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Large software projects are characterized by distributed environments consisting of teams

at different organizations and geographical locations. These teams typically build multi-

ple overlapping models, representing different perspectives, different versions across time,

different variants in a product family, different development concerns, etc. Keeping track

of the relationships between these models, constructing a global view, and managing

consistency are major challenges.

Model Management is concerned with describing the relationships between distributed

models, i.e., models built in a distributed development environment, and providing sys-

tematic operators to manipulate these models and their relationships. Such operators

include, among others, Match, for finding relationships between disparate models, Merge,

for combining models with respect to known or hypothesized relationships between them,

Slice, for producing projections of models and relationships based on given criteria, and

Check-Consistency, for verifying models and relationships against the consistency prop-

erties of interest.

In this thesis, we provide automated solutions for two key model management op-

erators, Merge and Check-Consistency. The most novel aspects of our work on model

merging are (1) the ability to combine arbitrarily large collections of interrelated mod-

els and (2) support for toleration of incompleteness and inconsistency. Our consistency

checking technique employs model merging to reduce the problem of checking inter -

ii



model consistency to checking intra-model consistency of a merged model. This enables

a flexible way of verifying global consistency properties that is not possible with other

existing approaches.

We develop a prototype tool, TReMer+, implementing our merge and consistency

checking approaches. We use TReMer+ to demonstrate that our contributions facilitate

understanding and refinement of the relationships between distributed models.
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Chapter 1

Introduction

1.1 Models

As software becomes ever more complex, there has been a surge of interest in modelling

as a way to bring more discipline to software development, and to raise the level of

abstraction at which software engineers perform their tasks. A model is an abstract

representation of a certain aspect of a system (existing or to-be), expressed in a notation

with certain syntax and semantics. The system in question may be a domain of interest,

some software, some software and its environment, a data schema, a user interface,

a software architecture, a process to be followed, and so on (Mylopoulos, 1998; van

Lamsweerde, 2000).

Analysts may build models of a system to understand and communicate the concepts

in the system, or to reason about the system’s structure, behaviour, and function. For

large-scale projects, modelling is often a distributed endeavour involving multiple teams

spread across multiple sites. These teams build multiple overlapping models, representing

different perspectives, different versions across time, different variants in a product family,

different development concerns, etc. Keeping track of the relationships between these

models, managing consistency, and constructing a global view of the models are major

challenges.

1
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1.2 Model Management

Model management is concerned with describing the relationships between distributed

models, i.e., models built in a distributed development environment, and providing sys-

tematic operators to manipulate these models and their relationships (Bernstein, 2003;

Melnik, 2004; Brunet et al., 2006). Such operators include, among others, Match, for find-

ing relationships between disparate models, Merge, for combining models with respect

to known or hypothesized relationships between them, Slice, for producing projections

of models and relationships based on given criteria, and Check-Consistency, for verifying

models and relationships against the consistency properties of interest.

Model management is complicated by a number of factors (CASCON Workshop on

Model Fusion, 2006):

F1. Discrepancy : Models may refer to the same or closely related concepts, but they

may have differences in how they represent these concepts.

F2. Partiality (Incompleteness): Models may offer varying degrees of certainty

about their content. They may have unknown or under-explored aspects which

need to be completed through incremental elaboration.

F3. Inconsistency : Models may be built by teams with different responsibilities and

goals. Hence, models may have conflicting purposes, or disagreements over the

choice of terminology, design, and usage.

F4. Evolution : Models may evolve over time, so model transformations (e.g., merge)

need to be updated if the source models are updated.

F5. Scale : Models may be large and complex. Further, the number of models and

model interconnections may be large if development is distributed across many

geographical location, organizations, and stakeholder groups.
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1.3 Contributions

Our ultimate goal is to develop a suite of synergistic model management operators that

are robust in the face of the factors described in Section 1.2. This thesis takes a step to-

wards this goal by providing automated tool-supported solutions for two major operators,

Merge and Check-Consistency.

Foundations

We use category theory (Barr & Wells, 1999) as a theoretical foundation for our work.

Intuitively, a category is an algebraic structure consisting of a collection of objects and a

collection of mappings between these objects. Of specific interest to us is when the objects

represent some species of models, and the mappings express potential overlaps between

the models. Category theory provides an ideal machinery for dealing with distributed

models by making the notion of mapping explicit. This enables relating models with

different vocabularies and frames of reference (see F1 in Section 1.2).

Further, category theory has a built-in abstraction, called interconnection diagram,

for describing systems of (interrelated) models. Interconnection diagrams allow model

management operators to be defined over systems with an arbitrarily large number of

models and mappings rather than just over individual models, or pairs of models related

by a single mapping. This contributes to the scalability of our operators (see F5 in

Section 1.2).

Context and Scope

Our work on model management operators is motivated primarily by the need to im-

prove the applicability of models for exploration of complex systems. Exploration allows

developers to build insights and learn about a system that is not yet fully understood.

Both model merging and consistency checking are instrumental to exploration: Merging
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is a prerequisite to exploratory activities such as brainstorming (Osborn, 1979), walk-

throughs (Blum, 1992) and negotiation (Easterbrook, 1994), which typically require the

construction of a global perspective. Consistency checking is the basis for decision impact

analysis – a technique that helps developers think through their decisions by analyzing

how these decisions affect the desired properties (e.g., integrity) of a set of models and

the relationships defined between them.

While exploration is not limited to a particular stage of development, it is arguably

most crucial in the requirements elicitation stage, where the requirements for a proposed

systems are being gathered from its stakeholders, and the relationships between these

requirements are being specified.

Models built during requirements elicitation tend to be informal or semi-formal in

nature, and their exact meaning relies heavily on the tacit beliefs, perceptions, and

assumptions of the people who built them. Since this tacit information is not easily

expressible or available to other people, one can never conclusively determine how the

contents of models originating from different human sources overlap. Hence, the rela-

tionships defined between elicitation models are merely hypotheses, not established facts.

The validity of these hypotheses cannot be proved mathematically, but can only be probed

through exploratory analysis.

Given the importance of exploration in requirements elicitation, we ground our work

on elicitation models. Elicitation models are usually specified in simple visual notations

such as goal, entity-relationship, and high-level class diagrams; therefore, we concentrate

on graph-based modelling languages.

Our focus on requirements elicitation in this thesis does not mean that our contribu-

tions are inapplicable in other contexts – in fact, the theoretical basis for our work is very

general, making it applicable to a variety of problems. This is, for example, evidenced

by (Niu et al., 2005), where we apply our merge technique to combine models of software

code represented as call graphs.
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Despite this generality, one must recognize that the design of tool support for any

theoretical solution is inevitably guided by a specific methodology of use for the solu-

tion. In this respect, the implementation we describe in this thesis for our merge and

consistency checking operators is guided by how these operators are applied during re-

quirements elicitation. This has influenced our decisions about several practical factors,

such as specification and representation of models and mappings, balancing flexibility

and rigour, visualization, etc. Providing a customizable implementation of our operators

that can be instantiated for different contexts and methodologies of use is a significant

engineering challenge and is the subject of ongoing research (Salay et al., 2007).

With the above remarks, we highlight in the remainder of this section the specific

contributions of this thesis.

1.3.1 Model Merging

We propose a general operator for merging graph-based models expressed in the same

notation. Our merge operator is characterized by a category-theoretic concept called

colimit. The general intuition behind colimits is that they glue objects together with

nothing essentially new added and nothing left over (Goguen, 1991). In addition to

providing a mathematically precise notion for merge, colimits have the advantage that

they directly apply to systems, rather than pairs, of models.

In theory, if a binary merge operator is commutative and associative, then gener-

alization to more than two models can be achieved by repeated merges, in any order.

However, such a generalization is often complicated by the need to specify the relation-

ships in a series of steps. Figure 1.1 shows a common way for merging multiple models

using binary analysis: We first specify a relationship between two of the models (here,

M1 and M2) and construct a merge (Merge12). In the next step, we relate the merge

from the previous step with a new input model (here, M3), and construct a new merge

(Merge123), and so on. This step-by-step strategy has two drawbacks:
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M1

Merge12

Merge123

R12 R(12)3
M2 M3

Figure 1.1: Model merging using a binary merge operator

Firstly, it tangles relationship building with model merging. Hence, the relationships

built for merge cannot be easily reused for other model management tasks (e.g., checking

inter-model consistency), and vice versa.

Secondly, merges may become non-associative even if the merge operator is theo-

retically associative. This is because in many contexts, e.g., requirements elicitation,

relationship building is an inexact process and relies largely on human judgment. In

such cases, the order of binary merges can introduce a bias. For example, suppose M1,

M2, and M3 in Figure 1.1 are independently-developed perspectives from three different

stakeholders; and suppose we are at the step where we want to specify R(12)3. While

specifying this relationship, one is very likely to see Merge12 as being more definitive

than M3, because Merge12 encompasses the views of two stakeholders. Hence, Merge12

may be implicitly favoured over M3; and, R(12)3 may be defined such that it overrides

the inconsistent design choices in M3, without ever properly analyzing these choices.

Therefore, the final merge may be adversely affected by the order of binary merges.

Instead, we provide a merge operator that is agnostic to the relationship building

process and works directly over systems with an arbitrary number of models and rela-

tionships. For example, one can define pairwise relationships between the original models

in any order and merge the resulting system in a single shot. This is illustrated in Fig-

ure 1.2 for three models.

A second novel characteristic of our model merging approach is its ability to tolerate
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M1

R12

M2

M3
R13

R23

Merge Merged
Model

Figure 1.2: Merging systems of models

incompleteness and inconsistency (see F2 and F3 in Section 1.2). This represents a major

advance over current practices which typically require that incompleteness and inconsis-

tency should be resolved as soon as it arises. Immediate resolution of incompleteness and

inconsistency can be disruptive in projects where ambiguities and conflicts tend to occur

frequently (Nentwich et al., 2003). Further, maintaining completeness and consistency

at all times can be counter-productive because it may lead to premature commitment to

design decisions that have not yet been sufficiently analyzed (Nuseibeh et al., 2001).

Instead, our merge operator provides explicit means for describing incompleteness

and inconsistency, enabling developers to merge models without having to make them

complete and consistent first. To make incompleteness and inconsistency explicit, we use

multiple-valued logics (Ginsberg, 1988) – logics that extend the classical (binary) logic

of true and false with additional values.

One of the most famous multiple-valued logics is the one proposed by Belnap (Belnap,

1977), which extends binary logic with two new values: a value unknown to represent “a

lack of knowledge”, and a value disagreement to represent “too much knowledge”, i.e.,

we can infer that something is both true and false. We use a variant of this logic to

demonstrate how one can cope with uncertain or contradictory models originating from

different information sources. In general, our work is not restricted to any particular logic

and can be parameterized by an arbitrary multiple-valued logic expressed as a lattice.

Our merge operator further incorporates a mechanism to produce the traceability
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information required for tracing the elements of a merged model back to their sources.

This makes it possible to keep track of how merges change as the source models evolve

over time (see F4 in Section 1.2).

1.3.2 Consistency Checking

We provide a flexible operator for consistency checking of distributed models. Tradition-

ally, the problem of consistency checking has been seen as that of checking the consistency

of individual models and of individual relationships between pairs of models (Nuseibeh

et al., 1994). In large distributed projects, however, we are usually faced with many

models interrelated by many relationships (see F5 in Section 1.2). Therefore, we not

only need to check the consistency of individual models and relationships, but also the

consistency of a system of models as a whole. This problem, called global consistency

checking, is known not to be reducible to checking consistency of individual models and

relationships (van Lamsweerde et al., 1998; Nuseibeh et al., 2001).

Our consistency checking operator provides a solution for global consistency checking

when models are described in the same notation. The idea behind our technique is to

employ model merging to reduce the problem of checking inter -model consistency to

checking intra-model consistency of a merged model. The realization of this approach

requires a merge operator that is well-defined for any system of interrelated models

even when they are not consistent. This is achieved by the merge operator outlined in

Section 1.3.1.

Figure 1.3 shows an overview of our consistency checking approach: Having defined

a system of interrelated models, we begin by applying our merge operator to the system.

This yields a (potentially inconsistent) merged model along with traceability links from

it to the source system. In the next step, we check the consistency of this merged model

against the desired (intra-model) constraints, and generate appropriate diagnostics for

any violations found. By utilizing the traceability data for the merge, the diagnostics
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Consistency Checking

(Intra-Model)

M1

M2

Merge Merged
ModelM3

M4

M5

+
Traceability

Data

Diagnostics

Source System

Inconsistency Projection

Figure 1.3: Overview of global consistency checking

are automatically projected onto the source system, allowing developers to detect and

resolve anomalies in the originating models and relationships.

To describe the consistency constraints of interest, we use a rich logical language,

RML (Beyer et al., 2005), based on first-order relational calculus. This language provides

enough expressive power to characterize the main structural and behavioural properties

of models. A major advantage of our consistency checking operator is that it requires

only a single logical formula to be written for each consistency property – the formula

applies to any system of models, no matter how many models are involved and how they

are related to one another.

Our consistency checking operator comes equipped with a set of generic and reusable

expressions capturing recurrent patterns across the consistency constraints of different

modelling notations. These expressions can be easily customized to describe a variety of

consistency properties over entity-relationship, class, goal, and hierarchical state machine

models.
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1.3.3 Tool Support

As part of the research undertaken in this thesis, we have implemented our merge and

consistency checking operators into a prototype model management tool, TReMer+,

developed in collaboration with Shiva Nejati, Steve Easterbrook, and Marsha Chechik.

We use TReMer+ to demonstrate the usefulness of our operators for exploratory anal-

ysis. Specifically, we study how our operators help developers refine their understanding

of the relationships between independently-developed requirements models.

TReMer+ has been presented to the academic and practitioner communities at vari-

ous stages of its development. The tool and the case studies we have conducted with it

are available at

http://www.cs.toronto.edu/∼mehrdad/tremer/

1.4 Organization

The remainder of this thesis is organized as follows:

We review in Chapters 2 and 3, respectively, the conceptual background, and the

mathematical foundations of our work. In Chapter 4, we present our merge operator,

reported in (Sabetzadeh & Easterbrook, 2006), for combining incomplete and inconsis-

tent models. In Chapter 5, we describe our consistency checking operator, reported in

(Sabetzadeh et al., 2007a), for verifying global consistency properties. Implementation is

discussed in Chapter 6, using material from (Sabetzadeh et al., 2007b; Sabetzadeh et al.,

2008). We conclude in Chapter 7 with a summary of the thesis, an outline of important

limitations, and a number of directions for future research.



Chapter 2

Background

Model merging and consistency checking have been studied for many years. In this

chapter, we present background information on these two operations and review the

relevant literature.

2.1 Model Merging

The primary goal of model merging is to unify the overlaps between a set of models.

More precisely, if a concept appears in more than one source model, only one copy of it

should be included in the merged model. This property is known as non-redundancy.

The overlaps between different models can be specified either implicitly (e.g., us-

ing name equivalence if models have a common vocabulary, or identifier equivalence if

models have common ancestors), or explicitly via mappings between models. Recent

research on model merging, e.g., (Bernstein, 2003; Brunet et al., 2006), favours explicit

mappings and indeed suggests that mappings should be treated as first-class artifacts.

Such treatment is crucial for models that are developed independently. These models

usually have different vocabularies and might be structured differently. To merge a set

of independently-developed models, one needs to be able to explicitly specify how the

vocabularies and structures in the models overlap.

11
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Person /
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namesalary

Employee Departmentworks for

name namesalary

PersonCompany employed by

dob namename

One copy of 
the common part

(a)

(b)
Merge

M1 M2

Figure 2.1: Example of model merging

Example 2.1 (model merging) Figure 2.1(a) shows two independently-developed per-

spectives, represented as entity-relationship diagrams, and a mapping that equates the

corresponding elements of these perspectives. Figure 2.1(b) shows the merge. This merge

is redundancy-free because it has only one copy of the common parts.

Non-redundancy is only the most basic requirement for merge. Model merging is

often subject to additional correctness criteria. The most notable of these criteria are:

• Completeness: Merge should not lose information, i.e., it should represent all the

source models completely.

• Minimality: Merge should not introduce information that is not present in or

implied by the source models.
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• Semantic Preservation: Merge should support the expression and preservation

of semantic properties. For example, if models are expressed as state machines, one

may want to preserve their temporal behaviours to ensure that the merge properly

captures the intended meaning of the source models.

• Totality: Merge should be well-defined for any set of models, whether or not they

are consistent. This property is of particular importance if one wants to tolerate

inconsistency between the source models.

These additional criteria are not universal to all model merging problems. For exam-

ple, completeness and minimality, in the strong sense described above, may be undesirable

if model merging involves conflict resolution as well, in which case the final merge can

potentially add or delete information (Noy & Musen, 2000). Semantic preservation may

be undesirable when one wants to induce a design drift or perform an abstraction during

merge. Such manipulations are usually not semantics-preserving (Kalfoglou & Schor-

lemmer, 2005). And, totality may be undesirable when the source models are expected

to seamlessly fit together. In such a case, the source models should be made consistent

before they are merged (Uchitel & Chechik, 2004).

2.1.1 Classification of Merge Based on Input and Output

In (Darke & Shanks, 1996), three types of model merging are distinguished based on the

input expected by and the output produced by the merge operation:

• Single representation scheme: A single notation is used for specifying all the

source models. Merge is done by an automated or semi-automated algorithm and

the result is represented in the same notation as that of the source models.

• Pre-merge translation: The source models are in different notations. The models

are translated into a common notation first. The merge is computed and repre-

sented in this common notation.
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• Post-merge translation: This is identical to the single representation scheme

except that the result is translated into a different notation after the merge opera-

tion.

An observation that follows from this classification is that merge algorithms are typi-

cally defined over a single notation – adapting the input to and the output from a merge

algorithm is left to pre- and post-merge processing.

Despite its usefulness, the classification must be treated with some care. In particular,

the classification assumes that if the source models are represented in the same notation

(i.e., are homogeneous), then the merge can be performed in that notation as well. This is

not always true: A translation into a new notation may be required even when models are

homogeneous. For example, hierarchical data definition languages like nested-relational

and XML schemata may be transformed to flat structures before being merged (Melnik

et al., 2003). Another example is resolution of parallelism in state machine merging where

parallel states are replaced with their semantically equivalent non-parallel structures prior

to the merge operation (Nejati et al., 2007).

2.1.2 Merge Strategies

The number of models to be merged may be more than two. Hence, every merge frame-

work needs a strategy for sequencing and grouping the source models during merge.

Batini et al. classify merge computation strategies into two groups (Batini et al., 1986):

• Binary strategies allow merging two models at a time. To merge more than two

models, the result of merging two models is considered as a new model and then

merged with another model.

• n-ary strategies allow merging n models at a time (n > 2). The most general

case is when n is not fixed, and can assume an arbitrary value.
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For a binary merge operator, certain algebraic properties might be expected (Brunet

et al., 2006):

Idempotence

Merge(M1,M1, R11) = M1 (where R11 is the identity relationship)

Merging a model with itself should return the same model, assuming that the given

relationship completely maps the model onto itself. In practice, this property may

be too strong, as one may be willing to accept a result that is isomorphic, rather

than identical, to the original.

Commutativity

Merge(M1,M2, R) = Merge(M2,M1, R)

This simply states that, for a given relationship, it should not matter which order

the models are presented in.

Associativity

Merge(Merge(M1,M2, R12),M3, R(12)3) = Merge(M1,Merge(M2,M3, R23), R1(23))

Together with commutativity, associativity ensures that generalization to multiple

models can be achieved by repeated merges, in any order. However, as we argued

in the Chapter 1, such generalization is complicated by the need to specify a new

relationship at each step. Hence, it is usually more practical to define a general

merge operator using an n-ary strategy.

2.1.3 Qualitative Aspects of Merge

To have practical value, a merge framework may be expected to have certain qualitative

capabilities, including, among others, the following:

• Understandability: Merges should be easy to understand for both analysts and

end-users.
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• Support for traceability: The elements of a merged model should be traceable

back to their origins. This is necessary to support cooperative work among teams

and to ensure that the contributions of all the stakeholders are properly taken into

consideration (Gotel & Finkelstein, 1994).

• Support for exploration of alternatives: When models are developed by dis-

tributed teams, one can never be sure how different models should relate to one

another. A merge framework should make it possible to describe different alter-

natives for relating a set of models and to configure different merges according to

these alternatives.

2.1.4 Other Notions for Combining Models

Merge is not the only way in which a set of models may be put together. Despite

a lack of consensus on terminology, the literature distinguishes three different notions

for combining models: One is merge, which was already discussed. The other two are

composition and weaving which we describe below. In this thesis, we address only merge.

• Composition refers to the process of assembling a set of components and verifying

that the result fulfills a desired function. In contrast to merge, composition treats

models as black-box artifacts, and as such, its line of sight into the contents of the

models is limited to the interfaces that the models expose to the outside world. A

second difference between composition and merge is that, in composition, multiple

copies of the same model may be included in a single system to denote the fact that

the system has several components of the same type (Fiadeiro & Maibaum, 1992).

In composition, each model is considered as an object with an interface and, op-

tionally, a set of rules describing the assumptions about the environment and the

properties that the model guarantees when it is part of a system that satisfies the

environmental assumptions. Composition has been mainly studied as a way to
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tackle the state explosion problem in verification by breaking down the construc-

tion of a large system into smaller self-contained modules (Clarke et al., 1999);

but more recently, it has also been considered for analysis of interactions between

different features of a system (Hay & Atlee, 2000). For example, in the telecom-

munication domain, several features such as call-forwarding, auto-answering, and

three-way-calling may need to be composed to control the establishment of a con-

nection between two end-points. It is important to verify that these compositions

do not exhibit undesirable behaviours (Zave et al., 2004).

• Weaving is the predominant notion of model combination in Aspect-Oriented

Software Development (AOSD) (Filman et al., 2004). AOSD is an attempt to pro-

vide better separation of concerns in software design. This can in part be achieved

by means of encapsulating different concerns into distinct models. However, some

concerns defy encapsulation as they cut across many models. A classic example

of a crosscutting concern is logging which affects all logged activities in a system.

Given a set of crosscutting concerns, weaving is the process of incorporating these

concerns into an existing set of models. Weaving can be done in various ways de-

pending on the nature of the models and concerns involved. For example, at the

source code level, weaving may be implemented through pre-processing (Laddad,

2003).

2.1.5 Literature Review

We provide a survey of recent model merging approaches in the areas of database de-

velopment, software engineering, and the Semantic Web. A critical comparison between

our model merging approach and other existing approaches is given in Chapter 4.
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Database Development

References to model merging in the database literature go as far back as the late 1970’s

when an explicit conceptual step, called conceptual schema design, was introduced into

database development practices. Conceptual schema design aims to create an abstract

global schema that captures the data requirements of a proposed application. Batini et

al. (Batini et al., 1986) note the distributed and evolutionary nature of data requirements

acquisition, and the fact that this often gives rise to several partial schemata. To create

a global schema, these partial schemata need to be merged. Numerous approaches to

schema merging have been proposed. A survey of several early approaches is given in

(Batini et al., 1986). These early approaches have been superseded by the more recent

work we review here.

