be graphs, and G′ be the k-blowup of G, for a positive integer k. Let

π : V (G′) → V (G) be the map defined by π(u) := v, if and only if u is one of the copies

of v in G′. Consider a uniform random mapping h from V (H) to V (G′). Note that π ◦ h

is a uniform random mapping from V (H) to V (G). Furthermore, h is a homomorphism

from H to G′, if and only if π ◦ h is a homomorphism from H to G. We conclude the

following lemma.

Lemma 2.2.4 Let G′ be the k-blowup of a graph G, for a positive integer k. Then for

every graph H,

tH(G) = tH(G′).

Another graph operation that behaves nicely with respect to tH functions is the tensor

product. Given two graphs G1 and G2, their tensor product G1 ⊗ G2 is the graph with

vertex set V (G1)×V (G2), where there is an edge between (u, v) and (u′, v′) if and only if

uu′ ∈ E(G1) and vv′ ∈ E(G2). Consider a graph H, and for every u ∈ H let xu = (yu, zu)

be a random variable taking values in V (G1⊗G2) = V (G1)×V (G2) uniformly at random.

Then

tH(G1 ⊗G2) = E
∏

uv∈E(H)

AG1⊗G2(xu, xv) = E
∏

uv∈E(H)

AG1(yu, yv)AG2(zu, zv)

=


E

∏

uv∈E(H)

AG1(yu, yv)





E

∏

uv∈E(H)

AG2(zu, zv)


 = tH(G1)tH(G2).

We conclude the following lemma.

Lemma 2.2.5 Let G1 and G2 be graphs. For every graph H,

tH(G1 ⊗G2) = tH(G1)tH(G2).



Chapter 2. Background 21

In the sequel for a positive integer k and a graph G, we denote

G⊗k := G⊗ . . .⊗G︸ ︷︷ ︸
k copies

.

2.2.4 Graphons

In [41], Lovász and Szegedy studied limits of dense graphs. They called a sequence of

finite graphs {Gi}∞i=1 convergent if, for every finite graph H, the sequence {tH(Gi)}∞i=1

converges. It is not difficult to construct convergent sequences {Gi}∞i=1 such that their

limits cannot be recognized as graphs, i.e. there is no graph G, with limi→∞ tH(Gi) =

tH(G) for every H. It is exactly for this reason that the extremal solution to a problem

is often stated as a sequence of graphs instead of a single graph. Let us give an example

to explain this. Let 0 < p < 1 be a constant. Consider the following problem: Assuming

tK2(G) ≥ p, what is the infimum of tC4(G)? As we shall see in Chapter 6, tC4(G) ≥ p4,

for every graph G satisfying tK2(G) ≥ p. For an integer n > 0, let Gn be an instance

of the Erdős-Rényi random graph G(n, p) where each edge is present independently with

probability p. It is standard (see [41]) that almost surely limn→∞ tK2(Gn) = p and

limn→∞ tC4(Gn) = p4. This proves the existence of a sequence of graphs {Gn}∞n=1 such

that limn→∞ tK2(Gn) = p and limn→∞ tC4(Gn) = p4. On the other hand, as we shall see

below, there is no graph G with tK2(G) = p and tC4(G) = p4. To remedy this and similar

situations we have to extend the space of graphs, and represent the limits of convergent

sequences of graphs as an object in this extended space. Then in this extension we will

be able to find an object w such that tK2(w) = p and tC4(w) = p4. Let

Ws := {w : [0, 1]2 → [0, 1]|w is measurable, and w(x, y) = w(y, x) for every x, y ∈ [0, 1]}.

The elements of Ws are called graphons. Note that the definition of tH as stated in (2.7)

can be adopted for graphons as well: For graphs H, let xu (u ∈ V (H)) be independent
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random variables that take values in [0, 1] uniformly at random. For w ∈ Ws define

tH(w) := E
∏

uv∈E(H)

w(xu, xv). (2.8)

Consider a graph G with vertex set {1, 2, . . . , n}. Define wG : [0, 1]2 → {0, 1} as follows.

Let wG(x, y) := AG(dxne, dyne) if x, y ∈ (0, 1], and if x = 0 or y = 0, set wG to 0. By

comparing (2.7) and (2.8) trivially for every H and G,

tH(G) = tH(wG).

This shows that wG contains sufficient information about G so that one can recover the

values of tH(G) for every H. In that sense one can consider the space of graphons Ws as

an extension of the space of finite graphs. However, one should be careful as it is possible

that wG = wG′ , for two different graphs G 6= G′ . Indeed it is not difficult to see that the

graphon corresponded to G is the same as the graphon corresponded to its k-blowup.

Similar to the graph case, a sequence of graphons {wi}∞i=1 is called convergent if

for every graph H, {tH(wi)}∞i=1 converges. The following theorem, due to Lovász and

Szegedy, shows that if a sequence {tH(wi)}∞i=1 converges then the limit can be represented

as a graphon.

Theorem 2.2.6 (Lovász-Szegedy [41]) For every convergent sequence {wi}n
i=1 of graphons,

there exists a graphon w such that for every graph H,

lim
i→∞

tH(wi) = tH(w).

In the space of graphons, the system of equations tK2(w) = p and tC4(w) = p4 has the

unique solution w = p (see [40]). Since for 0 < p < 1, there is no graph G with wG = p,

it follows that there is no graph G with tK2(G) = p and tC4(G) = p4.

The language of the homomorphism densities and graphons gives a neater nature

to some problems in extremal graph theory. To reach a comparison, let us consider

the statement that we discussed above: tC4(w) ≥ p4 if tK2(w) ≥ p, and moreover the
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system of equations tK2(w) = p and tC4(w) = p4 has the unique solution w = p. The

translation of the first part of this statement to the language of the classical extremal

graph theory will be the following: “For a constant p and a graph G with n vertices, if

|E(G)| ≥ pn2

2
(1± o(1)), then #(C4, G) ≥ p4 n4

8
(1± o(1)), where #(C4, G) is the number

of copies of a cycle of length 4 in G.” Since the statement is asymptotic, to show its

tightness one needs to introduce a proper sequence of graphs, while in the graphon case,

the graphon w = p shows the tightness of the analogous statement. Finally the second

part of the statement which talks about the uniqueness does not translate directly and

naturally to the language of the classical extremal graph theory.

The following theorem shows that the set {wG : G is a finite graph} is dense in Ws,

or in other words Ws is the closure of {wG : G is a finite graph}.

Theorem 2.2.7 (Lovász-Szegedy [41]) For every graphon w, there exists a sequence

of graphs {Gi}∞i=1 such that {wGi
}∞i=1 converges to w.

2.3 Gowers Norms

In this section we define the Gowers norms. The kth Gowers norm is defined on the

set of measurable functions f : [0, 1]k → R. For k = 1, the Gowers norm of a function

f : [0, 1] → R is its usual L2 norm. Many key properties of Gowers norms will become

apparent for k = 2. The second Gowers norm coincides with the C4 norm.

2.3.1 C4 norm

For a measurable function w : [0, 1]2 → R, its C4 norm is defined as

‖w‖C4 := (Ew(x0, y0)w(x1, y0)w(x1, y1)w(x0, y1))
1/4 . (2.9)
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Note that for a symmetric w, we have ‖w‖C4 = (tC4(w))1/4 . For four measurable functions

w1, w2, w3, w4 : [0, 1]2 → R, we denote

〈w1, w2, w3, w4〉C4 := Ew1(x0, y0)w2(x1, y0)w3(x0, y1)w4(x1, y1).

Lemma 2.3.1 Consider four measurable functions w1, w2, w3, w4 : [0, 1]2 → R. Then

〈w1, w2, w3, w4〉C4 ≤ ‖w1‖C4‖w2‖C4‖w3‖C4‖w4‖C4 . (2.10)

Proof. The proof is by applying the Cauchy-Schwarz inequality iteratively.

L.H.S. of (2.10) = Ex0,x1 (Ey0w1(x0, y0)w2(x1, y0)) (Ey1w3(x0, y1)w4(x1, y1))

≤ (
Ex0,x1 (Ey0w1(x0, y0)w2(x1, y0))

2)1/2 ×
(
Ex0,x1 (Ey1w3(x0, y1)w4(x1, y1))

2)1/2
(2.11)

Now note that by change of variable

Ex0,x1 (Ey0w1(x0, y0)w2(x1, y0))
2 = Ex0,x1 (Ey0w1(x0, y0)w2(x1, y0))×

(Ey1w1(x0, y1)w2(x1, y1))

= Ew1(x0, y0)w2(x1, y0)w1(x0, y1)w2(x1, y1)

= 〈w1, w2, w1, w2〉C4 , (2.12)

and

(2.12) = Ey0,y1 (Ex0w1(x0, y0)w1(x0, y1)) (Ex1w2(x1, y0)w2(x1, y1))

≤ (
Ey0,y1 (Ex0w1(x0, y0)w1(x0, y1))

2)1/2 (
Ey0,y1 (Ex1w2(x1, y0)w2(x1, y1))

2)1/2

= ‖w1‖2
U4
‖w2‖2

U4
(2.13)

Similarly

Ex0,x1 (Ey1w3(x0, y1)w4(x1, y1))
2 ≤ ‖w3‖2

U2
‖w4‖2

U2
.

Putting back everything in (2.11) leads to (2.10).
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Proposition 2.3.2 The C4 norm satisfies the axioms of a norm.

Proof. The homogeneity is trivial. Suppose that ‖w‖C4 = 0 for w : [0, 1]2 → R. By

(2.10), for f, g : [0, 1] → R we have

|Ef(x)w(x, y)g(y)| ≤ ‖f‖4‖w‖C4‖g‖4‖1‖C4 = 0.

This implies that w = 0. Let us now verify the triangle inequality. For w1, w2 : [0, 1]2 → R

‖w1 + w2‖4
C4

= 〈w1 + w2, w1 + w2, w1 + w2, w1 + w2〉C4

= 〈w1, w1 + w2, w1 + w2, w1 + w2〉C4 + 〈w2, w1 + w2, w1 + w2, w1 + w2〉C4

≤ ‖w1‖C4‖w1 + w2‖3
C4

+ ‖w2‖C4‖w1 + w2‖3
C4

The following proposition which we state without a proof reveals the importance of

the C4 norm from the point of view of extremal combinatorics (for a proof see [28]).

Proposition 2.3.3 Consider two graphons w1, w2 ∈ Ws. For every graph H,

|tH(w1)− tH(w2)| ≤ |E(H)| × ‖w1 − w2‖C4 .

The C4 norm is closely related to Schatten norms discussed in Section 2.1.7. In fact, for

a real-valued matrix A, we have

‖A‖S4 =
(
Tr(AtA)2

)1/4
=

(∑
A(x0, y0)A(x1, y0)A(x1, y1)A(x0, y1)

)1/4

. (2.14)

Comparing (2.14) to (2.9) shows that apart from some small technicalities the C4 norm

and the 4-Schatten norm are basically the same norms. In fact, one can define the

C4 norm by defining a proper trace function for measurable functions w : [0, 1]2 → R.

However, since that is not relevant to the purpose to this thesis we shall not discuss it

further in this section.

The fact that ‖ · ‖C4 is a norm was long known due to its connection to the Schatten

norms. To the best of the author’s knowledge, most of the known proofs for the fact
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that Schatten norms satisfy the axioms of norms are through spectral theory. However,

the above proof to Lemma 2.3.1 is more recent [26], and its importance is in that it

generalizes to k-variable functions, as we shall see in Section 2.3.2.

2.3.2 Gowers norms

Gowers norms are generalizations of the C4 norm to k-variable functions. For a function

f : [0, 1]k → R, its k-th Gowers uniformity norm is defined as

‖f‖Uk
:=


E

∏

(i1,...,ik)∈{0,1}k

f(x1,i1 , . . . , xk,ik)




2−k

.

Note that setting k = 2 in the above formula gives the C4 norm defined in (2.9).

For e ∈ {0, 1}k, let fe : [0, 1]k → {0, 1} be measurable functions. Define

〈{fe}e∈{0,1}k〉Uk
= E

∏

e=(i1,...,ik)∈{0,1}k

fe(x1,i1 , . . . , xk,ik)

The following lemma which generalizes Lemma 2.3.1 is called the Gowers-Cauchy-Schwarz

inequality as it reminisces the classical Cauchy-Schwarz inequality.

Lemma 2.3.4 (Gowers-Cauchy-Schwarz inequality) For e ∈ {0, 1}k, let fe : [0, 1]k →
{0, 1} be measurable functions. Then

〈{fe}e∈{0,1}k〉Uk
≤

∏

e∈{0,1}k

‖fe‖Uk
.

Similar to the proof of Proposition 2.3.2, one can use Lemma 2.3.4 to show that ‖ · ‖Uk

satisfies the axioms of a norm. We shall present the definition of Gowers norms for

complex functions in Chapter 3.
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Product Norms

Gowers in [26, 27] introduced the Gowers norms as a generalization of the C4-norm to

measure the amount of pseudo-randomness in the context of hypergraphs. Since then

these norms have became common tools in combinatorics, combinatorial number theory,

and computer science. Gowers norms, apart from their many remarkable applications,

are also interesting from a different point of view. Namely Gowers’ proof that they

satisfy the axioms of norms, although simple, is different from the common proofs that

the C4 norm is a norm. The C4 norm of a graph G can be defined as (
∑

λ4
i )

1/4
, where

λi are the eigenvalues of the adjacency matrix of the graph, and most common proofs

in this case are based on this spectral interpretation of the norm. But in the context of

hypergraphs and the general Gowers norms, one does not have access to spectral theory,

and Gowers’ proof proceeds by iteratively applying the Cauchy-Schwarz inequality. This

new approach was an indication that even in the context of graphs, there might be other

norms that are defined in a similar fashion to the Gowers norms.

Recall from Section 2.3.1 that for a symmetric measurable map w : [0, 1]2 → R, the

C4 norm is defined as ‖w‖C4 := tC4(w)1/4. Lovász asked for which graphs H, tH(·)1/|E(H)|

defines a norm. In this chapter, we take a more general approach, and shall not restrict

ourselves to the norms that are defined through graphs. However, in Chapter 5, we shall

27



Chapter 3. Product Norms 28

revisit Lovász’s question, and state the consequences of the results developed in this

chapter to that problem.

Let us start by giving some examples of normed spaces. Consider a measurable

function f : [0, 1] → C. For 1 ≤ p < ∞, the Lp norm of f is defined as

‖f‖p :=

(∫
|f(x)|pdx

)1/p

=

(∫
f(x)p/2f(x)

p/2
dx

)1/p

. (3.1)

Next consider a measurable function f : [0, 1]2 → C. Since f is a complex-valued function

the Gowers 2-uniformity norm of f is defined as

‖f‖U2 :=

(∫
f(x0, y0)f(x1, y1)f(x0, y1)f(x1, y0)dx0dx1dy0dy1

)1/4

. (3.2)

Note that there are similarities between (3.1) and (3.2): Their underlying vector spaces

are function spaces, and the norm of a function f is defined by a formula of the form
(∫

Π
)1/p

, where p > 0 and Π is a product which involves different copies of the powers

of f and f . The purpose of this chapter is to develop a common framework to study the

norms that are defined in a similar fashion. We establish that such norms are natural

generalizations of the Lp norms, and we prove that they share many of the nice properties

of the Lp norms.

For now, let us focus on two-variable functions f : [0, 1]2 → C. For finite sets V1, V2

and functions α, β : V1 × V2 → R+, consider

‖f‖(α,β) :=




∫ ∏

(i,j)∈V1×V2

f(xi, yj)
α(i,j)

∏

(i,j)∈V1×V2

f(xi, yj)
β(i,j)




1/t

, (3.3)

where t :=
∑

(i,j)∈V α(i, j) + β(i, j). The question that we study is: for which α, β, does

the function ‖ · ‖(α,β) define a norm? For example both formulas

‖f‖2U2 := ‖f 2‖1/2
U2

=

(∫
f(x0, y0)

2f(x1, y1)
2f(x0, y1)

2
f(x1, y0)

2
dx0dx1dy0dy1

)1/8

,

(3.4)

and

(∫
|f(x0, y0)|

√
2|f(x1, y1)|

√
2|f(x0, y1)||f(x1, y0)|dx0dx1dy0dy1

)1/(2
√

2+2)

, (3.5)
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can be defined as ‖ · ‖(α,β) for proper choices of functions α and β. They are both always

nonnegative, and homogenous with respect to scaling. But do they satisfy the triangle

inequality? One of our main results, Theorem 3.4.1, says that if ‖ · ‖(α,β) satisfies the

triangle inequality, then one of the following two conditions hold:

• Type I: There exists a constant s ≥ 1 such that α(i, j) = β(i, j) ∈ {0, s/2}, for

every (i, j) ∈ V1 × V2;

• Type II: For every (i, j) ∈ V1 × V2, α(i, j) = β(i, j) = 0, α(i, j) = 1− β(i, j) = 0,

or 1− α(i, j) = β(i, j) = 0.

It follows from the above result that neither of (3.4) and (3.5) satisfies the triangle

inequality. The Lp norm ‖f‖p = (
∫ |f(x, y)|p)1/p is an example of a norm of Type I, and

‖ · ‖U2 defined in (3.2) is an example of a norm of Type II.

As we shall see in Remark 3.4.4 it is not true that if (α, β) is of Type I or of Type II,

then ‖ · ‖(α,β) satisfies the triangle inequality.

3.1 Notations and Definitions

In this section we introduce some notation that will help us to generalize Gowers norms.

We have already seen the 2-variable case in (3.3), and the reader is encouraged to have

that example in mind while reading the following next few paragraphs. Let k > 0 be an

integer, V1, . . . , Vk be finite nonempty sets and V := V1× . . .× Vk. For α, β : V → R, we

call the pair H = (α, β) a k-hypergraph pair. The size of H is defined as

|H| :=
∑
ω∈V

|α(ω)|+ |β(ω)|.

When we say H = (α, β) takes only integer values, we mean that ran(α), ran(β) ⊆ Z.

Consider two k-hypergraph pairs: H = (α, β) over V = V1×. . .×Vk, and H ′ = (α′, β′)

over W = W1 × . . . ×Wk. An isomorphism from H to H ′ is a k-tuple h = (h1, . . . , hk)
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such that hi : Vi → Wi are bijections satisfying

α(ω) = α′(h(ω)), β(ω) = β′(h(ω)),

for every ω = (ω1, . . . , ωk) ∈ V , where h(ω) := (h1(ω1), . . . , hk(ωk)). We say H is

isomorphic to H ′, and denote it by H ∼= H ′, if there exists an isomorphism from H to H ′.

Let M = (Ω,F , µ) be a measure space. Every ω = (ω1, . . . , ωk) ∈ V defines a

projection from ΩV1 × . . .× ΩVk to Ωk in the following way: For

x = ({x1,v}v∈V1 , {x2,v}v∈V2 , . . . , {xk,v}v∈Vk
) ∈ ΩV1 × . . .× ΩVk ,

we have

ω(x) := (x1,ω1 , . . . , xk,ωk
) ∈ Ωk.

For a measurable function f : Ωk → C, let fH : ΩV1 × . . .× ΩVk → C be defined as

fH(x) :=

(∏
ω∈V

f(ω(x))α(ω)

)(∏
ω∈V

f(ω(x))β(ω)

)
,

where here, and in the sequel we always assume 00 = 1. As we discussed above we want

to use hypergraph pairs to construct normed spaces.

Definition 3.1.1 Consider a k-hypergraph pair H = (α, β) with α, β ≥ 0, and a measure

space M = (Ω,F , µ). Let LH(M) be the set of functions f : Ωk → C with ‖ |f | ‖H < ∞,

where for a measurable function f : Ωk → C,

‖f‖H :=

(∫
fH

)1/|H|
. (3.6)

A hypergraph pair is called norming (semi-norming), if ‖·‖H defines a norm (semi-norm)

on LH(M) for every measure space M = (Ω,F , µ).

Remark 3.1.2 Note that Definition 3.1.1 does not require LH(M) to be a vector space.

However, if ‖ · ‖H satisfies the axioms of a semi-norm, then LH(M) will automatically

become a vector space.



Chapter 3. Product Norms 31

Remark 3.1.3 As the reader might have noticed, the variables and the infinitesimals

are missing from the integral in (3.6). To keep the notation simple, here and in the

sequel when there is no ambiguity we will omit the variables and infinitesimals from the

integrals.

Remark 3.1.4 If H ∼= H ′, then for every function f we have
∫

fH =
∫

fH′
.

Lemma 3.1.5 Consider a k-hypergraph pair H. If M = (Ω,F , µ) is a measure space,

then for every f ∈ LH(M), we have ‖f‖H ≤ ‖f‖p, where p := |H|.

Proof. Suppose that H is defined over V := V1× . . .×Vk. Using Hölder’s inequality, we

have

∫
fH ≤

∫ ∏
ω∈V

|f(ω(x))|α(ω)+β(ω)

≤
∏
ω∈V

(∫
|f(ω(x))||H|

)α(ω)+β(ω)
|H|

=
∏
ω∈V

(∫
|f(x)||H|

)α(ω)+β(ω)
|H|

= ‖f‖|H|p .

For a measure space (Ω,F , µ), let us call a complex-valued function f : Ωk → C

simple, if there exists a partition of Ω into finitely many measurable sets Ω1, . . . , Ωm such

that f is a constant on Ωi1 × . . .× Ωik for every choice of i1, . . . , ik ∈ {1, . . . ,m}.

Corollary 3.1.6 Let M = (Ω,F , µ) be a measure space. For every semi-norming k-

hypergraph pair H, the set of simple functions is dense in LH(M).

Proof. Suppose that H is a k-hypergraph pair over V := V1 × . . . × Vk. Consider

f ∈ LH(M). Since fH is integrable, for every ε > 0, there exists a measurable set Σ ⊆ Ω

such that µ(Σ) < ∞ and ∣∣∣∣
∫
|f |H −

∫

ΣV

|f |H
∣∣∣∣ ≤ ε.
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Hence setting p := |H|, and denoting by 1Σk the indicator function of Σk ⊆ Ωk,

‖f − f1Σk‖H =

∣∣∣∣
∫
|f(1− 1Σk)|H

∣∣∣∣
1/p

=

∣∣∣∣
∫
|f |H −

∫
|f1Σk |H

∣∣∣∣
1/p

≤
∣∣∣∣
∫
|f |H −

∫

ΣV

|f |H
∣∣∣∣
1/p

≤ ε1/p.

Trivially there exists a simple measurable function g : Σk → C such that
(∫

Σk |f − g|p)1/p ≤
ε. Now by Lemma 3.1.5,

‖f1Σk − g‖H ≤ ‖f1Σk − g‖p ≤ ε.