(Buneman et al., 1992) provides a lattice-theoretic approach for merging schemata

represented as directed graphs. A merge is constructed by inducing an ordering on the

source schemata and computing a least upper bound. Relationships between schemata

are based on name equivalences, hence users may need to alter the source schemata as

needed to unify their vocabularies prior to merge. (Pottinger & Bernstein, 2003)

generalizes (Buneman et al., 1992) by making inter-schema relationships explicit and

providing a richer mechanism for describing overlaps between the source schemata.

Several schema merging approaches have proposed the use of category theory and

the concept of colimit (Barr & Wells, 1999) for characterizing merge1. A special colimit

construction is for the case where the common parts of a pair of models A,B are cap-

tured by a third model C and two mappings f, g that describe how this shared model is

represented in each of the source models:

C

A B

...........
...........

...........
...........

...........
...........

...........
...........

...........
................................

f
...........
...........
...........
...........
...........
...........
...........
...........
...........
....................
............

g

1We formally introduce category theory and colimits in Chapter 3.
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The colimit of this diagram, called a pushout, is a model P that combines A and B

with respect to the overlaps specified by C, and mappings j, k that show how each of A

and B is embedded into P :

C

A B

P

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..................................

f
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

g

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

j

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..................................

k

In (Cadish & Diskin, 1996), the categorical notion of sketch – intuitively, a directed

graph augmented with logical equations – is used to capture schemata. A mapping

between sketches is a mapping of their underlying graphs compatible with their equations.

Merges are characterized using pushouts.

(Alagic & Bernstein, 2001; Goguen, 2005) use institutions as a unifying theory

for schema merging. Institution theory, introduced by Goguen and Burstall (Goguen &

Burstall, 1992), is a category-theoretic framework for studying algebraic specification lan-

guages2. Every specification language has a logical formalism for expressing the desired

properties (i.e., axioms) in a system. Briefly, the goal of institution theory is to provide

a general specification framework that is independent of the choice of logical formalism.

To obtain a specification language suitable for a given task, this general framework must

be instantiated with a specific logical formalism.

The core components of a logical formalism are semantic objects (i.e., models, in

model-theoretic terms) and axioms. The presentation of these components is param-

eterized by an arbitrary signature. Intuitively, a signature describes the structure of

the semantic objects associated with it and provides a vocabulary for expressing ax-

ioms about these objects. Signatures change quite frequently throughout development.

2(Tarlecki, 1999) provides an excellent introduction to institution theory.
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To deal with signature changes, one needs an appropriate basis for moving from one

signature to another. This is achieved by signature morphisms.

In both (Alagic & Bernstein, 2001; Goguen, 2005), a schema is defined as a signature

and a set of axioms. These axioms describe the integrity constraints for the databases

(i.e., the semantic objects) over the schema. (Alagic & Bernstein, 2001) and (Goguen,

2005) respectively use Horn logic and equational logic for expressing axioms. A schema

morphism is a signature morphism which extends to a semantically sound mapping of

axioms. Schema merges are computed using colimits. Under certain conditions, these

merges have counterpart constructions at the level of databases. This means that in-

dividual databases of the source schemata can be integrated to form a database of the

merged schema.

(Alagic & Bernstein, 2001) assumes that schemata are homogeneous. That is, sig-

natures are drawn from the same category and axioms are expressed within the same

logical formalism. (Goguen, 2005) provides a generalization to the heterogeneous case

where different species of signatures and logical formalisms may be used for describing

schemata. The machinery used for this purpose is that of institution morphisms, pro-

viding a way for translating between different notions of signature and logic (Goguen &

Rosu, 2002).

Software Engineering

Software engineering research deals extensively with model merging. In their survey (Darke

& Shanks, 1996), Darke and Shanks identify merge as one of the core activities in dis-

tributed development. Several papers study model merging for use cases, class diagrams,

state machines, transformation systems, etc. We review some recent approaches here3.

3In software engineering, there is also a large volume of work on merging software code. We do not
discuss this work. See (Mens, 2002) for a survey on the subject.
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(Fiadeiro & Maibaum, 1992) describes a framework for modular development

of reactive systems using category theory. With respect to the classification of model

combination activities in Section 2.1.4, this work falls under composition. Nevertheless,

the work is particularly relevant to model merging because of its use of colimits for

composing specifications – as discussed earlier, colimits are used for model merging, too.

It is interesting to see how the same construct can be employed for characterizing two

different activities.

The framework utilizes many of the same algebraic specification principles used in

institution theory 4, but the formalism introduced by the framework for expressing tem-

poral specifications and their morphisms is not directly characterizable by institutions.

Each specification is made up of a signature and a set of temporal formulas. Temporal

specification signatures are more complex than the type of signatures used in (Alagic &

Bernstein, 2001; Goguen, 2005), surveyed earlier, for capturing database schemata. This

is due to the addition of new programming constructs such as variables, arrays, and ac-

tions. A specification morphism is a signature morphism that extends to a semantically

sound mapping of temporal formulas. Here, morphisms are not used for expressing con-

ceptual overlaps between specifications, but rather to prescribe the relative behaviours of

these specifications using program composition primitives such as sequencing, iteration,

parallelism, and the like. A composed specification is arrived at by colimit computation.

Intuitively, the reason why colimits can be used for both merge and composition

lies in an interesting property of colimits, which is that they never combine any two

concepts unless the concepts are explicitly related by the morphisms. In merge, this

property is used to avoid the unification of homonyms – concepts that share the same

name label while being semantically distinct. In composition, the property is used to

avoid interference between the internal structures of the participating components.

4An informal introduction to institution theory was given in our survey of schema merging approaches.
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(Heckel et al., 1999) provides a framework for merging graph transformation sys-

tems. Each transformation system is given by a type graph and a set of rewrite rules.

A mapping between a pair of graph transformation systems is made up of a mapping

between their type graphs and a set of mappings between their rules. Rule mappings are

required to satisfy certain properties to avoid undesirable interactions between different

rules. The merge operation is characterized using pushouts.

(Easterbrook & Chechik, 2001) describes an approach for merging incomplete

and inconsistent state machines. A state machine is represented as a set of states, a

set of transitions between states, and a set of variables whose values vary from state

to state. To denote incompleteness and inconsistency, each state machine is extended

with a logic with multiple truth values (Belnap, 1977). A mapping between a pair of

state machines consists of two parts, a signature map and a truth map. The signature

map describes the correspondences between the state machines and further establishes a

common vocabulary for the merge. The truth map specifies how the truth values of the

source state machines should be combined in the merge. The notion of mapping defined

by the approach results in a straightforward binary merge algorithm for state machines.

(Sabetzadeh & Easterbrook, 2003) uses category theory to provide an alge-

braic characterization of the merge algorithm in (Easterbrook & Chechik, 2001). State

machines are defined as in (Easterbrook & Chechik, 2001) but with their underlying

structure based on graphs rather than sets and relations. Mappings between state ma-

chines are described using truth-preserving homomorphisms. State machine merges are

computed using pushouts.

(Richards, 2003) provides a method for reconciling natural language use case mod-

els. The approach works by constructing a cross-table where the rows are use case

sentences and the columns are the keywords and phrases of these sentences. A cell in the

table is marked if the sentence in question has the corresponding keyword or phrase in

it. This table is processed using Formal Concept Analysis (FCA) (Ganter & Wille, 1998)
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– a technique commonly used for finding and visualizing relationships between different

concepts in a domain. The result is a structure, called a concept lattice, that can be used

for comparing use case models and merging common concepts.

(Alanen & Porres, 2003) provides a generic approach for merging diagrams in

the UML notation. Given a pair of diagrams, the approach first finds the differences

(deltas) between the diagrams and their common ancestor. The deltas are described as

a sequence of elementary transformations for creating, deleting, and modifying diagram

elements. To construct a merge, the deltas are applied to the common ancestor. This is

straightforward when the deltas do not overlap; however, conflicts may arise when the

deltas refer to the same elements of the common ancestor. The approach provides a semi-

automated conflict resolution algorithm for dealing with such conflicts. (Letkeman,

2005) independently develops an approach similar to that of (Alanen & Porres, 2003)

for merging UML diagrams. The work provides a practical tool for merge and offers

interesting insights about the challenges presented by model merging in a production

environment, e.g., integration with model-based development processes, interaction with

model repositories and local histories, visualization, etc. (Mehra et al., 2005), also

independently, proposes a tool-supported approach for merging graphical diagrams based

on computing deltas and incorporating them into a common ancestor. But, in contrast to

(Alanen & Porres, 2003; Letkeman, 2005), the approach conceives of conflict resolution

during merge as an entirely manual process.

(Uchitel & Chechik, 2004; Nejati et al., 2007) address the problem of be-

havioural model merging, with the main goal being the preservation of temporal prop-

erties of the source models in their merges. In (Uchitel & Chechik, 2004), mappings

between models are implicit and are induced by behavioural bisimulation (Milner, 1989);

whereas in (Nejati et al., 2007), mappings are explicit and are described by binary rela-

tions over the states of the source models. In both approaches, models are compared via

a notion of ordering, called refinement (Larsen & Thomsen, 1988). A merge is charac-
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terized as a common refinement of the source models. This characterization allows one

to prove a number of interesting results about what temporal properties of the source

models are preserved in their merges.

There has also been work on defining languages for model merging, e.g., the Epsilon

Merging Language (EML) (Kolovos et al., 2006). EML is a rule-based language for

merging models with the same or different meta-models. The language distinguishes

four phases in the merge process and provides flexible constructs for defining the rules

that should be applied in each phase. These phases are (1) comparison (identification

of correspondences), (2) compliance checking (examination of corresponding elements to

identify potential conflicts), (3) merging (computation of a duplicate-free union of two

models), and (4) reconciliation (resolution of inconsistencies and restructuring). Despite

its versatility, the current version of EML does not formalize the conditions and conse-

quences of applying the merge rules, and hence, in contrast to our approach described

in Chapter 4, (Kolovos et al., 2006) does not provide a mathematical characterization of

the merge operation.

Semantic Web

Model merging has been studied in the Semantic Web as a way to consolidate ontolo-

gies originating from different communities. Below, we outline some of the proposed

approaches to ontology merging. For a more comprehensive treatment, see (Kalfoglou &

Schorlemmer, 2005).

(Noy & Musen, 2000) provides an incremental method for ontology merging. The

merge process begins with creating a list of potential pairwise matches between the

elements of the source ontologies based on linguistic similarities between element names.

Then, the following cycle happens: (1) The user triggers the merge of a pair of elements

either by accepting a match from the list of potential matches, or by defining a new

match. Depending on the type of elements being merged, an appropriate unification
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operation is performed. This may trigger further unification operations. (2) Conflicts

introduced by the operations in step (1) are resolved. Conflicts that cannot be resolved

automatically are reported to the user. (3) The list of potential matches is updated to

account for the additional structure imposed by steps (1) and (2).

Similarly to (Richards, 2003) reviewed earlier, (Stumme & Maedche, 2001) char-

acterizes merge using ideas from Formal Concept Analysis. Here, the input to the merge

process is a pair of ontologies and a set of natural language documents. A merge is car-

ried out in three steps: (1) The documents are analyzed to identify which concepts of the

source ontologies appear in them. The results are used to generate a pair of cross-tables,

one for each source ontology. The rows in each table are the names of the documents,

and the columns are the concepts of the respective source ontology. (2) These tables are

combined into a new table by taking the disjoint union of their columns. This combined

table is processed to generate a concept lattice. (3) A merged ontology is created through

a semi-automated analysis of individual elements in the concept lattice. The approach

does not provide a mechanism for conflict resolution – possible anomalies and duplicates

have to be resolved by a domain expert.

Several papers, e.g., (Jannink et al., 1998; Schorlemmer et al., 2002; Goguen,

2005; Hitzler et al., 2005) formalize ontology merging using pushouts. In recent

work, Zimmermann et al. (Zimmermann et al., 2006) argue that pushouts are not

expressive enough for ontology merging, because in addition to the overlaps between

the source ontologies, one often has to deal with information that is missing from the

ontologies, too. For example, to merge a pair of ontologies one of which elaborates the

concept of Physician and the other which – the concept of Nurse, one first needs to introduce

the missing abstract concept MedicalStaff. Pushouts do not provide a way to address this

missing information during merge. In contrast, as we see in Chapter 4, colimits in their

general form provide enough expressiveness for bridging such information gaps between

the source models.
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2.2 Consistency Checking

Consistency checking is a major research topic with various nuances and complexities.

In software engineering, consistency checking has been studied since the 1980’s and tech-

niques have been developed to address the problem for a wide range of development

artifact including logical specifications (Nuseibeh et al., 1994; Easterbrook & Nuseibeh,

1996; van Lamsweerde et al., 1998; Spanoudakis et al., 1999; Bowman et al., 2002; Jack-

son, 2006), conceptual graphs (Delugach, 1992), state diagrams (Glinz, 1995; Easter-

brook & Chechik, 2001), XML documents (Nentwich et al., 2003), UML models (Zisman

& Kozlenkov, 2001; Elaasar & Briand, 2004; Egyed, 2006), natural language documents

(Gervasi & Zowghi, 2005), and so on.

2.2.1 Notions of Consistency

Formal approaches to consistency checking build on one of the following two notions:

Let L be a logical language, and let |= denote the satisfaction relation in L.

• Logical Consistency. Given a set S = {ϕ1, . . . , ϕn} of formulas in L, the formu-

las are said to be logically consistent if there exists an instance object O admitted

by the semantics of L such that:

O |= ϕ1, O |= ϕ2, . . . , O |= ϕn.

The formulas are said to be logically inconsistent if no such instance object exists.

• Conformance. Given an instance object O (admitted by the semantics of L)

and a formula ϕ in L, the object O is said to be consistent with respect to (or,

conformant to) ϕ if O |= ϕ. Otherwise, O is said to be inconsistent (or, non-

conformant).
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2.2.2 Consistency Checking of Individual Descriptions

We illustrate logical consistency and conformance over individual descriptions before

generalizing the notions to multiple descriptions in Section 2.2.3.

Example 2.2 (checking logical consistency) Consider the following propositional

specification:

S = {flies ⇒ bird, bird ⇒ has-bill, bat ⇒ flies, bat ⇒ ¬has-bill, bat}

S is logically inconsistent because there is no truth assignment satisfying all the formulas

in S.

Example 2.3 (checking structural conformance) Consider the class diagram M in

Figure 2.2 and the following first order well-formedness property:

ϕ = ¬∃x, y, z (y 6= z) ∧ Inherits(x, y) ∧ Inherits(x, z).

Line

Rectangle

Polygon

M

Figure 2.2: Illustration for structural conformance checking

The property states that a class cannot have more than one parent class (e.g., to

ensure that the class diagram can be easily translated to Java code). The model in

Figure 2.2 is inconsistent with respect to ϕ because M 6|= ϕ.

Example 2.4 (checking behavioural conformance) Consider the state machinesM1

and M2 in Figure 2.3 describing two variant versions of a traffic light: A simple version

M1 that is always on, and a second version M2 that can also be off. The property
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ϕ = G(red ⇒ X green), expressed in Linear Temporal Logic (Clarke et al., 1999), stating

that red is always followed by green holds over M1 but not over M2 (because of the path

red, off, green). Hence, M2 is inconsistent with respect to ϕ.

BothM1 andM2 will be consistent if the property is changed to ϕ = G(red ⇒ F green),

saying that one always eventually gets from red to green.

green yellow red

green yellow red

off

M1

M2

Figure 2.3: Illustration for behavioural conformance checking

2.2.3 Consistency Checking of Multiple Descriptions

For multiple descriptions that are related, one not only needs to check the consistency of

individual descriptions but also their consistency according to the relationships defined

between them. Consistency checking of interrelated descriptions is done in one of the

following ways (Finkelstein & Sommerville, 1996; van Lamsweerde et al., 1998; Nuseibeh

et al., 2001):

1. Relationships have specific consistency rules associated with them to ensure well-

formedness, compatibility, process compliance, etc. Consistency checking is per-

formed by checking the corresponding rules on pairwise relationships between the

descriptions.

2. Descriptions are first combined according to the relationships between them. Check-

ing consistency of the descriptions then amounts to checking consistency of their

combination.
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Example 2.5 (pairwise rules – homogeneous models) Consider class diagramsM1,M2

in Figure 2.4 and the relationship R between them, which equates Rect in M1 and Rectan-

gle in M2. If multiple inheritance is undesired, R should be deemed inconsistent because

it equates two concepts without equating their parent concepts. The rule for checking

this property is as follows:

ϕ = ¬∃x, y, z, t Inherits(x, y) ∧ Inherits(z, t) ∧R(x, z) ∧ ¬R(y, t).

Line

Rectangle

Polygon

Rect

M1 M2
R

Figure 2.4: Pairwise checking of homogeneous models

Example 2.6 (pairwise rules – heterogeneous models) Consider the class diagram

M1, the sequence diagram M2, and the relationship R between the two in Figure 2.5.

The models, adopted from (Egyed, 2006), represent an early-stage design snapshot of a

video-on-demand system. Unlike our previous example where the pairwise relationship

between the models described element equalities, the relationship in Figure 2.5 denotes

instantiation, i.e., R(x, y) does not mean that x and y are equivalent, but rather means

y is an instance of x.

A consistency rule that one might want to check over the models in Figure 2.5 is

whether messages in the sequence diagram have corresponding methods in the class

diagram. This is captured by the following:

ϕ = ¬∃msg , obj , cls Target(msg , obj ) ∧R(cls , obj ) ∧ ¬Contains(cls ,msg .name).

The models in the figure fail to satisfy the above rule because the doStream message in

M2 does not have a corresponding method in the Streamer class of M1.
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select()
play()

Display
stream()
Streamer

M1

M2

disp:Display strm:Streamer

select

play
doStream

R

Figure 2.5: Pairwise checking of heterogeneous models

Example 2.7 (consistency checking via combination) Suppose that the specifica-

tions S1, S2 in Figure 2.6 are different perspectives on the terms used for referring to

children at different ages. The relationship R is a mapping between the vocabularies

of the two specifications, hypothesizing that (1) Child in S1 is a more general concept

than Baby in S2, and (2) Newborn in S2 is a more general concept than Neonate in S1.

For simplicity, we assume absence of homonyms (i.e., terms that are lexically the same

but have different meanings). Otherwise, we would have had to introduce a separate

namespace for each specification and explicitly specify all vocabulary mappings, even for

lexically equivalent terms.

To check the consistency of the two specifications, we construct a combined specifi-
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∀xNeonate(x)⇒ Newborn(x)

∀xNewborn(x)⇒ Infant(x)

∃xNeonate(x) ∧ ∃x Infant(x) ∧ ∃xToddler(x) ∧ ∃xPlay-age(x)

∀x (Infant(x) ∨ Toddler(x) ∨ Play-age(x)) ⇒ ¬Neonate(x)

∀x (Infant(x) ∨ Toddler(x) ∨ Play-age(x)) ⇒ ¬Neonate(x)

S1

∀x (Infant(x) ∨ Toddler(x)) ⇒ Baby(x)
∀xNewborn(x)⇒ Infant(x)
∀x Infant(x)⇒ ¬Toddler(x)

S2

∀xNeonate(x)⇒ Newborn(x)R

C

(a)

∀x (Neonate(x) ∨ Infant(x) ∨ Toddler(x) ∨ Play-age(x)) ⇒ Child(x)

∀x (Neonate(x) ∨ Infant(x) ∨ Play-age(x)) ⇒ ¬Toddler(x)
∀x (Neonate(x) ∨ Toddler(x) ∨ Play-age(x)) ⇒ ¬Infant(x)

∀x (Neonate(x) ∨ Infant(x) ∨ Toddler(x)) ⇒ ¬Play-age(x)

∀xBaby(x)⇒ Child(x)

∃xNeonate(x) ∧ ∃x Infant(x) ∧ ∃xToddler(x) ∧ ∃xPlay-age(x)

∀x (Infant(x) ∨ Toddler(x)) ⇒ Baby(x)

∀x Infant(x)⇒ ¬Toddler(x)

∀x (Neonate(x) ∨ Infant(x) ∨ Toddler(x) ∨ Play-age(x)) ⇒ Child(x)

∀x (Neonate(x) ∨ Infant(x) ∨ Play-age(x)) ⇒ ¬Toddler(x)
∀x (Neonate(x) ∨ Toddler(x) ∨ Play-age(x)) ⇒ ¬Infant(x)

∀x (Neonate(x) ∨ Infant(x) ∨ Toddler(x)) ⇒ ¬Play-age(x)

∀xBaby(x)⇒ Child(x)

(b)

e1

e2

e3

e4

Figure 2.6: Consistency checking of specifications via conjunction

cation, shown in Figure 2.6(b), by taking the conjunction C of S1, S2, and R, and then

check C for logical consistency. It turns out that C is unsatisfiable and hence inconsis-

tent. A minimally unsatisfiable set of formulas is shaded gray in Figure 2.6(b): pick an
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element x0 for which we have Neonate(x0). The existence of such an element is necessary

to satisfy e2. By e4, we have Newborn(x0), and then by e3 – Infant(x0). Now, we get a

contradiction by e1, because we cannot have both Neonate(x0) and Infant(x0).

Consistency checking via combination has the advantage that it enables detection of

global inconsistencies (van Lamsweerde et al., 1998; Nuseibeh et al., 2001). For example,

consider the following three specifications expressed in first order logic:

S1 = { ∀xP (x) }

S2 = { ∃xP (x),

∀xQ(x) }

S3 = { ∀xP (x) ⇒ ¬Q(x) }

The global conjunction of S1, S2, S3 is inconsistent, whereas all pairwise conjunctions are

consistent.

To enable consistency checking via combination, one first needs to define an operator

for putting descriptions together. In logical specification languages, both the specifica-

tions and their relationships are usually described in the same logic, as illustrated by

Example 2.7. Hence, the combination can be defined using some form of logical conjunc-

tion (Zave & Jackson, 1993).

In contrast, in conceptual modelling languages like goal, entity-relationship, class and

sequence diagrams, the models are expressed using graphical notations, and the relation-

ships – using simple tuples of the form (ei, ej), where ei and ej are elements of different

models (Spanoudakis & Zisman, 2001). Here, the exact definition of what it means for

two elements ei and ej to be mapped is left implicit; and, in different contexts, these

mappings could mean equivalence, synchronization, instantiation, refinement, implemen-

tation, and so on. As a result, any attempt to combine a set of conceptual models has

to account for the (implicit) semantics of the relationships between the models.