We conclude that

‖f − g‖H ≤ ‖f − f1Σk‖H + ‖f1Σk − g‖H ≤ ε1/p + ε.

Since ε was an arbitrary constant, the assertion of the corollary follows.

Proposition 3.1.7 A k-hypergraph pair H is norming (semi-norming), if ‖ · ‖H defines

a norm (semi-norm) on LH({1, . . . , m}), for every positive integer m, where {1, . . . ,m}
is endowed with the counting measure.

Proof. We only prove the case where H is a semi-norming hypergraph pair, and the

proof of the case where H is norming follows from the characterization of semi-norming

hypergraphs that are not norming in Section 3.4.3.

Let H be a k-hypergraph pair over V := V1× . . .×Vk. Consider an arbitrary measure

space M = (Ω,F , µ).

If
∫

fH 6∈ R+, for a function f ∈ LH(M), then by Corollary 3.1.6 there exists a simple

function g ∈ LH(M) with
∫

gH 6∈ R+. Since g is simple, one can partition Ω into finitely

many measurable sets Ω1, . . . , Ωm such that g is a constant on Ωi1 × . . . × Ωik for every

choice of i1, . . . , ik ∈ {1, . . . , m}. Now define g̃ : [m]k → C by setting g̃(a1, . . . , ak) to be

equal to the value of g on Ωi1 × . . . × Ωik multiplied by µ(Ωi1) × . . . × µ(Ωik). Trivially
∫
[m]V

g̃H =
∫

gH 6∈ R+ which shows that ‖ · ‖H is not a semi-norm on LH({1, . . . , m}).



Chapter 3. Product Norms 33

Similarly if the triangle inequality fails for LH(M), then by Corollary 3.1.6, there

exist simple functions f, g for which the triangle inequality fails. But similar to the

previous case this shows that for some positive integer m, the triangle inequality fails in

LH({1, . . . , m}).
As one would suspect from Definition 3.1.1, the function ‖ · ‖H is not a priori a norm.

We will pursue the question: “Which hypergraph pairs are norming (semi-norming), and

what are the properties of the normed spaces defined by them?”

Remark 3.1.8 Let V1, . . . , Vk be arbitrary finite sets. For ψ ∈ V1 × . . .× Vk, we denote

by 1ψ the k-hypergraph pair (δψ, 0), where δψ is the Dirac’s delta function: δψ(ω) = 1 if

ω = ψ, and δψ(ω) = 0 otherwise.

We will apply arithmetic operations to hypergraph pairs: For example for two hy-

pergraph pairs H1 = (α1, β1) and H2 = (α2, β2), their sum H1 + H2 and their difference

H1 −H2 are defined respectively as the pairs (α1 + α2, β1 + β2) and (α1 − α2, β1 − β2).

For a hypergraph pair H = (α, β) define H := (β, α), and rH := (rα, rβ) for every

r ∈ R. Now let H1 = (α1, β1) be a hypergraph pair over V1 × . . .× Vk and H2 = (α2, β2)

be a hypergraph pair over W1 × . . . ×Wk. By considering proper isomorphisms we can

assume that Wi and Vi are all disjoint. Then the disjoint union H1∪̇H2 is defined as a

hypergraph pair over (V1∪̇W1) × . . . × (Vk∪̇Wk) whose restrictions to V1 × . . . × Vk and

W1 × . . . × Wk are respectively H1 and H2, and is defined to be zero everywhere else.

With these definitions, for a measurable function f : Ωk → C, we have

fH1+H2 = fH1fH2

fH1−H2 = fH1/fH2

fH = fH

f rH =
(
fH

)r
= (f r)H

∫
fH1∪̇H2 =

∫
fH1

∫
fH2 .
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Consider a hypergraph pair H, and note that ‖·‖H = ‖·‖H∪̇H∪̇...∪̇H . Thus in order to char-

acterize all norming (semi-norming) hypergraph pairs it suffices to consider hypergraph

pairs that are minimal according to the following definition:

Definition 3.1.9 A hypergraph pair H over V1 × . . .× Vk is called minimal if

• For every i ∈ [k] and vi ∈ Vi, there exists at least one ω ∈ supp(α) ∪ supp(β) such

that ωi = vi.

• There is no k-hypergraph pair H ′ such that H ∼= H ′∪̇H ′∪̇ . . . ∪̇H ′.

3.2 Examples

The next couple of examples show that some well-known families of normed spaces fall

into the framework defined above.

Example 2 Let Lp = (α, β) be the 1-hypergraph pair defined as α = β = p/2 over V1

which contains only one element. Then for a measurable function f : Ω → C, we have

‖f‖Lp =

(∫
fp/2fp/2

)1/p

=

(∫
|f |p

)1/p

= ‖f‖p.

Hence in this case the ‖ · ‖Lp norm is the usual Lp norm.

Example 3 Let k = 2, V1 = V2 = {0, 1, . . . , m− 1}, for some positive integer m. Define

the 2-hypergraph pair S2m = (α, β) as

α(i, j) :=





1 i = j

0 otherwise

β(i, j) :=





1 i = j + 1(mod m)

0 otherwise
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Let µ be the counting measure on a finite set Ω. Then for A : Ω2 → C we have

‖A‖S2m =
(∑

A(x0, y0)A(x1, y0)A(x1, y1)A(x2, y1) . . . A(xm−1, ym−1)A(x0, ym−1)
)1/2m

= (Tr(AA∗)m)1/2m ,

which shows that in this case the ‖ · ‖S2m norm coincides with the usual 2m-trace norm

of matrices.

Example 4 Let k be a positive integer and V1 = . . . = Vk = {0, 1}, and for ω ∈
V1 × . . .× Vk,

α(ω) :=
k∑

i=1

ωi (mod 2)

and

β(ω) := 1− α(ω).

Then for the k-hypergraph pair Uk = (α, β), ‖ · ‖Uk
is called the Gowers k-uniformity

norm.

3.3 Constructing norming hypergraph pairs

The following definition introduces the tensor product of two hypergraph pairs.

Definition 3.3.1 Let H1 = (α1, β1) be a k-hypergraph pair over V1 × . . .× Vk and H2 =

(α2, β2) be a k-hypergraph pair over W1 × . . .×Wk. Then the tensor product of H1 and

H2, is a k-hypergraph pair over U1 × . . .× Uk where Ui := Vi ×Wi, defined as

H1 ⊗H2 := (α1 ⊗ α2 + β1 ⊗ β2, α1 ⊗ β2 + β1 ⊗ α2).

We have already seen in Examples 2, 3, 4 that norming hypergraph pairs do exist.

Theorem 3.3.2 below shows that it is possible to combine two norming hypergraph pairs

to construct a new one.
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Theorem 3.3.2 Let H1 and H2 be two hypergraph pairs. If H1 and H2 are semi-

norming, then H1 ⊗ H2 is also semi-norming. If furthermore at least one of H1 and

H2 is norming, then H1 ⊗H2 is norming.

We shall prove Theorem 3.3.2 in Section 3.4.4. We will also need the following lemma in

the sequel.

Lemma 3.3.3 For positive integers a1, . . . , ak, and 1
2
≤ p < ∞, the hypergraph pair

K = (p, p) over [a1]× . . .× [ak] is norming.

Proof. Let Ka1,...,ak
denote the hypergraph pair (1/2, 1/2) over [a1] × . . . × [ak]. First

we establish the lemma for the case that p = 1/2, a1 = . . . = ak−1 = 1. Note that for a

measure space M = (Ω,F , µ), and f : Ωk → C,
∫

fH =

∫

x1,...,xk−1

∫

yi:i∈[ak]

|f(x1, . . . , xk−1, yi)| =
∫

x1,...,xk−1

(∫

y

|f(x1, . . . , xk−1, y)|
)ak

.

In order to show that K1,1,...,1,ak
is norming, by Lemma 3.4.9 below, we have to show that

for f, g : Ωk → C
∫
|g(x1, . . . , xk−1, y1)|

∏

v∈[ak]\{1}
|f(x1, . . . , xk−1, yi)| ≤ ‖f‖ak−1

K1,1,...,1,ak
‖g‖K1,1,...,1,ak

. (3.7)

Note that by Hölder’s inequality

L.H.S. of (3.7) =

∫

x1,...,xk−1

(∫

y

|g(x1, . . . , xk−1, y)|
)(∫

y

|f(x1, . . . , xk−1, y)|
)ak−1

≤
(∫

x1,...,xk−1

(∫

y

|g(x1, . . . , xk−1, y)|
)ak

)1/ak

×
(∫

x1,...,xk−1

(∫

y

|f(x1, . . . , xk−1, y)|
)ak

)(ak−1)/ak

= ‖f‖ak−1
K1,1,...,1,ak

‖g‖K1,1,...,1,ak
.

This establishes the case p = 1, a1 = . . . = ak−1 = 1. Also note that the case a1 = . . . =

ak = 1, and arbitrary p is trivial. The general case then follows from Theorem 3.3.2 as

pKa1,...,ak
∼= pK1,...,1 ⊗Ka1,1,...,1 ⊗K1,a2,...,1 ⊗ . . .⊗K1,...,1,ak

.
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3.4 Structure of Norming hypergraph pairs

In this section we study the structure of semi-norming hypergraph pairs. The main result

that we prove in this direction is the following.

Theorem 3.4.1 Let H = (α, β) be a semi-norming hypergraph pair. Then H ∼= H, and

one of the following two cases hold

• Type I: There exists a real s ≥ 1, such that for every ψ ∈ supp(α) ∪ supp(β),

α(ψ) = β(ψ) = s/2. In this case, s is called the parameter of H.

• Type II: For every ψ ∈ supp(α) ∪ supp(β), we have {α(ψ), β(ψ)} = {0, 1}.

Note that the condition H ∼= H is trivially satisfied for every hypergraph pair that

satisfies the requirements of Type I hypergraph pairs. This is not true for Type II

hypergraph pairs, and in this case H ∼= H implies a further restriction on the structure

of the hypergraph pair.

Remark 3.4.2 Note that if H is of Type I, then for every measure space M and every

f ∈ LH(M), we have ‖f‖H = ‖ |f | ‖H . This fact will be used frequently in the sequel.

Suppose that H = (α, β) is a k-hypergraph pair over V1 × . . . × Vk. For a subset

S ⊆ [k], we use the notation πS to denote the natural projection from V1 × . . . × Vk to

∏
i∈S Vi. We can construct a hypergraph pair HS := (αS, βS) where αS, βS :

∏
i∈S Vi → C

are defined as

αS : ω 7→
∑

{α(ω′) : πS(ω′) = ω},

and

βS : ω 7→
∑

{β(ω′) : πS(ω′) = ω}.

We have the following trivial observation:

Lemma 3.4.3 If H = (α, β) is a norming (semi-norming) k-hypergraph pair, then for

every S ⊆ [k], HS is a norming (semi-norming) |S|-hypergraph pair.
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Proof. Suppose that ‖ · ‖H is a norm (semi-norm) on LH(M) for a measure space

M = (Ω,F , µ), and a k-hypergraph pair H over V := V1 × . . . × Vk. We might assume

that H is minimal according to Definition 3.1.9. Let h : Ω → {0, 1} be an arbitrary

zero-one integrable function with
∫

h = 1.

Consider a measurable function f : Ω|S| → C in LHS
(M). Let S = {i1, . . . , i|S|}.

Define f̃ : Ωk → C by f̃(x1, . . . , xk) = f(xi1 , . . . , xi|S|)
∏

j 6=S h(xj). Note that for every

ω ∈ V1 × . . .× Vk, and x ∈ ΩV ,

f̃(ω(x))α(ω)f̃(ω(x))β(ω) = f̃(x1,ω1 , . . . , xk,ωk
)α(ω)f̃(x1,ω1 , . . . , xk,ωk

)β(ω)

= f(xi1,ωi1
, . . . , xik,ωik

)α(ω)f(xi1,ωi1
, . . . , xik,ωik

)β(ω)
∏

j 6∈S

h(xj,ωj
).

Hence using the assumptions that h is a zero-one function and it has integral 1, and also

the minimality of H according to the first condition of Definition 3.1.9, we have

∫
f̃H =

∫

ΩV

∏
ω∈V

f(xi1,ωi1
, . . . , xik,ωik

)α(ω)f(xi1,ωi1
, . . . , xik,ωik

)β(ω)
∏

j 6∈S

h(xj,ωj
)

=

∫

Ω
Vi1×...×Ω

Vi|S|

∏
ω∈V

f(xi1,ωi1
, . . . , xik,ωik

)α(ω)f(xi1,ωi1
, . . . , xik,ωik

)β(ω)

×
∏

j 6∈S,v∈Vj

∫

Ω

h(xj,v)

=

∫

Ω
Vi1×...×Ω

Vi|S|

∏
ω∈V

f(xi1,ωi1
, . . . , xik,ωik

)α(ω)f(xi1,ωi1
, . . . , xik,ωik

)β(ω)

=

∫

Ω
Vi1×...×Ω

Vi|S|
fHS ,

which shows that ‖f‖HS
= ‖f̃‖H . We conclude that ‖ · ‖HS

is a norm (semi-norm) on

LHS
(M).

Remark 3.4.4 The importance of Lemma 3.4.3 is in that one can apply Theorem 3.4.1

to HS to deduce more conditions on the structure of the original semi-norming hypergraph

pair H. For example applying Theorem 3.4.1 to HS when S has only one element implies

that for every 1 ≤ i ≤ k, there exists a number di such that for every vi ∈ Vi, we have

∑{α(ω) : ωi = vi} =
∑{β(ω) : ωi = vi} = di.
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The next theorem gives another necessary condition on the structure of a semi-norming

hypergraph pair.

Theorem 3.4.5 Suppose that H = (α, β) is a semi-norming k-hypergraph pair over

V1 × . . . × Vk which is not the disjoint union of any two hypergraph pairs. Let Wi ⊆ Vi

for i = 1, . . . , k, and H ′ be the restriction of H to W1 × . . .×Wk. Then

|H ′|
|W1|+ . . . + |Wk| − 1

≤ |H|
|V1|+ . . . + |Vk| − 1

.

Remark 3.4.6 Note that Theorem 3.4.5 requires that H is not the disjoint union of any

two hypergraph pairs. Semi-norming hypergraph pairs that are disjoint unions of two or

more hypergraph pairs are studied in Section 3.4.2.

We present the proofs of Theorems 3.4.1 and 3.4.5 in Section 3.4.6, but first we need

to develop some tools.

3.4.1 Two Hölder type inequalities

One of our main tools in the study of hypergraph norms is the trick of amplification

by taking tensor powers. This trick has been used successfully in many places (see for

example [49]).

Definition 3.4.7 For f, g : Ωk → C, the tensor product of f and g is defined as f ⊗ g :

(Ω2)k → C where f ⊗ g[(x1, y1), . . . , (xk, yk)] = f(x1, . . . , xk)g(y1, . . . , yk).

We have the following trivial observation.

Lemma 3.4.8 Let H1, H2 be two k-hypergraph pairs over the same set V := V1×. . .×Vk,

and f1, f2, g1, g2 : Ωk → C. Then

∫
(f1 ⊗ f2)

H1(g1 ⊗ g2)
H2 =

(∫
fH1

1 gH2
1

)(∫
fH1

2 gH2
2

)
.
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Proof. Note that every

z = ({[x1,v, y1,v]}v∈V1 , . . . , {[xk,v, yk,v]}v∈Vk
) ∈ (Ω2)V

corresponds to a pair [x, y] ∈ ΩV × ΩV , where x = ({x1,v}v∈V1 , . . . , {xk,v}v∈Vk
), and

y = ({y1,v}v∈V1 , . . . , {yk,v}v∈Vk
). Now for every ω ∈ V ,

f1 ⊗ f2(ω(z)) = f1(ω(x))f2(ω(y)),

and

g1 ⊗ g2(ω(z)) = g1(ω(x))g2(ω(y)),

which in turn implies the assertion of the lemma.

Now with Lemma 3.4.8 in hand, we can prove our first result about semi-norming

hypergraph pairs.

Lemma 3.4.9 Let H = (α, β) be a semi-norming hypergraph pair. Then for every mea-

sure space M, and every f, g ∈ LH(M) the following holds. For every ψ ∈ supp(α),

∣∣∣∣
∫

fH−1ψg1ψ

∣∣∣∣ ≤ ‖f‖|H|−1
H ‖g‖H , (3.8)

and for every ψ ∈ supp(β)

∣∣∣∣
∫

fH−1ψg1ψ

∣∣∣∣ ≤ ‖f‖|H|−1
H ‖g‖H . (3.9)

Conversely, if for a measure space M, and every f, g ∈ LH(M),
∫

fH ∈ R+, and at least

one of (3.8) or (3.9) holds for some ψ ∈ V1 × . . . × Vk, then ‖ · ‖H is a semi-norm on

LH(M).

Proof. First we prove the converse direction which is easier. Consider two measurable

functions f, g : Ωk → C and suppose that (3.8) holds for some ψ ∈ V1 × . . .× Vk. Then

‖f + g‖|H|H =

∫
(f + g)H =

∫
(f + g)H−1ψ(f + g)1ψ

=

∫
(f + g)H−1ψf 1ψ +

∫
(f + g)H−1ψg1ψ

≤ ‖f + g‖|H|−1
H ‖f‖H + ‖f + g‖|H|−1

H ‖g‖H ,
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which simplifies to the triangle inequality. The proof of the case where (3.9) holds is

similar.

Now let us turn to the other direction. Suppose that H is a semi-norming hypergraph

pair. Consider f, g ∈ LH(M). We might assume that ‖f‖H 6= 0, as otherwise one can

instead consider a small perturbation of f . Since ‖ · ‖H is a semi-norm, for every t ∈ R+

and every f, g : Ω → C, we have ‖f + tg‖H ≤ ‖f‖H + t‖g‖H which implies that

d‖f + gt‖H

dt

∣∣∣∣
0

≤ ‖g‖H . (3.10)

Computing the derivative

d(f + tg)H

dt
=

∑

ψ∈supp(α)

α(ψ)(f + tg)H−1ψg1ψ +
∑

ψ∈supp(β)

β(ψ)(f + tg)H−1ψg1ψ ,

shows that

d‖f + tg‖H

dt
=

1

|H|‖f + tg‖1−|H|
H ×




∫ ∑

ψ∈supp(α)

α(ψ)(f + tg)H−1ψg1ψ +
∑

ψ∈supp(β)

β(ψ)(f + tg)H−1ψg1ψ


 .

Thus by (3.10),

1

|H|‖f‖
1−|H|
H




∫ ∑

ψ∈supp(α)

α(ψ)fH−1ψg1ψ +
∑

ψ∈supp(β)

β(ψ)fH−1ψg1ψ


 ≤ ‖g‖H ,

or equivalently

1

|H|




∫ ∑

ψ∈supp(α)

α(ψ)fH−1ψg1ψ +
∑

ψ∈supp(β)

β(ψ)fH−1ψg1ψ


 ≤ ‖f‖|H|−1

H ‖g‖H . (3.11)

Since (3.11) holds for every measure space and every pair of measurable functions, for

every integer m > 0, we can replace f and g in (3.11), respectively with f⊗m ⊗ f
⊗m

and

g⊗m ⊗ g⊗m, and apply Lemma 3.4.8 to obtain

1

|H|


 ∑

ψ∈supp(α)

α(ψ)

∣∣∣∣
∫

fH−1ψg1ψ

∣∣∣∣
2m

+

∑

ψ∈supp(β)

β(ψ)

∣∣∣∣
∫

fH−1ψg1ψ

∣∣∣∣
2m


 ≤

(
‖f‖|H|−1

H ‖g‖H

)2m

. (3.12)
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But since (3.12) holds for every m, it establishes (3.8) and (3.9) as

1

|H|


 ∑

ψ∈supp(α)

α(ψ) +
∑

ψ∈supp(β)

β(ψ)


 = 1.

We have the following corollary to Lemma 3.4.9.

Corollary 3.4.10 If H is a semi-norming hypergraph pair, then α(ω) + β(ω) ≥ 1, for

every ω ∈ supp(α) ∪ supp(β).

Proof. Let the underlying measure space be the set {0, 1} with the counting measure.

Consider ω ∈ supp(α), and note that by (3.8), for every pair of functions f, g : {0, 1}k →
C, we have ∣∣∣∣

∫
fH−1ψg1ψ

∣∣∣∣ ≤ ‖f‖|H|−1
H ‖g‖H . (3.13)

For every x = (x1, . . . , xk) ∈ {0, 1}k, define g(x) := 1 and

f(x) :=





ε x1 = . . . = xk = 1

1 otherwise,

where 0 ≤ ε ≤ 1. Then
∣∣∫ fH−1ψg1ψ

∣∣ =
∣∣∫ fH−1ψ

∣∣ ≥ εα(ω)+β(ω)−1, while ‖f‖H ≤ ‖g‖H =

‖1‖H , which contradicts (3.13) for sufficiently small ε > 0, if α(ω) + β(ω) < 1.

Under some extra conditions it is possible to extend (3.8) and (3.9) to a much more

powerful inequality.

Lemma 3.4.11 Let H be a semi-norming hypergraph pair, and H1, . . . , Hn be nonzero 1

and nonnegative hypergraph pairs satisfying H1 + H2 + . . . + Hn = H. Then for every

measure space M and functions f1, f2, . . . , fn ∈ LH(M), we have

∣∣∣∣
∫

fH1
1 fH2

2 . . . fHn
n

∣∣∣∣ ≤ ‖f1‖|H1|
H . . . ‖fn‖|Hn|

H ,

provided that at least one of the following two conditions hold:

1i.e. Hi 6= (0, 0) for every 1 ≤ i ≤ n.
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(a) f1, . . . , fn ≥ 0.

(b) For every Hi = (αi, βi), the functions αi, βi take only integer values.

Proof. Let us first assume that f1, . . . , fn ≥ 0. Suppose to the contrary that

∫
fH1

1 fH2
2 . . . fHn

n > ‖f1‖|H1|
H . . . ‖fn‖|Hn|

H . (3.14)

After normalization we can assume that ‖f1‖H , ‖f2‖H , . . . , ‖fn‖H ≤ 1 while the right-

hand side of (3.14) is strictly greater than 1. Since (3.14) remains valid after small

perturbations of fi’s, without loss of generality we might also assume that for every

1 ≤ i ≤ n, fi does not take the zero value on any point. Consider a positive integer m,

and note that by Lemma 3.4.8

∫ (
n∑

i=1

f⊗m
i

)H

=

∫ n∏
i=1

(
n∑

i=1

f⊗m
i

)Hi

=

∫
(f⊗m

1 )H1 . . . (f⊗m
n )Hn

(
n∏

i=1

(
f⊗m

1 + . . . + f⊗m
n

f⊗m
i

)Hi
)

≥
∫

(f⊗m
1 )H1 . . . (f⊗m

n )Hn =

(∫
fH1

1 . . . fHn
n

)m

.