When element correspondences denote equivalence, the combination operation co-

incides with model merging. Thus, provided with a merge operator, one can check the
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global consistency of a set of models interrelated by equivalence mappings. This is exactly

what we do in Chapter 5 by utilizing the merge operator defined in Chapter 4.

2.2.4 Expressive Power Considerations

Given the choice, developers would always rather describe their desired properties in

convenient-to-use and highly expressive logics. But, such flexibility comes at a cost:

Checking logical consistency becomes undecidable if the expressive power of the logic

being used is not sufficiently restricted. Undecidability effectively means that full au-

tomation is impossible. The main goal in many areas of knowledge representation and

reasoning, e.g., Description Logics (Baader et al., 2003), is to identify fragments of for-

mal logics that are decidable. If decidability is established, one has to also consider the

complexity of the reasoning procedure for the logic in question to determine whether the

logic scales to the goals and tasks at hand.

Alternatively, one can restrict logical consistency checking to structures of bounded

size. That is, instead of trying to produce a general proof that a specification S is

logically inconsistent, one could show that S cannot be satisfied by any structure with≤ k

elements, where k is a fixed number. The advantage of this so-called “bounded” approach

is that it allows logical consistency to be verified by exhaustive search. One of the most

notable and useful tools that implements this approach is the Alloy Analyzer (Jackson,

2006). Alloy provides a rich specification language based on first order logic, and can

check the logical consistency of specifications written in this language for universes of

bounded size. Despite their demonstrated usefulness for exploration, applying Alloy and

similar tools is still a challenge when the bound (k) is large.

Unlike the case for checking logical consistency, undecidability is usually not an issue

for conformance checking: For many interesting variants of temporal and first order

logics, conformance checking over finite structures is decidable 5. The main factor to be

5In the formal verification literature, conformance checking is known as model checking.
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considered here is the computational complexity of conformance checking, which as one

may expect, is inversely related with the expressive power of the logic being used. Finding

the right balance between scalability and expressiveness in conformance checking is an

important engineering question that must be addressed based on the size of the models

and the types of analyses involved.

2.2.5 Inconsistency Management

Management of inconsistency involves a number of activities, of which consistency check-

ing is one. Other important activities in inconsistency management include (Nuseibeh

et al., 2001):

• Inconsistency classification, focusing on identifying the kinds of inconsistencies de-

tected. Inconsistencies may be classified according to their causes, or according to

pre-defined kinds prescribed by developers.

• Inconsistency handling, focusing on acting in the presence of inconsistencies. For

example, when an inconsistency is detected, the appropriate response may be to

ignore, tolerate, resolve, or circumvent it.

• Inconsistency measurement, focusing on calculating the impact of inconsistencies on

different aspects of development, and prioritizing the inconsistencies according to

the severity of their impact. The actions taken to handle an inconsistency typically

depend on the results of inconsistency measurement.

Our work in this thesis concerns only the consistency checking activity. The back-

ground information we provided in this chapter was therefore specifically directed towards

this activity. For a comprehensive overview of inconsistency management, see (Nuseibeh

et al., 2000; Spanoudakis & Zisman, 2001).
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2.2.6 Literature Review

We briefly review the literature on automated consistency checking. A critical comparison

between our consistency checking approach and other existing approaches is given in

Chapter 5. Our review focuses on checking consistency between descriptions, i.e. inter -

description consistency checking. The bulk of the research on this topic has been done

in the requirements engineering community, motivated by the problem of inconsistency

detection between requirements originating from different stakeholders.

With the rise of global software engineering (Herbsleb, 2007), applications of inter-

description consistency checking are expanding beyond their original roots in require-

ments engineering. In particular, software design is increasingly being conducted by

distributed teams located in different companies and countries. Ensuring consistency

between the artifacts built by these teams is a major problem (Egyed, 2006). This makes

the continuation of research on inter-description consistency checking very important for

the future of software development.

One of the early approaches to consistency checking of multiple descriptions is (East-

erbrook et al., 1994) which promotes the use of explicit rules to capture the consistency

relationships between different descriptions. These rules are described as first order logic

formulas over description pairs. The notion of consistency used is conformance (see Sec-

tion 2.2.1). A generalization of the work is provided in (Easterbrook & Nuseibeh,

1996) where a broader range of inconsistency management tasks, including inconsistency

resolution and monitoring, are considered. This later work also provides more flexibility

in defining the consistency rules. In particular, it allows the rules to be supplemented

with a domain-specific strategy for identifying the overlaps between different descriptions.

(Finkelstein et al., 1994) proposes an approach for checking the logical consistency

of a set of related requirements viewpoints. The approach works by constructing a first

order knowledge-base containing formulas representing the contents of the viewpoints and

environmental information such as inter-viewpoint relations. A classical theorem prover
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is then used to detect inconsistencies in the knowledge-base, under the assumption that

the knowledge-base is closed, i.e., if a fact A is not in the knowledge-base then ¬A holds.

The approach further provides a way to resolve inconsistencies using an action-based

language based on temporal logic.

(Hunter & Nuseibeh, 1998) presents a technique for reasoning about inconsistent

requirements. The goal here is to enable generation of useful inferences from an incon-

sistent knowledge-base of requirements viewpoints. The facts in the knowledge-base are

written in first order logic without existential quantification and function symbols. This

makes checking logical consistency decidable. To reason in the presence of inconsistency,

the approach distinguishes between inferences derivable from (1) some consistent sub-

set of the knowledge-base, (2) all consistent subsets of the knowledge-base, and (3) the

intersection of all consistent subsets. This provides a measure for the quality of each

inference: the highest degree of confidence is provided by inferences of type (3), and the

lowest – by inferences of type (1).

(van Lamsweerde et al., 1998) identifies various kinds of inconsistency in require-

ments engineering, covering both the centralized and distributed development settings.

The kinds of inconsistency identified are:

• Deviation: This corresponds to what we called non-conformance in Section 2.2.1.

• Terminological and structural clash: Terminological clash refers to the situation

where different terms are used for expressing the same concept (synonymy), or the

same term is used for expressing different concepts (homonymy). Structural clash

refers to the situation where a concept is described using different structures in

different descriptions. For example, if the descriptions are database schemata, the

concept of “gender” might be modelled as an attribute of the entity Person in one

model, and as two sub-entities, Male and Female, of Person in another model.

Detecting terminological and structural clashes is by and large a manual process,
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because this usually requires knowledge of the tacit (i.e., unstated) semantics of

the descriptions. Our characterization in Section 2.2.1 concerns only the formal

notions of consistency. In this thesis, we treat terminological and structural clashes

as inevitable facts of distributed development, whose handling requires first-class

support from the underlying modelling framework. As we argued in Chapter 1 and

shall describe in more detail in Chapter 4, category theory provides an abstract so-

lution for managing these clashes by making the relationships between descriptions

explicit.

• Conflict : This corresponds to logical inconsistency as described in Section 2.2.1.

• Divergence: This captures the situation where a set of descriptions are not con-

flicting per se, but there exists a feasible condition, called a boundary condition,

which, if conjoined with the original descriptions, leads to a conflict. Obviously, the

underlying notion of inconsistency for divergence is the same as that for conflict,

i.e., logical inconsistency.

In addition to providing the above classification, (van Lamsweerde et al., 1998) elab-

orates specifically on divergence and develops two formal techniques for derivation of

boundary conditions in goal-oriented requirements engineering. The first technique uses

backward chaining – an AI strategy for working back from possible conclusions to the

evidence supporting them. The second technique uses divergence patterns. Essentially,

a divergence pattern is a set of formula templates together with a generic boundary con-

dition. Detecting divergence between a set of logical formulas is achieved by matching

the formulas to the formula templates in each divergence pattern. If a match is found,

the generic boundary condition associated with the matching pattern is instantiated ac-

cordingly. In this way, divergence patterns alleviate the need to manually carry out the

formal derivations required in the backward chaining technique.

(Fradet et al., 1999) develops a graph-based language for describing software ar-
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chitectures from multiple viewpoints, and proposes a framework for checking intra- and

inter-viewpoint consistency. The approach deals with both logical consistency and con-

formance. In particular, it translates multiplicity constraints into a system of linear

inequalities and uses satisfiability checking to ensure that the system has a solution. In

addition, the approach provides a simple constraint language based on first order logic for

describing process-level constraints over viewpoints and their relationships. The notion

used for verifying these constraints is conformance. The approach recognizes the need

for combining viewpoints before checking global constraints, but it does not specify how

this combination should be performed.

(Easterbrook & Chechik, 2001) describes an approach for verifying global consis-

tency properties of state machines. The underlying notion of consistency is behavioural

conformance. The approach first constructs a merge of the source state machines and

then checks the (temporal) properties of interest over the merge. The model merging

component of the approach was already surveyed in Section 2.1.5. The main character-

istic of the consistency checking component of the approach is its use of multiple-valued

semantics for evaluation of properties. This enables toleration of inconsistency and also

leads to a solution for classifying inconsistencies based on their impact. Such classification

is not easily possible with classical logic, because the presence of a single contradiction

results in trivialization – anything follows from A ∧ ¬A. Hence, all inconsistencies are

treated as equally bad. Multiple-valued semantics instead permits some contradictions

without the resulting trivialization of classical logic.

(Bowman et al., 2002) proposes a formal framework for consistency checking of

viewpoints expressed in languages like LOTOS (Language of Temporal Ordering Specifi-

cations) (Bolognesi & Brinksma, 1987) and Z (Spivey, 1992). The notion of consistency

used is logical consistency. Specifically, a collection of viewpoints are consistent if there

is a non-empty implementation of all the viewpoints. The approach describes several

strategies for checking pairwise consistency between viewpoints and further, shows how
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global consistency properties can be checked by iteratively merging viewpoints through

logical unification and applying binary consistency checks.

(Nentwich et al., 2003) develops an end-to-end framework, called xlinkit, for con-

sistency checking of distributed XML documents. The framework includes a document

management mechanism, a language based on first order logic for expressing consistency

rules, and an engine for checking documents against these rules and generating diagnos-

tics. The notion of consistency used in xlinkit is conformance. Consistency rules in xlinkit

do not directly reference where the elements indicated in the rules should be retrieved

from. Hence, the rules can be applied to different sets of documents. Another charac-

teristic of xlinkit is that it does not use Boolean semantics for evaluating consistency

rules. Instead, it provides an extended semantics in terms of hyperlinks. This enables

linking consistent elements if a consistency rule holds, and linking inconsistent elements

otherwise. The semantics of linkage is defined such that only elements that have directly

contributed to an inconsistency are included in the resulting diagnostics. For example,

in the formula a∧ b, if a holds and b does not, the formula fails due to b and only due to

b, and hence b would be included in the diagnostics whereas a would not.

(Egyed, 2006) presents a method for checking consistency between heterogeneous

UML diagrams. The work focuses on well-formedness constraints and uses (structural)

conformance as the underlying notion of consistency. Consistency rules are written in an

imperative programming language. The behaviour of each rule is dynamically profiled

during its evaluation to keep track of the elements accessed by the rule. The resulting

profiling information is used to establish a correlation among elements, consistency rules,

and inconsistencies. Based on this correlation, the approach can decide when to re-

evaluate each consistency rule and when to display inconsistencies.

(Paige et al., 2007) investigates the problem of verifying consistency constraints

imposed by the UML meta-model (Unified Modeling Language, 2003). These constraints

can be over either individual UML diagrams or pairs of (heterogeneous) UML diagrams.
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Two consistency checking techniques are explored, one using a general-purpose theorem

prover and the other – an imperative object-oriented programming language. The overall

observation made by the work is the following: Most meta-model constraints can be ver-

ified via model checking (conformance checking, in our terminology). However, there are

certain constraints whose verification involves checking logical consistency. For example,

UML requires that each message in a sequence diagram should correspond to an enabled

routine call, i.e., a routine call for which the pre-conditions are true. A pre-condition

of interest can be true only if the post-conditions of previous routine calls combine to

enable the pre-condition. Therefore, the pre-condition has to be logically consistent with

the post-conditions of previous calls.

2.3 Summary

In this chapter, we discussed the conceptual background for the thesis and reviewed the

literature relevant to our contributions. An overall understanding of the material in this

chapter is assumed throughout the remainder of the thesis.
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Mathematical Foundations

This chapter is intended to serve as a detailed reference for the mathe-

matical machinery in our work. Subsequent chapters will provide a less

formal exposition of the relevant mathematical concepts as needed. A

reader more interested in the practical applications of the thesis may

wish to skip this chapter. References to this chapter in later chapters

are limited to side remarks.

In this chapter, we provide a formal introduction to algebras, graphs, lattice theory,

category theory, fuzzy structures, and formal logic. The topics covered in Sections 3.1 –

3.4 and 3.7 are standard and can be found in mathematical textbooks. Our presentation

of these topics is narrowed down to the aspects needed for the purposes of this thesis. The

results presented in Section 3.5 on fuzzy sets are well-known in the broader literature on

toposes (see, e.g., (Barr & Wells, 1984)); however, we have been unable to find a reference

that covers these results in a way that is easily accessible to an audience not familiar with

topos theory. Our presentation in Section 3.5 spells out the required details in a concise

and easy-to-understand manner. Categories of fuzzy graphs, as introduced in Section 3.6,

are a contribution of the author (Sabetzadeh, 2003; Sabetzadeh & Easterbrook, 2003).

41



Chapter 3. Mathematical Foundations 42

3.1 Many-Sorted Sets and Algebras

In this section, we review the basic definitions concerning many-sorted algebras. The

notation we use here is based on (Goguen et al., 1987; Sannella & Tarlecki, 1999).

Definition 3.1 (many-sorted set) Let S be a set of sorts. An S-sorted set is an

S-indexed family of sets X = 〈Xs〉s∈S, which is empty if Xs is empty for all s ∈ S.

For S-sorted sets X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S:

1. X ∪ Y = 〈Xs ∪ Ys〉s∈S (Union)

2. X ∩ Y = 〈Xs ∩ Ys〉s∈S (Intersection)

3. X × Y = 〈Xs × Ys〉s∈S (Cartesian Product)

4. X ] Y = 〈Xs ] Ys〉s∈S (Disjoint Union)

5. X ⊆ Y ⇐⇒ (∀s ∈ S : Xs ⊆ Ys) (Inclusion)

6. X = Y ⇐⇒ (X ⊆ Y ∧ Y ⊆ X) (Equality)

Definition 3.2 (many-sorted function) An S-sorted function f : X → Y is an

S-indexed family of functions f = 〈fs : Xs → Ys〉s∈S. We respectively call X and Y the

source and the target of f .

Definition 3.3 (function composition) If f : X → Y and g : Y → Z are S-sorted

functions, then their composition g ◦ f : X → Z is the S-sorted function defined by

(g ◦ f)s(x) = gs(fs(x)) for s ∈ S and x ∈ Xs.

Definition 3.4 (binary relation) An S-sorted binary relation on X, written

R ⊆ X × X, is an S-indexed family of binary relations R = 〈Rs ⊆ Xs × Xs〉s∈S. For

s ∈ S and x, y ∈ Xs, xRsy, also written xRy, means 〈x, y〉 ∈ Rs.
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Definition 3.5 (equivalence relation) Let R be an S-sorted relation on X. R is an

S-sorted equivalence on X if it is reflexive (xRsx), symmetric (xRsy =⇒ yRsx), and

transitive (xRsy∧yRsz =⇒ xRsz) for each sort s. The symbol ≡ is used for (S-sorted)

equivalence relations.

Definition 3.6 (quotient set) Let ≡ be an S-sorted equivalence on X. If s ∈ S and

x ∈ Xs, then the equivalence class of x modulo ≡ is the set [x]≡s = {y ∈ Xs | x ≡s y}.

The quotient of X modulo ≡ , denoted X/≡, is the S-sorted set 〈{[x]≡s | x ∈ Xs}〉s∈S.

Definition 3.7 (many-sorted signature) An S-sorted signature is a pair Σ = 〈S,Ω〉,

where S is a set of sorts and Ω is an (S∗ × S)-sorted set of operations. By S∗ we mean

the set of all finite strings from S, including the empty string λ. We call f an operation

symbol of arity s1 . . . sn and of result sort s if f ∈ Ωs1...sn,s.

Definition 3.8 (many-sorted algebra) Let Σ = 〈S,Ω〉 be a signature. A Σ-algebra

A consists of an S-sorted set |A| of carrier sets; and for each f ∈ Ωs1...sn,s, a function

fA : |A|s1 × · · · × |A|sn → |A|s.

For an operator symbol f ∈ Ωλ,s, the function fA ∈ |A|s (also written fA :→ |A|s) is a

constant of A of sort s.

Definition 3.9 (many-sorted homomorphism) Let Σ = 〈S,Ω〉 be a signature and

let A and B be Σ-algebras. A Σ-homomorphism h : A → B is an S-sorted function

h : |A| → |B| such that if f ∈ Ωs1...sn,s and if a1 ∈ |A|s1 , . . . , an ∈ |A|sn , then

hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an)).

3.2 Graphs and Graph Homomorphisms

In this section, we introduce a specific kind of directed graph commonly used in the

algebraic literature that deals with graph-based structures. The importance of graphs in
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this thesis is two-fold: On the one hand, graphs are the basis for defining diagrams in

category theory (see Section 3.4). And, on the other hand, graphs and their mappings

are core to the model merging approach developed in Chapter 4.

Definition 3.10 (graph) A graph is a quadruple G = (N,E, sourceG, targetG) where

N is a set of nodes, E is a set of edges, and sourceG, targetG : E → N are functions

respectively giving the source and the target for each edge. A graph homomorphism

from a graph G = (N,E, sourceG, targetG) to a graph G′ = (N ′, E ′, sourceG′ , targetG′) is

a pair of functions h = 〈hnode : N → N ′, hedge : E → E ′〉 such that:

hnode ◦ sourceG = sourceG′ ◦hedge and hnode ◦ targetG = targetG′ ◦hedge

Example 3.11 Figure 3.1 illustrates four graphs A, B, C, andD along with four possible

homomorphisms h : A→ B, k : B → B, l : A→ C, and p : B → D.

An equivalent definition for graph and graph homomorphism can be given by noticing

that a graph is a (two-sorted) algebra and a graph homomorphism is a (two-sorted)

homomorphism:

Definition 3.12 A graph is a ΣG-algebra and a graph homomorphism is a ΣG-

homomorphism where ΣG = 〈SG,ΩG〉 is defined as followed:

SG = {node, edge};

Ωedge,node = {source, target};

Ωw,s = ∅ for all other w ∈ S∗G and s ∈ SG.

Notation We usually drop the sort subscripts of the functions that comprise a graph

homomorphism and use the name of the homomorphism as an overloaded operator that

acts on both nodes and edges. For example, for a node a1, we write h(a1) = n1 instead

of hnode(a1) = n1; and for an edge b1, we write h(b1) = e1 instead of hedge(b1) = e1.
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hnode =

 a1 7→ n1, a2 7→ n2, a3 7→ n4

a4 7→ n2

 hedge =

 b1 7→ e1, b2 7→ e4, b3 7→ e5,

b4 7→ e2


knode =

 n1 7→ n1, n2 7→ n2, n3 7→ n2,

n4 7→ n4

 kedge =

 e1 7→ e1, e2 7→ e2, e3 7→ e2,

e4 7→ e4, e5 7→ e5


lnode =

 a1 7→ X, a2 7→ Y, a3 7→ X

a4 7→ Y

 ledge =

 b1 7→ f, b2 7→ idX , b3 7→ f,

b4 7→ idY


pnode =

 n1 7→ q1, n2 7→ q2, n3 7→ q2,

n4 7→ q3

 pedge =

 e1 7→ j1, e2 7→ j2, e3 7→ j3,

e4 7→ j4, e5 7→ j5



Figure 3.1: Examples of graphs and graph homomorphisms
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3.3 Partial Orders and Lattices

In this section, we recall some basic definitions and results from lattice theory (Birkhoff,

1979; Davey & Priestley, 2002). Lattice theory provides a unified framework for the study

of ordered structures. It finds one of its major applications in fuzzy set theory (Goguen,

1974; Höhle & Rodabaugh, 1999), which we discuss in Section 3.5.

Definition 3.13 (partial order relation) A partial order ≤ on a set A is a binary

relation on A such that the following conditions hold:

1. ∀a ∈ A : a ≤ a (reflexivity)

2. ∀a, b ∈ A : a ≤ b ∧ b ≤ a =⇒ a = b (anti-symmetry)

3. ∀a, b, c ∈ A : a ≤ b ∧ b ≤ c =⇒ a ≤ c (transitivity)

We call ≤ a total order on A if the following condition holds, as well:

4. ∀a, b ∈ A : a ≤ b ∨ b ≤ a (totality condition)

Definition 3.14 (partially ordered set) A non-empty set with a partial order on it

is called a partially ordered set or a poset for short. If the relation is a total order

then the set is called a totally ordered set or more conveniently a chain. In a poset

A, we use the expression a < b to indicate that a ≤ b but a 6= b.

Definition 3.15 (bottom and top) Let P be a poset. P has a bottom element if

there exists ⊥ ∈ P such that ⊥ ≤ x for all x ∈ P . Dually, P has a top element if there

exists > ∈ P such that x ≤ > for all x ∈ P .

Definition 3.16 (covering relation) Let P be a poset and let x, y ∈ P . We say x is

covered by y (or y covers x), and write x ≺ y or y � x, if x < y and x ≤ z < y implies

z = x.
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Figure 3.2: Examples of Hasse diagrams

It simply follows that for elements x, y in a finite poset P : x < y if and only if there

exists a finite sequence of covering relations x = x0 ≺ x1 ≺ . . . ≺ xn = y. This is

the underlying observation for visualizing finite posets by Hasse diagrams. A Hasse

diagram is a graphical rendering of a poset displayed via the covering relation of the poset

with an implied upward orientation. In a Hasse diagram, the elements of a finite poset P

are displayed in such a way that for every a, b ∈ P : if a ≺ b, then b is located above a and

the two elements are connected with a line segment. Figure 3.2 illustrates Hasse diagrams.

In Figure 3.2(a), for example, the covering relation is: {a ≺ b, a ≺ c, b ≺ d, c ≺ d}. It can

be verified that for a finite poset P , the relation ≤ is equal to ≺∗ (the closure of ≺).

Therefore, ≤ can be reconstructed from the Hasse diagram corresponding to P .

Definition 3.17 (upper bound and lower bound) Let P be a poset and A ⊆ P .

An element p ∈ P is an upper bound (resp. lower bound) of A if

∀a ∈ A : a ≤ p (resp. ∀a ∈ A : p ≤ a)

Definition 3.18 (supremum and infimum) Let P be a poset and A ⊆ P . An ele-

ment p ∈ P is the least upper bound or the supremum of A, written sup A, if p is

an upper bound of A, and for all upper bounds x of A, p ≤ x. Dually, an element p ∈ P

is the greatest lower bound or the infimum of A, written inf A, if p is a lower bound

of A, and for all lower bounds x of A, x ≤ p.
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Notation We write x t y, read as “x join y”, in place of sup{x, y} when it exists;

and x u y, read as “x meet y”, in place of inf{x, y} when it exists. Similarly, we write⊔
A (“the join of A”), and

d
A (“the meet of A”) in place of sup A and inf A,

respectively, when they exist.