On the other hand, Lemma 3.4.8 shows that ‖f⊗m
i ‖H = ‖fi‖m

H ≤ 1 for every i ∈ [n].

Then for sufficiently large m we get a contradiction:

∥∥∥
∑

f⊗m
i

∥∥∥
H
≥

(∫
fH1

1 . . . fHn
n

)m/|H|
> n.

Next consider the case where fi are not necessarily positive, but we know that αi, βi

all take only integer values. Again to get a contradiction assume that
∣∣∣∣
∫

fH1
1 . . . fHn

n

∣∣∣∣ > 1 ≥ ‖f1‖|H1|
H . . . ‖fn‖|Hn|

H .

where ‖f1‖H , . . . , ‖fn‖H ≤ 1. In this case for every i ∈ [n], we will consider f⊗m
i ⊗ fi

⊗m
.

Let H denote the set of all n-tuples of nonzero hypergraph pairs (H ′
1, H

′
2, . . . , H

′
n) where

H ′
i’s take only nonnegative integer values and H ′

1 +H ′
2 + . . .+H ′

n = H. By Lemma 3.4.8

∫ n∏
i=1

(f⊗m
i ⊗ fi

⊗m
)H′

i =

∣∣∣∣∣
∫ n∏

i=1

f
H′

i
i

∣∣∣∣∣

⊗2m

≥ 0.
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Now by expanding the product defined by H, we have

∫ (
n∑

i=1

f⊗m
i ⊗ fi

⊗m

)H

=
∑

(H′
1,...,H′

n)∈H

∫ n∏
i=1

(
f⊗m

i ⊗ fi
⊗m

)H′
i

≥
∫ n∏

i=1

(
f⊗m

i ⊗ fi
⊗m

)Hi

=

∣∣∣∣∣
∫ n∏

i=1

fHi
i

∣∣∣∣∣

2m

,

which leads to a contradiction similar to the previous case.

Remark 3.4.12 It is possible to show that Lemma 3.4.11 does not necessarily hold in

the general case where none of the two conditions are satisfied. To see this consider S4

from Example 3. If Lemma 3.4.11 holds for the decomposition S4 = 1
3
S4 + 1

3
S4 + 1

3
S4,

then by Lemma 3.4.9 3S4 would be a semi-norming hypergraph pair. But Theorem 3.4.1

implies that 3S4 is not a semi-norming hypergraph pair.

Consider a probability space P = (Ω,F , µ). It is well-known that for every 1 ≤
p ≤ q, and for every f ∈ Lq(P), we have ‖f‖p ≤ ‖f‖q. Indeed by Hölder’s inequality
∫ |f |p ≤ (∫ |f |q)p/q (∫

1q/(q−p)
)1−p/q

=
(∫ |f |q)p/q

which simplifies to ‖f‖p ≤ ‖f‖q. The

next corollary generalizes this to hypergraph pairs.

Corollary 3.4.13 Let H = (α, β) be a semi-norming k-hypergraph pair. Consider a

probability space P = (Ω,F , µ) and f ∈ LH(P). Let K = (α′, β′) be a nonzero k-

hypergraph pair over the same domain as H such that 0 ≤ α′ ≤ α and 0 ≤ β′ ≤ β.

Then

|‖f‖K | ≤ ‖f‖H ,

provided that at least one of the following three conditions holds:

(a) f ≥ 0.

(b) H is of type I.

(c) The functions α, β, α′, β′ take only integer values.
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Proof. Parts (a) and (b) follow from applying Lemma 3.4.11 (a) with parameters n := 2,

H1 := K, H2 := H −K, f1 := |f | and f2 := 1.

Part (c) follows from applying Lemma 3.4.11 (b) with parameters n := 2, H1 := K,

H2 := H −K, f1 := f and f2 := 1.

3.4.2 Factorizable hypergraph pairs

In this section we characterize all norming and semi-norming 1-hypergraph pairs. As it is

mentioned before, it suffices to consider the hypergraph pairs that are minimal according

to Definition 3.1.9. We have already seen one class of examples of norming 1-hypergraph

pairs, namely the 1-hypergraph pairs Lp of Example 2. There exists also a semi-norming

1-hypergraph pair that is not norming: Let G = (1, 0) be the 1-hypergraph pair over a

set V1 of size 1. Then for a measure space M = (Ω,F , µ) and a measurable f : Ω → C

we have ‖f‖G∪̇G =
∣∣∫ f

∣∣ which defines a semi-norm. The next proposition shows that

these are the only examples.

Proposition 3.4.14 If H is a minimal norming 1-hypergraph pair, then there exists

1 ≤ p < ∞ such that H ∼= Lp. If H is a minimal semi-norming 1-hypergraph pair that is

not norming, then H ∼= G∪̇G, where G = (1, 0) is a 1-hypergraph pair over a set V1 of

size 1.

To prove Proposition 3.4.14 we need to study the hypergraph pairs which are decompos-

able into disjoint union of other hypergraph pairs.

Definition 3.4.15 A hypergraph pair H = (α, β) is called factorizable, if it is a disjoint

union of two hypergraph pairs.

Remark 3.4.16 Let H = (α, β) be a hypergraph pair over V := V1 × V2 × . . . ×
Vk. By considering a proper isomorphism we can assume that Vi are mutually dis-

joint. Then H is non-factorizable, if and only if the hypergraph on V1∪̇ . . . ∪̇Vk whose
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edges are tuples in supp(α) ∪ supp(β) is connected. Trivially in this case for every

1 ≤ i ≤ j ≤ k, and every u ∈ Vi and v ∈ Vj, there exists a sequence of elements

(ω1,1, . . . , ω1,k), . . . , (ωm,1, . . . , ωm,k) ∈ supp(α) ∪ supp(β), for some m ∈ N such that

• ω1,i = u and ωm,j = v;

• For every 1 < t ≤ m, ωt−1,s = ωt,s for some 1 ≤ s ≤ k.

The next proposition shows that two non-factorizable hypergraph pairs define identi-

cal norms, if and only if they are isomorphic. For the proof, we need an easy fact stated

in the following Remark.

Remark 3.4.17 Let x1, . . . , xn be n complex variables. Define a term as a product

∏n
i=1 xpi

i xi
qi , where pi, qi are nonnegative reals. Now let P and Q be two formal finite

sums of terms. It is easy to see that P and Q are equal as functions on Cn, if and only

if they are equal as formal sums.

Proposition 3.4.18 Let H1 and H2 be two minimal k-hypergraph pairs. Suppose that

either H1 and H2 are both non-factorizable, or we have |H1| = |H2|. Then

• If for every measure space (Ω,F , µ), and every f : Ωk → C, ‖f‖H1 = ‖f‖H2, then

H1
∼= H2.

• If for every measure space (Ω,F , µ), and every f : Ωk → C, ‖f‖H1 = ‖f‖H2, then

H1
∼= H2.

Proof. Suppose that H1 and H2 are respectively defined over V1 × . . . × Vk and W1 ×
. . .×Wk. First assume that H1 and H2 are both non-factorizable. Let µ be the counting

measure on Ω = [m], where m >
∑k

i=1 |Vi| + |Wi| is a positive integer. Suppose that

for every f : Ωk → C with have ‖f‖H1 = ‖f‖H2 . Then define f(x1, . . . , xk) to be
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equal to 1, if x1 = . . . = xk, and equal to 0 otherwise. Consider x ∈ ΩV1 × . . . × ΩVk .

Note that if ω = (ω1, . . . , ωk) ∈ supp(α) ∪ supp(β), then f(ω(x)) = 1 implies that

x1,ω1 = . . . = xk,ωk
. Hence since H is non-factorizable, by Remark 3.4.16, for x =

({xi,v}v∈V1 , . . . , {xi,v}v∈Vk
) ∈ ΩV1 × . . . × ΩVk ,

∏
ω∈V f(ω(x))α(ω)f(ω(x))β(ω) = 1 if and

only if all coordinates of x are equal. This shows that
∫

fH1 = |Ω|, and similarly since

H2 is non-factorizable
∫

fH2 = |Ω|. We deduce from ‖f‖H1 = ‖f‖H2 that |H1| = |H2|.
So it is sufficient to prove the proposition for the case where |H1| = |H2|.

Next for every f : Ωk → C, we assume
∫

fH1 =
∫

fH2 . For 1 ≤ i ≤ k, consider

fi : Ωk → {0, 1} defined as fi(x1, . . . , xk) = 1 if and only if x1 = . . . = xi−1 = xi+1 = . . . =

xk = 1. Then using a similar argument to the one in the previous paragraph, by mini-

mality of H1 (see Definition 3.1.9), we conclude that for x = ({xi,v}v∈V1 , . . . , {xi,v}v∈Vk
) ∈

ΩV1×. . .×ΩVk ,
∏

ω∈V f(ω(x))α(ω)f(ω(x))β(ω) = 1 if and only if all {xj,v : j 6= i, v ∈ Vj} are

equal to 1. This shows that
∫

fH1
i = |Ω||Vi| and

∫
fH2

i = |Ω||Wi| which implies |Vi| = |Wi|.
Thus without loss of generality we may assume that Vi = Wi = {1, . . . , |Vi|}, for every

1 ≤ i ≤ k. Now for every f : Ωk → C we have

∑

x∈ΩV1×...×ΩVk

∏
ω∈V

f(ω(x))α(ω)f(ω(x))
β(ω)

=
∑

x∈ΩV1×...×ΩVk

∏
ω∈V

f(ω(x))α′(ω)f(ω(x))
β′(ω)

(3.15)

Consider x = [(1, . . . , |V1|), (1, . . . , |V2|), . . . , (1, . . . , |Vk|)] ∈ ΩV1× . . .×ΩVk . Then ω(x) =

ω for every ω ∈ V , and hence

∏
ω∈V

f(ω(x))α(ω)f(ω(x))
β(ω)

=
∏
ω∈V

f(ω)α(ω)f(ω)
β(ω)

. (3.16)

Since (3.16) appears in the sum in the left-hand side of (3.15), by Remark 3.4.17 it

must also appear as a term in the right-hand side of (3.15). Hence there exists y =

[(y1,1, . . . , y1,|V1|), . . . , (yk,1, . . . , yk,|Vk|)] ∈ ΩV1 × . . .× ΩVk such that

∏
ω∈V

f(ω(y))α′(ω)f(ω(y))
β′(ω)

=
∏
ω∈V

f(ω)α(ω)f(ω)
β(ω)

. (3.17)

By minimality, for every v ∈ Vi, there exists ω = (ω1, . . . , ωk) ∈ supp(α) ∪ supp(β) such

that ωi = v. This implies {yi,1, . . . , yi,|Vi|} = Vi, for every 1 ≤ i ≤ k. Now h = (h1, . . . , hk)
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defined as hi : j 7→ yi,j (for every 1 ≤ i ≤ k and 1 ≤ j ≤ |Vi|) is an isomorphism between

H1 and H2.

In the second part of the proposition where it is assumed ‖f‖H1 = ‖f‖H2 , instead

of (3.15) one obtains that the left-hand side of (3.15) is equal to the conjugate of the

right-hand side. The proof then proceeds similar to the previous case.

Theorem 3.4.19 Let H = H1∪̇H2∪̇ . . . ∪̇Hm be a semi-norming hypergraph pair such

that Hi are all non-factorizable. Then for every measure space M and every f ∈ LH(M)

we have

‖f‖H1∪̇H1
= ‖f‖H2∪̇H2

= . . . = ‖f‖Hm∪̇Hm
= ‖f‖H .

Proof. Let H = G1∪̇G2 be semi-norming, where G1 and G2 are not necessarily non-

factorizable, M = (Ω,F , µ) be a measure space, and f ∈ LH(M). Since
∫

fH =
∫

fG1
∫

fG2 , we have

‖f‖H = ‖f‖
|G1|
|H|

G1
‖f‖

|G2|
|H|

G2
= ‖f‖

|G1|
|G1|+|G2|
G1

‖f‖
|G2|

|G1|+|G2|
G2

.

It follows from Theorem 3.4.1 that either H is of Type I, or H and G1 both take only

integer values. Hence by Corollary 3.4.13

∣∣∣‖f‖|G1|
G1

∣∣∣ ≤ ‖f‖|G1|
H = ‖f‖

|G1|2
|G1|+|G2|
G1

‖f‖
|G1||G2|
|G1|+|G2|
G2

,

which simplifies to

|‖f‖G1| ≤ |‖f‖G2| .

Similarly one can show that |‖f‖G2| ≤ |‖f‖G1|, and thus |‖f‖G1| = |‖f‖G2|.
By induction we conclude that |‖f‖H1| = . . . = |‖f‖H2|, for every measure space M =

(Ω,F , µ) and every f ∈ LH(M), and this completes the proof as |‖f‖Hi
| = ‖f‖Hi∪̇Hi

.

Now we can state the proof of Proposition 3.4.14.

Proof.[Proposition 3.4.14] Consider a semi-norming 1-hypergraph pair H over a set

V1 = {v1, . . . , vm}. Consider the factorization H = H1∪̇H2∪̇ . . . ∪̇Hm, where Hi is a
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1-hypergraph pair over {vi}. By Theorem 3.4.19, always ‖f‖H1∪̇H1
= ‖f‖H2∪̇H2

= . . . =

‖f‖Hm∪̇Hm
= ‖f‖H . By Theorem 3.4.1, for every 1 ≤ i ≤ m, either Hi∪̇Hi

∼= Lp∪̇Lp for

some 1 ≤ p < ∞, or Hi∪̇Hi
∼= G∪̇G which completes the proof.

3.4.3 Semi-norming hypergraph pairs that are not norming

In this section we study the structure of the semi-norming hypergraph pairs which are not

norming. Consider a semi-norming k-hypergraph pair H = (α, β) over V := V1× . . .×Vk

of Type I with parameter s = 2m, where m is a positive integer. Since H is of Type

I, it is trivially norming. Consider an arbitrary positive integer k′. We want to use H

to construct a semi-norming (k + k′)-hypergraph pair that is not norming. Consider a

measure space M = (Ω,F , µ). For every integrable function f : Ωk+k′ → C, define

Ff : Ωk → C as Ff (x1, . . . , xk) =
∫

f(x1, . . . , xk+k′)dxk+1 . . . dxk+k′ . Since ‖ · ‖H is

norming, the two identities Fλf = λFf and Ff+g = Ff + Fg show that the function

‖ · ‖ : f 7→ ‖Ff‖H satisfies the axioms of a semi-norm. Furthermore, any function f with

Ff = 0 satisfies ‖f‖ = 0. For a generic measure space M = (Ω,F , µ) trivially there exist

functions f 6= 0 with Ff = 0 which shows that in that case ‖ · ‖ is a semi-norm which is

not a norm. It remains to show that ‖ · ‖ can be formulated with the hypergraph pair
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notation. Indeed recalling that H is of Type I with parameter 2m,

‖f‖ = ‖Ff‖H =

∫ ∏

ω∈supp(α)

|Ff (ω(x))|2m

=

∫ ∏

ω∈supp(α)

∣∣∣∣
∫

f(ω(x), y1, . . . , yk′)dy1 . . . dyk′

∣∣∣∣
2m

=

∫ ∏

ω∈supp(α)

(
m∏

j=1

∫
f(ω(x), y1, . . . , yk′)dy1 . . . dyk′

)

(
2m∏

j′=m+1

∫
f(ω(x), y1, . . . , yk′)dy1 . . . dyk′

)

=

∫ ∏

ω∈supp(α)

m∏
j=1

f(ω(x), y1,(ω,j), . . . , yk′,(ω,j))

f(ω(x), y1,(ω,m+j), . . . , yk′,(ω,m+j)). (3.18)

Note that the right hand side of (3.18) falls into the framework of hypergraph pairs.

Indeed for k + 1 ≤ i ≤ k + k′, let Vi := supp(α)×{1, . . . , 2m}. Now the hypergraph pair

G = (α′, β′) over V1 × . . .× Vk+k′ is defined by

α′(v1, . . . , vk+k′) :=





1 vk+1 = . . . = vk+k′ = ([v1, . . . , vk], i) where 1 ≤ i ≤ m

0 otherwise

and

β′(v1, . . . , vk+k′) :=





1 vk+1 = . . . = vk+k′ = ([v1, . . . , vk], i) where m + 1 ≤ i ≤ 2m

0 otherwise

We have ‖Ff‖H = ‖f‖G. The next proposition shows that in fact every semi-norming

hypergraph pair which is not norming is of this form.

Proposition 3.4.20 Let H = (α, β) be a semi-norming k-hypergraph pair of Type II

over V := V1× . . .×Vk. Define S to be the set of all 1 ≤ i ≤ k such that for every v ∈ Vi,

∑
{α(ω) + β(ω) : ω ∈ V, ωi = v} = 1.

Then H[k]\S is a norming hypergraph pair of Type I.
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Proof. We can assume that H is minimal according to Definition 3.1.9. Consider

a measure space M = (Ω,F , µ). Note that if S 6= ∅, then for every i ∈ S, every

f ∈ LH(M) with
∫

f(x1, . . . , xk)dxi = 0 satisfies ‖f‖H = 0. So if H is norming, then

H[k]\S = H, and the proposition holds. Consider a k-hypergraph pair H = (α, β) over

V := V1 × . . .× Vk which is not norming. Then there exists a function f ∈ LH(M), for

some measure space M = (Ω,F , µ), such that
∫

fH = 0 and f 6= 0. Lemma 3.4.9, then

shows that for every g ∈ LH(M), and every ψ ∈ supp(α),

∫
gH−1ψf 1ψ = 0. (3.19)

Since f 6= 0, there exists measurable sets Γ1, . . . , Γk ⊆ Ω of finite measure such that
∫
Γ1×...×Γk

f 6= 0. Define g : Ωk → {0, 1}, as

g(x1, . . . , xk) =





1 (x1, . . . , xk) ∈ Γ1 × . . .× Γk

0 otherwise

Note that for x = ({xi,v}v∈V1 , . . . , {xi,v}v∈Vk
) ∈ ΩV1× . . .×ΩVk and ω = (ω1, . . . , ωk) ∈ V ,

g(ω(x)) = 1 if and only if xi,ωi
∈ Γi for 1 ≤ i ≤ k. Thus

gH−1ψ(x) =





1 xi,ωi
∈ Γi for all ω ∈ supp(α) ∪ supp(β) with ω 6= ψ

0 otherwise
(3.20)

Suppose that for every i ∈ [k], there exists ω ∈ supp(α) ∪ supp(β) such that ω 6= ψ

but ωi = ψi. Then by (3.20) and minimality of H,

∫
gH−1ψf 1ψ =



|Vi|−1∏
i=1

µ(Γi)




∫

Γ1×...×Γk

f 6= 0

contradicting (3.19).

It follows from (3.19) and its analogue for ψ ∈ supp(β) that the following holds: For

every ψ = (ψ1, . . . , ψk) ∈ supp(α) ∪ supp(β), there exists i ∈ [k] such that

{ω ∈ supp(α) ∪ supp(β) : ωi = ψi and ω 6= ψ} = ∅,
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or in other words:
∑{α(ω) + β(ω) : ω ∈ V, ωi = ψi} = 1. Now Remark 3.4.4 shows

that for every v ∈ Vi,
∑{α(ω) + β(ω) : ω ∈ V, ωi = v} = 1 which means that i ∈ S.

By Lemma 3.4.3, H[k]\S is semi-norming, but then maximality of S shows that it is also

norming.

3.4.4 Proof of Theorem 3.3.2

Without loss of generality suppose that H1 = (α1, β1) is a semi-norming hypergraph

pair over V k = V × . . . × V and H2 = (α2, β2) is a semi-norming hypergraph pair over

W k = W × . . . ×W . Set U := V ×W . Note that Uk ∼= V k ×W k, and we can think of

the elements of Uk as pairs ω ⊗ ψ where ω ∈ V k, and ψ ∈ W k. Let M = (Ω,F , µ) be a

measure space. Consider f, g : Ωk → C, and ω′ ⊗ ψ′ ∈ supp(α1 ⊗ α2) ⊆ Uk.

Denote N := MV and L := MW . Note that fH1 : N k → C and fH2 : Lk → C. With

identifications
(MU

)k ∼=
((MV

)W
)k ∼=

((MW
)V

)k

we have

fH1⊗H2 =
(
fH1

)H2
=

(
fH2

)H1
.

By applying Lemma 3.4.9 we get

∫
fH1⊗H2−1ω′⊗ψ′g1ω′⊗ψ′ =

∫ (
fH1

)H2−1ψ′ (fH1−1ω′g1ω′
)1ψ′

≤
(∫ (

fH1
)H2

) |H2|−1
|H2|

(∫ (
fH1−1ω′g1ω′

)H2

) 1
|H2|

= ‖f‖|H1|(|H2|−1)
H1⊗H2

(∫ (
fH2

)H1−1ω′ (gH2
)1ω′

) 1
|H2|

≤ ‖f‖|H1|(|H2|−1)
H1⊗H2

(∫ (
fH2

)H1

) |H1|−1
|H1||H2|

(∫ (
gH2

)H1

) 1
|H1||H2|

= ‖f‖|H1⊗H2|−1
H1⊗H2

‖g‖H1⊗H2 .

Lemma 3.4.9 shows that H1 ⊗H2 is semi-norming.

Next suppose that H1 is norming, and
∫

fH1⊗H2 = 0. Then since fH1⊗H2 =
(
fH2

)H1

and H1 is norming we conclude that fH2 = 0 almost everywhere, which shows that f = 0

almost everywhere.
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3.4.5 Some facts about Gowers norms

In this section we prove some facts about Gowers norms that are needed in the subsequent

sections. These facts are only proved as auxiliary results, and thus our aim is not to obtain

the best possible bounds, or to prove them in the most general possible setting.

Let V1 = . . . = Vk = {0, 1}, and Uk be the Gowers k-hypergraph pair defined in

Example 4. Consider a measure space M = (Ω,F , µ) and measurable functions fω :

Ωk → C for ω ∈ V := V1 × . . . × Vk. The following inequality due to Gowers [28] (see

also [60]) can be proven by iterated applications of the Cauchy-Schwarz inequality:
∣∣∣∣∣
∫ ∏

ω∈V

f 1ω
ω

∣∣∣∣∣ ≤
∏
ω∈V

‖fω‖Uk
. (3.21)

Since always ‖f‖Uk
≤ ‖f‖∞, we have the following easy corollary.