Definition 3.19 (lattice) Let P be a poset. If x t y and x u y exist for all x, y ∈ P ,

then P is called a lattice. If
⊔
A and

d
A exist for all A ⊆ P , then P is called a

complete lattice.

Theorem 3.20 (e.g., see (Davey & Priestley, 2002)) Every finite lattice is complete.

Theorem 3.21 (e.g., see (Davey & Priestley, 2002)) Every complete lattice has a bottom

(⊥) and a top (>) element.

Example 3.22 In Figure 3.2, (a) and (b) are lattices, but (c) and (d) are not: in (c),

sup{b, c} does not exist; and in (d), the set {a, b} fails to have a least upper bound.

3.4 Category Theory

In this section, we review the basics of category theory, focusing on the aspects most

relevant to our work. For a more comprehensive treatment, see (Barr & Wells, 1999).

3.4.1 Categories

Definition 3.23 (category) A category C consists of:

1. a collection of objects denoted |C |;

2. for every A,B ∈ |C |, a collection HomC (A,B) of morphisms (also called arrows)

from A to B. We write f : A → B when f ∈ HomC (A,B) and call A the source

and B the target of f ;
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3. for every A,B,C ∈ |C |, a composition operation

◦ : HomC (A,B)× HomC (B,C) → HomC (A,C)

such that:

I. (composition associativity) any morphisms f ∈ HomC (A,B), g ∈ HomC (B,C),

and h ∈ HomC (C,D) satisfy: h ◦(g ◦ f) = (h ◦ g) ◦ f ;

II. (existence of identity) for everyA ∈ |C |, there exists a morphism idA ∈ HomC (A,A),

called the identity of A, such that f ◦ idA = f for any morphism f ∈ HomC (A,B);

and idA ◦ g = g for any morphism g ∈ HomC (B,A).

Example 3.24

• A single object together with a single morphism (which must be the identity mor-

phism) constitutes a category, denoted 1.

• The category of sets, denoted Set, has sets as objects and functions as morphisms.

Notice that the source and the target of every function is explicitly given.

• For a given signature Σ, the category of Σ-algebras, denoted Alg(Σ), has Σ-algebras

as objects and Σ-homomorphisms as morphisms.

• For the signature ΣG given in Definition 3.10, Alg(ΣG) is the category of graphs

which will hereafter be denoted Graph.

• A poset P can be viewed as category whose objects are the elements of P ; and for

any x, y ∈ P satisfying x ≤ y, there is a unique morphism that has x as source and

y as target.

• A set can be viewed as a category whose objects are the elements of the set and

whose only morphisms are the identity morphisms.
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Definition 3.25 (small, locally small, and large categories) A category C is small

if |C | is a set and for any A,B ∈ |C |, the collection HomC (A,B) is a set, as well. A

category is locally small if HomC (A,B) is a set for any A,B ∈ |C |. If a category is

not small, then it is said to be large.

Remark 3.26 All the categories referred to in this thesis are locally small.

3.4.2 Functors

Definition 3.27 (functor) A functor F : C → D consists of:

• A function FObj : |C | → |D |;

• For every A,B ∈ |C |, a function FA,B : HomC (A,B) → HomD

(
FObj (A), FObj (B)

)
.

such that:

1. Identities are preserved: FA,A(idA) = idFObj (A) for every A ∈ |C |.

2. Composition is preserved: FA,C(g ◦ f) = FB,C(g) ◦FA,B(f) for all morphisms

f : A→ B and g : B → C in C .

Example 3.28 (identity functor) For a category C , there exists a functor IC : C → C ,

known as the identity functor on C , that maps every object and morphism in C to

itself.

Example 3.29 (Cartesian product functor) There is functor T : Set → Set, known

as the Cartesian product functor, that maps every set N to N ×N and every func-

tion f : N → N ′ to f × f : N × N → N ′ × N ′ where f × f is the function such that

(x, y)
f×f7−→

(
f(x), f(y)

)
for all x, y ∈ N .

Definition 3.30 (category of locally small categories) The category of locally small

categories, denoted Cat, has locally small categories as objects and functors as mor-

phisms. If F : A → B and G : B → C are Cat-morphisms (i.e., functors),

G ◦F : A → C is defined as follows:
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• (G ◦F )Obj = GObj ◦FObj ;

• (G ◦F )A,B = GF (A),F (B) ◦FA,B for all A,B ∈ |A |.

The identity morphism for every A ∈ |Cat| is the identity functor IA : A → A .

Example 3.31 (underlying graph functor) Let C be a category. By forgetting how

morphisms in C are composed and forgetting which morphisms are the identities, we

obtain the underlying graph of C . This yields a functor U : Cat → Graph that

maps every C ∈ |Cat| to the underlying graph of C and every Cat-morphism F to the

graph homomorphism induced by F . Notice that, by definition, every functor is a graph

homomorphism but the converse is not true.

3.4.3 Diagrams

Definition 3.32 (diagram) Let C be a category and let G be a graph. A diagram of

shape G in C is a graph homomorphism D : G → U(C ), where U : Cat → Graph is

the underlying graph functor (see Example 3.31).

Example 3.33 In Figure 3.1, graph C can be thought of as the underlying graph of

a category C with objects X, Y , Z and identities idX , idY , idZ . The non-identity

morphisms are f : X → Y and g : X → Z. The graph homomorphism l : A → C in

Figure 3.1 identifies the following diagram in C :

X Y

X Y

................................................................................................................. ............
f

..............................................................................................................
...
.........
...

idX

..............................................................................................................
...
.........
...

idY

................................................................................................................. ............

f

The shape graph for the above diagram is graph A as shown in Figure 3.1.

Definition 3.34 (finite diagram) A diagram is said to be finite if its shape graph is

finite, that is, if its shape graph has a finite number of nodes and edges.
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Definition 3.35 (discrete diagram) A diagram is said to be discrete if its shape

graph has no edges.

Definition 3.36 (commutative diagram) A diagram D : G→ U(C ) is said to com-

mute (or be commutative) if for each pair of nodes i, j in G and any two paths:

i j

k1 k2
. . . kn−2 kn−1

..............
..............

..............
..............

..............
..............

..............
..............

................
............

s1

................................................................................................................................................................... ............
s2 ................................................................................................................. ............ ....................................................................................................... ............ ............................................................................................................................................... ............

sn−1
......................................................................................................................................................................... ...........

.

sn

l1 l2 . . . lm−2 lm−1

................................................................................................................................ ..........
..t1

................................................................................................................................................................... ............

t2
................................................................................................................. ............ ....................................................................................................... ............ ............................................................................................................................................... ............

tm−1

.................
.................

.................
.................

.................
.................

.................
.................

.................
................
............

tm

from i to j in G, we have:

D(sn) ◦D(sn−1) · · · ◦D(s2) ◦D(s1) = D(tm) ◦D(tm−1) ◦ · · · ◦D(t2) ◦D(t1).

3.4.4 Basic Category-Theoretic Definitions

Let C be an arbitrary category.

Definition 3.37 (isomorphism) A C -morphism f : A → B is an isomorphism if

there exists a morphism f−1 : B → A such that f−1 ◦ f = idA and f ◦ f−1 = idB. The

morphism f−1 is called the inverse of f ; and objects A and B are called isomorphic.

Remark 3.38 (isomorphic categories) Categories A and B are said to be isomor-

phic if there exists an isomorphism F : A → B in Cat.

Definition 3.39 (initial object) An object 0 ∈ |C | is initial if for every A ∈ |C |,

there exists a unique morphism 〈〉 : 0 → A.

Example 3.40 (initial objects in Set and Graph) The initial object in Set (resp.

Graph) is the empty set (resp. the empty graph).
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Notation In the rest of this section, a dashed morphism in a diagram indicates the

uniqueness of that morphism.

Definition 3.41 (binary coproduct) A binary coproduct of A,B ∈ |C | is an object

A+B ∈ |C | together with a pair of morphisms ıA : A→ A+B and ıB : B → A+B, called

the injection morphisms, such that for any C ∈ |C | and pair of morphisms f : A→ C

and g : B → C there is a unique morphism 〈f |g〉 : A + B → C making the following

diagram commute:

A A+B B

C

..................................................................................................................................................................... ............

ıA
................................................................................................................................................................................. ıB

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

............

............

〈f |g〉

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

f

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..................................

g

Example 3.42 (binary coproducts in Set) The (canonical) binary coproduct of two

sets A and B is the set A ] B together with the obvious injections ıA : A→ A ] B and

ıB : B → A ]B.

Definition 3.43 (coequalizer) A coequalizer of a pair of parallel C -morphisms

f : A → B and g : A → B is an object C ∈ |C | together with a morphism q : B → C

such that q ◦ f = q ◦ g and for any morphism k : B → D satisfying k ◦ f = k ◦ g, there is

a unique morphism h : C → D such that h ◦ q = k.

A B C

D

................................................................................................................. ............
f

................................................................................................................. ............

g
................................................................................................................. ............

q
............................................................................................................................................................................ .........

...

k

.............

.............

.............

.............

.........
...
.........
...

h

Example 3.44 (coequalizers in Set) Let f : A → B and g : A → B be a pair of

Set-morphisms (i.e., functions) and let R =
{(
f(a), g(a)

)
| a ∈ A

}
. Assuming ≡R is the

smallest equivalence relation that includes R, the (canonical) coequalizer of f and g is
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B/≡R (i.e., the quotient of B modulo ≡R) together with the function q : B → B/≡R

such that q(b) = [b]≡R
for all b ∈ B.

Remark 3.45 It is easy to verify that for a binary relation R on a (single-sorted) set

S, the smallest equivalence relation that includes R, denoted ≡R, can be constructed as

follows: consider an undirected graph G in which the set of nodes is S, and for any nodes

x, y in G, there is an undirected edge between x and y if and only if (x, y) ∈ R. Then,

B/≡R will be the set of G’s connected components. Thus, for any x, y ∈ S: x ≡R y if

and only if x and y belong to the same connected component of G.

Definition 3.46 (pushout) A pushout of a pair of C -morphisms f : C → A and

g : C → B is an object P ∈ |C | together with a pair of morphisms j : A → P and

k : B → P such that:

• j ◦ f = k ◦ g

• for any P ′ ∈ |C | and pair of morphisms j′ : A → P ′ and k′ : B → P ′ satisfying

j′ ◦ f = k′ ◦ g, there is a unique morphism h : P → P ′ such that the following

diagram commutes:

C

A

B

P

P ′

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..............

............

f

...................................................................................................................................................... ............

g

...................................................................................................................................................... ............

j

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..............

............

k

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

...............................
............

j′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............
............

k′

...........
..
...........
..
...........
..
...........
..
...................
............

h

Remark 3.47 (construction of pushouts) A pushout of any pair of C -morphisms

with common source can be constructed if every pair of C -objects has a coproduct and

every pair of parallel C -morphisms has a coequalizer: let f : C → A and f : C → B be

a pair of morphisms and let A + B ∈ |C | together with the injections ıA : A → A + B
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Y1
Y2

T2

X1

Z1

X2

Z}Y,{X, {X, Y, T}

B}{A,

k

gf

(a)

{Z1, T2},{X2}}{Y1},{{X1, Y2},

j

{X, Y, Z, T} P}O,N,{M,

X1 M2

N2

Z1 O2

T1 P2

Y1

B, C, D}{A,

j k

gf

(b)

{P2}}{T1},{{X1, Y1,M2}, {Z1, N2, O2},

Figure 3.3: Pushout examples in Set

and ıB : B → A + B be a binary coproduct of A and B. Let P ∈ |C | together with a

morphism q : A + B → P be a coequalizer of ıA ◦ f and ıB ◦ g. It can be verified that

the outer square in the following diagram is indeed a pushout square (Ehrig & Pfender,

1972):

C

A

B

A+B P
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...................
............

f

.................................................................................................................................................................................................................................................. .........
...

g

............................................................................................................................................... ............
ıA ◦ f

............................................................................................................................................... ............

ıB ◦ g

.................................................................................................................................................................................................................................................. .........
...

q ◦ ıA

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...................
............

q ◦ ıB

................................................................................................................................................................
...
.........
...

ıA

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

............

ıB

............................................................................................................................................ ............
q

Example 3.48 (Pushouts in Set) Figure 3.3 shows two examples of pushout compu-

tation in Set. The maps corresponding to the morphisms f , g, j, and k of the pushout

square have been marked in both examples. The figure also illustrates how the required

coequalizer for each example has been computed (see Remark 3.45).
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3.4.5 Colimits

Definition 3.49 (cocone and colimit) Let D be a diagram of shape G in a category

C and let N and E denote the set of G’s nodes and edges, respectively. A cocone δ over

D is a C -object X together with a family of C -morphisms 〈δn : D(n) → X〉n∈N such

that for every edge e ∈ E with sourceG(e) = i and targetG(e) = j, the following diagram

commutes:

D(i) D(j)

X

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.....................
............

δi

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.................................

δj

.............................................................................................................................................................................................. ............

D(e)

A colimit of D is a cocone 〈δn : D(n) → X〉n∈N such that for any cocone

〈δ′n : D(n) → X ′〉n∈N , there is a unique morphism h : X → X ′ that makes the following

diagram commute for all n ∈ N :

D(n)

XX ′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.....................
............

δn

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.................................

δ′n

................................................................................................................................
h

Theorem 3.50 (e.g., see (Barr & Wells, 1999)) Colimits are unique up to isomorphism.

Definition 3.51 (cocompleteness) A category C is (finitely) cocomplete if every (fi-

nite) diagram in C has a colimit.

Example 3.52 Initial objects, binary coproducts, coequalizers, and pushouts are colim-

its over diagrams of shapes (a), (b), (c), and (d) respectively:
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(a)

• •

(b)

• •................................................................................................................. ............

................................................................................................................. ............

(c)

•

•

•
........
........
........
........
........
........
........
........
........
........
........
........
.................
............

................................................................................................................. ............

(d)

The shape graph (b) suggests the generalization of the definition of binary coproduct

in the following sense:

Definition 3.53 (coproduct) The colimit of a diagram D is called a coproduct if D

is discrete.

Lemma 3.54 A category with an initial object and binary coproducts has all finite co-

products.

Proof (Rydeheard & Burstall, 1988) Let D : G→ U(C ) be a finite discrete diagram in

a category C and let N denote the set of G’s nodes. If N is empty, then the coproduct

is the initial object; otherwise, there exists some n ∈ N . Let D′ be the same diagram

as D with node n removed from its shape graph. Inductively, construct the coproduct

〈δi : D′(i) → A〉i∈N\{n}; and further let B together with ıA : A→ B and ıD(n) : D(n) → B

be a binary coproduct of A and D(n).

Construct a cocone 〈γi : D(i) → B〉i∈N by letting γn = ıD(n) and γi = ıA ◦ δi for i 6= n.

We claim that 〈γi : D(i) → B〉n∈N is a coproduct of D: suppose 〈γ′i : D(i) → B′〉i∈N is

a cocone over D. Then, 〈γ′i〉i∈N\{n} is a cocone over D′. Since 〈δi〉i∈N\{n} is a colimiting

cocone, there is a unique morphism h : A→ B′ such that the following diagram commutes
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for all i ∈ N\{n}:

D(i)

A B′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............................

δi

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...................
............

γ′i

............. ............. ............. ............. ............. ............. ............ ............
h

Now, by the definition of binary coproduct, there is a unique morphism v : B → B′

such that the following diagram commutes:

A B D(n)

B′

............................................................................................................................................................................................ ............

ıA
......................................................................................................................................................................................... ıD(n)

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

........

.....

............

............

v

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

h

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..............................

γ′n

It follows from the previous two diagrams that v : B → B′ makes the following diagram

commute for all i ∈ N :

D(i)

B B′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............................

γi

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...................
............

γ′i

............. ............. ............. ............. ............. ............. ............ ............v

The uniqueness conditions on h and v ensure that v is the only such morphism.

Among the numerous results on (finite) cocompleteness of categories, the following

theorem is of particular interest because its constructive proof leads to a straightforward

algorithm for computing (finite) colimits (see Remark 3.58).

Theorem 3.55 A category C is finitely cocomplete if it has an initial object, binary

coproducts of all object pairs, and coequalizers of all parallel morphism pairs.

Proof (Rydeheard & Burstall, 1988) LetD : G→ U(C ) be a finite diagram in a category

C . If D is discrete then the colimit of D is the coproduct constructed in Lemma 3.54;
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otherwise, suppose e : x→ y is an edge in G with associated morphism f : D(x) → D(y)

in C . Let D′ be the same diagram as D with edge e removed from its shape graph.

Inductively, construct the colimiting cocone 〈δi : D′(i) → A〉i∈N on D′ where N is the set

of nodes in D’s shape graph (notice that the shape graphs of D and D′ have the same

set of nodes).

Now, consider the parallel pair of morphisms δx : D(x) → A and δy ◦ f : D(x) → A

and let B together with q : A→ B be a coequalizer of δx and δy ◦ f .

D(x) D(y)

A

B

................................................................................................................................................................... ............

f

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...............
............

δx

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
...........................

δy

........

........

........

........

........

........

........

...................

............

q

Construct a cocone 〈γi : D(i) → B〉i∈N over D by letting γi = q ◦ δi. We claim

that 〈γi〉i∈N is colimiting: suppose 〈γ′i : D(i) → B′〉i∈N is a cocone over D. Then,

〈γ′〉i∈N is a cocone over D′, as well. Since 〈δi : D′(i) → A〉i∈N is colimiting, there is a

unique morphism h : A → B′ such that for all i ∈ N : h ◦ δi = γ′i. Hence, we have:

h ◦ δx = γ′x = γ′y ◦ f = h ◦ δy ◦ f , and by the definition of coequalizer, there is a unique

morphism v : B → B′ such that v ◦ q = h.

D(x) D(y)

A

B B′

................................................................................................................................................................... ............

f

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..................................

δx

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

..................................

δy

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

q

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
..............
............

γ′x

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

γ′y

............................
............................

............................
............................

............................
............................

............................
............................

............................
............................

............................
............................

............................
............................

............................
............................

............................
.................. ........
....

h

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............ ............v
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Therefore, by letting γi = q ◦ δi, the following diagram commutes for all i ∈ N :

D(i)

B B′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............................

γi

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...................
............

γ′i

............. ............. ............. ............. ............. ............. ............ ............v

The uniqueness of v follows from the uniqueness of q and h.

Example 3.56 Set is finitely cocomplete (see Examples 3.40, 3.42, and 3.44).

Remark 3.57 It can also be shown that Alg(Σ) is finitely cocomplete for any signature

Σ, but the proof is more difficult. The interested reader can consult standard textbooks

on Categorical Algebra (such as (Borceux, 1994)) for the proof of cocompleteness in the

single-sorted case. The proof for the many-sorted case is analogous.

The intuition behind colimits is that they put structures together, with nothing es-

sentially new added, and nothing left over (Goguen, 1991). A pushout of two morphisms

f : C → A and g : C → B in Set, for example, can be interpreted as the merge of

A and B with respect to a shared part C such that only one copy of C is included in

the merge. This was already illustrated in Example 3.48. More generally: “Given a

species of structure, say widgets, the result of interconnecting a system of widgets to form

a super-widget corresponds to taking the colimit of the diagram of widgets in which the

morphisms show how they are interconnected.” (Goguen, 1991). This observation is the

main reason for our interest in cocompleteness results.

Remark 3.58 (algorithm for computing colimits) In Figure 3.4, we show an algo-

rithmic view of the proof of Theorem 3.55. This algorithm is the basis for our model

merging technique in Chapter 4.
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Algorithm. Compute-Colimit

Input: Diagram D : G→ U(C )

Output: Colimiting cocone δ over D

� Let N and E denote the node and edge sets of G, respectively;

� Let D′ be the same as D but with the edges of the shape graph (i.e., G) removed;

� Construct the coproduct 〈δi : D′(i) → A〉i∈N ; /* using Lemma 3.54 */

� Let e1, e2, . . . , em enumerate the elements of E;

� for j = 1 to m do

� Let f = D(ej), let x = sourceG(ej), and let y = targetG(ej);

� Construct the coequalizer object B and morphism q : A→ B of δx and δy ◦ f ;

/* Now, reconstruct δ so that B replaces A as the apex. */

� for every n ∈ N do

� δn := q ◦ δn;

Figure 3.4: Algorithm for computing colimits

For reasons that will become clear in Section 3.4.6, we are also interested in functors

that preserve (finite) colimits:

Definition 3.59 (cocontinuity) A functor F : C → D is said to be (finitely) cocon-

tinuous if it preserves the existing colimits of all (finite) diagrams in C , that is, if for

any (finite) diagram D in C , the functor F maps any colimiting cocone over D to a

colimiting cocone over F (D).

Theorem 3.60 If C is a finitely cocomplete category and if a functor F : C → D

preserves initial objects, binary coproducts of all object pairs, and coequalizers of all

parallel morphism pairs, then F is finitely cocontinuous.
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Proof Follows from Theorem 3.55.

3.4.6 Comma Categories 1

Definition 3.61 (comma category) Let A , B, and C be categories and L : A → C

and R : B → C be functors. The comma category (L ↓ R) has as objects, triples

(A, f : L(A) → R(B), B) where A is an object of A , and B is an object of B. A

morphism from (A, f,B) to (A′, f ′, B′) is a pair (s : A → A′, t : B → B′) such that the

following diagram commutes in C :

L(A′) R(B′)

R(B)L(A) ......................................................................................................................................................................................... ............
f

..................................................................................................................................................................................................................
...
.........
...

L(s)

..................................................................................................................................................................................................................
...
.........
...

R(t)

............................................................................................................................................................................... ............

f ′

Identities are pairs of identities and composition is defined component-wise, i.e., for

(L ↓ R)-morphisms (s, t) and (s′, t′), we have: (s, t) ◦(s′, t′) = (s ◦ s′, t ◦ t′).

It is easy to verify that the above definition indeed gives rise to a category.

Remark 3.62 (projection functors) Every comma category (L ↓ R) is equipped with

a pair of projection functors π1 : (L ↓ R) → A and π2 : (L ↓ R) → B. The former

projects objects and morphisms onto their first coordinates; and the latter projects ob-

jects onto their third coordinates and morphisms onto their second.

Notation For an arbitrary category C , any C -object C can be considered a functor

1C : 1 → C . Assuming F : A → C is an arbitrary functor, we usually write (F ↓ C) in

place of (F ↓ 1C) and (C ↓ F ) in place of (1C ↓ F ).

1Comma categories are not covered in (Barr & Wells, 1999). See (Goguen & Burstall, 1984; Rydeheard
& Burstall, 1988) for a detailed discussion of the properties of comma categories.
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Example 3.63 (many-sorted sets over an index set) Let S be a fixed set. The

category S-Set whose objects are S-indexed families of disjoint sets and whose morphisms

are S-indexed families of functions is isomorphic to the comma category (ISet ↓ S), where

ISet : Set → Set is the identity functor on Set.

Example 3.64 (morphism category) For an arbitrary category C , the morphism

category of C , denoted C→, has the morphisms of C as objects. A C→-morphism from

f : A → B to f ′ : A′ → B′ is a pair of C -morphisms (h : A → A′, k : B → B′) making

the following diagram commute in C :

A′ B′

BA ................................................................................................................................................................... ............
f

................................................................................................................................................................
...
.........
...

h

................................................................................................................................................................
...
.........
...

k

................................................................................................................................................................... ............

f ′

It is easy to verify that C→ is isomorphic to (IC ↓ IC ), where IC is the identity functor

on C .

Example 3.65 (category of graphs, revisited) Denote every graph G as a triple

G = (E, f : E → N × N,N) where E is a set of edges, N is a set of nodes, and f is a

function taking every e ∈ E to a tuple
(
sourceG(e), targetG(e)

)
∈ N ×N . Then, a graph

homomorphism from a graph G = (E, f,N) to a graph G′ = (E ′, f ′, N ′) consists of a pair

of functions (hedge : E → E ′, hnode : N → N ′) making the following diagram commute in

Set:

E ′ N ′ ×N ′

N ×NE ................................................................................................................................................................... ............
f

.........................................................................................................................................................................................
...
.........
...

hedge

.........................................................................................................................................................................................
...
.........
...

hnode × hnode

........................................................................................................................................................... ............

f ′
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It is now easy to verify that Graph is isomorphic to the comma category (ISet ↓ T )

where ISet : Set → Set is the identity functor on Set and T : Set → Set is the Cartesian

product functor (see Example 3.29).

Theorem 3.66 (Tarlecki, 1986; Rydeheard & Burstall, 1988; Borceux, 1994) 2 Let L :

A → C and R : B → C be functors with L finitely cocontinuous. If A and B are

finitely cocomplete, so is the comma category (L ↓ R); moreover, the projections π1 : (L ↓

R) → A and π2 : (L ↓ R) → B preserve finite colimits.

Proof We constructively prove that when the conditions stated in Theorem 3.66 are

met, the category (L ↓ R) has an initial object, binary coproducts of all object pairs,

and coequalizers of all parallel morphism pairs. Colimit preservation property of the

projection functors follows directly from the constructions.

Initial object : By assumption, A and B are finitely cocomplete, so both A and B

have initial objects. Let 0A be an initial object in A and 0B be an initial object in B.

By finite cocontinuity of L, we know that L(0A ) is an initial object in C ; therefore, for

each C -object C, there is a unique morphism from L(0A ) to C. Particularly, there is a

unique morphism u : L(0A ) → R(0B).

We claim that I = (0A , u,0B) is an initial object in (L ↓ R): suppose C = (A, f,B)

is a (L ↓ R)-object. Let 〈〉 : 0A → A be the unique A -morphism from 0A to A and let

〈〉′ : 0B → B be the unique B-morphism from 0B to B. Since L(0A ) is an initial object

in C , there exists a unique C -morphism t : L(0A ) → R(B); hence, t = f ◦L(〈〉); and for

the same reason, t = R(〈〉′) ◦u. Therefore, f ◦L(〈〉) = R(〈〉′) ◦u, that is, (〈〉, 〈〉′) : I → C

2The cited references take the non-finite case into account and prove a stronger result.



Chapter 3. Mathematical Foundations 65

is a (L ↓ R)-morphism.

L(A) R(B)

R(0B)L(0A ) ............................................................................................................................................... ............u
.............
.............
.............
.............
.............
.............
.............
.........
...
.........
...

L(〈〉)

.............

.............

.............

.............

.............

.............

.............

.........
...
.........
...

R(〈〉′)

................................................................................................................................................................ ............

f

........................................................................................................................................................................................................................................................................ .........
...

t

The uniqueness of (〈〉, 〈〉′) : I → C follows from the uniqueness of 〈〉 in A and the

uniqueness of 〈〉′ in B.

Binary coproduct : Suppose C1 = (A1, f1, B1), C2 = (A2, f2, B2) are a pair of (L ↓ R)-

objects. Let A = A1 + A2 with injections kn : An → A and let B = B1 + B2 with

injections jn : Bn → B for n = 1, 2. By finite cocontinuity of L, we know that L(A)

with C -morphisms L(kn) : L(An) → L(A) for n = 1, 2 is a binary coproduct of L(A1)

and L(A2). Therefore, there exists a unique morphism f : L(A) → R(B) such that the

following diagram commutes:

L(A) R(B)

R(B1)L(A1)

L(A2) R(B2)

.................................................................................................................................................................................................................................................................... ............
f1

.........................................................................................................................................................................................
...
.........
...

L(k1)

.........................................................................................................................................................................................
...
.........
...

R(j1)

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ....................... ............

f

........................................................................................................................................................................................................................................................................................................................................... ..........
..

R(j1) ◦ f1

.................................................................................................................................................................................................................................................................... ............
f2

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....................

............

L(k2)

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....................

............

R(j2)

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
.......................
............

R(j2) ◦ f2

We claim that C = (A, f,B) with (kn, jn) : Cn → C for n = 1, 2 is a binary coproduct

of C1 and C2: suppose C ′ = (A′, f ′, B′) is a (L ↓ R)-object and (k′n, j
′
n) : Cn → C ′

for n = 1, 2 are (L ↓ R)-morphisms. By the properties of A and B in their respective

categories, there are unique morphisms k′ : A→ A′ and j′ : B → B′ such that k′ ◦ kn = k′n
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and j′ ◦ jn = j′n. Therefore, the following two diagrams commute in C for n = 1, 2:

L(A′)

L(An)

L(A)

....................................................................................................................................................................................................................................................................
...
.........
...

L(k′n)

...................................................................................................................................................................................... ..........
..

L(kn)

...................................................................................................................................................................................
..
............

L(k′)

R(B′)

R(Bn)

R(B)

....................................................................................................................................................................................................................................................................
...
.........
...

R(j′n)

............................................................................................................................................................................... ..........
..

R(jn)

.................................................................................................................................................................................
..
............

R(j′)

We now show that the following diagram commutes in C for n = 1, 2, as well:

L(A′) R(B′)

R(Bn)L(An)

L(A) R(B)

...............................................................................................................................................................................................................................................................................................................................................
...
.........
...

L(k′n)

...............................................................................................................................................................................................................................................................................................................................................
...
.........
...

R(j′n)

....................................................................................................................................................................................................................................................................................................... ............
fn

............................................................................................................................................................................................................................................................................................................ ............

f ′

...................................................................................................................................................................................................................................................................................................................... ............
f

................................................................................................................................................................................................................ ...........
.L(kn)

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.....................
...
............

L(k′)

........................................................................................................................................................................................................... ...........
.

R(jn)

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.....................
...
............

R(j′)

f ′ ◦L(k′n) = R(j′n) ◦ fn =⇒

f ′ ◦L(k′) ◦L(kn) = R(j′) ◦R(jn) ◦ fn =⇒

f ′ ◦L(k′) ◦L(kn) = R(j′) ◦ f ◦L(kn)

By the properties of L(A) in (L ↓ R), there is a unique morphism h : L(A) → R(B′)

such that f ′ ◦L(k′n) = h ◦L(kn). Therefore, f ′ ◦L(k′) = h = R(j′) ◦ f . Thus, (k′, j′) is

a morphism from C to C ′ in (L ↓ R). Uniqueness of (k′, j′) follows from the fact that

any morphism (k′′, j′′) such that (k′′, j′′) ◦(kn, jn) = (k′n, j
′
n) will make the following two
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diagrams commute for n = 1, 2:

A′

An

A

....................................................................................................................................................................................................................................................................
...
.........
...

k′n

........................................................................................................................................................ .........
...

kn

.......................................................................................................................................................
...
............

k′′

B′

Bn

B

....................................................................................................................................................................................................................................................................
...
.........
...

j′n

........................................................................................................................................................ .........
...

jn

.......................................................................................................................................................
...
............

j′′

Therefore, by the properties of A and B in their respective categories, k′′ has to be the

same as k′ and j′′ has to be the same as j′.

Coequalizer : Suppose C1 = (A1, f1, B1), C2 = (A2, f2, B2) are a pair of (L ↓ R)-

objects; and (a, b), (a′, b′) : C1 → C2 are a pair of parallel (L ↓ R)-morphisms. Let A

with p : A2 → A be a coequalizer of a : A1 → A2 and a′ : A1 → A2 (in A ) and let B

with q : B2 → B be a coequalizer of b : B1 → B2 and b′ : B1 → B2 (in B). By finite

cocontinuity of L, coequalizers in A are mapped to coequalizers in C ; therefore, there

exists a unique morphism f : L(A) → R(B) such that f ◦L(p) = R(q) ◦ f2.

L(A2) R(B2)

R(B1)L(A1)

L(A) R(B)

.......................................................................................................................................................................................................................................................................................................... ............
f1

.......................................................................................................................................................................................................................................................................................................... ............
f2

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............ ............

f

..................................................................................................................................................................................................................
...
.........
...

L(p)

..................................................................................................................................................................................................................
...
.........
...

R(q)

......................................................................................................................................................................................................................................................................................................................................................................................... ..........
..

R(q) ◦ f2

..................................................................................................................................................................................................................
...
.........
...

L(a)

..................................................................................................................................................................................................................
...
.........
...

L(a′)

..................................................................................................................................................................................................................
...
.........
...

R(b)

..................................................................................................................................................................................................................
...
.........
...

R(b′)

We claim that C = (A, f,B) together with (p, q) is a coequalizer of (a, b) and

(a′, b′). It is clear from the above diagram that (p, q) is indeed a morphism in (L ↓ R);
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moreover, by the properties of A and B in their respective categories, we have:

(p, q) ◦(a, b) = (p, q) ◦(a′, b′).

Assuming C ′ = (A′, f ′, B′) is a (L ↓ R)-object and (d, e) : C2 → C ′ is a (L ↓ R)-

morphism, there exists a unique morphism k : A → A′ (in A ) and a unique morphism

l : B → B′ (in B) such that: k ◦ p = d and l ◦ q = e. We now show that the following

diagram commutes in C :

L(A′) R(B′)

R(B2)L(A2)

L(A) R(B)

...............................................................................................................................................................................................................................................................................................................................................
...
.........
...

L(d)

...............................................................................................................................................................................................................................................................................................................................................
...
.........
...

R(e)

.......................................................................................................................................................................................................................................................................................................... ............
f2

............................................................................................................................................................................................................................................................................................................ ............

f ′

...................................................................................................................................................................................................................................................................................................................... ............
f

................................................................................................................................................................................................................ ...........
.L(p)

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.....................
...
............

L(k)

............................................................................................................................................................................................................. ...........
.

R(q)

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.....................
...
............

R(l)

f ′ ◦L(d) = R(e) ◦ f2 =⇒

f ′ ◦L(k) ◦L(p) = R(l) ◦R(q) ◦ f2 =⇒

f ′ ◦L(k) ◦L(p) = R(l) ◦ f ◦L(p)

By the properties of L(A) in C , there exists a unique morphism h : L(A) → R(B′)

such that f ′ ◦L(d) = h ◦L(p). Therefore, f ′ ◦L(k) = h = R(l) ◦ f . Hence, (k, l) is

a (L ↓ R)-morphism from C to C ′. The uniqueness of (k, l) can be proved in exactly

the same way as how the uniqueness of (k′, j′) was proved in the construction of binary

coproducts.

Remark 3.67 Notice that the colimit preservation property of the projection functors

(established in Theorem 3.66) implies that finite colimits in a comma category (L ↓ R)

are inherited from those in the constituent categories (i.e., A and B) when L is finitely

cocontinuous.
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s2
t3

t2

s3

e3

e2

n1 n3n2

x1 x3

s1

s4

a2

a1

b1

x2

C

B

P

A

f
g

kj

t1

p1

p2

e1

t4

fnode = {a1 7→ x1, a2 7→ x2} fedge = {b1 7→ p1}
gnode = {a1 7→ n1, a2 7→ n2} gedge = {b1 7→ e1}
jnode = {x1 7→ s1, x2 7→ s2, x3 7→ s4} jedge = {p1 7→ t1, p2 7→ t4}
knode = {n1 7→ s1, n2 7→ s2, n3 7→ s3} kedge = {e1 7→ t1, e2 7→ t2, e3 7→ t3}

Figure 3.5: Pushout example in Graph

Example 3.68 Since Set is finitely cocomplete and the identity functor is finitely co-

continuous, Theorem 3.66 implies that (ISet ↓ T ), i.e., the category of graphs, is finitely

cocomplete as well. Moreover, finite colimits in the category of graphs are computed

component-wise for nodes and edges.

Example 3.69 (pushouts in Graph) Figure 3.5 shows an example pushout compu-

tation in Graph. The naming of the graphs and homomorphisms in this figure is com-

patible with the naming of the objects and morphisms in the pushout square of Defini-

tion 3.46.
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3.5 Categories of Fuzzy Sets

In this section, we introduce fuzzy sets in a category-theoretic setting. Fuzzy sets are

the building blocks for fuzzy graphs introduced in Section 3.6. Our presentation in this

section follows (Goguen, 1968; Goguen, 1974).

3.5.1 Fuzzy Sets and Fuzzy Set Morphisms

Definition 3.70 (fuzzy set) Let Q be a poset. A Q-valued set is a pair (S, σ) con-

sisting of a set S and a function σ : S → Q. We call S the carrier set of (S, σ) and

Q the truth set of σ. For every s ∈ S, the value σ(s) is interpreted as the degree of

membership of s in (S, σ).

Definition 3.71 (fuzzy set morphism) Let Q be a poset and let (S, σ) and (T, τ) be

a pair of Q-valued sets. A morphism f : (S, σ) → (T, τ) is a function f : S → T such

that σ ≤ τ ◦ f , i.e., the degree of membership of s in (S, σ) does not exceed that of f(s)

in (T, τ). The function f : S → T is called the carrier function of f.

Note In classical fuzzy set theory, it is implicitly assumed that the poset Q is the closed

real interval [0, 1] with the obvious linear ordering. We emphasize that we do not make

such an assumption in this thesis.

Example 3.72 Figure 3.6 (informally) shows two Fuzz(A4) objects (S, σ) and (T, τ)

along with the carrier function f : S → T of a Fuzz(A4)-morphism f : (S, σ) → (T, τ)

where A4 is the lattice shown in the same figure.

Definition/Proposition 3.73 (fuzzy set category) For a fixed poset Q, the objects

and morphisms defined above together with the obvious identities give rise to a category,

denoted Fuzz(Q).
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M

f : S −→ T

s1

s2

s3

s4

t1
t2
t3
t4

τ : T → A4

σ : S → A4

S T

Figure 3.6: Example of fuzzy sets

3.5.2 Cocompleteness Results for Fuzzy Set Categories

Theorem 3.74 (Goguen, 1968; Goguen, 1974) Fuzz(Q) is finitely cocomplete when Q

is a complete lattice.

Proof (sketch) 3 We show how to construct the initial object, binary coproducts, and

coequalizers. Finite cocompleteness of Fuzz(Q) then follows from Theorem 3.55.

Initial object : 0 = (∅, λ) where λ : ∅ → Q is the empty function.

Binary coproduct : given objects X1 = (S1, σ1) and X2 = (S2, σ2), a coproduct is

X1 +X2 = (S1 + S2, κ) where S1 + S2 is a Set-coproduct (disjoint union) of S1 and

S2 with injections ın : Sn → S1 + S2 for n = 1, 2; and κ
(
ın(s)

)
= σn(s) for s ∈ Sn and

n = 1, 2.

Coequalizer : given objects X = (A, σ) and Y = (B, τ) with parallel morphisms

h1 : X → Y and h2 : X → Y , we first take the Set-coequalizer of the carrier functions

h1 : A→ B and h2 : A→ B to find a set C and a function q : B → C. Thus, C is

the quotient of B by the smallest equivalence relation ≡ on B such that h1(a) ≡ h2(a)

3I gratefully acknowledge Andrzej Tarlecki for sketching the proof.
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for all a ∈ A; and q is the function such that q(b) = [b]≡ for all b ∈ B. Then, we put

Z = (C, µ) where µ([b]≡) =
⊔

Q{τ(b′) | b′ ≡ b}. This lifts the function q : B → C to a

morphism q : Y → Z, which is a coequalizer of h1 and h2.

Remark 3.75 (pushouts in Fuzz(Q)) Let Q be a complete lattice. For computing

the pushout of a pair of Fuzz(Q)-morphisms f : (C, γ) → (A, σ) and g : (C, γ) → (B, τ),

we first compute the Set-pushout of the carrier functions f : C → A and g : C → B (as

discussed in Example 3.48) to find a set P along with functions j : A→ P and k : B → P .

Then, we compute a membership degree for every p ∈ P by taking the supremum of the

membership degrees of all those elements in (A, σ) and (B, τ) that are mapped to p.

This yields an object (P, ρ) and lifts j and k to Fuzz(Q)-morphisms which together with

(P, ρ), constitute the pushout of f and g in Fuzz(Q).

Note In all the figures in the remainder of this section, a fuzzy set (S, σ) is depicted as

a set
{(
s, σ(s)

)
| s ∈ S

}
of tuples.

Example 3.76 Figure 3.7 shows two example pushouts in Fuzz(A4). The carrier func-

tion for each Fuzz(A4)-morphism f, g, j, k in Figure 3.7(a) (resp. Figure 3.7(b)) is the

same as the corresponding function in Figure 3.3(a) (resp. Figure 3.3(b)).

Definition 3.77 (carrier functor) The map that takes every Fuzz(Q)-object (S, σ) to

its carrier set S and every Fuzz(Q)-morphism f : (S, σ) → (T, τ) to its carrier function

f : S → T yields a functor KQ : Fuzz(Q) → Set, known as the carrier functor.

Proposition 3.78 The carrier functor KQ : Fuzz(Q) → Set is finitely cocontinuous when

Q is a complete lattice 4.

4The carrier functor is finitely cocontinuous even when Q is only a poset; however, a separate proof
is required.
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{(X, T), (Y, F), (Z, T)} {(X, T), (Y, F), (T, T)}

{(A, M), (B, T)}

(A, σ) (B, τ)

(C, γ)

(P, ρ)

kj

gf

(a)

{(
{X1, Y2}, D

)
,
(
{Y1}, F

)
,
(
{Z1, T2}, T

)
,
(
{X2}, T

)}

{(A, M), (B, T), (C, M), (D, F)}

j k

gf

(C, γ)

(b)

(P, ρ)
{(

{X1, Y1,M2}, D
)
,
(
{Z1, N2, O2}, F

)
,
(
{T1}, M

)
,
(
{P2}, T

)}

(A, σ)

{(X, F), (Y, T), (Z, F), (T, M)}

(B, τ)

{(M, T), (N, M), (O, F), (P, T)}

Figure 3.7: Pushout examples in Fuzz(A4)

Proof Based on the proof of Theorem 3.74, it is obvious that KQ : Fuzz(Q) → Set

preserves the initial object, binary coproducts, and coequalizers. Finite cocontinuity of

KQ then follows from Theorem 3.60.

3.5.3 Fuzzy Powersets

Definition 3.79 (fuzzy powerset) Let Q be a poset and let Z = (S, σ) be a Fuzz(Q)-

object. The powerset of Z, denoted P(Z), is the set of all (C, ξ) ∈ |Fuzz(Q)| such that

C ⊆ S and for every c ∈ C: ξ(c) ≤ σ(c).

Theorem 3.80 (Goguen, 1968; Goguen, 1974) The powerset of any Fuzz(Q)-object is

a complete lattice when Q is.

Proof (sketch) (Goguen, 1968; Goguen, 1974) For an index set I, the supremum of an

I-indexed family of P(Z) elements
〈
(Si, σi)

〉
i∈I

is a fuzzy set (X, θ) where X =
⋃

i∈I Si

and θ : X → Q is a function such that for every x ∈ X: θ(x) =
⊔

Q{σi(x) | i ∈ I;x ∈ Si}.

The infimum is computed dually.
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!

{(x, ")} {(y, ")}

{(x, !)} {(x, "), (y, ")}

{(x, "), (y, !)}

{(y, !)}

{(x, !), (y, !)}

{(x, !), (y, ")}

∅

"

Figure 3.8: Example of a powerset lattice

Example 3.81 Suppose the truth-set is the lattice L2 = {G,  } with G <  . Then,

the powerset of the Fuzz(L2)-object Z =
(
{a, b}, {a 7→  , b 7→  }

)
is the lattice shown in

Figure 3.8.

We use powerset lattices in Chapter 4 for keeping track of the decisions made by

different modellers about the elements of an individual model.

3.6 Categories of Fuzzy Graphs

In this section, we introduce a general notion of fuzzy graphs. We use this notion in

Chapter 4 for expressing graph-based models and merging them. The results we present

here may also be used to develop graph transformation systems for fuzzy graphs, but we

do not explore this application in this thesis.

Definition 3.82 (FGraph category) Let I and J be a pair of posets. The category

FGraph(I, J) is defined as the comma category (KJ ↓ T ◦KI) whereKI : Fuzz(I) → Set

and KJ : Fuzz(J) → Set are the appropriate carrier functors and T : Set → Set is the

Cartesian product functor as defined in Example 3.29.
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Theorem 3.83 FGraph(I, J) is finitely cocomplete when I and J are complete lattices.

Proof By Theorem 3.74, both Fuzz(I) and Fuzz(J) are finitely cocomplete, and by

Theorem 3.78, KJ is finitely cocontinuous. Finite cocompleteness of FGraph(I, J) then

follows from Theorem 3.66.

Definition 3.84 There is a functor W : FGraph(I, J) → Graph, called the carrier

graph functor, that maps every object
(
(E,E → J), f : E → N ×N, (N,N → I)

)
to

(E, f : E → N ×N,N) and every morphism (sedge, tnode) to
(
KJ(sedge), KI(tnode)

)
.

Example 3.85 Let L be a linear four-point lattice: {White,Light Grey,Dark Grey,Black}

ordered by increasing shade intensity, and let 1 be the one-point lattice. Figure 3.9

illustrates two FGraph(L,1)-objects along with a FGraph(L,1)-morphism.

Example 3.86 Figure 3.10 illustrates an example pushout in FGraph(L,1). The mor-

phisms corresponding to f , g, j, and k in the pushout square (Definition 3.46) have been

marked in the example.