Corollary 3.4.21 Let H = (α, β) be a k-hypergraph pair over W := W1×W2× . . .×Wk,

and ψ ∈ W be such that α(ψ) = β(ψ) = 0. Then for the measure space M = (Ω,F , µ)

and every pair of measurable functions f, g : Ωk → C, we have

∣∣∣∣
∫

fHg1ψ

∣∣∣∣ ≤ ‖g‖Uk
‖f‖|H|∞ . (3.22)

Proof. First note that we can normalize f in (3.22) and assume that ‖f‖∞ ≤ 1. Hence

we need to show that for ‖f‖∞ ≤ 1,

∣∣∣∣
∫

fHg1ψ

∣∣∣∣ ≤ ‖g‖Uk
.

It suffices to prove that if we fix xi,v ∈ Ω, for every 1 ≤ i ≤ k, and v 6= ψi, then

∣∣∣∣
∫

fHg1ψdx1,ψ1 . . . dxk,ψk

∣∣∣∣ ≤ ‖g‖Uk
(3.23)

We will apply (3.21). To this end for every ω ∈ {0, 1}k, we define a function fω :

Ωk → C so that (3.21) reduces to (3.23). Set f(1,...,1) := g, and for ω 6= (1, . . . , 1), set

fω : (x1,ψ1 , . . . , xi,ψk
) 7→

∏

φ∈W,φi 6=ψi⇔ωi=0

f(x1,φ1 , . . . , xk,φk
)α(φ)f(x1,φ1 , . . . , xk,φk

)β(φ).
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Note that fω(y1, . . . , yk) is only a function of yi where ωi = 1. In other words,

fω(y1, . . . , yk) = fω(y′1, . . . , y
′
k),

if yi = y′i for every i with ωi = 1. From this and (3.21) we conclude that

∣∣∣∣
∫

fHg1ψdx1,ψ1 . . . dxk,ψk

∣∣∣∣ =

∣∣∣∣∣∣

∫ ∏

ω∈{0,1}k

fω

∣∣∣∣∣∣
≤

∏
ω∈V

‖fω‖Uk
≤ ‖g‖Uk

,

which verifies (3.23).

The next Lemma shows that there exists a function g such that its range is {−1, 1}
but its Gowers norm is arbitrarily small.

Lemma 3.4.22 For every ε > 0, there exists a probability space (Ω,F , µ) and a function

g : Ωk → {−1, 1} such that ‖g‖Uk
≤ ε and

∫
g = 0.

Proof. Consider a sufficiently large even integer m, set Ω = [m], and let µ be the

uniform probability measure on Ω. Define g randomly so that {g(x)}x∈Ωk are independent

Bernoulli random variables taking values uniformly in {−1, 1}. Then

E
(∫

g

)2

=
1

m2k
E


 ∑

x∈[m]k

g(x)




2

=
1

m2k
E


 ∑

x,y∈[m]k

g(x)g(y)


 =

1

mk
= om→∞(1),

and using a similar argument

E
(∫

gUk

)2

= om→∞(1).

Hence for sufficiently large m, there exists g0 : Ωk → {−1, 1} such that | ∫ g0| ≤ (ε/4)2k

and ‖g0‖Uk
≤ ε/2. Since | ∫ g0| ≤ (ε/4)2k

, there exists g1 : Ωk → {−1, 1} such that
∫

g1 = 0 and
∫ |g1 − g0| ≤ (ε/4)2k

. Then by Hölder’s inequality

‖g0 − g1‖Uk
=

(∫
(g0 − g1)

Uk

)−2k

≤ ‖g0 − g1‖2k ≤ 2(ε/4) = ε/2,

where in the last inequality we used the fact that the range of g0− g1 is {−2, 0, 2}. Now

‖g1‖Uk
≤ ‖g0‖Uk

+ ‖g0 − g1‖Uk
≤ ε,

which shows that g1 is the desired function.
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Lemma 3.4.23 For a k-hypergraph pair H over V := V1 × . . .× Vk, a probability space

P, and a zero-one function f ∈ LH(P) we have

∫
fH ≥ ‖f‖−|V1|...|Vk|

1 .

Proof. Consider the k-hypergraph pair K = (1
2
, 1

2
) over V . Lemma 3.3.3 shows that K

is a norming hypergraph pair. Since f is a zero-one function, we have fH ≥ fK , and

thus by Corollary 3.4.13

∫
fH ≥

∫
fK ≥ ‖f‖|K|1 ≥ ‖f‖−|V1|...|Vk|

1 .

Lemma 3.4.24 Let f, g : Ωk → C be two measurable functions with respect to the prob-

ability space (Ω,F , µ). Let H = (α, 0) be a hypergraph pair such that ran(α) ⊆ {0, 1}.
Then

∣∣∣∣
∫

fH − gH

∣∣∣∣ ≤ |H|‖f − g‖Uk
max(‖f‖∞, ‖g‖∞)|H|−1.

Proof. Let us label the elements of supp(α) as ω1, . . . , ω|H|. Then for 0 ≤ i ≤ |H| define

Hi :=
∑i

j=1 1ωj
, so that H0 = (0, 0) and H|H| = H. Now by telescoping and applying

Corollary 3.4.21, we have

∣∣∣∣
∫

fH − gH

∣∣∣∣ ≤
|H|∑
i=1

∣∣∣∣
∫

fH−Hi−1gHi−1 − fH−HigHi

∣∣∣∣ =

|H|∑
i=1

∣∣∣∣
∫

fH−HigHi−1(f 1ωi − g1ωi )

∣∣∣∣ =

=

|H|∑
i=1

∣∣∣∣
∫

fH−HigHi−1(f − g)1ωi )

∣∣∣∣ ≤
|H|∑
i=1

‖f − g‖Uk
‖f‖|H|−i

∞ ‖g‖i−1
∞ ≤

≤ |H|‖f − g‖Uk
max(‖f‖∞, ‖g‖∞)|H|−1.
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3.4.6 Proofs of Theorems 3.4.1 and 3.4.5

Proof.[Theorem 3.4.1] Suppose that H is a semi-norming k-hypergraph pair over V =

V1 × . . . × Vk. The fact that H ∼= H follows from Proposition 3.4.18 because trivially

|H| = |H| and ‖f‖H = ‖f‖H .

Now let ε > 0 be sufficiently small, and h : Ωk → {−1, 1} be such that ‖h‖Uk
≤ ε and

∫
h = 0, where here (Ω,F , µ) is a probability space. The existence of h is guaranteed by

Lemma 3.4.22.

First we show that it is either the case that for every ψ ∈ supp(α)∪ supp(β), α(ψ) =

β(ψ) or for every ψ ∈ supp(α) ∪ supp(β), {α(ψ), β(ψ)} = {0, 1}, and we will handle

the existence of a universal s later. Suppose that this statement fails for some ψ. Note

that at least one of α(ψ) or β(ψ) is not equal to 0. We will assume that α(ψ) > β(ψ),

and the proof of the case α(ψ) < β(ψ) will be similar. Since it is not the case that

β(ψ) = 1− α(ψ) = 0, denoting H − 1ψ = (α′, β′) we have

ψ ∈ supp(α′) ∪ supp(β′). (3.24)

For p := α(ψ)− β(ψ) ≥ 0, define g := h1/p, and

f :=





1 h = 1

0 h = −1
.

Since
∫

h = 0, we have
∫

f = 1/2 and

∫
fH−1ψg1ψ =

∫
fH ≥ 2−|V1|...|Vk|, (3.25)

where the equality follows from (3.24) and the definition of f , and the inequality follows

from Lemma 3.4.23. Denote by K the hypergraph pair obtained from H by setting

α(ψ) = β(ψ) = 0, i.e. K := H − α(ψ)1ψ − β(ψ)1ψ. Now since |g| = 1, applying

Corollary 3.4.21, we have

∣∣∣∣
∫

gH

∣∣∣∣ =

∣∣∣∣
∫

gKgα(ψ)1ψ+β(ψ)1ψ

∣∣∣∣ =

∣∣∣∣
∫

gK |g|β(ψ)1ψgp1ψ

∣∣∣∣ =

∣∣∣∣
∫

gKh1ψ

∣∣∣∣ ≤ ‖h‖Uk
≤ ε,
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which shows that

‖f‖H−1
H ‖g‖H ≤ ‖f‖H−1

H ε1/|H|. (3.26)

For sufficiently small ε, (3.25) and (3.26) contradict Lemma 3.4.9.

Next we will prove the existence of a universal s. So suppose that H = (α, β) is

semi-norming and α = β. Let s = max{α(ω) + β(ω) : ω ∈ V }. We will show that 1
s
H is

semi-norming, and then Corollary 3.4.10 implies that α(ω)+β(ω) ∈ {0, s}. Let ψ be such

that α(ψ) + β(ψ) = s, and let H̃ψ =
1ψ+1ψ

2
. Consider a measure space M = (Ω,F , µ)

and measurable functions f, g : Ωk → C, and note that

∣∣∣∣
∫

f ( 1
s
H)−1ψg1ψ

∣∣∣∣ ≤
∫
|f |( 1

s
H)−1ψ |g|1ψ =

∫ (|f |1/s
)H−sH̃ψ

(|g|1/s
)sH̃ψ ≤

≤ ‖|f |1/s‖|H|−s
H ‖|g|1/s‖s

H = ‖f‖
1
s
|H|−1

1
s
H

‖g‖ 1
s
H ,

where in the second inequality we used Lemma 3.4.11. Now Lemma 3.4.9 shows that 1
s
H

is a semi-norming hypergraph pair, and this finishes the proof.

Next we give the proof of Theorem 3.4.5.

Proof.[Theorem 3.4.5] Let Ω := [k] be endowed with the uniform probability measure.

Define f : Ωk → R as in the following:

f(x1, . . . , xk) =





1 x1 = . . . = xk

0 otherwise

Since H is a non-factorizable hypergraph pair, fH(x) = 1 if and only if all coordinates

of x are equal. Hence ∫
fH = k

(
1

k

)|V1|+...+|Vk|
. (3.27)

Similarly since for x ∈ ΩW1× . . .×ΩWk , if all coordinates of x are equal, then fH′
(x) = 1,

we have ∫
fH′ ≥ k

(
1

k

)|W1|+...+|Wk|
. (3.28)

Since Ω is a probability space, by Corollary 3.4.13 we have

‖f‖H′ ≤ ‖f‖H . (3.29)
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Plugging (3.27) and (3.28) into (3.29), and simplifying it, we obtain the assertion of the

theorem.



Chapter 4

Geometry of the Hypergraph Norms

The two dual concepts of uniform convexity and uniform smoothness play an important

role in Banach space theory. After reviewing the basic definitions and the state of the art

for Lp norms and trace norms, we shall study these two notions for hypergraph norms.

4.1 Moduli of Smoothness and Convexity

Let us start by recalling the definition of moduli of smoothness and convexity of a normed

space. A normed space X is said to be uniformly smooth if for all ε > 0, there is a τ > 0

such that if x and y have norm 1, and ‖x − y‖ ≤ 2τ , then
∥∥x+y

2

∥∥ ≥ 1 − ετ . A normed

space X is called uniformly convex, if for every ε > 0 there exists a δ > 0 such that if x

and y have norm 1, and ‖x− y‖ ≥ 2ε, then
∥∥x+y

2

∥∥ ≤ 1− δ.

Roughly speaking, a normed space is uniformly convex if its unit ball is uniformly free

of “flat spots”, and a normed space is uniformly smooth if its unit ball is uniformly free

of “corners”. Since the unit ball of X∗, the dual of X, is the polar conjugate (see (2.2))

of the unit ball of X, it is not difficult to show that X is uniformly convex if and only

if X∗ is uniformly smooth. We shall see a stronger result below, and thus we will not

59
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elaborate on this.

The modulus of smoothness and modulus of convexity are quantified versions of the

notions of uniform smoothness and uniform convexity. For a normed space X, define its

modulus of smoothness as the function

ρX(τ) = sup

{‖x− τy‖+ ‖x + τy‖
2

− 1 : ‖x‖ = ‖y‖ = 1

}
, (4.1)

and its modulus of convexity as

δX(ε) = inf

{
1−

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ 2ε

}
, (4.2)

where 0 ≤ ε ≤ 1. It should be noted that the function δX is frequently defined with

ε in place of 2ε. The following observation of Lindenstrauss [38] shows that these two

functions behave in a dual form via the Legendre transform:

ρX∗(τ) = sup {τε− δX(ε) : 0 ≤ ε ≤ 1} , (4.3)

where X∗ is the dual of X.

Note that X is uniformly smooth, if limτ→0 ρX(τ)/τ = 0, and it is called uniformly

convex, if for every ε > 0, δX(ε) > 0. For t ∈ (1, 2], a normed space X is said to be

t-uniformly smooth if there exists a constant C > 0 such that ρX(τ) ≤ (Cτ)t, and for

r ∈ [2,∞), a normed space is said to be r-uniformly convex if there exists a constant

C > 0 such that δX(ε) ≥ (ε/C)r.

Note that the moduli of uniform smoothness and uniform convexity of a norm space,

depend only on the structure of its two-dimensional subspaces. Thus if X is finitely

representable in Y , then ρ(X) ≥ ρ(Y ) and δ(X) ≤ δ(Y ).

It is known that ρ`2(τ) = (1 + τ 2)1/2 − 1 = τ 2/2 + O(τ 4), τ > 0 and δ`2(ε) =

1 − (1 − ε2)1/2 = ε2/2 + O(ε4) for 0 < ε < 1. Dvoretzky’s theorem (Theorem 2.1.11)

implies that for every infinite dimensional normed space X, we have ρX(τ) ≥ ρ`2(τ) and

δX(ε) ≤ δ`2(ε), and this was the reason for requiring t ∈ (1, 2] and r ∈ [2,∞) in the

definition of t-uniform smoothness and r-uniform convexity. The following theorem due
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to Ball, Carlen, and Lieb [1] gives an equivalent definition for the notions of t-uniform

smoothness and r-uniform convexity.

Theorem 4.1.1 [1] A normed space X is t-uniformly smooth for t ∈ (1, 2] if and only

if there exists a constant K such that

‖x + y‖t + ‖x− y‖t

2
≤ ‖x‖t + ‖Ky‖t.

Similarly a normed space X is r-uniformly convex for r ∈ [2,∞) if and only if there

exists a constant K such that

‖x + y‖r + ‖x− y‖r

2
≤ ‖x‖r + ‖K−1y‖r.

4.1.1 A generalization

In this section we obtain a generalization of Theorem 4.1.1. First we need two lemmas.

Lemma 4.1.2 Let 1 < p ≤ q < ∞ and ρ =
√

p−1
q−1

. Then for every two vectors x and y

in an arbitrary normed space X, we have

(‖x + ρy‖q + ‖x− ρy‖q

2

)1/q

≤
(‖x + y‖p + ‖x− y‖p

2

)1/p

.

For the proof of Lemma 4.1.2 see Corollary 1.e.14 in [39].

Lemma 4.1.3 Let t ∈ (1, 2], r ∈ [2,∞), and 1 < p, q < ∞. Then there exists constants

C = C(t, p) and C∗ = C∗(r, q) such that for every x, y ∈ C,

( |x + y|p + |x− y|p
2

)1/p

≤ (|x|t + |Cy|t)1/t
, (4.4)

and ( |x + y|q + |x− y|q
2

)1/q

≥
(
|x|r +

∣∣∣∣
1

C∗y

∣∣∣∣
r)1/r

. (4.5)

Furthermore, for the best constants one can assume C(t, p) = C∗(r, q), if 1
r

+ 1
t

= 1 and

1
p

+ 1
q

= 1.
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Proof. We only prove (4.4), and (4.5) as well as the last assertion of the lemma will

follow from duality by Proposition 4.1.6 below. It suffices to prove the theorem for t = 2

as the right-hand side of (4.4) is a decreasing function in t. By Lemma 4.1.2, we have

( |x + y|p + |x− y|p
2

)1/p

≤
( |x + ρy|2 + |x− ρy|2

2

)1/2

≤ (|x|2 + |ρy|2)1/2,

where ρ = max(1,
√

p− 1).

Now for a normed space X, inspired by Lemma 4.1.3, for 1 < t ≤ 2 ≤ r < ∞, and

1 < p, q < ∞, one can investigate the validity of the following two inequalities:

(‖x + y‖p + ‖x− y‖p

2

)1/p

≤ (‖x‖t + ‖Ky‖t
)1/t

, (4.6)

and
(‖x + y‖q + ‖x− y‖q

2

)1/q

≥ (‖x‖r + ‖K−1y‖r
)1/r

(4.7)

where K is a constant. We denote the smallest constant K such that (4.6) is satisfied for

all x, y ∈ X by Kt,p(X) and similarly the smallest constant such that (4.7) is satisfied by

K∗
r,q(X). Trivially Kt,p(X) ≥ C(t, p) and K∗

r,q(X) ≥ C∗(r, q) where C(t, p) and C∗(r, q)

are the constants defined in Lemma 4.1.3.

Remark 4.1.4 In the sequel, C(t, p) and C∗(r, q) always refer to the constants from

Lemma 4.1.3. Note that C(t, p) and Kt,p(X) are both increasing in t and p, and C∗(r, q)

and K∗
r,q(X) are both decreasing in r and q. Since Lemma 4.1.2 is valid for every normed

space X, for 1 < p2 ≤ p1 < ∞,

(‖x + y‖p1 + ‖x− y‖p1

2

)1/p1

≤




∥∥∥x +
√

p1−1
p2−1

y
∥∥∥

p2

+
∥∥∥x−

√
p1−1
p2−1

y
∥∥∥

p2

2




1/p2

≤
(
‖x‖t +

∥∥∥∥Kt,p2(X)

√
p1 − 1

p2 − 1
y

∥∥∥∥
t
)1/t

,
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which implies Kt,p1(X) ≤
√

p1−1
p2−1

Kt,p2(X). Similarly for 1 < q2 ≤ q1 < ∞,

(‖x + y‖q2 + ‖x− y‖q2

2

)1/q2

≥




∥∥∥x +
√

q2−1
q1−1

y
∥∥∥

q1

+
∥∥∥x−

√
q2−1
q1−1

y
∥∥∥

q1

2




1/q1

≥
(
‖x‖r +

∥∥∥∥
1

K∗
r,q1

(X)

√
q2 − 1

q1 − 1
y

∥∥∥∥
r)1/r

,

which shows that K∗
r,q2

(X) ≤
√

q1−1
q2−1

K∗
r,q1

(X).

The following proposition, which is a generalization Theorem 4.1.1, follows from The-

orem 4.1.1 using Remark 4.1.4.

Proposition 4.1.5 Let X be a t-uniformly smooth normed space. Then for every 1 <

p < ∞, we have Kt,p(X) < ∞. Conversely if Kt,p(X) < ∞ for some 1 < p < ∞, then

X is t-uniformly smooth.

Similarly let Y be an r-uniformly convex normed space. Then for every 1 < q < ∞,

we have K∗
r,q(Y ) < ∞. Conversely if K∗

r,q(Y ) < ∞ for some 1 < q < ∞, then Y is

r-uniformly convex.

The constants Kt,p and K∗
r,q behave nicely with respect to the duality. The proof of the

following proposition is parallel to the proof of Lemma 5 from [1]. But we state it here

for the sake of completeness.

Proposition 4.1.6 Consider a normed space X and its dual X∗. Suppose that 1
p
+ 1

q
= 1

and 1
t
+ 1

r
= 1. Then Kt,p(X) = K∗

r,q(X
∗).

Proof. Consider x, y ∈ X. By Hahn-Banach theorem (Corollary 2.1.10), there exists

λ, γ ∈ X∗ such that λ(x + y) = ‖x + y‖, and γ(x − y) = ‖x − y‖, and ‖λ‖ = ‖γ‖ = 1.

Define φ, ψ ∈ X∗ by φ := Z−1/q‖x + y‖p−1λ and ψ := Z−1/q‖x + y‖p−1γ where

Z = (‖x + y‖p + ‖x− y‖p)/2.



Chapter 4. Geometry of the Hypergraph Norms 64

Then

‖φ‖q + ‖ψ‖q = Z−1
(‖x + y‖(p−1)q + ‖x− y‖(p−1)q

)
= Z−1 (‖x + y‖p + ‖x− y‖p) = 2.

Next we have

(‖x + y‖p + ‖x− y‖p

2

)2

=
φ(x + y) + ψ(x− y)

2
=

φ + ψ

2
(x) +

φ− ψ

2
(y)

≤
(∥∥∥∥

φ + ψ

2

∥∥∥∥
r

+

∥∥∥∥
φ− ψ

2K∗
r,q(X

∗)

∥∥∥∥
r)1/r (‖x‖t + ‖K∗

r,q(X
∗)y‖t

)1/t

≤
(‖φ‖q + ‖ψ‖q

2

)1/q (‖x‖t + ‖K∗
r,q(X

∗)y‖t
)1/t

=
(‖x‖t + ‖K∗

r,q(X
∗)y‖t

)1/t
,

where in the first inequality we used Hölder’s inequality, and in the second one the

definition of K∗
r,q(X

∗). We have established that Kt,p(X) ≤ K∗
r,q(X

∗). The proof of

K∗
r,q(X

∗) ≤ Kt,p(X) is similar.

The notion of uniform convexity is first defined by Clarkson in [8], where he studied

the smoothness and convexity of Lp spaces. To this end he established four inequalities

known as the Clarkson inequalities. Let 1 < p ≤ 2 ≤ q < ∞ and 1
p

+ 1
q

= 1. In

our notation the Clarkson inequalities are the following: Kp,p(`p) = 1, K∗
q,q(`q) = 1,

K∗
q,p(`p) = 1, and Kp,q(`q) = 1. The first two are easier to prove and known as the “easy”

Clarkson inequalities, and the latter two are known as the “strong” Clarkson inequalities.

The following observation shows that the strong Clarkson inequalities imply the easy

Clarkson inequalities.

Lemma 4.1.7 Let 1 < t ≤ 2 ≤ r < ∞ be such that 1
t
+ 1

r
= 1. Then Kt,r(X) = 1 if and

only if K∗
r,t(X) = 1.

Proof. Suppose that Kt,r(X) = 1. Then for every x, y ∈ X, we have

(‖x + y‖r + ‖x− y‖r

2

)1/r

≤ (‖x‖t + ‖y‖t
)1/t

.
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Now consider x′, y′ ∈ X. Replacing x and y in the above inequality, respectively with

x′+y′
2

and x′−y′
2

we get

(‖x′‖r + ‖y′‖r

2

)1/r

≤
(∥∥∥∥

x′ + y′

2

∥∥∥∥
t

+

∥∥∥∥
x′ − y′

2

∥∥∥∥
t
)1/t

.

which simplifies to

(‖x′‖r + ‖y′‖r)
1/r ≤

(‖x′ + y′‖t + ‖x′ − y′‖t

2

)1/t

,

showing that K∗
r,t(X) = 1. The proof of the converse direction is similar.

Consider 1 < p ≤ 2 ≤ q < ∞. As we have already seen in Proposition 4.1.5, the

Clarkson inequalities imply that Lp and Lq spaces are both p-uniformly smooth and q-

uniformly convex. However, this is not in general the best possible. The actual situation

is the following. The Lp spaces are p-uniformly smooth and 2-uniformly convex, and

the Lq spaces are 2-uniformly smooth and q-uniformly convex. These facts are proved

by Hanner [33] through the so called Hanner inequality. For 1 < p ≤ 2, we say that a

normed space satisfies the p-Hanner inequality, if

‖x + y‖p + ‖x− y‖p ≥ (‖x‖+ ‖y‖)p + |‖x‖ − ‖y‖|p ,

and for 2 ≤ q < ∞, it satisfies the q-Hanner inequality if

‖x + y‖q + ‖x− y‖q ≤ (‖x‖+ ‖y‖)q + |‖x‖ − ‖y‖|q .

It is shown in [1] that if X satisfies the p-Hanner inequality, then X∗ satisfies the q-Hanner

inequality where 1
p

+ 1
q

= 1. The following proposition reveals the relation between the

Hanner inequality and the notions of uniform smoothness and uniform convexity.

Proposition 4.1.8 If a normed space X satisfies the t-Hanner inequality for 1 < t ≤ 2,

then for every 2 ≤ q < ∞, we have K∗
q,t(X) = C∗(q, t), and for every 1 < p ≤ t′, we have

Kt,p(X) = 1 where 1
t
+ 1

t′ = 1.

Similarly if a normed space X satisfies the r-Hanner inequality for 2 ≤ r < ∞, then

for every 1 < p ≤ 2, we have Kp,r(X) = C(p, r), and for every r′ ≤ q < ∞, we have

K∗
r,q(X) = 1, where 1

r
+ 1

r′ = 1.
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Proof. Suppose that X satisfies the t-Hanner inequality for 1 < t ≤ 2. Consider

2 ≤ q < ∞, and x, y ∈ X. By the t-Hanner inequality

(‖x + y‖t + ‖x− y‖t

2

)1/t

≥
(

(‖x‖+ ‖y‖)t + |‖x‖ − ‖y‖|t
2

)1/t

≥
(
‖x‖q +

∥∥∥∥
1

C∗(q, t)
y

∥∥∥∥
q)1/q

,

which shows that K∗
q,t(X) ≤ C∗(q, t). But from this, and Lemma 4.1.7 we also get

Kt,t′(X) = 1 as K∗
t′,t(X) ≤ C∗(t′, t) = 1. Hence for 1 < p ≤ t′ we have Kt,p(X) = 1. The

second assertion follows from the first one by duality.

Inequalities (4.6) and (4.7) are first appeared in [1], where for q ≥ 2, the equalities

K2,q(`q) = K2,q(Sq) = K2,2(`q) = K2,2(Sq) =
√

q − 1 are proved, where Sq corresponds to

the q-trace norm.

Proposition 4.1.9 For 1 < t ≤ 2 ≤ r < ∞, 1 < t1 ≤ 2 ≤ r1 < ∞, and 1 < p < ∞, we

have

Kt1,p(`r) =





C(t1, r) p ≤ r

C(t1, p) ≤ · ≤ C(t1, r)
√

p−1
r−1

p ≥ r
(4.8)

and

K∗
r1,p(`r) =





C∗(r1, t) p ≥ t

C∗(r1, p) ≤ · ≤ C∗(r1, t)
√

t−1
p−1

p ≤ t
(4.9)

In particular K2,p(`r) = max(
√

p− 1,
√

r − 1), and K∗
2,p (`t) = max

(√
1

p−1
,
√

1
r−1

)
.

Proof. It suffices to prove (4.8), and then (4.9) will follow from duality. Since `r satisfies

the r-Hanner inequality, by Proposition 4.1.8 we have Kt1,r(`r) = C(t1, r). Then it follows

from Lemma 4.1.2 that for p ≥ r, Kt1,p(`r) ≤ C(t1, r)
√

p−1
r−1

. Furthermore, since Kt1,p(`r)

is increasing in p, we have Kt1,p(`r) ≤ C(t1, r), for p ≤ r. It remains to show that

Kt1,p(`r) ≥ C(t1, r) for p ≤ r. Consider two complex numbers a and b, and let x, y ∈ `r

be as x = (a, a) and y = (b,−b). Then since ‖x+ y‖r = ‖x− y‖r = (|a+ b|r + |a− b|r)1/r,

plugging these two vectors in

(‖x + y‖p
r + ‖x− y‖p

r

2

)1/p

≤ (‖x‖t1
r + ‖Kt1,p(`r)y‖t1

r

)1/t1 ,
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we get ( |a + b|r + |a− b|r
2

)1/r

≤ (|a|t1 + |Kt1,p(`r)b|t1
)1/t1 ,

which shows that Kt1,p(`r) ≥ C(t1, r).

Let 1 < t ≤ 2 ≤ r < ∞ with 1
t

+ 1
r

= 1. The spaces `t and `r are respectively

2-uniformly convex and 2-uniformly smooth. Proposition 4.1.9 determines the opti-

mum value of all corresponding constants. In terms of the constants corresponding

to t-uniformly smoothness of `t and r-uniformly convexity of `r, by Remark 4.1.4 and

Clarkson’s inequalities we have

Kt,p(`t) =





1 p ≤ r

C(t, p) ≤ · ≤
√

p−1
r−1

p ≥ r

and

K∗
r,p(`t) =





1 p ≥ t

C∗(r, p) ≤ · ≤
√

t−1
p−1

p ≤ t

4.1.2 Type and Cotype

The moduli of smoothness and convexity of a Banach space are only isometric invariant,

and they may change considerably under an equivalent renorming. This leads to the

definition of type and cotype. A normed space is of type 1 ≤ t ≤ 2 if there exists a

constant Tt such that for every integer n ≥ 0, and every set of vectors x1, . . . , xn,

E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥

t

≤ Tt

(
n∑

i=1

‖xi‖t

)1/t

,

where εi are independent Bernoulli random variables taking values uniformly in {−1, 1}.
Similarly a normed space is said to be of cotype 2 ≤ r ≤ ∞ if there exists a constant Cr

such that for every integer n ≥ 0, and every set of vectors x1, . . . , xn,

(
n∑

i=1

‖xi‖r

)1/r

≤ CrE

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥ ,

where in the case r = ∞ the left hand-side must be replaced by maxn
i=1 ‖xi‖.
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1 < p ≤ t t ≤ p ≤ 2 2 ≤ p ≤ r r ≤ p < ∞
C(2, p) 1 1

√
p− 1

√
p− 1

C∗(2, p)
√

1
p−1

√
1

p−1
1 1

K2,p(`r)
√

r − 1
√

r − 1
√

r − 1
√

p− 1

K∗
2,p(`t)

√
1

p−1

√
1

t−1

√
1

t−1

√
1

t−1

C(t, p) 1 1 1 ≤
√

p−1
r−1

Kt,p(`t) 1 1 1 ≤
√

p−1
r−1

C∗(r, p) ≤
√

t−1
p−1

1 1 1

K∗
r,p(`r) ≤

√
t−1
p−1

1 1 1

Kt1,p(`r) C(t1, r) C(t1, r) C(t1, r) ≤ C(t1, r)
√

p−1
r−1

K∗
r1,p(`t) ≤ C∗(r1, t)

√
t−1
p−1

C∗(r1, t) C∗(r1, t) C∗(r1, t)

Figure 4.1: Here 1 < t ≤ 2 ≤ r < ∞ are such that 1
t
+ 1

r
= 1, and 1 < t1 ≤ 2 ≤ r1 < ∞

are arbitrary.

Trivially, every normed space is of type 1 and of cotype ∞. If a normed space is of

type t0 and cotype r0, then it is also of type t and cotype r provided that t ≤ t0 ≤ 2 ≤
r0 ≤ r. Note that type and cotype do not change under an equivalent norm. Figiel and

Pisier [17, 18] proved that t-uniform smoothness implies type t, and r-uniform convexity

implies cotype r. The reverse is of course not true as for example every finite dimensional

space is of type and cotype 2.

It is well-known that infinite dimensional Lp spaces are of type min(p, 2) and cotype

max(2, p), and nothing better. Thus if `p is λ-finitely representable (see Section 2.1.9) in

an space X of type t and cotype r, then t ≤ min(2, p) and r ≥ max(2, p). A beautiful

theorem due to Maurey and Pisier [42] says that the converse is also true, i.e. `p and

`q are finitely representable in X where p = sup{t : X is of type t} and q = inf{r :

X is of cotype r}.
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Thus in order to study the type, cotype, modulus of smoothness, and modulus of

convexity of a normed space X, it is natural therefore to first try to find the smallest

p ≥ 1 and largest q that `p and `q are finitely representable in X.

4.1.3 Geometry of `H spaces

For a hypergraph pair H, define `H := LH(N) where N is endowed with the counting

measure.

Theorem 4.1.10 If H = (α, β) is a non-factorizable semi-norming hypergraph pair,

then `|H| is a subspace of `H . Furthermore, if H is of Type I with parameter s ≤ 2, then

`s is finitely representable in `H .

The first part of the theorem, which is trivial, shows that any infinite dimensional LH

space is not of any cotype q < min(2, |H|). The second part, which is more interesting,

shows that if H is of Type I with parameter s < 2, then every infinite dimensional LH

space is not of any type p > s. In particular in the case s = 1, an infinite dimensional

LH space has no nontrivial type, and is not uniformly smooth and convex. The next

theorem shows that every such space is of cotype min(2, |H|) which is the best possible

by Theorem 4.1.10.

Theorem 4.1.11 Let H be a non-factorizable semi-norming hypergraph pair of Type I,

then `H is of cotype min(2, |H|).

In Theorem 4.1.11, only the case s = 1 is interesting to us, as for s > 1 we will prove

something stronger in Theorem 4.1.12. The key to prove Theorem 4.1.11 is the following

observation. Consider a non-factorizable semi-norming k-hypergraph pair H = (α, α) of

Type I over V := V1 × . . .× Vk, and functions f1, f2, . . . , fn ∈ `H . Then

n∑
i=1

fH
i =

n∑
i=1

∏
ω∈V

|fi ◦ ω|2α(ω) ≤
∏
ω∈V

(
n∑

i=1

|fi ◦ ω||H|
)1/|H|

=

(
n∑

i=1

|fi||H|
) H

|H|

,
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where in the inequality above we used the classical Hölder inequality. Hence 1

n∑
i=1

‖fi‖|H|H ≤
∥∥∥∥∥∥

(
n∑

i=1

|fi||H|
)1/|H|∥∥∥∥∥∥

H

. (4.10)

We will also need the following inequality 2 in the sequel:

∥∥∥∥∥∥

(
n∑

i=1

|fi|s
) 1

s

∥∥∥∥∥∥
H

=




∫ (
n∑

i=1

|fi|s
)H

s




1/|H|

=

∥∥∥∥∥
n∑

i=1

|fi|s
∥∥∥∥∥

1/s

H/s

≤
(

n∑
i=1

‖|fi|s‖H/s

)1/s

=

(
n∑

i=1

‖fi‖s
H

)1/s

, (4.11)

where we used the fact that H/s is also norming. Now we can state the proof of Theo-

rem 4.1.11.

Proof.[Theorem 4.1.11] Consider functions f1, . . . , fn ∈ `H , and let m := max(|H|, 2).

By applying Minkowski’s inequality, Khintchine’s inequality, and then (4.10), there exists

a constant C such that

E

∥∥∥∥∥
n∑

i=1

εifi

∥∥∥∥∥
H

= E

∥∥∥∥∥

∣∣∣∣∣
n∑

i=1

εifi

∣∣∣∣∣

∥∥∥∥∥
H

≥
∥∥∥∥∥E

∣∣∣∣∣
n∑

i=1

εifi

∣∣∣∣∣

∥∥∥∥∥
H

≥ C

∥∥∥∥∥∥

(
n∑

i=1

|fi|2
)1/2

∥∥∥∥∥∥
H

≥ C

∥∥∥∥∥∥

(
n∑

i=1

|fi|m
)1/m

∥∥∥∥∥∥
H

≥ C

(
n∑

i=1

‖fi‖m
H

)1/m

.

Now let us turn to the other hypergraph pairs, i.e. the ones which are not of Type I

with parameter 1. From Theorem 4.1.10, in terms of the four parameters type, cotype,

modulus of smoothness, and of convexity, the following theorem is the strongest statement

one can hope to prove about them, and in particular implies Theorem 4.1.11 for H of

Type I with parameter s > 1.

Theorem 4.1.12 Let H be a non-factorizable semi-norming hypergraph pair such that

|H| ≥ 2.

1Inequality (4.10) says that `H is |H|-concave as a Banach lattice when H is of Type I. For the
definition of Banach lattice convexity and concavity we refer the reader to [39].

2Inequality (4.11) says that `H is s-convex as a Banach lattice (see [39]).
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• If H is of Type II or Type I with parameter s ≥ 2, then `H is 2-uniformly smooth

and |H|-uniformly convex;

• If H is of Type I with parameter 1 < s ≤ 2, then `H is s-uniformly smooth and

|H|-uniformly convex.

Remark 4.1.13 If 1 < |H| < 2, then it is easy to see by the previous results that ‖ · ‖H

corresponds to the Lp norm where p = |H|, and thus the Banach space properties of the

norm are well-understood. The case |H| = 1 is also trivial.

As it is discussed above, the notions of t-uniform smoothness and r-uniform convexity can

be further refined by looking at the constants Kt,p and K∗
r,q. In proving Theorem 4.1.12

we will try to obtain the best possible constants. This is treated and discussed in more

details in Section 4.1.6. Next we prove Theorems 4.1.10.

4.1.4 Proof of Theorem 4.1.10

Define T : `|H| → `H as T : a 7→ fa, where for a = {ai}i∈N, fa : Nk → C is defined as

fa(i1, . . . , ik) =





ai i1 = i2 = . . . = ik = i

0 otherwise

Since H is non-factorizable, it is easy to see that T is an isometry.

Next we show that `s is finitely representable in `H . Since LH([0, 1]) is finitely repre-

sentable in `H , it suffices to find a map T : `s([n]) → LH([0, 1]) with ‖T‖‖T−1‖ ≤ 1 + ε,

for every n ∈ N and every ε > 0. To this end we find f1, . . . , fn : [0, 1]k → C, such that

for every x = (x1, . . . , xn) ∈ `s([n]) with ‖x‖s = n1/s,

1− ε/4 ≤
∥∥∥∥∥

n∑
i=1

xifi

∥∥∥∥∥
H

≤ 1 + ε/4,

and then the map T : `s([n]) → LH([0, 1]) defined by T : ei 7→ fi, for i ∈ [n], satisfies

‖T‖‖T−1‖ ≤ 1+ε/4
1−ε/4

≤ 1+ ε, for ε < 1. An argument similar to the proof of Lemma 3.4.22,
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shows that there exists f1, . . . , fn : [0, 1]k → {0, 1} such that
∑

fi = 1, and for every

i ∈ [n],
∫

fi = 1
n

and ‖fi − 1
n
‖Uk

≤ δ. Note that since fi are zero-one valued functions,

∑n
i=1 fi = 1 implies that the supports of fi are pairwise disjoint. Then we have

∫ (
n∑

i=1

xifi

)H

=

∫ (
n∑

i=1

|xi|sfi

)H̃

,

where H̃ = (α+β
s

, 0). Furthermore, if ‖x‖s = n1/s, then

∥∥∥∥∥

(
n∑

i=1

|xi|sfi

)
− 1

∥∥∥∥∥
Uk

=

∥∥∥∥∥
n∑

i=1

(
|xi|sfi − |xi|s

n

)∥∥∥∥∥
Uk

≤
n∑

i=1

|xi|s
∥∥∥∥fi − 1

n

∥∥∥∥
Uk

≤ δ‖x‖s = δn1/s.

Now by Lemma 3.4.24

∣∣∣∣∣∣

∫ (
n∑

i=1

|xi|sfi

)H̃

− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫ (
n∑

i=1

|xi|sfi

)H̃

− 1H̃

∣∣∣∣∣∣

≤ δn1/s|H̃|max

(∥∥∥∥∥
n∑

i=1

|xi|sfi

∥∥∥∥∥
∞

, 1

)|H̃|−1

≤ δn|H̃||H̃|.

Now taking δ sufficiently small finishes the proof.

4.1.5 Complex Interpolation

Let us recall the definition of the complex interpolation spaces. Two topological vector

spaces are called compatible, if there exists a Hausdorff topological vector space containing

both of these spaces as subspaces. Consider two compatible normed spaces X0 and X1

and endow the space X0+X1 with the norm ‖f‖X0+X1 = inff=f0+f1(‖f0‖X0 +‖f1‖X1). For

every 0 ≤ θ ≤ 1, one constructs the corresponding complex interpolation space [X0, X1]θ,

as in the following.

Let F(X0, X1) be the set of all analytic functions v : {z : 0 ≤ Re(z) ≤ 1} → X0 + X1

which are continuous and bounded on the boundary, and moreover such that the function

t → v(j + it) (j = 0, 1) are continuous functions from the real line into Xj which tend to
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zero as |t| → ∞. We provide the vector space F with a norm

‖v‖F := max

{
sup
x∈R

‖v(ix)‖X0 , sup
x∈R

‖v(1 + ix)‖X1

}
.

Then for every 0 ≤ θ ≤ 1, the complex interpolation space of X0 and X1 is a normed

space X0 ∩X1 ⊆ [X0, X1]θ ⊆ X0 + X1 defined as

[X0, X1]θ := {f ∈ X0 + X1 : v(θ) = f ∃v ∈ F(X0, X1)|},

with the following norm:

‖f‖θ = inf {‖v‖F : f = v(θ), v ∈ F(X0, X1)} .

The space [X0, X1]θ has an interesting property. Consider compatible pairs X0, X1 and

Y0, Y1. Let T : X0 + X1 → Y0 + Y1 be a bounded linear map. Then (see [3]),

‖T‖[X0,X1]θ→[Y0,Y1]θ ≤ ‖T‖1−θ
X0→Y0

‖T‖θ
X1→Y1

. (4.12)

Theorem 4.1.14 Let M = (Ω,F , µ) be a measure space and H be a norming hypergraph

pair of Type I with parameter 1. Then for every 0 ≤ θ ≤ 1, and 1
p

= 1−θ
p0

+ θ
p1

, where

p0, p1 ≥ 1,

[Lp0H(M), Lp1H(M)]θ = LpH(M).

Proof. Let f : Ωk → C be a measurable function with ‖f‖pH = 1. Define

v : {z : 0 ≤ Re(z) ≤ 1} → Lp0H(M) + Lp1H(M)

by

v(z) = |f |p( 1−z
p0

+ z
p1

)
.

Then v(θ) = |f | which shows that

‖f‖θ ≤ max

{
sup
x∈R

‖v(ix)‖p0H , sup
x∈R

‖v(1 + ix)‖p1H

}
.
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But note that

‖v(ix)‖p0H =

(∫
|v(ix)|p0H

)1/|p0H|
=

(∫ (|f |p/p0
)p0H

)1/|p0H|
=

(∫
|f |pH

)1/|p0H|
= 1,

and similarly ‖v(1 + ix)‖p1H ≤ 1 which shows that ‖f‖θ ≤ ‖f‖pH .

Now for the other direction assume that ‖f‖θ = 1. Then for every ε > 0, there exists

vε such that f = vε(θ) and ‖vε‖F ≤ 1 + ε. By Hölder’s inequality,

‖f‖|H|pH = sup

{∫
fHgH : ‖g‖qH ≤ 1

}
,

where 1 = 1
p

+ 1
q
. Fix g : Ωk → C with ‖g‖qH ≤ 1, and define

u : {z : 0 ≤ Re(z) ≤ 1} → Lq0H(M) + Lq1H(M)

by

u(z) = |g|q( 1−z
q0

+ z
q1

)
,

where 1
q0

+ 1
p0

= 1 and 1
q1

+ 1
p1

= 1. Let

Fε(z) =

∫
vε(z)Hu(z)H ,

and notice that

|Fε(ix)| =
∫

vε(ix)Hu(ix)H ≤ ‖vε(ix)‖|H|p0H‖u(ix)‖|H|q0H ≤ ‖vε‖|H|F × ‖gq/q0‖|H|q0H ≤ (1 + ε)|H|.

Similarly

|Fε(1 + ix)| =

∫
vε(1 + ix)Hu(1 + ix)H ≤ ‖vε(1 + ix)‖|H|p1H‖u(1 + ix)‖|H|q1H

≤ ‖vε‖|H|F × ‖gq/q1‖|H|q1H ≤ (1 + ε)|H|.

Then ∣∣∣∣
∫

fHgH

∣∣∣∣ = |Fε(θ)| ≤ 1 + ε,

which by tending ε to zero leads to ‖f‖pH ≤ 1. We conclude that ‖f‖pH = ‖f‖θ.
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4.1.6 Proof of Theorem 4.1.12

In this section we give sharp bounds on the moduli of smoothness and convexity of

the norms defined by semi-norming hypergraph pairs. This of course will prove Theo-

rem 4.1.12.

Consider a non-factorizable semi-norming hypergraph pair H, and an infinite di-

mensional space LH . Theorem 4.1.10 shows that LH contains `|H| as a subspace, and

thus Kt,p(`|H|) ≤ Kt,p(LH) and K∗
r,q(`|H|) ≤ K∗

r,q(LH), for 1 < t ≤ 2 ≤ r < ∞ and

1 < p, q < ∞. Comparing Proposition 4.1.8 with Figure 4.1 shows that proving the |H|-
Hanner inequality for LH spaces, gives the optimal values of K2,p(LH) and K∗

|H|,|H|(LH),

for every p > 1.

Theorem 4.1.15 (Hanner Inequality) Let H be a non-factorizable semi-norming hy-

pergraph pair which is either of Type II, or of Type I with an even integer parameter.

Then for every f, g ∈ `H , we have

‖f + g‖|H|H + ‖f − g‖|H| ≤ (‖f‖H + ‖g‖H)|H| + |‖f‖H − ‖g‖H ||H| .

Proof. Without loss of generality assume that ‖f‖H ≥ ‖g‖H . Let H be the set of all

pairs (H1, H2) such that H1 and H2 are hypergraph pairs taking only nonnegative integer

values, and furthermore H1 + H2 = H and |H2| is an even integer. Then

‖f + g‖|H|H + ‖f − g‖|H| =

∫
(f + g)H + (f − g)H =

∑

(H1,H2)∈H

∫
fH1gH2

≤
∑

(H1,H2)∈H
‖f‖|H1|

H ‖g‖|H2|
H

= (‖f‖H + ‖g‖H)|H| + (‖f‖H − ‖g‖H)|H| ,

where in the inequality we used Lemma 3.4.11. This completes the proof as we assumed

‖f‖H ≥ ‖g‖H .