Example 3.87 Figure 3.11 illustrates an example pushout in FGraph(2S,A4), where S

is the set {p, q, r} and A4 is Belnap’s four-valued lattice (Belnap, 1977). Here, the nodes

and edges of the carrier graphs are without name labels, and only have annotations.

Notice that we can replace S with any finite or infinite S ′ such that {p, q, r} ⊆ S ′ and

yet characterize the objects and morphisms in Figure 3.11 as FGraph(2S′
,A4) objects

and morphisms.
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Figure 3.9: Example of FGraph(L,1) objects and morphisms
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Figure 3.10: Pushout computation in FGraph(L,1)
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Figure 3.11: Pushout computation in FGraph(2{p,q,r},A4)
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3.7 Background on Formal Logic

In this section, we review the logic background for our consistency checking approach in

Chapter 5. Our presentation follows (Libkin, 2004; Rossman, 2008).

3.7.1 The Basics

Definition 3.88 (relational structure) A (relational) structure is an object

A = (A,R1, . . . , Rm) where A is a nonempty set, m is a natural number, R1, . . . , Rm

are abstract relation symbols with associated arities k1, . . . , km (nonnegative integers),

and each Ri is a ki-ary relation on A.

The set A is called the universe of A and may in general be infinite. We consider

only finite structures, i.e., we assume that A is finite. The sequence of relation symbols

R1, . . . , Rm together with corresponding arities k1, . . . , km comprise the vocabulary of

A. Relation RA
i is called the interpretation of relation symbol Ri in A. We usually

consider structures with a common vocabulary, denoted σ.

In general, relational structures may contain functions and constants as well as re-

lations. We consider only purely relational structures, i.e., structures whose vocabulary

consists of only relation symbols. This is not a major restriction, as functions and con-

stants can always be turned into relations. Specifically, a function f with arity k can be

written as a relation with tuples (x1, . . . , xk, f(x1, . . . , xk)). Constants can be treated as

functions with arity zero, and hence, can be written in relational form.

Definition 3.89 (relational structure homomorphism) Let A = (A,RA
1 , . . . , R

A
m)

and B = (B,RB
1 , . . . , R

B
m) be structures in the same vocabulary. A (relational struc-

ture) homomorphism from A to B is a function h : A → B such that h(RA
i ) ⊆ RB

i ,

i.e., if (a1, . . . , aki
) ∈ RA

i then (h(a1), . . . , h(aki
)) ∈ RB

i for every 1 ≤ i ≤ m.

Remark 3.90 (algebraic graphs as logical relational structures) A graph

G = (N,E, sourceG, targetG), as given by Definition 3.10, can be seen as a relational
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structure A with universe A = N ∪ E, and vocabulary {Node,Edge, Source,Target},

where Node and Edge are unary relation symbols, and Source and Target are binary

relation symbols. The interpretations of these symbols are given as follows:

n ∈ NodeA iff n ∈ N ; (e, n) ∈ SourceA iff sourceG(e) = n

e ∈ EdgeA iff e ∈ E; (e, n) ∈ TargetA iff targetG(e) = n

It also easily follows that a graph homomorphism (Definition 3.10) induces a relational

structure homomorphism.

Remark 3.91 (graphs in logic versus graphs in algebra) The standard definition

of graph in logic differs from that in algebra. Specifically, in logic, the universe is usually

assumed to be the set of nodes. Edges are captured using a binary relation symbol E.

This simplified treatment is inadequate for our work because it does not allow parallel

edges between nodes. For example, it cannot capture the conceptual model in Figure

3.12, saying that a Company plays the role of a supplier for some Parts and the role of a

consumer for some others.

Company Part
supplies

purchases

Figure 3.12: Example of parallel edges between nodes

Unless stated otherwise, in this thesis, the term graph refers to the algebraic notion

in Definition 3.10. The logical edge relation, E(x, y), can be easily defined as a query in

first order logic (see Example 3.92).

3.7.2 First Order Logic

First order logic (FO) formulas in a vocabulary σ are built up from atomic formulas using

negation, conjunction, disjunction, and existential and universal quantification:

ϕ ::= x = y | R(x1, . . . , xn) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃xϕ(x) | ∀xϕ(x)
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Here, x, y and x1 . . . , xn are variables, R is a n-ary relation symbol in σ, and ϕ1 and

ϕ2 are formulas. We assume the reader is familiar with the notions of free and bound

variables, and the semantics of first order logic, i.e., what it means for a formula to

hold over a structure for a given assignment of free variables. Formulas are written out

followed by an ordered list of free variables, in the style of ϕ(x1, . . . , xk). For a structure

A and a tuple ~a ∈ Ak, the notation A |= ϕ(~a) asserts that the formula ϕ(~a) holds over

A with variables x1, . . . , xk taking values a1, . . . , ak. Formulas with no free variables are

called sentences.

Example 3.92 (edge relation in graphs) To exemplify first order logic, we define a

formula E(x, y) capturing the edge relation in graphs (see Remark 3.91).

E(x, y) = ∃e Source(e, x) ∧ Target(e, y).

3.7.3 Least Fixpoint Logic

FO does not have sufficient expressive power to describe properties that involve reacha-

bility or cycles. To address this limitation, one can add to FO a least fixpoint operator,

obtaining the least fixpoint logic (LFP). Below, we first formally define the concept of

least fixpoint and then show how FO can be extended with a least fixpoint operator.

Given a set U , let P(U) denote its powerset. A set X ⊆ U is said to be a fixpoint of

a mapping F : P(U) → P(U) if F (X) = X. A set X ⊆ U is a least fixpoint of F if it

is a fixpoint, and for every other fixpoint Y of F , we have X ⊆ Y . The least fixpoint of

F is denoted by lfp(F ). Least fixpoints are guaranteed to exist only if F is monotone.

That is,

X ⊆ Y implies F (X) ⊆ F (Y ).

Theorem 3.93 (Knaster-Tarski) Every monotone mapping F : P(U) → P(U) has a

least fixpoint lfp(F ) which can be defined as

lfp(F ) =
⋂
{Y | Y = F (Y )}
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Further, lfp(F ) =
⋃∞

i=0X
i where X0 = ∅ and X i+1 = F (X i).

We now add a least fixpoint operator to FO. Suppose we have a vocabulary σ, and

an additional relation symbol R 6∈ σ of arity k. Let ϕ(R, x1, . . . , xk) be a formula of

vocabulary σ ∪ {R}. For a structure A with vocabulary σ, the formula ϕ(R, ~x) yields a

mapping Fϕ : P(Ak) → P(Ak) defined as follows:

Fϕ(X) = {~a | A |= ϕ(X/R,~a)}

The notation ϕ(X/R,~a) means that X is substituted for R in ϕ. More precisely, if A′

is a (σ ∪ {R})-structure expanding A, in which R is interpreted as X, then A′ |= ϕ(~a).

To ensure that Fϕ is monotone, we impose certain restrictions. Given a formula ϕ

that may contain a relation symbol R, we say that an occurrence of R is negative if it

is under the scope of an odd number of negations, and positive, otherwise. We say that

a formula is positive in R if there are no negative occurrences of R in it, i.e., either all

occurrences of R are positive, or there are none at all.

Lemma 3.94 If ϕ(R, ~x) is positive in R, then Fϕ is monotone.

Definition 3.95 (least fixpoint logic) The least fixpoint logic (LFP) extends FO

with the following formula building rule:

• if ϕ(R, ~x) is a formula positive in R, where R is k-ary, and ~t is a tuple of terms,

where |~x| = |~t| = k, then

[lfpR,~xϕ(R, ~x)](~t)

is a formula, whose free variables are those of ~t.

The semantics is defined as follows:

A |= [lfpR,~xϕ(R, ~x)](~a) iff ~a ∈ lfp(Fϕ).
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Example 3.96 (reachability) Consider graphs whose edge relation is E, and let

ϕ(R, x, y) = E(x, y) ∨ ∃z (E(x, z) ∧R(y, z)) .

Reachability, i.e., the transitive closure of E, is characterized by the formula

ψ(x, y) = [lfpR,x,yϕ(R, x, y)](x, y).

That is, ψ(a, b) holds over a graph G iff there is a path from a to b in G.

3.7.4 Transitive Closure Logic

We saw in Example 3.96 that one of the standard properties expressible in LFP is transi-

tive closure. Below, we introduce an extension of FO, named FO(TC), that is based on a

transitive closure operator rather than a general least fixpoint operator. We see in Chap-

ter 5 that FO(TC) provides sufficient expressive power for expressing the consistency

constraints we deal with in this thesis.

Definition 3.97 (transitive closure logic) The transitive closure logic FO(TC)

is defined as the extension of FO with the following formula building rule: if ϕ(~x, ~y, ~z) is

a formula, where |~x| = |~y| = k, and ~t1, ~t2 are tuples of terms of length k, then

[trcl~x,~yϕ(~x, ~y, ~z)](~t1, ~t2)

is a formula whose free variables are ~z plus the free variables of ~t1 and ~t2.

The semantics is defined as follows. Given a structure A, values ~a for ~z and ~ai for ~ti,

i = 1, 2, construct the graph G on Ak with the set of edges{
(~b1, ~b2) | A |= ϕ(~b1, ~b2,~a)

}
Then

A |= [trcl~x,~yϕ(~x, ~y,~a)](~a1, ~a2)

iff (~a1, ~a2) is in the transitive closure of G.
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Example 3.98 (graph connectivity) The connectivity of graphs can be expressed by

the FO(TC) formula ∀u∀v[trclx,y (E(x, y) ∨ E(y, x))](u, v).

The following result gives us bounds on the complexity of model checking in FO(TC).

Theorem 3.99 (data complexity of FO(TC)) (Vardi, 1982) Given a FO(TC) sen-

tence ϕ, model checking ϕ is NLOGSPACE in the size of the structure against which ϕ

is evaluated.

This theorem implies that model checking FO(TC) can be done in manageable space,

and that efficient incremental evaluation of formulas is possible (Immerman & Vardi,

1997).

3.7.5 Property Preservation under Homomorphisms

Property preservation is a strong tool for reasoning about correctness of manipulations

performed over models. The main question that property preservation tackles is the

following: If a property (formula) ϕ in some logic holds over a structure A, will ϕ also

hold over a structure B obtained from A via some manipulation? If the manipulation in

question is model merging, then we may want to know whether the consistency properties

of the source models are preserved in their merge.

Our merge framework in Chapter 4 uses algebraic colimits (Definition 3.49) for com-

bining models. If the source models are described as graphs, colimits ensure that each

source model is embedded into the merge through a homomorphism. As we shall see in

Chapter 5, the existence of these homomorphisms leads to preservation of certain con-

sistency properties. Below, we review the theoretical results underlying our discussion of

property preservation in Chapter 5. The first result, which dates back to the 1950’s, is

the Los-Tarski-Lyndon Theorem:
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Theorem 3.100 (homomorphism preservation theorem) (e.g., see (Rosen, 2002;

Rossman, 2005)) A first order formula is preserved under homomorphisms on all struc-

tures (finite and infinite) if and only if it is equivalent to an existential positive formula,

i.e., a formula without negation and universal quantification.

The existential positive fragment of FO is denoted ∃FO+. In this thesis, we are

interested in finite structures only, and like many classical mathematical logic results

that fail in the finite case (e.g., compactness), there is the danger that the above result

may fail as well when restricted to finite structures. Fortunately, this is not the case.

Proving sufficiency (i.e., the forward direction of the if-and-only-if) in Theorem 3.100

is trivial for finite structures (and for infinite ones as well). This gives us the following:

Lemma 3.101 Every ∃FO+ formula is preserved under homomorphisms [on finite struc-

tures].

Proving necessity (i.e., the backward direction) over finite structures has been an open

problem for decades and was settled only recently by Rossman (Rossman, 2005).

Theorem 3.102 (homomorphism preservation theorem in the finite case)

(Rossman, 2005) A first order formula is preserved under homomorphisms on finite struc-

tures if and only if it is equivalent to an ∃FO+ formula.

For the finite case, the extension of Lemma 3.101 to existential positive FO(TC)

follows trivially from Definition 3.97. More generally, we prove that Lemma 3.101 extends

to ∃LFP+, the existential positive fragment of LFP.

Lemma 3.103 Every ∃LFP+ formula is preserved under homomorphisms on finite struc-

tures.

Proof Let A = (A,RA
1 , . . . , R

A
m) and B = (B,RB

1 , . . . , R
B
m) be a pair of relational struc-

tures over vocabulary σ = (R1, . . . , Rm). Let h : A → B be a homomorphism (Defini-
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tion 3.89). We show that for every ϕ ∈ ∃LFP+ and for every ~a ∈ Ak

A |= ϕ(~a) ⇒ B |= ϕ(h(~a))

where h(~a) = (h(a1), . . . , h(ak)).

The proof for ϕ ∈ ∃FO+ ∩ ∃LFP+ follows from Lemma 3.101. Below, we provide a

proof for least fixpoint formulas.

Let ϕ(~x) = [lfpR,~yα(R, ~y)](~x). By the definition of lfp, for every structure A, the

formula ϕ yields a mapping Fα,A : P(Ak) → P(Ak) defined as follows:

Fα,A(X) = {~a | A |= α(X/R,~a)}

By Definition 3.95 and Theorem 3.93, for every ~a ∈ Ak we have:

~a ∈
∞⋃
i=0

F i
α,A(∅) ⇔ A |= [lfpR,~yα(R, ~y)](~a)

We first prove by induction that h(F i
α,A(∅)) ⊆ F i

α,B(∅).

Base case: Let ~a ∈ Fα,A(∅). Then, A |= α(∅,~a). Since A is a substructure of B by h

and since h(∅) = ∅, we have B |= α(∅, h(~a)). Thus, h(~a) ∈ Fα,B(∅).

Inductive step: Let ~a ∈ F i
α,A(∅). Then, A |= α(F i−1

α,A (∅),~a). Since A is a substructure

of B by h, we have B |= α(h(F i−1
α,A (∅)), h(~a)). Thus, h(~a) ∈ Fα,B(h(F i−1

α,A (∅))). By

the inductive hypothesis and since Fα,B is monotone, h(~a) ∈ F i
α,B(∅).

Thus,

h(
⋃∞

i=0 F
i
α,A(∅)) ⊆

⋃∞
i=0 F

i
α,B(∅) (1)
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Therefore,
A |= ϕ(~a) ⇔

(By assumption ϕ(~a) = [lfpR,~yα(R, ~y)](~a))

A |= [lfpR,~yα(R, ~y)](~a) ⇔

(By Definition 3.95 and Theorem 3.93)

~a ∈
⋃∞

i=0 F
i
α,A(∅) ⇔

(Since h is homomorphism)

h(~a) ∈ h(
⋃∞

i=0 F
i
α,A(∅)) ⇒

(By (1))

h(~a) ∈
⋃∞

i=0 F
i
α,B(∅) ⇔

(By Definition 3.95 and Theorem 3.93)

B |= [lfpR,~yα(R, ~y)](h(~a)) ⇔

(By definition of lfp)

B |= ϕ(h(~a))

3.8 Summary

In this chapter, we presented the mathematical background for the thesis. In Chapter 4,

we employ colimits (Section 3.4.5) for characterizing the merge operation, and fuzzy

graphs (Section 3.6) for formalizing incomplete and inconsistent models. And, in Chap-

ter 5, we use the least fixpoint and transitive closure logics (Sections 3.7.3 and 3.7.4) for

consistency checking, and use property preservation (Section 3.7.5) for reasoning about

consistency properties of merged models.



Chapter 4

Merging Incomplete and

Inconsistent Models

In this chapter, we describe an approach for merging incomplete and inconsistent models,

focusing on how model merging can facilitate requirements elicitation from multiple per-

spectives. Furthermore, the technical results developed in this chapter are a prerequisite

for the consistency checking approach in Chapter 5.

4.1 Introduction

Model merging is useful in any conceptual modelling language as a way of consolidating

a set of models to gain a unified perspective, to understand interactions among models,

or to perform various types of end-to-end analysis.

Numerous approaches to model merging have been proposed, some of the most recent

of which were surveyed in Chapter 2. These approaches are limited in two major ways:

Firstly, they treat merge as a binary operator, leaving generalization to multiple models

to repeated merges. In practice, such a generalization is complicated by the need to

construct a new relationship at each step of the merge process. Secondly, the approaches

typically assume the set of models are complete and consistent prior to merging. However,

87
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for most interesting applications, the models are likely to be incomplete and inconsistent

(Finkelstein et al., 1994). Hence, existing approaches to model merging can be used only

if considerable effort is put into detecting and repairing incompleteness and inconsistency.

In this chapter, we present a framework for merging arbitrarily large collections of

models that tolerates incompleteness and inconsistency between the models. The frame-

work can be adapted to any graph-based modelling language, as it treats the mappings

between models in terms of mappings between nodes and edges in the underlying graphs.

We demonstrate the application of the framework to the early requirements modelling

language i∗ (Yu, 1997) and to entity-relationship models.

Our approach to model merging is based on the observation that in exploratory mod-

elling, one can never be entirely sure how concepts expressed in different models should

relate to one another. Each attempt to merge a set of models can be seen as a hypothesis

about how to put the models together, in which choices have to be made about which

concepts overlap, and how the terms used in different models are related. If a particular

set of choices yields an unacceptable result, it may be because we misunderstood the

nature of the relationships between the models, or because there is a real disagreement

between the models over either the concepts being modeled, or how they are best repre-

sented. In any of these cases, it is better to perform the merge and analyze the resulting

inconsistencies, rather than restrict the available merge choices.

We use category theory (Barr & Wells, 1999) as a theoretical basis for our merge frame-

work. We treat models as structured objects, and the intended relationships between

them as structure-preserving mappings. To model incompleteness and inconsistency, we

annotate model elements with labels denoting the amount of knowledge available about

them. To ensure proper evolution of annotations, we constrain how these labels can be

treated in the mappings that interrelate models. We provide a mathematically rigor-

ous merge algorithm based on an algebraic concept called colimit. This treatment offers

both scalability to arbitrary numbers of models, and adaptability to different conceptual
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modelling languages.

After computing a merge, we may need to know how the original models and the

defined mappings between them participated in producing the result. Our framework

provides the ability to trace the elements of the merged model back to the originating

models, to the contributing stakeholders, and to the relationship assumptions relevant

to the elements. We discuss how the information required for addressing each of these

traceability concerns can be generated and represented in our framework.

4.2 Motivating Examples

We use two working examples throughout this chapter, one involving goal models repre-

sented in the i∗ notation, and another involving database schemata captured by entity-

relationship diagrams. Through these applications, we demonstrate how the ideas we

present here can be used for managing requirements elicitation artifacts, and to support

the exploratory model merging process. This section briefly explains these examples, and

uses them to illustrate the main challenges in model merging.

4.2.1 Merging i∗ Models

Suppose two stakeholders Mary and Bob want to develop a goal model for a meeting

scheduler (van Lamsweerde et al., 1995; Feather et al., 1997), with the help of a require-

ments analyst, Sam. To ensure that their contributions are adequately captured, each

stakeholder first models their perspective separately, using the i∗ notation. Sam then

merges these perspectives to study how well the stakeholders’ goals fit together.

Figures 4.1(a) and 4.1(b) show the initial models of Mary and Bob. At first sight,

there appears to be no overlap, as Mary and Bob use different terminologies. However,

Sam suspects there are some straightforward correspondences: Schedule meeting in Mary’s

model is probably the same task as Plan meeting in Bob’s. Mary’s Available dates be obtained
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meeting

Schedule

be obtained

Available dates Agreeable

slot be found

Email requests

to participants

Mary

Efficient Plan

meeting

Send request letters results
Consolidate

be gathered
Responses

Bob

meeting

Schedule

Agreeable

slot be found

Available dates

be obtained

Consolidate

results

Meeting requests

be sent

by email

Send requestsSend requests

by snail mail

Efficient

Merged View

+

(i) (ii)

(iii)

(a) (b)

(c)

Figure 4.1: Merging i∗ models

may be the same goal as Bob’s Responses be gathered. Sam also thinks it makes sense to

treat Mary’s Email requests to participants and Bob’s Send request letters as alternative ways of

satisfying an unstated goal, Meeting requests be sent. Bob’s Consolidate results task appears to

make sense as a subtask of Mary’s Agreeable slot be found goal. Finally, after seeing both

models, Mary points out that Bob’s positive contribution link from Send request letters to

the Efficient soft-goal is inappropriate, although she believes the Efficient soft-goal itself is

important.

For a problem of this size, Sam would likely just do an ad-hoc merge with a result

such as Figure 4.1(c), and show this to Bob and Mary for validation. This (ad-hoc)

merge has a number of drawbacks:

• There is no separation between hypothesizing a relationship between the original

models, and generating a merged version based on that relationship. Hence, it is

hard for Sam to test out alternative hypotheses, and it will be very hard for Bob
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and Mary to check Sam’s assumptions individually.

• In an ad-hoc merge, Sam will naturally tend to repair inconsistencies implicitly and

align the stakeholders’ models with his own vision of the merge. Hence, we lose

the opportunities to analyze inconsistencies that arise with a particular choice of

merge.

• We have lost the ability to trace conceptual contributions. If it is important to

capture stakeholders’ contributions in individual models, then it must be equally

important to keep track of how these contributions get adapted into the merged

model.

4.2.2 Merging Entity-Relationship Models

In the i∗ model merging example in Section 4.2.1, the merged model (Figure 4.1(c))

would most likely turn out to be agreeable to both Bob and Mary. However, in a more

realistic elicitation problem, arriving at a viable consolidation is seldom as easy: Model

merging is an iterative and evolutionary process where stakeholders constantly refine

their perspectives as a result of gaining more knowledge about the problem, and looking

back at previous merges and studying how their models affect and are affected by other

parties’ intentions. To illustrate this, consider the following example: Suppose Sam, the

analyst, now wants to develop a database schema for a payroll system based on Bob’s

and Mary’s perspectives. Models are described using entity-relationship diagrams.

After sketching Mary’s and Bob’s initial perspectives (Figure 4.2), Sam will merge

them to produce a unified schema. He identifies the following correspondences between

the two models: Employee in Mary’s model is likely to be the same entity as Person in

Bob’s; and consequently, their name attributes are probably the same. Merging Mary’s

and Bob’s models with respect to these correspondences results in a schema like the one

shown Figure 4.3. For naming the elements of the merged schema, Sam favoured Mary’s



Chapter 4. Merging Incomplete and Inconsistent Models 92

PersonCompany employed by

dob

namename

Bob

Employee Departmentworks for

name namesalary

Mary

(a) (b)

Figure 4.2: Initial perspectives of stakeholders

Figure 4.3: First merge attempt

naming choices over Bob’s.

When this merge is presented to Mary, she notices Company, an entity she had not

included in her original model. She finds the entity to be important; however, she prefers

to call it Corporation. She also decides to add an aggregation link from Corporation to

Department. Further, she deems Bob’s employed by relationship to be redundant in the light

of the works for relationship and the aggregation link from Corporation to Department. The

new merged schema addressing Mary’s concerns is shown in Figure 4.4.