Consider a norming hypergraph pair H of Type I with parameter s < 2 and |H| ≥ 2.

Note that for every 2 ≤ q < ∞, `s does not satisfy the q-Hanner inequality, as otherwise
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it would be 2-uniformly convex. Hence it follows from Theorem 4.1.10 that `H does not

satisfy the q-Hanner inequality for any 2 ≤ q < ∞. However, we conjecture the following.

Conjecture 4.1.16 Let H = (α, β) be a non-factorizable semi-norming hypergraph pair

of Type I with parameter s ≥ 2. Then every LH space satisfies the |H|-Hanner inequality.

Since we could not establish the |H|-Hanner inequality for all norming hypergraph pairs

of Type I we have to treat some of them separately. The next two lemmas which give

the optimum bounds for uniform smoothness and convexity constants of `H when H is

a non-factorizable hypergraph pair of Type I with parameter s ≥ 2 would have followed

from a positive answer to Conjecture 4.1.16.

Lemma 4.1.17 (2-Smoothness) Let H = (α, β) be a non-factorizable semi-norming

k-hypergraph pair with |H| ≥ 2. If H is of Type II, or of Type I with parameter s ≥ 2,

then

K2,p(`H) = K2,p(`|H|) =





√
|H| − 1 p ≤ |H|

√
p− 1 p ≥ |H|

Proof. If suffices to prove K2,|H|(`H) ≤
√
|H| − 1, and the rest will follow from Re-

mark 4.1.4. Suppose that H is defined over V := V1 × . . . × Vk. For f, g ∈ `H , we have

to prove (
‖f + g‖|H|H + ‖f − g‖|H|H

2

)2/|H|

≤ ‖f‖2
H + (|H| − 1)‖g‖2

H . (4.13)

Consider the counting measure on {−1, 1}, and define the two functions ε1, ε2 : {−1, 1}k →
{−1, 0, 1} as

ε1(x1, . . . , xk) =





1 x1 = . . . = xk

0 otherwise
,

and

ε2(x1, . . . , xk) =





x1 x1 = . . . = xk

0 otherwise
.
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Note that since H is non-factorizable, for x ∈ {−1, 1}V1 × . . .× {−1, 1}V1 , we have

εH
1 (x) =





1 x = (1, . . . , 1)

0 otherwise
, (4.14)

and

εH
2 (x) =





η x = (η, . . . , η)

0 otherwise
, (4.15)

Let f̃ = f ⊗ ε1 and g̃ = g ⊗ ε2. From (4.14) and (4.15) it is easy to see that

∫
(f̃ + g̃)H =

∫
(f̃ − g̃)H =

∫
(f + g)H + (f − g)H ,

and
∫

f̃H = 2
∫

fH and
∫

g̃H = 2
∫

gH . Hence it suffices to prove

(∫
(f̃ + g̃)H

2

)2/|H|

≥
(∫

f̃H

2

)2/|H|

+ (|H| − 1)

(∫
g̃H

2

)2/|H|
.

which simplifies to

(∫
(f̃ + g̃)H

)2/|H|
≥

(∫
f̃H

)2/|H|
+ (|H| − 1)

(∫
g̃H

)2/|H|
. (4.16)

We will show that for 0 ≤ t ≤ 1

(∫
(f̃ + tg̃)H

)2/|H|
≥

(∫
f̃H

)2/|H|
+ t2(|H| − 1)

(∫
g̃H

)2/|H|
. (4.17)

Note that (4.17) reduces to (4.16) for t = 1. Consider the functions L,R : [0, 1] → R,

defined as

L(t) =

(∫
(f̃ + tg̃)H

)
,

and

R(t) =

(∫
f̃H

)2/|H|
+ t2(|H| − 1)

(∫
g̃H

)2/|H|
.

We have

d

dt
L(t) =

∫ ∑

ψ∈V

α(ψ)(f̃ + tg̃)H−1ψ g̃1ψ + β(ψ)(f̃ + tg̃)H−1ψ g̃1ψ .
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Then

d

dt
L(t)2/|H| =

2

|H|

(∫ ∑

ψ∈V

α(ψ)(f̃ + tg̃)H−1ψ g̃1ψ + β(ψ)(f̃ + tg̃)H−1ψ g̃1ψ

)
L(t)

2−|H|
|H| .

We want to compute the second derivative. Denote H = {1ψ : ψ ∈ V } ∪ {1ψ : ψ ∈ V },
and define γ : H → R by γ : 1ψ 7→ α(ψ) and γ : 1ψ 7→ β(ψ). We have

d2

dt2
L(t)2/|H| =

2

|H|

(∫ ∑

H1 6=H2∈H
γ(H1)γ(H2)(f̃ + tg̃)H−H1−H2 g̃H1+H2

+
∑

H1∈H
γ(H1)(γ(H1)− 1)(f̃ + tg̃)H−2H1 g̃2H1

)
L(t)

2−|H|
|H| +

+

(
d

dt
L(t)

)2
2(2− |H|)
|H|2 L(t)

2−2|H|
|H| .

Recalling the definition of f̃ and g̃, it is easy to see that

L(0)2/|H| = R(0),

and since
∫

f̃H−1ψ g̃1ψ =
∫

fH−1ψg1ψ − ∫
fH−1ψg1ψ = 0 and

∫
f̃H−1ψ g̃1ψ =

∫
fH−1ψg1ψ −

∫
fH−1ψg1ψ = 0, we have

d

dt
L(t)2/|H|

∣∣∣∣
t=0

=
d

dt
R(t)

∣∣∣∣
t=0

= 0.

Furthermore, since H is of Type II or of Type I with parameter s ≥ 2, by Lemma 3.4.11,

we have

d2

dt2
L(t)2/|H||t=0 =

2

|H|

(∫ ∑

H1 6=H2∈H
γ(H1)γ(H2)f̃

H−H1−H2 g̃H1+H2 +

∑
H1∈H

γ(H1)(γ(H1)− 1)f̃H−2H1 g̃2H1

)
L(0)

2−|H|
|H|

≤ 2

|H|

( ∑

H1 6=H2∈H
γ(H1)γ(H2) +

∑
H1∈H

γ(H1)(γ(H1)− 1)

)
×

×(‖f̃‖|H|−2
H ‖g̃‖2

H)‖f̃‖2−|H|
H (4.18)

= 2(|H| − 1)‖g̃‖2
H =

d2

dt2
R(t)|t=0. (4.19)
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Now for every 0 ≤ t0 ≤ 1, one can replace f̃ with f̃ + t0g̃ in (4.19) and obtain that for

every 0 ≤ t0 ≤ 1

d2

dt2
L(t)2/|H||t=t0 ≤

d2

dt2
R(t)|t=t0 . (4.20)

We conclude (4.17).

Next we prove Clarkson’s inequalities for `H when H is a semi-norming hypergraph

pair of Type II or of Type I with parameter s ≥ 2. As it is mentioned above this would

follow from Conjecture 4.1.16.

Lemma 4.1.18 (Clarkson’s Inequalities) Let H be a non-factorizable semi-norming

hypergraph pair of Type II or Type I with parameter s ≥ 2 such that q := |H| ≥ 2. Then

Kp,q(`H) = K∗
q,p(`H) = K∗

q,q(`H) = 1,

where 1
p

+ 1
q

= 1.

Proof. Recall that always K∗
q,q ≤ K∗

q,p. Hence it suffices to prove Kp,q(`H) = 1, as by

Lemma 4.1.7 this would imply K∗
q,p(`H) = 1. To this end, we need to show that for

f, g ∈ `H , we have

(‖f + g‖q
H + ‖f − g‖q

H

2

)1/q

≤ (‖f‖p
H + ‖g‖p

H)1/p , (4.21)

which is equivalent to

(∥∥∥∥
f + g

2

∥∥∥∥
q

H

+

∥∥∥∥
f − g

2

∥∥∥∥
q

H

)1/q

≤
(‖f‖p

H + ‖g‖p
H

2

)1/p

. (4.22)

Proposition 4.1.8 shows that (4.22) follows from the |H|-Hanner inequality. Hence Theo-

rem 4.1.15 implies (4.22) when H is of Type II or it is of Type I with parameter s where

s is an even integer. Next assume that H is of Type I with parameter s ≥ 2.

For a real 1 ≤ t < ∞, and a norming hypergraph pair G, define the norm Lt(`G) on

the set of pairs (f, g) where f, g ∈ `G as

‖(f, g)‖Lt(`G) :=
(‖f‖t

G + ‖g‖t
G

)1/t
.
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Consider the linear map T : (f, g) 7→ (f+g
2

, f−g
2

). Then (4.22) says that

‖T‖Lp(`H)→Lq(`H) ≤ 2−
1
p . (4.23)

We will prove this by interpolation. Let H̃ = 1
s
H, and s0 and s1 be two even integers

satisfying 2 ≤ s0 ≤ s ≤ s1, and θ be such that 1
s

= 1−θ
s0

+ θ
s1

. Then 1
p

= 1−θ
t0

+ θ
t1

, where

1
t0

+ 1
s0|H̃| = 1 and 1

t1
+ 1

s1|H̃| = 1. Theorem 4.1.14 above, together with Theorem 5.1.2

from [3] imply that

[
Ls0|H̃|(`s0H̃), Ls1|H̃|(`s1H̃)

]
θ

= Ls|H̃|(
[
`s0H̃ , `s1H̃

]
θ
) = Lq(`H),

and

[
Lt0(`s0H̃), Lt1(`s1H̃)

]
θ

= Lp(
[
`s0H̃ , `s1H̃

]
θ
) = Lp(`H).

Furthermore
(
2
− 1

t0

)1−θ (
2
− 1

t1

)θ

= 2−
1
p .

Now since we know that (4.23) holds for even values of s ≥ 2, we have

‖T‖Lt0(`s0H̃)→Ls0|H̃|(`s0H̃) ≤ 2
− 1

t0 ,

and

‖T‖Lt1(`s1H̃)→Ls1|H̃|(`s1H̃) ≤ 2
− 1

t1 .

Then interpolation (4.12), implies (4.23).

Next Lemma determines the moduli of smoothness and convexity of non-factorizable

semi-norming hypergraph pairs of Type I with parameter 1 < s ≤ 2.

Lemma 4.1.19 Let H be a non-factorizable semi-norming hypergraph pair of Type I with

parameter s > 1 with |H| ≥ 1. Then Ks,|H|(`H) = C(s, |H|) and K∗
|H|,s(X) = C∗(|H|, s).

Proof. Let C := C(s, |H|) and C∗ := C∗(|H|, s). Consider f, g ∈ `H . By (4.10) and
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(4.11) we have

(
‖f + g‖|H|H + ‖f − g‖|H|H

2

)1/|H|

≤
∥∥∥∥∥
( |f + g||H| + |f − g||H|

2

)1/|H|∥∥∥∥∥
H

≤
∥∥∥(|f |s + |Cg|s)1/s

∥∥∥
H

≤ (‖f‖s
H + ‖Cg‖s

H)1/s ,

which shows that Ks,|H|(`H) ≤ C. To prove K∗
|H|,s = C∗, note that by (4.11) and (4.10)

we have

(‖f + g‖s
H + ‖f − g‖s

H

2

)1/s

≥
∥∥∥∥∥
( |f + g|s + |f − g|s

2

)1/s
∥∥∥∥∥

H

≥
∥∥∥∥∥∥

(
|f ||H| +

∣∣∣∣
1

C∗ g

∣∣∣∣
|H|)1/|H|∥∥∥∥∥∥

H

≥
(
‖f‖|H|H +

∥∥∥∥
1

C∗ g

∥∥∥∥
|H|

H

)1/|H|

.

Remark 4.1.20 Note that all results in Section 4.1.6 are stated for non-factorizable

semi-norming hypergraph pairs. Consider a semi-norming hypergraph pair H = H1∪̇ . . . ∪̇Hm,

where Hi’s are non-factorizable. If H is of Type I, then by Theorem 3.4.19, ‖·‖H = ‖·‖H1 ,

and thus one can apply the results of Section 4.1.6 to H1 instead. However, some of our

results do not cover the case where H is factorizable and of Type II.



Chapter 5

Graph norms

Recall from Section 2.3.1 that for a symmetric measurable map w : [0, 1]2 → R, the

C4 norm is defined as ‖w‖C4 := tC4(w)1/4. Similarly, one can see that for every natural

number k, ‖w‖C2k
:= tC2k

(w)1/2k is a norm function. The C4 norm, and the Gowers

norms (its generalizations to k-variable functions) play an important role in the study

of pseudo-randomness. Inspired by the fact that the cycles of even length correspond to

norms, and by the numerous applications of these norms in graph theory, László Lovász

posed the problem of characterizing all graphs that correspond to norms. In order to

study this question, in Chapter 3 we introduced and studied the normed spaces that

are defined through hypergraph pairs. The original question of Lovász is about graphs,

and the framework of hypergraph pairs is more general than what one actually needs

to study the question. As a consequence some proofs have become more complicated,

and also some results do not translate immediately to the language of graphs. As we

promised before, in this chapter we revisit the original question of Lovász, and state the

consequences of the results developed in Chapter 3 to this question. Hence most of the

results in this chapter are adaptations of results of Chapter 3 from hypergraph norms to

graph norms. The only completely new result in this chapter is Theorem 5.1.9, whose

proof constitutes the bulk of this chapter. We shall see the applications of these results

82
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to an important conjecture due to Erdős, Simonovits and Sidorenko in the next chapter.

5.1 Lovász’s question

For a graph G = (V, E), a set S ⊆ V is called an independent set if there is no edge with

both endpoints in S. For reasons that will soon be apparent, we are mainly concerned

with bipartite graphs. A graph G = (V,E) is called a bipartite graph if V can be

partitioned into two disjoint independent sets V1 and V2. We call the partition of V into

(V1, V2) a bipartition of G. Note that disconnected bipartite graphs have more than one

bipartition. Let

WS := {w : [0, 1]2 → R|w is measurable, bounded, and symmetirc},

where symmetric means that w(x, y) = w(y, x) for every x, y ∈ [0, 1]. Recall that the C4

norm of a w ∈ WS is defined by tC4(w)1/4. In an attempt to generalize the C4-norm,

Lovász asked the following question.

Question 5.1.1 (Lovász) For which graphs H, does the function tH(·)1/|E(H)| define a

norm on WS?

Consider a non-bipartite graph H. Let w1, w2 ∈ WS be defined as

w1(x) =





1 x1, x2 ∈ [0, 1/2]

1 x1, x2 ∈ [1/2, 1]

0 otherwise

and w2 = 1 − w1. Note that w2 is the graphon corresponded to K2 (See section 2.2.4),

and hence tH(w2) = tH(K2). Note that a graph is homomorphic to K2 if and only if it is

bipartite. Since H is not bipartite, tH(w2) = tH(K2) = 0, and we get

tH(w1)
1/|E(H)| + tH(w2)

1/|E(H)| < 1 = tH(1)1/|E(H)| = tH(w1 + w2)
1/|E(H)|,
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and so tH(·)1/|E(H)| is not a norm. This shows that to study Question 5.1.1 it is sufficient

to restrict to the case where H is bipartite.

Consider a bipartite graph H, and let V (H) = X∪̇Y be a bipartition of H. Note that

if H1, . . . , Hk are connected components of H, then for every w ∈ WS,

tH(w) = tH1(w) . . . tHk
(w). (5.1)

Suppose that tH(·)1/|E(H)| defines a semi-norm on WS. Now for every measurable

and bounded, but not necessarily symmetric function w : [0, 1]2 → R, we will symmetrize

w to obtain a symmetric measurable function Tw : [0, 1]2 → R+. Figure 5.1 shows that

intuitively how Tw is defined according to w.

0

0

w

w
t

0 0.5 1

0.5

1

Figure 5.1: This figure shows how Tw is defined according to w. Here wt is the transpose

of w, defined by wt(x, y) := w(y, x).

More formally define Tw : [0, 1]2 → R as

Tw(x) :=





w(2x1, 2x2 − 1) x1 ∈ [0, 1/2], x2 ∈ (1/2, 1]

w(2x2, 2x1 − 1) x2 ∈ [0, 1/2], x1 ∈ (1/2, 1]

0 otherwise
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Note that Tw is measurable, bounded and symmetric. Furthermore, it is not difficult to

see that for j = 1, . . . , k,

tHj
(Tw) = 21−|V (Hj)|E

∏

uv∈E(Hj):u∈X∩V (Hj),v∈Y ∩V (Hj)

w(xu, yv),

which together with (5.1) shows that

tH(Tw) = 2k−|V (H)|E
∏

uv∈E(H):u∈X,v∈Y

w(xu, yv).

Hence
(
E

∏
uv∈E(H):u∈X,v∈Y w(xu, yv)

)1/|E(H)|
= cHtH(Tw)1/|E(H)|, where cH = 2

k−|V (H)|
|E(H)| .

Since T is linear and tH(·)1/|E(H)| is a norm, we conclude that


E

∏

uv∈E(H):u∈X,v∈Y

w(xu, yv)




1/|E(H)|

,

defines a norm on the space of measurable, bounded functions w : [0, 1]2 → R. On the

other hand, if such a w is symmetric, then


E

∏

uv∈E(H):u∈X,v∈Y

w(xu, yv)




1/|E(H)|

= tH(w)1/|E(H)|.

These observations show that to study Question 5.1.1, we can use a more general setting

than WS and remove the condition that w is symmetric. Namely for a given bipartite

graph H and its bipartition V (H) := X∪̇Y , the question is whether


E

∏

uv∈E(H):u∈X,v∈Y

w(xu, yv)




1/|E(H)|

defines a norm on the space of measurable, bounded functions w : [0, 1]2 → R. As we

shall see below this falls into the framework of hypergraph pairs developed in Chapter 3.

In order to show this we need to identify H and its bipartition with a hypergraph pair

so that ‖ · ‖H =
(
E

∏
uv∈E(H):u∈X,v∈Y w(xu, yv)

)1/|E(H)|
.

In graph theory, G = (V, E) is called a bipartite graph if V can be partitioned into

two disjoint independent sets V1 and V2. In this chapter we use a different definition that
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fixes one specific bipartition for G. So in the sequel by a partitioned bipartite graph we

mean a triple G = (V1, V2; E), where V1 and V2 are two disjoint sets and E is a subset of

V1 × V2. Note that here we fix the bipartition (V1, V2) as a part of the definition. Also

here every edge is an ordered pair, and can be thought of as a directed edge from V1 to

V2. Consider a partitioned bipartite graph H. We assign two hypergraph pairs to H:

• We identify H with the hypergraph pair (α, 0) over V1×V2, where α is the indicator

function of the edges of H.

• We also define r(H) := H+H
2

.

Furthermore, in this chapter we are only concerned with real -valued functions. Note that

for a measurable w : [0, 1]2 → R, using the notation of Chapter 3, we have

‖w‖H =


E

∏

(u,v)∈E

w(xu, yv)




1/|E(H)|

,

and

‖w‖r(H) =


E

∏

(u,v)∈E

|w(xu, yv)|



1/|E(H)|

.

The reason that we defined the hypergraph pair r(H) is that, for some applications, it

suffices that ‖ · ‖r(H) defines a norm on the space of bounded measure functions w :

[0, 1]2 → R. (See Chapter 6 for one such application.)

Definition 5.1.2 Consider a partitioned bipartite graph H, and a measure space M =

(Ω,F , µ). Let LH(M,R) and Lr(H)(M,R) be respectively the sets of measurable functions

f : Ωk → R with ‖ |f | ‖H < ∞ and ‖ |f | ‖r(H) < ∞.

A partitioned bipartite graph H is called norming (semi-norming), if ‖ · ‖H defines a

norm (semi-norm) on LH(M,R) for every measure space M = (Ω,F , µ). A partitioned

bipartite graph H is called weakly norming, if ‖ · ‖r(H) defines a norm on Lr(H)(M,R) for

every measure space M = (Ω,F , µ).
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We have the following observations:

Lemma 5.1.3 Let H be a partitioned bipartite graph. Then

(i) If H is semi-norming or norming, then H is weakly norming.

(ii) If H has a vertex of odd degree, then H is not norming.

Proof. Part (i) is trivial. To prove (ii), define w : {0, 1}2 → R as

w(x, y) =





1 x = y

−1 x 6= y

Let H = (X,Y ; E) be a partitioned bipartite graph and w ∈ X be a vertex of odd degree.

For v ∈ Y , fix yv ∈ [0, 1]. Note that

∏

(w,v)∈E

w(0, yv) = (−1)deg(w)
∏

(w,v)∈E

w(1, yv) = −
∏

(w,v)∈E

w(1, yv),

which shows that

Ex

∏

(w,v)∈E

w(x, yv) = 0,

and in turn

E
∏

(u,v)∈E

w(xu, yv) = 0.

Thus ‖w‖H = 0 and so H is not norming.

According to Lemma 5.1.3 (i), we have the following implications:

norming ⇒ semi-norming ⇒ weakly norming

Theorem 5.1.4 below “almost” follows from Lemmas 3.4.9 and 3.4.11. The only problem

is that here the theorem is about real-valued functions as opposed to the complex-valued

functions in Lemmas 3.4.9 and 3.4.11. However, since to prove Theorem 5.1.4 one does

not need to follow all the steps of the proofs of Lemmas 3.4.9 and 3.4.11, we give a

complete proof of Theorem 5.1.4 below. We built most of the results in Chapters 3 and 4
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upon Lemmas 3.4.9 and 3.4.11. Theorem 5.1.4 below plays the same role in the context of

graph norms, and it is extremely useful in the sequel and shall be applied frequently. One

can think of the inequalities (5.2) and (5.3) as common generalizations of the classical

Hölder inequality and the Gowers-Cauchy-Schwarz inequality. Gowers [26, 28] proved a

similar inequality in the context of Gowers norms, to show that Gowers norms satisfy

the axioms of a normed space. Hence it was quite expected that for a graph H such

an inequality would imply that ‖ · ‖H satisfies the axioms of a semi-norm. However, the

surprising part of the following theorem is that it shows that every semi-norm ‖ · ‖H

satisfies such an inequality.

Theorem 5.1.4 Let H be a partitioned bipartite graph.

(i) H is semi-norming iff
∫

fH is always positive, and for every measure space M =

(Ω,F , µ), the following Gowers-Cauchy-Schwarz type inequality holds: For func-

tions {fe}e∈E(H), where fe : Ω2 → R are measurable, we have

∫ ∏

e=uv∈E(H)

fe(xu, yv) ≤
∏

e∈E(H)

‖fe‖H . (5.2)

(ii) H is weakly norming iff for every measure space M = (Ω,F , µ), the following

Gowers-Cauchy-Schwarz type inequality holds: For functions {fe}e∈E(H), where fe :

Ω2 → R are measurable, we have

∫ ∏

e=uv∈E(H)

|fe(xu, yv)| ≤
∏

e∈E(H)

‖fe‖r(H). (5.3)

Remark 5.1.5 The inequality (5.2) does not imply that H is norming. In order to verify

that H is norming, one must also show that ‖f‖H 6= 0, for every f 6= 0.

Recall that in Proposition 3.4.14 we characterized all 1-hypergraph norms. In Propo-

sition 3.4.20 we characterized all semi-norming hypergraph pairs that are not norming.

It follows from these two results that if H is semi-norming but not norming, then there

exists an integer m ≥ 1 such that all components of H are either isolated vertices or

isomorphic to K1,m.
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Proof.[Theorem 5.1.4] Let H be a partitioned bipartite graph, and M = (Ω,F , µ) be

a measure space. Suppose that
∫

fH is always nonnegative, and (5.2) is satisfied. Then

for f, g : Ω2 → R, and an edge e0 = (u0, v0) ∈ H, we have

‖f + g‖|E(H)|
H =

∫ ∏

e=uv∈E(H)

(f + g)(xu, yv)

=

∫
f(xu0 , yv0)

∏

e=uv∈E(H)\{e0}
(f + g)(xu, yv)

+

∫
g(xu0 , yv0)

∏

e=uv∈E(H)\{e0}
(f + g)(xu, yv)

= ‖f‖H‖f + g‖|E(H)|−1
H + ‖g‖H‖f + g‖|E(H)|−1

H ,

which simplifies to the triangle inequality. This proves that ‖ · ‖H is a semi-norm.

Next suppose that (5.2) does not hold. Then there exists fe : Ω2 → R, such that

∫ ∏

e∈E(H)

fe >
∏

e∈E(H)

‖fe‖H .

After proper normalization we may assume that ‖fe‖H ≤ 1, for every e ∈ E(H), and
∫ ∏

e∈E(H) fe = c, for some c > 1. Now by amplification by tensors (see Lemma 3.4.8),

for every positive integer n, we have
∥∥∥∥∥∥

∑

e∈E(H)

f⊗2n
e

∥∥∥∥∥∥

|E(H)|

H

=

∫ ∏

e′∈E(H)


 ∑

e∈E(H)

f⊗2n
e




=
∑

π:E(H)→E(H)




∫ ∏

e∈E(H)

w⊗2n
π(e)




=
∑

f :E(H)→E(H)




∫ ∏

e∈E(H)

wπ(e)




2n

≥



∫ ∏

e∈E(H)

fe




2n

= c2n,

while for every e ∈ E(H), by Lemma 3.4.8, we have that

∥∥f⊗2n
e

∥∥
H

= ‖fe‖2n
H ≤ 1.
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Thus for large enough n, the triangle inequality fails:

∑

e∈E(H)

∥∥f⊗2n
e

∥∥
H
≤ m < c2n/m ≤

∥∥∥∥∥∥
∑

e∈E(H)

f⊗2n
e

∥∥∥∥∥∥
H

. (5.4)

The proof of the weakly norming case is similar.

Note that for a partitioned bipartite graph H, and a complex valued function f ,

‖f‖H = ‖ |f | ‖r(H), and hence for a measure space M, ‖ · ‖r(H) is a norm on Lr(H)(M,C)

iff it is a norm on Lr(H)(M,R). Thus the following necessary conditions for a graph to

be weakly norming follow immediately from Remark 3.4.4 and Theorem 3.4.5.

Theorem 5.1.6 Suppose that G is a weakly norming graph.

(i) If G is connected, then for every subgraph H ⊆ G, we have |E(H)|
|V (H)|−1

≤ |E(G)|
|V (G)|−1

.

(ii) If u and v belong to the same part in the bipartition of G, then deg(u) = deg(v).

For two partitioned bipartite graphs G = (V1, V2; E) and H = (W1,W2; E
′) define

their tensor product G⊗H to be the partitioned bipartite graph with bipartition (V1 ×
W1, V2 ×W2), and the edges ([v1, w1], [v2, w2]) where (v1, v2) ∈ G and (w1, w2) ∈ H. The

following theorem follows immediately from Theorem 3.3.2 and Lemma 3.3.3.

Theorem 5.1.7 We have the following:

(i) If G and H are both semi-norming (weakly norming), then so is G⊗H.

(ii) If G is norming and H is semi-norming, then G⊗H is norming.

(iii) For every m,n ≥ 1, the graph Km,n is weakly norming. If both m and n are even

then Km,n is norming.

Remark 5.1.8 If G is norming and H is weakly norming, then by Theorem 5.1.7 (iii)

G⊗H is weakly norming. We do not know if the stronger statement follows that G⊗H

is semi-norming.



Chapter 5. Graph norms 91

If G is semi-norming and H is weakly norming, then G ⊗H is weakly norming, but

not necessarily semi-norming. Note that G := K2∪̇K2 is semi-norming, and H := K3,3

is weakly norming. Then G⊗H = K3,3∪̇K3,3 is weakly norming, but not semi-norming.

Indeed by Lemma 5.1.3 (ii), K3,3∪̇K3,3 is not norming, and then by Remark 5.1.5 it is

semi-norming.

The n-dimensional hypercube Qn is the partitioned bipartite graph (X, Y ; E) where

X is the set of elements of {0, 1}n with an even number of 1’s in their coordinates, and

Y = {0, 1}n \X. Moreover (x, y) ∈ E if and only if y differs only in one coordinate from

x. The main theorem that we prove in this chapter is the following.

Theorem 5.1.9 The hypercubes Qn are weakly norming.

5.1.1 Proof of Theorem 5.1.9

Let Qn denote the n-dimensional hypercube. We identify the vertices of a hypercube Qn

with the 0-1 strings of length n, where two vertices are adjacent if their strings differ in

one bit. With this notation we can concatenate two nodes s ∈ V (Qn) and v ∈ V (Qm) to

obtain the node sv ∈ V (Qn+m). Note that Qn is bipartite. We use the convention that

X(Qn) is the set of vertices with an even number of 1’s in their strings, and Y (Qn) is

the rest of the vertices.

By Theorem 5.1.4, to prove Theorem 5.1.9, it suffices to establish (5.3). We prove

something stronger.

Consider a measure spaces M = (Ω,F , µ). For all u ∈ X and v ∈ Y , let fu : Ω → R

and gv : Ω → R be measurable functions, and for every edge e ∈ Qn let we : Ω2 → R be

measurable functions. We claim the following strengthening of Theorem 5.1.9:

Claim 5.1.10

∫ ∣∣∣∣∣∣
∏

u∈X(Qn),v∈Y (Qn)

fu(xu)gv(yv)
∏

e=(a,b)∈E

we(xa, yb)

∣∣∣∣∣∣
≤

∏

e=(a,b)∈E

(∫
|Re|

)1/|E(Qn)|
, (5.5)
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where for e = (a, b),

Re :=
∏

u∈X(Qn),v∈Y (Qn)

fa(xu)gb(yv)
∏

(s,t)∈E

we(xs, yt).

If one substitutes fu = 1, gv = 1 for every u ∈ X(Qn), and v ∈ Y (Qn), then by

Theorem 5.1.4, Claim 5.1.10 reduces to Theorem 5.1.9. So it is sufficient to prove the

claim. Before proving Claim 5.1.10 in its general form we prove it for n = 2 as a separate

lemma. First notice that without loss of generality we can assume that fu, gv ≥ 0 and

we ≥ 0 for every u ∈ X(Qn), v ∈ Y (Qn), and e ∈ E(Qn), and drop the absolute value

signs from the proof.

Lemma 5.1.11 Claim 5.1.10 holds for n = 2.

Proof. For an edge e = (u, v) ∈ Q2, define

w′
e : Ω2 → R,

w′
e : (x, y) 7→

√
fu(x)we(x, y)

√
gv(y).

Now since Q2 is isomorphic to C4, for n = 2, we have

L.H.S. of (5.5) =

∫ ∏

e=(u,v)∈E(Q2)

w′
e(xu, yv) ≤

∏

e∈E(C4)

‖w′
e‖C4 =

∏

e∈E(Q2)

(∑
Re

)1/4

.

We now turn to the proof of Claim 5.1.10 in its general form, and as we discussed

above this will imply Theorem 5.1.9. The proof is divided into several steps, so that

hopefully the main ideas can be distinguished from technicalities. Let us first introduce

some notation that helps us to keep the proof short.

Remark 5.1.12 Let φ : V (Qn) → V (Qn) be such that φ(u) ∈ X and φ(v) ∈ Y for every

u ∈ X and v ∈ Y , and furthermore, (φ(u), φ(v)) ∈ E if (u, v) ∈ E. Define

Rφ =
∏

u∈X(Qn),y∈Y (Qn)

fφ(u)(xu)gφ(v)(yv)
∏

(s,t)∈E(Qn)

w(φ(s),φ(t))(xs, yt).
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For example, for e = (a, b), let φe be defined as φe(u) = a, if u ∈ X(Qn) and φe(u) = b,

otherwise. Then Re as it is defined in Claim 5.1.10 is in fact the same as Rφe , and if we

denote by id. the identity map from V (Qn) to itself, then Claim 5.1.10 says that

∫
|Rid.| ≤

∏

e∈E(Qn)

(∫
|Rφe |

)1/|E(Qn)|
. (5.6)

Proof.[Claim 5.1.10] We prove the claim by induction. Before engaging in the calcu-

lations, let us explain the intuition behind the proof. The variables xu, yv assign some

values to the vertices. The product in the left-hand side of (5.5) is the product of the

functions fu, gv and we where fu and gv depend only on the values that are assigned to

the vertices u and v respectively, and we depends only on the values that are assigned

to the endpoints of e. The first step in the proof is to group these functions together so

that they can be interpreted as the same product but for Qn−1 instead of Qn. Then we

can apply the induction hypothesis.

Step 1: We regroup the product in the left-hand side of (5.5) in the following way.

∏

u∈X(Qn),v∈Y (Qn)

fugv

∏

e∈E(Qn)

we =

∏

u∈X(Qn−1),v∈Y (Qn−1)

(f0uw(0u,1u)g1u)(f1vw(1v,0v)g0v)
∏

(s,t)∈E(Qn−1)

(
w(0s,0t)w(1t,1s)

)
.(5.7)

The left-hand side of (5.7) is the product in the left-hand side of (5.5), and the right-hand

side of (5.7) can be interpreted as the same product for Qn−1 but on different index sets in

the following way: Let the value assigned to the vertices u ∈ X(Qn−1) and v ∈ Y (Qn−1)

be the pair [x0u, y1u] and [x1v, y0v] respectively. Note that in the right-hand side of (5.7),

f0uw(0u,1u)g1u depends only on [x0u, y1u], and f1vw(1v,0v)g0v depends only on [x1v, y0v], and

finally w(0s,0t)w(1t,1s) depends only on the pair ([x0s, y1s], [x1t, y0t]).

More formally, to prove the claim for n and M, we use the induction hypothesis for

n− 1 with the measure (M×M). Every vertex v ∈ Qn−1 corresponds to two adjacent
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vertices 0v and 1v. To use the induction hypothesis, for u ∈ X(Qn−1), define

f ′u : Ω2 → R

f ′u : [x, y] 7→ f0u(x)w(0u,1u)(x, y)g1u(y).

For v ∈ Y (Qn−1), define

g′v : Ω2 → R

g′v : [x, y] 7→ f1v(x)w(1v,0v)(x, y)g0v(y).

and for e = (u, v) ∈ E(Qn−1),

w′
e : (Ω2)× (Ω2) → R

w′
e : ([x, y], [x′, y′]) 7→ w(0u,0v)(x, y′)w(1v,1u)(x

′, y).

Then

L.H.S. of (5.5) = R.H.S. of (5.7)

=

∫ ∣∣∣∣∣∣
∏

u∈X(Qn−1),v∈Y (Qn−1)

f ′u([x0u, y1u])g
′
v([x1v, y0v])

∏

e=(s,t)∈E(Qn−1)

w′
e([x0s, y1s], [x1t, y0t])

∣∣∣∣∣∣
. (5.8)

Then we apply the induction hypothesis to the right-hand side of (5.8) and obtain

R.H.S. of (5.8) ≤
∏

e=(a,b)∈E(Qn−1)




∫ ∣∣∣∣∣∣
∏

u∈X(Qn−1),v∈Y (Qn−1)

f ′a([x0u, y1u])g
′
b([x1v, y0v])

∏

(s,t)∈E(Qn−1)

w′
(a,b)([x0s, y1s], [x1t, y0t])

∣∣∣∣∣∣




1/|E(Qn−1)|

=
∏

e=(a,b)∈E(Qn−1)

(∫
Rψe

)1/|E(Qn−1)|
,



Chapter 5. Graph norms 95

where for e = (a, b)

ψe(0u) = 0a ∀u ∈ X(Qn−1)

ψe(1u) = 1a ∀u ∈ X(Qn−1)

ψe(0v) = 0b ∀v ∈ Y (Qn−1)

ψe(1v) = 1b ∀v ∈ Y (Qn−1)

(5.9)

Combining this with (5.8) we obtain

L.H.S. of (5.5) ≤
∏

e=(a,b)∈E(Qn−1)

(∫
Rψe

)1/|E(Qn−1)|
. (5.10)

Step 2: In this step we obtain a different bound for the left-hand side of (5.5). In Step

1, for every v ∈ Qn−1, we grouped the two vertices 0v, 1v and the edge between them

as one vertex (see (5.7)) and this reduced Qn to Qn−1. In this step we reduce Qn to Q2.

For every vertex s ∈ {00, 11} = X(Q2), define

f ′′s =


 ∏

u∈X(Qn−2),v∈Y (Qn−2)

fsugsv





 ∏

(u,v)∈E(Qn−2)

w(su,sv)


 ,

for every t ∈ {01, 10} = Y (Q2), define

g′′t =


 ∏

u∈X(Qn−2),v∈Y (Qn−2)

ftvgtu





 ∏

(u,v)∈E(Qn−2)

w(tv,tu)


 ,

and for every edge e = (s, t) ∈ E(Q2),

w′′
e =

∏

u∈X(Qn−2),v∈Y (Qn−2)

w(su,tu)w(tv,sv).

Note that the product in the left-hand side of (5.5) is equal to


 ∏

s∈X(Q2),t∈Y (Q2)

f ′′s g′′t





 ∏

(s,t)∈E(Q2)

w′′
(s,t)


 .

We can apply Lemma 5.1.11 with proper index sets to these functions. We get

L.H.S of (5.5) ≤
∏

e=(s,t)∈E(Q2)

(∫
Rρe

)1/4

, (5.11)
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where for e = (s, t)

ρe(s
′v) = sv ∀s′ ∈ X(Q2), v ∈ V (Qn−2)

ρe(t
′v) = tv ∀t′ ∈ Y (Q2), v ∈ V (Qn−2)

(5.12)

Step 3: In this step we combine Steps 1 and 2. Note that in (5.10), the product Rψe

has the same form as the product in the left-hand side of (5.5). Thus we can apply Step

2 to
∫

Rψe . For e ∈ E(Qn−1) we get

∫
Rψe ≤

∏

e′=(s,t)∈E(Q2)

(∫
Rρe′◦ψe

)1/4

. (5.13)

Combining this with (5.10) we obtain

L.H.S. of (5.5) ≤
∏

e∈E(Qn−1)


 ∏

e′∈E(Q2)

(∫
Rρe′◦ψe

)1/4|E(Qn−1)|

 (5.14)

Step 4: Now for some integer k > 0 we repeatedly apply Step 3, and by (5.14) we get,

L.H.S. of (5.5) ≤
∏

e1,...,ek∈E(Qn−1)


 ∏

e′1,...,e′k∈E(Q2)

(∫
Rρe′1

◦ψe1◦...◦ρe′
k
◦ψek

)4−k|E(Qn−1)|−k

 .

(5.15)

Let us first assume that ‖we‖∞, ‖fu‖∞, ‖gv‖∞ < C for some constant C > 0. We shall

deal with the general case later. Note first that for every arbitrary φ : V (Qn) → V (Qn),

we have
∫

Rφ < L for some large number L which depends on C, fu’s, gv’s, and we’s but

does not depend on φ. Notice that for e = (a, b) ∈ E(Qn−1)

ρ(00,01) ◦ ψe = φ(0a,0b), (5.16)

and

ρ(11,10) ◦ ψe = φ(1a,1b), (5.17)

where φ(0a,0b) and φ(1a,1b) are defined as in Remark 5.1.12.

Next note that for every ẽ ∈ E(Qn), e ∈ E(Qn−1), and e′ ∈ E(Q2), we have ρe′ ◦
ψe ◦ φẽ = φẽ. Then from (5.16) and (5.17) we can conclude that whenever there exists
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1 ≤ i ≤ k such that e′i ∈ {(00, 01), (11, 10)}, then ρe′1 ◦ ψe1 ◦ . . . ◦ ρe′k ◦ ψek
= φe for some

e ∈ E(Qn). Thus from (5.15), there exists numbers pe ≥ 0 such that

∑

e∈E(Qn)

pe = 1− 2−k,

and

L.H.S. of (5.5) ≤
∏

e∈E(Qn)

(∫
Rφe

)pe

L2−k

. (5.18)

Since Qn is edge transitive, by applying the bound (5.18) to different permutations of

the edges and taking the geometric average, we finally conclude that

L.H.S. of (5.5) ≤ L2−k
∏

e∈E(Qn)

(∫
Rφe

)(1−2−k)/|E(Qn)|
. (5.19)

By tending k to infinity, (5.19) reduces to (5.6).

Step 5: Now consider the general case where ‖fu‖∞, ‖gv‖∞, and ‖we‖∞ need not be

bounded. Fix C > 0 and let f ′u := max(fu, C), g′v := max(gv, C) and w′
e := max(we, C).

We know that Claim 5.1.10 holds for these functions. By tending C to infinity the

dominated convergence theorem implies the claim for the general case as well.



Chapter 6

The Erdős-Simonovits-Sidorenko

Conjecture

In this chapter we apply the results of Chapter 5 to a conjecture from extremal graph

theory.

6.1 The conjecture

Given a graph H, let ex(n,H) be the maximum number of edges in a graph on n vertices

which does not contain a copy of H as a subgraph. Determining the values of ex(n,H) for

different graphs H is one of the most important problems in extremal graph theory. These

problems are usually referred to as Turán problems, or forbidden subgraph problems. Pál

Turán [61] determined the exact values of ex(n,Kr), for every positive integer r, and in

his memory, ex(n, H) is called the Turán number of H.

For integers n, r > 0, the Turán graph T (n, r) is a graph formed by partitioning a set

of n vertices into r subsets, with sizes as equal as possible, and connecting two vertices by

an edge whenever they belong to different subsets. The graph will have (n mod r) subsets

of size dn/re, and r−(n mod r) subsets of size bn/rc. Note that T (n, r) does not contain a

copy of Kr+1. According to Turán’s theorem, the Turán graph has the maximum possible

98
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number of edges among all Kr+1-free graphs, or equivalently ex(n,Kr+1) is equal to the

number of edges of T (n, r).

Determining the exact Turán number of H is often very difficult, and this problem

is open even in the simple case of the cycle of length 4. However, if one allows a small

error, then the following theorem of Erdős and Stone [15] determines ex(n,H):

Theorem 6.1.1 (Erdős, Stone [15]) Let H be a graph. Then

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2),

where χ(H) is the minimum number of colors required to color the vertices of H so that

no two adjacent vertices of H have the same color.

Note that the Turán graph T (n, χ(H)−1) has
(
1− 1

χ(H)−1

) (
n
2

)
+o(n2) edges and it does

not contain a copy of H.

For bipartite graphs H, the Turán graph T (n, χ(H) − 1) has no edges and so the

situation is different. Theorem 6.1.1 gives only the limited information that an H-free

graph on n vertices must have o(n2) edges. Since every bipartite graph H is a subgraph

of a complete bipartite graph, a quantitative version of this fact follows from a theorem

due to Kövári, T. Sós, and Turán:

Theorem 6.1.2 (Kövári, T. Sós, Turán [36]) For 1 ≤ r ≤ s,

ex(n,Kr,s) ≤ n2−1/r.

It is conjectured in [16] that the bound in Theorem 6.1.2 is of the right order of magnitude.

This conjecture is verified in [23] for r ≤ 2, and in [6] for r = 3 and s = 3.

The situation for bipartite graphs is considerably more complicated than for non-

bipartite graphs. For cycles of even length, in an unpublished note Erdős (see [14])

proved that ex(n,C2k) = Θ(n1+1/k). For the cycle of length 4, Kövári, T. Sós and

Turán [36], Erdős, Rényi and V. T . Sós [12] and W. G. Brown [6] proved that

ex(n, C4) =
1

2
n4/3 + o(n3/2).
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But for example, for the cycle of length 6, the exact constant is unknown, and the best

known bounds are due to Füredi, Naor, and Verstraëte [24] who showed that

0.5338n4/3 ≤ ex(n,C6) ≤ 0.6272n4/3.

Apart from cycles of even length, there are very few nontrivial bipartite graphs H for

which the right order of magnitude of ex(n,H) is known. For many bipartite graphs H,

our knowledge about ex(n, H) is limited to poor bounds.

Erdős and Simonovits [14] studied the number of copies of H in graphs with more

than ex(n,H) edges. Trivially every such graph has at least one copy of H, but they

noted that if the number of edges is more than ex(n,H) then it must contain many copies

of H. A simple count shows that the number of copies of H in a graph with n vertices

is at most n|V (H)|. The following conjecture is due to Erdős and Simonovits.

Conjecture 6.1.3 (Erdős-Simonovits [14]) Let H be a bipartite graph. There exist

constants α, c, c′ > 0 such that for every graph G on n vertices, if |E(G)| ≥ cn2−α then

G contains at least

c′n|V (H)|
( |E(G)|

n2

)E(H)

copies of H.

Remark 6.1.4 Without any lower-bounds for |E(G)|, Conjecture 6.1.3 is trivially false,

as for example if |E(G)| ≤ ex(n,H), then G might be H-free. Note that by Theorem 6.1.2,

for every bipartite graph H, there exists a constant α > 0 such that ex(n,H) = O(n2−α).

There is a stronger version of Conjecture 6.1.3 in [14] which claims that in the statement of

the conjecture, one can take α ∈ (0, 1) to be any number satisfying ex(n,H) = O(n2−α).

Let us explain the background of Conjecture 6.1.3. In extremal graph theory, the

extremal graphs tend to be either very structured, or very chaotic in the sense that they

look similar to random graphs. The motivation behind Conjecture 6.1.3 is that for every
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bipartite graph H, it seems that among all graphs with fixed number of vertices and

edges, graphs having roughly the minimum number of copies of H tend to look random.