When this new schema is shown to Bob, he finds out that the employed by relationship

has been dropped from the merge; however, he argues that there is no redundancy, as it

is possible for some employees not to be attached to a particular department. Therefore,

he insists that the relationship be added back to the merge!
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Figure 4.4: Second merge attempt

An ad-hoc merge, or even a structured one computed in a classical framework would

fail in at least two respects when faced with a problem such as the one described above:

• It is not possible to describe how sure stakeholders are about elements of their

models, and how their beliefs evolve over time. If we later need to know how flexible

a stakeholder is with respect to a certain decision, we have no way of discovering

how strongly the stakeholder argued for (or against) the decision.

• Disagreements between stakeholders would need to be resolved immediately after

being identified because we have no means to model such disagreements explicitly.

This is unsatisfactory – previous work suggests that toleration of inconsistencies

and disagreements, and being able to delay their resolution is basis for flexible

development (Easterbrook & Nuseibeh, 1996).

Our model merging framework addresses all the problems motivated by the examples

in Sections 4.2.1 and 4.2.2.

4.3 Model Merging as an Abstract Operation

Our model merging framework is based on a category-theoretic concept called colimit

(Barr & Wells, 1999). We already provided a formal introduction to category theory in

Chapter 3. Here, we focus on the intuitions that motivate our use of category theory.
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Intuitively, a category is an algebraic structure consisting of a collection of objects

together with a collection of mappings (also known as arrows or morphisms). Each

mapping connects a pair of objects, known as its source and destination. Typically,

the objects will have some internal structure, and the mappings express ways in which

the structure of one object maps onto that of another. For example, if the objects

are geometric shapes, then the mappings could be transformations that preserve shape,

such as rotation and scaling. This gives rise to a number of familiar constructs – for

example, if a mapping between two objects has an inverse, then we say the two objects

are isomorphic, i.e., the objects have the same structure.

The appeal of category theory is that it provides a formal foundation for manipulating

collections of objects and their mappings. In our case, the objects are models, and the

mappings are known or hypothesized relationships between them. We describe a “sys-

tem” of interrelated objects using an interconnection diagram – a directed graph whose

nodes and edges are labelled respectively with objects and mappings from a category.

The label of each edge in an interconnection diagram has to be consistent with the labels

of its endpoints, i.e., if an edge has mapping m : O1 → O2 as its label, then the source

and target nodes of the edge should be labelled by objects O1 and O2, respectively.

The colimit of an interconnection diagram is a new object, called the colimiting ob-

ject, together with a family of mappings, one from each object in the diagram onto the

colimiting object1. Since each mapping expresses how the internal structure of its source

object is mapped onto that of its destination object, the colimit expresses the merge of

all the objects in the interconnection diagram. Furthermore, the colimit respects the

mappings in the diagram: The intuition here is that the image of each object in the

colimit is the same, no matter which path through the mappings in the diagram you

follow. By definition, the colimit is also minimal – it merges the objects in the diagram

1In the remainder of the chapter, with a slight abuse of terminology, we use the term “colimit” to
refer to the colimiting object for a given interconnection diagram.
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without adding anything essentially new (Goguen, 1991).

Each of the merge algorithms we discuss in this chapter corresponds to colimit com-

putation in a category: Merging sets (Section 4.4.1) is based on colimit construction in

the category of sets2; merging graphs (Section 4.4.2) is based on colimit construction in

the category of graphs3; and merging annotated graphs (Section 4.5) is based on colimit

construction in the category of fuzzy graphs4.

To merge a set of models, we first express how they are related in an interconnection

diagram, and then compute the colimit. For example, if we want to merge two models,

A and B, that overlap in some way, we can express the overlap as a third model, C, with

mappings from C to each of A and B:

C

A B

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..............................

f
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..................
............

g

In this interconnection diagram, the two mappings f and g specify how the common

part, C, is represented in each of A and B. The colimit of this diagram is a new model,

P , expressing the union of A and B, such that their overlap, C, is included only once.

This simple interconnection pattern is known as a three-way merge.

The reason why we hypothesize merges explicitly and define the merge operation in

terms of specific interconnection diagrams, rather than in terms of all given models and

mappings is because, from time to time, we may want to create merges using only a

subset of the existing models. We therefore need to be able to specify which models are

involved in each merge. Further, we may have several competing versions of mappings

between any two participating models making it necessary also to specify which mappings

2See Example 3.56 and Remark 3.58.
3See Example 3.65 and Theorem 3.66.
4See Theorem 3.83 and Examples 3.86, 3.87.



Chapter 4. Merging Incomplete and Inconsistent Models 96

• •

• • •

• • •

.....................................................................................
...
.........
...

.....................................................................................
...
.........
...

............................................................................................................................................................................................ ............

........

........

........

........

........

........

........

........

........

................

............

........

........

........

........

........

........

........

........

........

................

............

........

........

........

........

........

........

........

........

........

................

............

(a)

•

• •

• •
•....................................................................................................................

........................................................................................................ ............

.....................................................................................
...
.........
...

.....................................................................................
...
.........
...

....................
....................

....................
....................

..........................................

....................
....................

....................
....................

..............................
............

(b)

Figure 4.5: Examples of interconnection patterns

are to be used for computing a particular merge.

In practice, interconnection diagrams often have more complex patterns than that of

three-way merge. Figure 4.5 shows two examples used later in this chapter: 4.5(a) is used

for capturing the relationships between the i∗ meta-model fragments in Figure 4.10, and

4.5(b) is used for capturing the relationships between the models in Figure 4.13.

4.4 Interconnecting and Merging Graphs

In our framework, we assume that the underlying structure of each model can be treated

as a graph. This section introduces graphs, and describes how they can be interconnected

and merged. Further, it explains how graphs can be equipped with a typing mechanism.

The merge algorithm for graphs is built upon that for sets; therefore, we begin with a

discussion of how sets can be merged.

4.4.1 Merging Sets

A system of interrelated sets is given by an interconnection diagram whose objects are

sets and whose mappings are (total) functions. Rather than treating functions as general

mapping rules between arbitrary sets, we consider each function to be a map with a unique

domain and a unique codomain. Each function can be thought of as an embedding: each

element of the domain set is mapped to a corresponding element in the codomain set.
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For example, in a three-way merge, the mappings would show how the set C is embedded

in each of A and B.

To describe the algorithm for merging sets, we need to introduce the concept of disjoint

union: The disjoint union of a given family of sets S1, S2, . . . , Sn, denoted S1]S2]. . .]Sn,

is (isomorphic to) the following set: S1×{1} ∪ S2×{2} ∪ . . . ∪ Sn×{n}. For conciseness,

we construct the disjoint union by subscripting the elements of each given set with the

name of the set and then taking the union. For example, if S1 = {x, y} and S2 = {x, t},

we write S1 ] S2 as {xS1 , yS1 , xS2 , tS2} instead of {(x, 1), (y, 1), (x, 2), (t, 2)}.

To merge a system of interrelated sets, we start with the disjoint union as the largest

possible merged set, and refine it by grouping together elements that get unified by the

interconnections. To identify which elements should be unified, we construct a unification

graph U , a graphical representation of the symmetric binary relation induced on the

elements of the disjoint union by the interconnections. We then combine the elements

that fall in the same connected component of U . Figure 4.6 shows the merge algorithm

for an interconnection diagram whose objects are sets S1, . . . , Sn and whose mappings

are functions f1, . . . , fk.

Figure 4.7 shows an example of three-way merge for sets: 4.7(a) shows the interconnec-

tion diagram; 4.7(b) shows the induced unification graph and its connected components;

and 4.7(c) shows the merged set.

The example shows that simply taking the union of two sets A and B might not

be the right way to merge them as this may cause name-clashes (e.g., according to the

interconnections, the y elements in A and B are not the same although they share the

same name), or duplicates for equivalent but distinctly-named elements (e.g., according

to the interconnections, w in A and t in B are the same despite having distinct names).

In the above set-merging example, the elements of each set were uniquely identifiable

by their names within the set. This is not necessarily the case in general because we may

have unnamed or identically-named, but distinct elements. For example, in Sections 4.2.1
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Algorithm. Set-Merge

Input: Sets S1, . . . , Sn

Functions f1, . . . , fk

Output: Merged set P

� Let U be an initially discrete graph with node-set S1 ] . . . ] Sn;

� For every function fi (1 ≤ i ≤ k):

� For every element a in the domain of fi:

� Add to U an undirected edge between the elements corresponding to a and fi(a);

� Let P be the set of the connected components of U ;

� Return P as the result of the merge operation.

Figure 4.6: Algorithm for merging sets

and 4.2.2, most edges in the models were unnamed; and in Section 4.2.2, the name node

appeared more than once in Bob’s and Mary’s models as well as the merges. To avoid

ambiguity, our implementation of the merge framework (discussed in Chapter 6) uses

unique identifiers (uid’s) instead of names to distinguish between model elements.

Name Mapping

To assign a name to each element of the merged set in Figure 4.7, we combined the names

of all the elements in A, B, and C that are mapped to it. For example, “{xA, yB, zC}”

indicates an element that represents x of A, y of B, and z of C. A better way to name

the elements of the merged set is assigning naming priorities to the input sets. For

example, in three-way merge, it makes sense to give priority to the element names in

the connector, C, and write the merged set in our example as P = {zC , yA, wC , xB}. In

this particular example, there are no name-clashes in the merged set, so we could drop

the element subscripts and write P = {z, y, w, x}; however, in general, the subscripts are
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(i)

(ii)

(iii)

g

{z, w}

{x, y, t}{x, y, w}

C =

A = B =

f

xA yA yB

zC

wC

wA

P =
{
{xA, yB, zC}, {yA}, {wA, tB, wC}, {xB}

}

tBxB

(a)

(b)

(c)

Figure 4.7: Three-way merge example for sets

needed to avoid name clashes that arise when models use the same terms to describe

different concepts.

This naming convention is of no theoretical significance, but it provides a natural

solution to the name mapping problem: in most cases, we would like the choice of names

in connector objects, i.e., objects solely used to describe the relationships between other

objects, to have precedence in determining the element names in the merged object. We

will use this convention in the rest of this chapter.

4.4.2 Graphs and Graph Merging

The notion of graph as introduced below is a specific kind of directed graph used in

algebraic approaches to graph-based modelling and transformation (Ehrig & Taentzer,

1996), and has been successfully applied to capture various graphical formalisms including

UML, entity-relationship diagrams, and Petri nets (Rozenberg, 1997).
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Definition 4.1 (graph) A (directed) graph is a tupleG = (N,E, source, target) where

N is a set of nodes, E is a set of edges, and source, target : E → N are functions respec-

tively giving the source and the target of each edge.

To interconnect graphs, a notion of mapping needs to be defined. A natural choice of

mapping between graphs is homomorphism – a structure-preserving map describing how

a graph is embedded into another:

Definition 4.2 (graph homomorphism) Let G = (N,E, source, target) and G′ =

(N ′, E ′, source′, target′) be graphs. A (graph) homomorphism h : G→ G′ is a pair of

functions 〈hnode : N → N ′, hedge : E → E ′〉 such that for all edges e ∈ E, if hedge maps e

to e′ then hnode respectively maps the source and the target of e to the source and the tar-

get of e′; that is: source′(hedge(e)) = hnode(source(e)) and target′(hedge(e)) = hnode(target(e)).

We call hnode the node-map function, and hedge the edge-map function of h.

A system of interrelated graphs is given by an interconnection diagram whose objects

are graphs and whose mappings are homomorphisms. Merging is done component-wise

for nodes and edges. For a graph interconnection diagram with objects G1, . . . , Gn and

mappings h1, . . . , hk, the merged object P is computed as follows: The node-set (resp.

edge-set) of P is the result of merging the node-sets (resp. edge-sets) of G1, . . . , Gn with

respect to the node-map (resp. edge-map) functions of h1, . . . , hk.

To determine the source (resp. target) of each edge e in the edge-set of the merged

graph P , we pick, among G1, . . . , Gn, some graph Gi that has an edge q which is rep-

resented by e. Let s (resp. t) denote the source (resp. target) of q in Gi; and let s′

(resp. t′) denote the node that represents s (resp. t) in the node-set of P . We set the

source (resp. target) of e in P to s′ (resp. t′). Notice that an edge in the merged graph

may represent edges from several input graphs. In a category-theoretic setting, it can

be shown that the source and the target of each edge in the merged graph are uniquely



Chapter 4. Merging Incomplete and Inconsistent Models 101

e3

e2

n1 n3n2

x1 x3

x2

f
g

p1

p2

e1

e3 n3

e2

p2

x3

δA δB

u1

u2

v1

u1
v1 u2

A

C

B

P

Figure 4.8: Three-way merge example for graphs

determined irrespective of which Gi we pick5.

Figure 4.8 shows an example of three-way merge for graphs. In the figure, each ho-

momorphism has been visualized by a set of directed dashed lines. In addition to the

homomorphisms of the interconnection diagram, i.e., f and g, we have shown the homo-

morphisms δA and δB specifying how A and B are represented in P . The homomorphism

from C to P is implied and has not been shown.

To compute the graph P in Figure 4.8, we first separately merged the node-sets and

the edge-sets of A,B,C. That is, we merged sets {x1, x2, x3}, {n1, n2, n3}, {u1, u2} with

respect to functions fnode = {u1 7→ x1, u2 7→ x2}, gnode = {u1 7→n1, u2 7→n2}; and merged

{p1, p2}, {e1, e2, e3}, {v1} with respect to fedge ={v1 7→p1}, gedge ={v1 7→e1}. This yielded

5See Theorem 3.66.
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two sets N = {u1, u2, x3, n3}, E= {v1, p2, e2, e3} constituting the node-set and the edge-

set of P respectively. For naming the elements of N and E, we gave priority to the

choice of names used in graph C (name mapping was already discussed in Section 4.4.1).

After computing N and E, we assigned to each edge in E a source and a target node

from N using the method described earlier. We illustrate this with two examples: 1) To

determine the source and target of v1 in E, we need to pick, among A,B,C, a graph

that has an edge represented by v1. In this case, any of the three graphs will do because

v1 has a pre-image in each of them – the edge represents p1 of A, e1 of B, and v1 of C.

Regardless of which graph we pick, the computed source and target will be the same.

Suppose we pick A. Edge p1 has x1 as source and x2 as target. The two nodes are

represented in N by u1 and u2 respectively; therefore, v1 is assigned u1 as source and u2

as target. 2) Now, consider e3 in E. The edge has a pre-image in graph B only. Thus, we

pick B. Edge e3 in B has n2 as source and n3 as target. Nodes n2 and n3 are respectively

represented by u2 and n3 in N . Thus, e3 in E is assigned u2 as source and n3 as target.

4.4.3 Enforcement of Types

Graph-based modelling languages typically have typed nodes and edges. The definitions

of graph and homomorphism given earlier do not support types; therefore, we need to

extend them for typed graphs. We can then restrict the admissible mappings to those

that preserve types.

In (Corradini et al., 1996), a powerful typing mechanism for graphs has been proposed

using the relation between the models and the meta-model for the language. Assuming

that the meta-model for the language of interest is given by a graph M, every model

is described by a pair 〈G, t : G→M〉 where G is a graph and t is a homomorphism,

called the typing map, assigning a type to every element in G. Notice that a typing

map is a homomorphism, offering more structure than an arbitrary pair of functions

assigning types to nodes and edges. A typed homomorphism h : 〈G, t〉 → 〈G′, t′〉 is simply
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Figure 4.9: Example of typed graphs

a homomorphism h : G→ G′ that preserves types, i.e., t′(h(x)) = t(x) for every element

x in G. This typing mechanism is illustrated in Figure 4.9: 4.9(a) shows a Java class

diagram in UML notation and 4.9(b) shows how it can be represented using a typed

graph. The graph M in 4.9(b) is the extends–implements fragment of the meta-model for

Java class diagrams.

The meta-model for a graph-based language can be much more complex than that of

Figure 4.9. Figure 4.10 shows some fragments of the i∗ meta-model extracted from the

visual syntax description of i∗’s successor GRL (Goal-oriented Requirement Language,

2004). Instead of showing the whole meta-model in one graph, we have broken it into

a number of views, each of which represents a particular type of relationship (means-

ends, decomposition, etc.). Our graph merging framework allows us to describe the

meta-model without having to show it monolithically: the i∗ meta-model, Mi∗ , is the

result of merging the interconnection diagram in Figure 4.10. To describe the relations

between the meta-model fragments, a number of connector graphs (shaded gray) have

been used. Each mapping (shown by a thick solid line) is a homomorphism giving the

obvious mapping. Notice that the connector graphs are discrete (i.e., do not have any

edges) as no two meta-model fragments share common edges of the same type.

The ∧- and ∨-contribution structures in i∗ convey a relationship between a group of



Chapter 4. Merging Incomplete and Inconsistent Models 104

Task Goal

Goal
Soft Resource

Task

Goal Resource

Actor

Resource
Goal
Soft

Task Goal Goal
Soft

Task

Goal
Soft

Task

ResourceGoal

Task GoalTask

Goal
Soft Resource

Task

Goal
Soft

Contributions

Contributions

Dependency

Means!Ends
Decomposition

∧∨

+−

− +

+
•

+
•

∨, ∧

+, −,
+
•

Figure 4.10: Some meta-model fragments of i∗

edges. To capture this, we introduced helper nodes (shown as small rectangular boxes)

in the meta-model to group edges that should be related by ∧ or ∨. Figure 4.11(a) shows

how we normally draw an ∨-contribution structure in an i∗ model and Figure 4.11(b)
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Figure 4.11: Adaptation of ∨-contribution

shows the adaptation of the structure to typed graphs. Structures conveying relationships

between a combination of nodes and edges can be modeled similarly.

The merge operation for typed graphs is the same as that for untyped graphs. The

only additional step required is assigning types to the elements of the merged graph:

each element in the merged graph inherits its type from the elements it represents. In

a category-theoretic setting, it can be proven that every element of the merged graph is

assigned a unique type in this way and that a typing map can be established from the

merged graph to the meta-model 6.

4.5 Merging in the Presence of Incompleteness and

Inconsistency

In this section, we show how incompleteness and inconsistency can be modeled by an

appropriate choice of annotation for model elements. Using the motivating examples in

Section 4.2, we demonstrate how incomplete and inconsistent models can be represented,

interconnected, and merged.

6To see why, notice that going from untyped graphs to graphs typed by a meta-model M means
going from the category Graph to the comma category (L ↓ R) where L : Graph → Graph is the
identity functor, and R : 1 → Graph is the functor from the singleton category 1 to Graph, mapping
the single object in 1 to the type graph M in Graph.



Chapter 4. Merging Incomplete and Inconsistent Models 106

!

8 4

�

@
@@

�
��

�
��

@
@@

Figure 4.12: Belnap’s knowledge order variant

4.5.1 Annotated Models

The classical approach in Section 4.4 provides no means to express the stakeholders’

beliefs about the fitness of model elements, and the possible ways in which these beliefs

can evolve. Consequently, we cannot describe how sure stakeholders are about each of

the decisions they make. Further, we cannot express inconsistencies and disagreements

that arise due to discrepancies between stakeholders’ decisions about either the structure

or the contents of models.

To model stakeholders’ beliefs, we attach to each model element an annotation denot-

ing the degree of knowledge available about the element. We formalize knowledge degrees

using knowledge orders. A knowledge order is a partially ordered set specifying the dif-

ferent levels of knowledge that can be associated to model elements, and the possible

ways in which this knowledge can grow.

One of the simplest and most useful knowledge orders is Belnap’s four-valued knowl-

edge order (Belnap, 1977). The knowledge order K shown in Figure 4.12 is a variant

of this: assigning ! to an element means that the element has been proposed but it is

not known if the element is indeed well-conceived; 8 means that the element is known

to be ill-conceived and hence refuted ; 4 means that the element is known to be well-

conceived and hence confirmed ; and � means there is conflict as to whether the element

is well-conceived, i.e., the element is disputed 7.

7Belnap’s original lattice refers to ! as maybe, 8 as false, 4 as true, and � as disagreement.
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An upward move in a knowledge order denotes a growth in the amount of knowledge,

i.e., an evolution of specificity. In K, the value ! denotes uncertainty; 8 and 4 denote the

conclusive amounts of knowledge; and � denotes a disagreement, i.e., too much knowledge

– we can infer something is both ill- and well-conceived.

To augment graph-based models with the above-described annotation scheme, the

definitions of graph and homomorphism are extended as follows. Let K be a knowledge

order:

Definition 4.3 (annotated graph) A K-annotated graph G is a graph each of

whose nodes and edges has been annotated with an element drawn from K.

Definition 4.4 (annotation-respecting homomorphism) Let G and G′ beK-annotated

graphs. A K-respecting homomorphism h : G → G′ is a homomorphism subject to

the following condition: For every element (i.e., node or edge) x in G, the image of x

under h has an annotation which is larger than or equal to the annotation of x.8

The condition in Definition 4.4 ensures that knowledge is preserved as we traverse a

mapping between annotated models. For example, if we have already decided an element

in a model is confirmed, it cannot be embedded in another model such that it is reduced

to just proposed, or is changed to a value not comparable to confirmed (i.e., refuted).

For a fixed knowledge orderK, the merge of an interconnection diagram whose objects

G1, . . . ,Gn are K-annotated graphs and whose mappings h1, . . . ,hk are K-respecting

homomorphisms is an object P computed as follows: First, disregard the annotations of

G1, . . . ,Gn and merge the resulting graphs with respect to h1, . . . ,hk to get a graph P .

Then, to construct P, attach an annotation to every element x in P by taking the least

upper bound9 of the annotations of all the elements that x represents.

Intuitively, the least upper bound of a set of knowledge degrees S ⊆ K is the least

8For a given knowledge order K, the collection of all K-annotated graphs and K-respecting homo-
morphisms is characterized by the category FGraph(K, K) as given in Definition 3.82.

9See Definition 3.18.
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specific knowledge degree that refines (i.e., is more specific than) all the members of S.

To ensure that the least upper bound exists for any subset of K, we assume K to be a

complete lattice10. The knowledge order K in Figure 4.12 is an example of a complete

lattice.

As an example, suppose the graphs in Figure 4.8 were annotated with K in such a

way that the homomorphisms f and g satisfied the condition in Definition 4.4. Assuming

that the nodes u1 of C, x1 of A, n1 of B are respectively annotated with !, 4, and 8,

the annotation for the node u1 of P , which represents the aforementioned three nodes,

is calculated by taking the least upper bound of the set S = {!,4,8} resulting in the

value �.

Incorporating types into annotated graphs is independent of the annotations and is

done in exactly the same manner as described in Section 4.4.