Let us consider the Erdős-Rényi random graphs. For an integer n > 0 and 0 ≤ p ≤ 1, let

G := G(n, p) be the Erdős-Rényi random graph on n vertices where each edge is present

independently with probability p. Note that the complete graph Kn contains exactly

|V (H)|!
|Aut(H)|

(
n

|V (H)|
)

copies of H, where Aut(H) is the set of automorphisms of H. Each one

of these copies is present in G with probability p|E(H)|. Hence the expected number of

copies of H in G is |V (H)|!
|Aut(H)|p

|E(H)|( n
|V (H)|

)
= Θ(n|V (H)|p|E(H)|). Trivially E|E(G)| = p

(
n
2

)
=

Θ(pn2). It is standard that for sufficiently large p, with very high probability |E(G)|,
and the number of copies of H in G are both concentrated around their expected values

(see [41]). Taking p = n−α, we have E|E(G)| = Θ(n2−α) and the expected number of

copies of H in G is Θ(n|V (H)|n−α|E(H)|). This shows that Conjecture 6.1.3 is sharp if true.

Recall from Section 2.2.2 that hinj
H (G) is the number of injective homomorphisms from

H to G. The number of copies of H inside G is equal to 1
|Aut(H)|h

inj
H (G). We also defined

a normalized version of hinj
H (G): namely tinj

H (G) is the probability that a random injective

mapping from V (H) to V (G) defines a homomorphism. Hence

tinj
H (G) =

hinj
H (G)

|V (G)|(|V (G)| − 1) . . . (|V (G)| − |V (H)|+ 1)
.

Using these notations, Conjecture 6.1.3 says that under the assumptions of the conjecture

tinj
H (G) ≥ c′tinj

K2
(G)E(H). (6.1)

Note that the constant c′ in (6.1) might be different from the constant c′ in Conjec-

ture 6.1.3. However, they are both positive constants depending only on H. The following

conjecture is due to Sidorenko.

Conjecture 6.1.5 (Sidorenko’s conjecture [53, 54]) For every graph G, and every

bipartite graph H, we have

tH(G) ≥ tK2(G)|E(H)|. (6.2)
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Sidorenko formulated Conjecture 6.1.5 and observed that it is equivalent to Conjec-

tures 6.1.3:

First we show that the Erdős-Simonovits conjecture implies Sidorenko’s conjecture.

Consider a graph H, and suppose that (6.1) holds for every graph G with |E(G)| ≥ cn2−α.

To get a contradiction, suppose that (6.2) fails for a graph G, i.e.

tH(G) < tK2(G)|E(H)|

We will take G and amplify it by taking its tensor powers. Then we take a proper blowup

to obtain a counter-example to Conjecture 6.1.3. Blowups and tensor products of graphs

are defined in Section 2.2.3. Recall that in Section 2.2.3 for a positive integer k, we

defined

G⊗k := G⊗ . . .⊗G︸ ︷︷ ︸
k copies

.

Lemma 2.2.5 shows that tK(G⊗k) = tK(G)k, for every positive integer k and every graph

K. Hence by taking k to be sufficiently large, we obtain a graph G1 := G⊗k such that

tH(G1) <
c′

2
tK2(G1)

|E(H)|.

For a positive integer m, let G2 be the m-blowup of G1. Lemma 2.2.4 shows that

tK(G2) = tK(G1), for every graph K. Hence

tH(G2) <
c′

2
tK2(G2)

|E(H)|. (6.3)

Lemma 2.2.3 shows that for every graph K,

|tK(G2)− tinj
K (G2)| ≤ 1

|V (G2)|
(|V (K)|

2

)
=

1

m|V (G1)|
(|V (K)|

2

)
= O(1/m).

Hence it follows from (6.3) that

tinj
H (G2) ≤ tH(G2) + O(1/m) <

c′

2
tK2(G2)

|E(H)| + O(1/m)

<
c′

2

(
tinj
K2

(G2) + O(1/m)
)|E(H)|

+ O(1/m) =
c′

2
tinj
K2

(G2)
|E(H)| + O(1/m),
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and so for sufficiently large m,

tinj
H (G2) < c′tinj

K2
(G2)

|E(H)|.

Furthermore, since |V (G2)| = m|V (G1)| and |E(G2)| = m2|E(G1)|, for sufficiently large

m, |E(G2)| ≥ c|V (G2)|2−α. We obtained a graph G2 with |E(G2)| ≥ c|V (G2)|2−α which

does not satisfy

tinj
H (G2) ≤ c′tinj

K2
(G2)

|E(H)|,

and this contradicts our assumption.

Now let us show that Sidorenko’s conjecture implies the Erdős-Simonovits conjecture.

If Sidorenko’s conjecture is true, then it follows from (6.2) and Lemma 2.2.3 that for a

graph G with n vertices

tinj
H (G) ≥

(
tinj
K2

(G)− 1

n

)|E(H)|
− 1

n

(|V (H)|
2

)
= tinj

K2
(G)|E(H)| −O(1/n).

This shows that there exists a constant c such that if tinj
K2

(G) ≥ cn−1/|E(H)|, then

tinj
H (G) ≥ 1

2
tinj
K2

(G)|E(H)|.

Since tinj
K2

(G) = |E(G)|
(n

2)
≥ |E(G)|

n2 , we conclude that if |E(G)| ≥ cn2− 1
|E(H)| , then

tinj
K2

(G)|E(H)| ≥ 1

2
tinj
K2

(G)|E(H)|,

which shows that Conjecture 6.1.3 holds with α = 1
|E(H)| . We summarize

Conjecture 6.1.3 ⇔ Conjecture 6.1.5

Remark 6.1.6 The trick of tensoring has another interesting consequence. Consider a

bipartite graph H. Suppose that for a universal constant c > 0, we could show that

tH(G) ≥ ctK2(G)|E(H)|, for all graphs G. Then for every positive integer k, we have

tH(G)k = tH(G⊗k) ≥ ctK2(G
⊗k)|E(H)| = ctK2(G)k|E(H)|.

In this case, by tending k to infinity, we can conclude tH(G) ≥ tK2(G)|E(H)|.
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Recall that graphons are symmetric measurable functions from [0, 1]2 to [0, 1]. In

Section 2.2.4, we defined tH(w) for graphons w as

tH(w) := E
∏

uv∈E(H)

w(xu, xv),

where {xu}u∈V (H) are independent random variables taking values uniformly in [0, 1].

We also corresponded a graphon wG to every graph G so that tK(wG) = tK(G) for

every graph K. On the other hand, Theorem 2.2.7 says that given a graphon w, there

exists a sequence of graphs {Gi}∞i=1 such that limi→∞ tK(Gi) = tK(w), for every graph

K. These facts show that Sidorenko’s conjecture is equivalent to the seemingly stronger

statement that for every graphon w, and every bipartite graph H

tH(w) ≥ tK2(w)|E(H)|. (6.4)

We can strengthen the statement further: Graphons are symmetric measurable functions

from [0, 1]2 to [0, 1]. It turns out that the condition of symmetry is irrelevant to Conjec-

ture 6.1.5, and the following more general statement is equivalent to Conjectures 6.1.3

and 6.1.5.

Conjecture 6.1.7 (Sidorenko’s conjecture reformulated [53, 54]) For every mea-

surable function w : [0, 1]2 → R+, and every bipartite graph H = (X, Y ; E), we have


E

∏

(u,v)∈E

w(xu, yv)




1/|E|

≥ Ew(x, y). (6.5)

Note that for a symmetric w : [0, 1]2 → [0, 1], by raising both sides of (6.5) to the power

|E|, we see that it is equivalent to (6.4). Let us explain why Conjectures 6.1.5 and 6.1.7

are equivalent. First note that (6.4) is homogeneous with respect to scaling, and this

shows that changing the range of w in (6.4) from the interval [0, 1] to the larger set of

R+ leads to an equivalent statement. This explains why in Conjecture 6.1.7, the range

of w is R+.
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It remains to justify the removal of the symmetry condition. We use the trick of

symmetrization which was already used once in Chapter 5. Consider a measurable w :

[0, 1]2 → R+ which is not necessarily symmetric. We will symmetrize w to obtain a

symmetric measurable function w′ : [0, 1]2 → R+. Figure 6.1 shows that intuitively how

w′ is defined according to w.

0

0

w

w
t

0 0.5 1

0.5

1

Figure 6.1: This figure shows how w′ is defined according to w. Here wt is the transpose

of w, defined by wt(x, y) := w(y, x).

More formally w′ : [0, 1]2 → R+ is defined as

w′(x) :=





w(2x1, 2x2 − 1) x1 ∈ [0, 1/2], x2 ∈ (1/2, 1]

w(2x2, 2x1 − 1) x2 ∈ [0, 1/2], x1 ∈ (1/2, 1]

0 otherwise

Note that w′ is measurable and symmetric, and hence assuming Conjecture 6.1.5, by

(6.4) we have 
E

∏

(u,v)∈E

w′(xu, yv)




1/|E|

≥ Ew′(x, y). (6.6)

Trivially

Ew′(x, y) =
1

2
Ew(x, y). (6.7)
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Let H1, . . . , Hk be the connected components of H. For every 1 ≤ i ≤ k, by definition

of w′,
∏

(u,v)∈E(Hi)
w′(xu, yv) 6= 0, if xu ∈ [0, 1/2] and yv ∈ (1/2, 1] for all u, v ∈ V (Hi) or

xu ∈ (1/2, 1] and yv ∈ [0, 1/2] for all u, v ∈ V (Hi). Each one of these two events happens

with probability 2−|V (Hi)|, and furthermore by definition of w′, conditioned on one of those

events, the expected value of
∏

(u,v)∈E(Hi)
w′(xu, yv) is equal to E

∏
(u,v)∈E(Hi)

w(xu, yv).

Hence

E
∏

(u,v)∈E(Hi)

w′(xu, yv) = 21−|V (Hi)|E
∏

(u,v)∈E(Hi)

w(xu, yv).

Then

E
∏

(u,v)∈E

w′(xu, yv) = E
k∏

i=1

∏

(u,v)∈E(Hi)

w′(xu, yv)

=
k∏

i=1


E

∏

(u,v)∈E(Hi)

w′(xu, yv)




=
k∏

i=1


21−|V (Hi)|E

∏

(u,v)∈E(Hi)

w(xu, yv)




= 2k−|V (H)|E
∏

(u,v)∈E(H)

w(xu, yv)

≥ E
∏

(u,v)∈E(H)

w(xu, yv).

This together with (6.6) and (6.7) shows that if Conjecture 6.1.5 is true, then


E

∏

(u,v)∈E

w(xu, yv)




1/|E|

≥

E

∏

(u,v)∈E

w′(xu, yv)




1/|E|

≥ Ew′(x, y) =
1

2
Ew(x, y). (6.8)

We have now shown that, assuming Conjecture 6.1.5, (6.8) holds for every measurable

w : [0, 1]2 → R+. Similar to the case of Remark 6.1.6, we can remove the 1/2 constant

from (6.8), and obtain (6.5). We conclude that

Conjecture 6.1.3 ⇔ Conjecture 6.1.5 ⇔ Conjecture 6.1.7

We will refer to the equivalent Conjectures 6.1.3, 6.1.5, and 6.1.7 as the Erdős-

Simonovits-Sidorenko conjecture.
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Let A be the adjacency matrix of a graph G on n vertices, and let Pk denote the path

of length k, where k is a positive integer. Let B := Ak, and note that Bi,j is the number of

walks of length k in G starting from i and ending at j. In other words Bi,j is the number

of homomorphisms from a path of length k to G that maps one end of the path to i,

and the other end to j. Hence tPk
(G) = n−k−1

∑n
i,j=1 Bi,j and tK2(G) = n−2

∑n
i,j=1 Ai,j.

This shows that for H = Pk, Conjecture 6.1.5 is equivalent to the following theorem of

Blakley and Roy [4] proven in 1965.

Theorem 6.1.8 (Blakley-Roy) Let A be an n×n symmetric matrix with nonnegative

real entries, and k be a positive integer. For B := Ak, we have

n−k−1

n∑
i,j=1

Bi,j ≥
(

n−2

n∑
i,j=1

Ai,j

)k−1

.

Erdős and Simonovits formulated Conjecture 6.1.3 in 1984, and verified it for cycles

of even length, trees, and the 3-dimensional cube. In order to verify the conjecture for

the 3-dimensional cube, they showed that if the conjecture is valid for a graph H, then

it remains valid if one adds two adjacent new vertices u and v to H, and connect u to

all the vertices in one part, and v to all the vertices in the other part. Applying this

procedure to the cycle of length 6 results in the 3 dimensional cube.

Later, Sidorenko studied this problem further in [53]. He reformulated the Erdős-

Simonovits conjecture as Conjecture 6.1.5, and verified it for more classes of graphs. He

proved the following theorem.

Theorem 6.1.9 (Sidorenko [53]) The following statements hold.

• If the number of vertices in one of the parts of H is 4 or less (while the size of the

other part is arbitrary) then Conjecture 6.1.3 is valid.

• If Conjecture 6.1.3 is valid for graphs H1, . . . , Hk, then it is also valid for the disjoint

union of these graphs.
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• If Conjecture 6.1.3 is valid for a graph H, then it remains valid when a new vertex

w is added to one of the parts and it is joined to to all the vertices in the other

part.

• If Conjecture 6.1.3 is valid for a graph H, then it is valid for the graph obtained by

joining a new vertex to one vertex of H.

Now let us apply our results to the equivalent Conjectures 6.1.3, 6.1.5, and 6.1.7. Note

that in our notation (6.5) says that ‖w‖H ≥ ‖w‖K2 . We prove the following theorem.

Theorem 6.1.10 Let H = (X, Y ; E) be a weakly norming partitioned bipartite graph.

Then for every subgraph K ⊆ H and every measurable map w : [0, 1]2 → R+ we have

‖w‖H ≥ ‖w‖K .

Proof. For e ∈ E(G), define we = w, and for e ∈ E(H) \ E(K) define we = 1. Since H

is weakly norming, by Theorem 5.1.4 we have

E
∏

e=(u,v)∈E(H)

we(xu, yv) ≤
∏

e∈E(H)

‖we‖r(H).

By our choice of we we get

tK(w) = E
∏

e=(u,v)∈E(H)

we(xu, xv) ≤

 ∏

e∈E(K)

‖w‖r(H)





 ∏

e∈E(H)\E(K)

‖1‖r(H)


 = ‖w‖|E(G)|

r(H) ,

or equivalently ‖w‖r(K) ≤ ‖w‖r(H).

Note that taking K = K2 in Theorem 6.1.10 verifies the Erdős-Simonovits-Sidorenko

conjecture for weakly norming graphs. In Theorem 5.1.9 we showed that hypercubes are

norming. Hence we have the following corollary.

Corollary 6.1.11 For every w : [0, 1]2 → R+, and every two positive integers n1 < n2

we have

‖w‖Qn1
≥ ‖w‖Qn2

.

In particular taking n1 = 1 verifies the Erdős-Simonovits-Sidorenko conjecture for the

hypercubes.
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Note that what Theorem 6.1.10 shows for weakly norming graphs is much stronger

than the assertion of the Erdős-Simonovits-Sidorenko conjecture. Given a weakly norm-

ing graph H and a subgraph K ⊆ H, it shows that

tH(G) ≥ tK(G)|E(H)|/|E(K)|, (6.9)

for every graph G. Note that again the Erdős-Rényi random graphs show that (6.9) is

sharp. The inequality (6.9) is not valid for every bipartite graph as for example although

P3 ⊆ P4, there exists a graph G with tP4(G) < tP3(G)3/2. This shows that the direct

application of the above approach cannot be used to give a positive answer to the Erdős-

Simonovits-Sidorenko conjecture in its full generality.

A similar (but weaker) statement to (6.9) for paths is proven by Erdős and Simonovits

in [13]. Consider a graph G. Erdős and Simonovits proved that for positive integers

n ≤ m, we have tP2m(G) ≥ tP2n(G)
2m−1
2n−1 . This generalizes the Blakley-Roy Theorem as

for n = 1 it is equivalent to that theorem. They furthermore conjectured tP2m−1(G) ≥
tP2n−1(G)

2m−2
2n−2 . This conjecture would have followed from Theorem 6.1.10, if P2m−1 was

weakly norming, but Theorem 5.1.6 shows that for m > 2, P2m−1 is not weakly norming.

We shall further discuss the Erdős-Simonovits-Sidorenko conjecture in Section 7.2,

where we introduce some related open problems.
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Conclusion

In this short chapter, we discuss some open problems and make some concluding remarks.

7.1 Norming Graphs

The starting point of this thesis was a question of Lovász asking for which graphs H,

tH(w)1/|E(H)| defines a norm on the space of bounded measurable functions w : [0, 1]2 →
R. We called such graphs norming. We also studied two other variations of this notion,

namely a graph H is called semi-norming if tH(w)1/|E(H)| defines a semi-norm, and it is

called weakly norming if tH(|w|)1/|E(H)| defines a norm on the space of bounded measur-

able functions w : [0, 1]2 → R. As it is observed in Chapter 5, the following implications

hold:

norming ⇒ semi-norming ⇒ weakly norming

In Theorem 5.1.4 it is shown that H is semi-norming (weakly norming), if and only

if a Cauchy-Schwarz type inequality holds. In Theorems 5.1.7 and 5.1.9, we established

these Cauchy-Schwarz type inequalities for certain graphs such as complete bipartite

graphs and hypercubes. The proofs of Theorems 5.1.7 and 5.1.9 are both based on

iterated applications of the Cauchy-Schwarz inequality, and in fact, we are not aware of

110
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an example of a weakly norming graph which cannot be proven to be weakly norming

by this technique. In order to be able to apply this approach, the graph H must be

very symmetric; for example it must be edge-transitive. (Recall that a graph H is called

edge-transitive, if for every two edges e1 and e2 of H, there is an isomorphism that maps

e1 to e2.) Note that complete bipartite graphs, and hypercubes are edge-transitive. We

conjecture the following:

Conjecture 7.1.1 Every weakly norming graph is edge-transitive.

On the other hand, it is not true that one can use iterated applications of the Cauchy-

Schwarz inequality to establish a Cauchy-Schwarz type inequality for every edge-transitive

bipartite graph. Currently Theorem 5.1.6 is the only available tool to us for refuting a

graph from being weakly norming. Every edge-transitive bipartite graph satisfies the

conditions of this theorem, and we do not know the answer to the following question:

Question 7.1.2 Is there an edge-transitive bipartite graph that is not weakly norming?

Let us give an explicit example of an edge-transitive bipartite graph for which we do not

know whether it is weakly norming. Recall that the Cartesian product of two graphs G

and H is a graph with vertex set V (G) × V (H), where (u, v) is adjacent to (u′, v′) if

u = u′ and vv′ ∈ E(H) or uu′ ∈ E(G) and v = v′. Note that the Cartesian product

is different from the tensor product. Now C6 × C6, the Cartesian product of the cycle

of length 6 by itself is edge-transitive and bipartite. But we do not know whether it is

weakly norming.

Note that the n-dimensional hypercube is the n-times cartesian product of K2 by

itself. In Theorem 5.1.9 we showed that hypercubes are weakly norming. One might ask

the following question:

Question 7.1.3 Is it true that the Cartesian product of two weakly norming bipartite

graphs is again weakly norming?
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As the smallest case we suggest determining whether K2 × C6 is weakly norming. Since

K2 × C6 is not edge-transitive we feel that the answer is negative. So a positive answer

to this question will require new techniques, and a negative answer will probably lead

to new necessary conditions on the structure of weakly norming graphs and hence an

extension of Theorem 5.1.6.

7.2 The Erdős-Simonovits-Sidorenko Conjecture

Recall that the Erdős-Simonovits-Sidorenko conjecture says that for every bipartite graph

H, and every graph G, we have tH(G) ≥ tK2(G)|E(H)|. In Theorem 6.1.10, we showed

that every weakly norming graph H satisfies

tH(G) ≥ tK(G)|E(H)|/|E(K)|,

for every subgraph K of H, and every graph G. In particular taking K = K2 shows that

the Erdős-Simonovits-Sidorenko conjecture holds for weakly norming graphs. We ask the

following question.

Question 7.2.1 Which graphs H satisfy tH(G) ≥ tK(G)|E(H)|/|E(K)|, for every subgraph

K ⊆ H and every graph G?

As mentioned at the end of Chapter 6, H = P4 does not satisfy the assertion of Ques-

tion 7.2.1, and so the answer is not simply “all bipartite graphs”.

Consider the graph H := K5,5 − C10 which is the graph obtained by removing the

edges of a complete cycle from K5,5. This is the smallest graph for which the Erdős-

Simonovits-Sidorenko conjecture is open [54].

Question 7.2.2 Is K5,5 − C10 weakly norming?

By Theorem 6.1.10, if the answer to Question 7.2.2 is positive, then the Erdős-Simonovits-

Sidorenko conjecture holds for K5,5 − C10. However, we believe that this graph is not
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weakly norming as it is not edge-transitive. In order to show that K5,5−C10 is not weakly

norming, one might try to show that it does not satisfy the assertion of Question 7.2.1.

7.3 The Hanner inequality

In Chapter 4 we discussed geometric properties of the hypergraph norms and determined

their moduli of smoothness and convexity. In certain cases we proved a stronger result.

Namely in Theorem 4.1.15 we established the order |H|-Hanner inequality for the LH

spaces, when H is a non-factorizable semi-norming hypergraph pair which is either of

Type II, or of Type I with an even integer parameter.

Let H = (α, β) be a non-factorizable semi-norming hypergraph pair of Type I with

parameter s ≥ 2. In Conjecture 4.1.16 we conjectured that every LH space satisfies the

|H|-Hanner inequality.

Our knowledge about the Hanner inequality is very limited. Hanner [33] showed that

for 1 < p < ∞ the Lp spaces satisfy the p-Hanner inequality. The inequality is known

to hold for some Sobolev spaces [37]. Even for the trace norms, one of the most studied

class of norm functions, the situation is not totally understood. Ball et al [1] verified

the p-Hanner inequality for the trace norm Sp when 1 < p ≤ 4/3 and the dual case

of 4 ≤ p < ∞. They conjectured that this is true for every 1 < p < ∞. The proof

of [1] is based heavily on the spectral interpretation of these norms, and it seems very

unlikely that it can be used to establish the Hanner inequality for other normed spaces.

We believe that Conjecture 4.1.16 is a good starting point, as hypergraph norms have

simple descriptions compared to most of the known normed spaces. A positive answer to

this conjecture might shed some new light on Hanner’s inequality, and provide new tools

for establishing the inequality for other normed spaces.
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Vladimirovič Linnik.
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