4.5.2 Example I: Merging i∗ Models

We can now demonstrate how to merge the i∗ models of Figure 4.1. We assume mod-

els are typed using the i∗ meta-model Mi∗ (see Section 4.4), and will use the lattice

K (Figure 4.12) for annotating model elements. We therefore express relationships be-

tween models by (Mi∗-typed) K-respecting homomorphisms. Figure 4.13 depicts one

way to express the relationships between the models in Figures 4.1(a) and 4.1(b). For

convenience, we treat ‘proposed’ (!) as a default annotation for all nodes and edges, and

only show annotations for the remaining values. For example, some edges in the revised

versions of Bob’s and Mary’s models are annotated with 8 to indicate they are refuted.

The interconnections in Figure 4.13 were arrived at as follows. First, Sam creates

a connector model Connector1 to identify synonymous elements in Bob’s and Mary’s

models. Notice that even if Bob and Mary happened to use the same terminology in their

models, defining a connector would still be necessary because our merge framework does

10See Definition 3.19 and Theorem 3.20.
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Figure 4.13: i∗ example: Interconnections
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not rely on naming conventions to describe the desired unifications – all correspondences

must be identified explicitly prior to the merge operation.

To build Connector1, Sam merely needs to declare which nodes in the two models

are equivalent. Because i∗ does not allow parallel edges of the same type between any

pair of nodes, the edge interconnections are identified automatically once the node in-

terconnections are declared. For example, when Mary’s Schedule meeting and Available dates

be obtained are respectively unified with Bob’s Plan meeting and Responses be gathered, the

decomposition links between them in the two models should also be unified.

Next, Sam elaborates each of Bob’s and Mary’s models to obtain Mary Revised

and Bob Revised. In these models, Sam has refuted the elements he wants to replace,

and proposed additional elements that he needs to complete the merge. Sam could, of

course, confirm all the remaining elements of the original models, but he preferred not

to do so because the models are in very early stages of elicitation. Finally, Sam keeps

track of cases where the same element was added to more than one model using another

connector model, Connector2.

With these interconnections, the models in Figure 4.13 can be automatically merged,

to obtain the model shown in Figure 4.14. To name the elements of the merged model

priority has been given to Sam’s choice of names. For presentation, we may want to mask

the elements annotated with 8. This would result in the model shown in Figure 4.1(c).

In the above scenario, we treated the original elements of Mary’s and Bob’s models as

being at the proposed level, allowing further decisions to be freely made about any of the

corresponding elements in the revised models. At any time, Mary or Bob may wish to

insist upon or change their minds about any elements in their models. They can do this

by elaborating their original models, confirming (or refuting) some elements. In this case,

we simply add the new elaborated models to the merge hypothesis with the appropriate

mappings from Mary’s or Bob’s original models. When we recompute the merge, the

new annotations may result in disagreements. We illustrate this in Section 4.5.3.
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Figure 4.14: i∗ example: The merged model

4.5.3 Example II: Merging Entity-Relationship Models

To merge the entity-relationship models of Figure 4.2, we assume them to be typed by

a meta-model MER. We chose to omit this meta-model because the process of con-

structing it is similar to that described in Section 4.4 for constructing Mi∗ . As in the

previous example, the lattice K (Figure 4.12) is used to annotate model elements, and

‘proposed’ (!) will be treated as a default annotation. Relationships between models will

be expressed by K-respecting homomorphisms.

First attempt: In the first iteration, Sam describes the correspondences between Bob’s

and Mary’s models using a connector model, Connector1 (Figure 4.15), and two map-

pings C1-To-Bob and C1-To-Mary. Merging the interconnection diagram made up of

models Bob, Mary and Connector1, and mappings C1-To-Bob and C1-To-Mary

yields the schema shown in Figure 4.3.

Second attempt: In the second iteration, Mary evolves her original model, to obtain

Mary Evolved (Figure 4.16), addressing the concerns that occurred to her after the first
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Figure 4.15: Entity-relationship example: Interconnections (Part I)

merge attempt. With Sam’s help, she establishes the required interrelationships between

her evolved model and Bob’s original model through a new connector, Connector2

(Figure 4.16). If we add these new models and mappings to the interconnection diagram

for the first merge attempt and then recompute the merge, we get a schema (not shown)

in which the employed by relationship has been refuted and an aggregation link has been

introduced between Corporation and Department. Masking the refuted elements of this merge

will give us the schema in Figure 4.4.

Third attempt: Finally, in the last iteration, Bob evolves his model (Figure 4.17),

capturing his refined beliefs about the employed by relationship. Adding this new model

and mapping leads to the full interconnection diagram shown in Figure 4.18. Merging

according to this interconnection diagram yields the schema shown in Figure 4.19. In this

schema, the annotation computed for the employed by relationship is ‘disputed’ (�) because

Bob and Mary have respectively confirmed and refuted the corresponding elements in

their evolved models.
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Figure 4.16: Entity-relationship example: Interconnections (Part II)

Figure 4.17: Entity-relationship example: Interconnections (Part III)
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Figure 4.18: Full interconnection diagram for merge

Figure 4.19: Entity-relationship example: The merged model
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Since we now have a placeholder in the merge to represent the disagreement between

Bob and Mary, there is no need for an immediate resolution – we can delay resolving the

conflict, or if it later turns out that the problem is unimportant, we may even elect to

ignore it all together.

4.6 Support for Traceability

After a merge is completed, it is often desirable to know how the source artifacts to the

merge process, namely models and mappings, influenced the result. Particularly, it is

important to be able to trace the elements of the merged model back to the originating

models, and to track the correspondence assumptions behind each unification. We call

the former notion origin traceability and the latter assumption traceability (Sabetzadeh

& Easterbrook, 2005b). A third traceability notion, which we refer to as stakeholder

traceability, arises when multiple stakeholders are allowed to work on individual models.

To be able to trace decisions back to their human sources in this setting, we need to

differentiate between the conceptual contributions of different stakeholders in individual

models.

4.6.1 Origin and Assumption Traceability

The merges in Section 4.5 lack the traceability information required for determining

where each of their elements originate. To keep track of the origins of the elements in a

merge, the merge operator must store proper traceability links in the merged model.

It turns out that unification graphs, as introduced in Section 4.4.1, immediately pro-

vide the information needed for supporting origin traceability: For a given merge problem,

the set of nodes in each connected component of the unification graph constitutes the

origin information for the corresponding merged element. For example, the Available dates

be obtained goal in Figure 4.14 should be traceable to Available dates be obtained in Connec-
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tor1, Mary and Mary Revised, as well as to Responses be gathered in Bob and Bob

Revised.

To trace the correspondence assumptions involved in a unification, we need to know

the details of the interrelations among the source model elements that are unified to

form an element of the merged model. In a simple scenario such as the first merge

attempt in Section 4.5.3, identifying the correspondence assumptions is trivial because

all these assumptions are localized to the mappings C1-To-Mary and C1-To-Bob.

Therefore, if we later need to check why, for example, Person in Bob was unified with

Employee in Mary, we can easily find the chain of correspondences that brought about the

unification: Person(Bob) = Employee(Connector1) by C1-To-Bob, and Employee(Connector1)

= Employee(Mary) by C1-To-Mary.

However, as merge scenarios get more complex, finding the correspondence assump-

tions becomes harder. As an example, consider the interconnection diagrams in Fig-

ures 4.15–4.17: the assumptions about correspondences between models are scattered

among several mappings. For example, the unification of Company in Bob Evolved and

Corporation in Mary Evolved involves Bob-Evolution, C2-To-Bob and C2-To-Mary-

Evol; and the unification of Person’s name attribute in Bob Evolved and Employee’s name

attribute in Mary Evolved involves Bob-Evolution, C1-To-Bob, C1-To-Mary and

Mary-Evolution. More interestingly, the unification of Employee in Bob Evolved and

Employee in Mary Evolved can be traced to two different correspondence chains, one

involving Bob-Evolution, C1-To-Bob, C1-To-Mary and Mary-Evolution; and an-

other involving Bob-Evolution, C2-To-Bob and C2-To-Mary-Evol.

The current notion of unification graph is not readily applicable to finding the cor-

respondence chain(s) involved in creating the elements of the merged model. This is

because we do not keep track of which mapping induces each of the edges in a unification

graph. To address this, we label each edge in a unification graph with the name of the

mapping that induces the edge. Figure 4.20 shows the extended unification graph for
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Figure 4.20: Extended unification graph for the node-sets in Figures 4.15–4.17

merging the node-sets of the models in Figures 4.15–4.17. Each connected component of

this graph corresponds to one node in the merged model shown in Figure 4.19. As an ex-

ample, we have explicitly shown in Figure 4.20 the connected component corresponding

to the Employee’s name attribute.

To support both origin and assumption traceability, we store in each element of the

merged model a reference to the corresponding connected component of the extended
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Figure 4.21: Examples of traceability links

unification graph. Figures 4.21(a)–(c) respectively show the stored traceability informa-

tion for three representative elements of the merged model in Figure 4.19: Corporation,

Employee, and Employee’s name. In each case, the traceability information makes it possible

to trace the respective element back to its origins, and to the related assumptions in the

unification. If we want to see why, for example, Employee in Mary Evolved was unified

with Person in Bob Evolved, we find the (non-looping) paths between Employee (Mary

Evolved) and Person (Bob) in Figure 4.21(b).

To avoid clutter, we chose not to show the element uid’s in Figure 4.21; however, we

should emphasize that uid’s need to be kept in the traceability links in order to avoid

ambiguity, because an element may not be uniquely identifiable by its name.

4.6.2 Stakeholder Traceability

When collaborative work is allowed on an individual model, we can no longer assume

that all contributions in a given model come from a single human source. The framework

developed in Section 4.5 does not support collaborative work on models because the

knowledge labels do not indicate whose knowledge is being captured; therefore, we have
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to assume all contributions in a given model belong to a single stakeholder.

To support tracing contributions back to their human sources when individual models

are collaboratively developed, we introduce a more elaborate annotation scheme: Rather

than annotating model elements with single annotations, we attach an annotation-set

to each element. Each annotation in the annotation-set has a qualifier denoting the

stakeholder whose belief is captured by that annotation.

To ensure that the annotation-set Xe attached to a model element e evolves properly

along a mapping h, the following condition must be met: Every stakeholder who has an

annotation in Xe must have an annotation in the annotation-set of e’s image under h,

and this annotation must be at least as specific as that in Xe. Notice that this condition

does not prevent h from introducing annotations for stakeholders who do not already

have an annotation in Xe – what is required is that the evolution of already-existing

annotations along h must respect the knowledge order.

To illustrate the new annotation scheme consider the i∗ merging example: Sam, Mary,

and Bob can now manipulate each others’ models without compromising traceability.

This is because the annotations can keep track of the contributions of individual parties.

The new system of interrelated models is shown in Figure 4.22. We use a concise notation

to represent the annotation-set for each element. For example, M:!;B:! means that

both Mary and Bob proposed the element; B:!;S:8 means Bob proposed the element

and Sam refuted it. Note that in the Connector model in Figure 4.22, the elements

have no stakeholder annotations, indicated using ∅. If we were interested in tracking

the revisions Sam makes to Bob’s and Mary’s vocabularies, we would need to use the

same interconnection pattern as that in Figure 4.13, but the model elements would be

annotated with annotation-sets instead of single knowledge degrees.

Merging the interconnected models in Figure 4.22 yields the model shown in Fig-

ure 4.23. The annotation-set for each model element e in the figure is computed by first

unioning the stakeholders that have contributed to the elements represented by e; and
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then, for every stakeholder s in the union, taking the least upper bound of s’s contribu-

tions to these elements11.

The annotation for each element of the merged model in Figure 4.23 reflects the deci-

sions made about the element by the involved stakeholders. Note that when stakeholders

do not work on source models collaboratively, origin traceability subsumes stakeholder

traceability; that is, we can produce merges with annotations like those in Figure 4.23

based on origin traceability information.

4.7 Discussion

In this section, we discuss some practical considerations concerning our merge framework.

4.7.1 Complexity

Given an interconnection diagram with models G1, . . . ,Gn and mappings h1, . . . ,hk, the

space complexity of our framework is dominated by the space required to construct the

unification graphs for merging the node-sets and edge-sets of the models. This gives us a

space complexity of O
(
(α = Σn

i=1|Gi|) +
(
β = Σk

i=1|hi|
))

. By |Gi|, we mean the number

of nodes and edges of |Gi|; and by |hi : G → G′|, we mean |{(e,hi(e)) | e ∈ G}|. Since

hi’s are total functions, we have |hi : G → G′| = |G| for every hi. The worst-case space

complexity of our framework is in the (unrealistic) situation where there is a mapping

from every model to all models. In this situation, the space complexity is O (n× α) .

To determine the time complexity of our framework, we note that the dominant part

is unification of elements related by the mappings and computing an appropriate annota-

tion for each unified element. Unification is done by finding the connected components of

the (node and edge) unification graphs, in time O(α+β). Let K be the knowledge order

11This is an informal description of how to compute a least upper bound in a fuzzy powerset lattice.
See Theorem 3.80.
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from which element annotations are drawn, and let |K| denote the size of the graph rep-

resenting the covering relation12 of K. The complexity of computing annotations for the

elements of the merged model is O (|K|2 × α), noting that each stakeholder contributes

only a single value from K, and that the least upper bound of any two K values can be

computed in time O(|K|2).

If we allow model elements to be annotated with beliefs from multiple stakeholders

(see Section 4.6.2), both time and space complexity will be multiplied by the number of

stakeholders.

Assuming that the annotation lattice is fixed, and that the number of stakeholders is

bounded by some fixed number, we conclude that the space and time complexity of our

framework are linear in the size of the source models and mappings.

4.7.2 Constraint Checking

The typing mechanism discussed in Section 4.4 is not expressive enough to describe all

the well-formedness constraints that need to be enforced over models. For example, in the

class diagram example in Figure 4.9, we could not express the constraint that a Java class

is not allowed to have multiple parent classes, or that a class cannot extend its subclasses:

in both cases, a typing map could be established even though the resulting class diagrams

were unsound. To express the former constraint, we would have to require that the class

inheritance hierarchy be a many-to-one relation; and to express the latter, we would have

to require that the inheritance hierarchy be acyclic. Similarly, our framework cannot

express and detect anomalies caused by the annotations. For example, in Section 4.5, it

was possible for a model to have a non-refuted edge with a refuted end. In such a case,

we would be left with dangling edges if we mask refuted elements. In Chapter 5, we

provide a general logic-based platform that enables expressing and checking constraints

like the ones mentioned above.

12See Definition 3.16.
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Figure 4.24: Connectors versus direct mappings

4.7.3 Connectors versus Direct Mappings

In our framework, correspondences between independent models are captured using ex-

plicit connector models. For example, to describe the overlap of a pair of models A and

B, we create a connector model C that captures just the common parts between A and

B, and then specify how C is represented in each of the two models using the mappings

C → A and C → B, as illustrated in Figure 4.24(a).

Our use of connector models was motivated by theoretical concerns. Briefly, this

approach allows us to build the mappings between models using graph homomorphisms

– each mapping shows how one model is embedded in another. This in turn allows us

to treat models and model mappings as a category, giving us a straightforward way to

construct model merges (as colimits), along with standard proofs (e.g., the proof that

for this category, the merge always exists and is unique for any set of interconnected

models).

One could argue that this approach is less appealing than specifying correspondences

between A and B by linking their shared elements directly. Such a scheme could handle

naming preferences by encoding the names in labelled binary relations, as illustrated in
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Figure 4.24(b). Note that the mapping in Figure 4.24(b) is partial, and does not map

the entire structure of one model onto the other.

It would be possible to hide the use of connector models from the user and present

them as direct links instead. In fact, we are going to do so in Chapter 5, where we apply

our merge technique for consistency checking. Nonetheless, we must emphasize that the

use of explicit connector models offers several important methodological advantages when

the maintenance overhead imposed by them is justified:

• It allows us to clearly distinguish distinct areas of overlap for a set of models, by

using a separate connector model for each area of overlap.

• It generalizes elegantly for cases where more than two models share an overlap,

and for cases where we want to indicate overlaps between the connector models

themselves.

• It provides a more flexible platform for incorporating various types of preferences

into the merge process. A simple example is layout preferences: we may want to

choose a certain layout for the parts that are in common between a set of models

and preserve that layout in the merge. Layout preferences require explicit models

for the shared parts.

• Connectors can be used as requirements baselines when the scope of the elicitation

process widens. For example, if the elicitation process starts with two stakeholders

and a new stakeholder emerges later on, it is natural for the third stakeholder to

use the connectors between the models of the first two stakeholders as baselines for

further elaboration of his/her own models.

4.7.4 Information Gaps and Inexact Correspondences

As we already noted in Chapter 2, there may be information gaps between the source

models that need to be addressed during merge. For example, the goal Meeting requests
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Figure 4.25: Capturing similarity relationships

be sent in Figure 4.1(c) was not explicitly stated by either Mary or Bob in their models

(shown in Figures 4.1(a) and 4.1(b)), but Sam had to explicate this unstated goal during

merge so that the tasks Email requests to participants and Send request letters could be related.

Since our framework can merge multiple models at a time, such gaps can be bridged by

evolving the source models, just as we did in the interconnection diagram of Figure 4.13.

Alternatively, one can build new models that provide only the missing information and

then add these new models to the interconnection diagram for the merge.

Further, from time to time, we may want to express relationships other than exact

correspondences. For example, in the schema merging scenario of Section 4.5.3, one

could say that the employed by and works for elements are similar (but not equivalent).

One way to state such relationships is by extending the modelling language being used

with new modelling constructs. Entity-relationship diagrams, for example, have been

extended with a special notation, ≈, to denote similarity relationships (Pottinger &

Bernstein, 2003). Figure 4.25 shows how one can declare the similarity relationship

between employed by and works for by reifying the relationship into a new model, Helper.

The overlaps between Helper and the stakeholders’ models (only the relevant fragments

of which are shown) are captured through exact correspondence mappings. Note that, in

light of the discussion in Section 4.7.3, we have used partial binary relations for describing

the mappings between the models of Figure 4.25.
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4.8 Related Work

Our merge framework is primarily intended to support viewpoint-based modelling. View-

points (or views) have been used in the literature in a variety of ways, e.g., to distinguish

different users and terminologies (Ross, 1985; Stamper, 1994), to encapsulate knowledge

about a system into manageable pieces (Finkelstein et al., 1992), to specify the contexts

in which different roles are performed (Easterbrook, 1993), to provide separation of con-

cerns (Nuseibeh et al., 1994), to improve use of abstraction (Egyed, 2000), and so on.

For a comparative survey of viewpoint-based techniques, see (Darke & Shanks, 1996).

The underlying principle in viewpoint-based modelling is that, for a given problem,

it is better to build several fragmentary models rather than to attempt to construct a

single coherent model (Easterbrook et al., 2005). Despite the general desire to maintain

viewpoints as separate loosely-coupled objects (Finkelstein et al., 1994), we often need to

merge a set of viewpoints in order to explore the relationships between them. Our work

on model merging aims to provide a flexible solution for performing such exploration.

As we saw in Chapter 2, many model merging approaches already exist for database

schemata, ontologies, and various software engineering models. Our work is distinguished

from existing work in two key respects: First, our framework directly applies to systems

with an arbitrary number of models and mappings, whereas existing work typically con-

siders only the three-way merge pattern. Generalizability to arbitrary systems comes

from the use of category theory and colimits. Hence, in principle, other category-theoretic

approaches surveyed in Chapter 2 offer this flexibility as well. However, none of these

approaches identify the need for defining merge as an operation over arbitrary systems

of models, and therefore, lack a general methodology for applying colimits. In our work,

we demonstrate that systems of models arise naturally when modelling is done in an

exploratory setting, where models are elaborated incrementally and are continuously

evolving. We believe the application of merge for exploratory analysis is novel and has

not been considered before.
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The second major factor distinguishing our work from existing work is that we can

explicitly model incompleteness and inconsistency and enable deferring their resolution.

This is in contrast to the body of work surveyed in Chapter 2 where incompleteness and

inconsistency are not tolerated and need to be resolved as soon as discovered.

The approach we proposed in this chapter treats models as graphical artifacts and

provides a generic algebraic characterization of the merge operation. This makes the

approach generalizable to many different modelling notations, and is particularly suited

to earlier stages of development, e.g., requirements elicitation, when models usually have

loose or tacit semantics. In contrast, our more recent work on behavioural models,

(Nejati et al., 2007), has concentrated on providing a logical characterization of the merge

operation. This recent work has the advantage that it preserves the logical properties of

models during merge; however, it is largely inapplicable to structural models such as goal

models, entity-relationship diagrams, and class diagrams, because the work is specifically

directed towards behavioural properties of models.

The use of multiple-valued logics for merging incomplete and inconsistent models was

first proposed in (Easterbrook & Chechik, 2001) and later generalized in (Sabetzadeh

& Easterbrook, 2003). These earlier papers, which serve as a precursor to the ideas

developed in this chapter provide a formal treatment of incompleteness and inconsistency.

However, they were conceived as part of a framework for supporting automated reasoning

over state machines. In this chapter, we instead focused on devising a general foundation

for model management and defining a mathematically rigorous merge operator within

that foundation.

The ability to trace requirements back to their human sources is cited as one of

the most important traceability concerns in software development (Gotel & Finkelstein,

1997). To this end, contribution structures (Gotel & Finkelstein, 1995) have been pro-

posed as a way to facilitate cooperative work among teams and to ensure that the contri-

butions of involved parties are properly accounted for throughout the entire development
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life-cycle. The notions of origin and stakeholder traceability in our work try to address

a similar problem in the context of model merging.

The importance of establishing traceability links between artifacts and the assump-

tions involved in creating them has been emphasized in the literature on design ratio-

nale (Fischer et al., 1996; Gruber & Russell, 1996) and design traceability (Egyed, 2001).

However, the focus in these lines of work is on assumptions that relate upstream and

downstream artifacts, i.e., vertical traceability. Our work, instead, focuses on horizontal

traceability. We discuss the nature of the relationships between collaboratively developed

models in a particular stage of development, and provide a technique for keeping track

of how assumptions made about model interconnections affect the merge.

4.9 Summary and Future Work

We have presented a flexible and mathematically rigorous framework for merging incom-

plete and inconsistent models. Our merge framework is general and can be applied to

a variety of graphical modelling languages. In this chapter, we presented the core algo-

rithms for computing merges, showed how the framework can handle typing constraints,

and how to trace contributions in the merged model back to their sources and to the rele-

vant merge assumptions. We have implemented the algorithms described in this chapter.

We describe our implementation in Chapter 6.

An advantage of our framework is the explicit identification of interconnections be-

tween models prior to the merge operation rather than relying on implicit conventions

to give the desired unification. We believe this offers a powerful tool for exploring in-

consistency during exploratory modelling, as it allows an analyst to hypothesize possible

interconnections for a set of models, compute the resulting merged models, and trace

between the source and the merged models to analyze the results.

Our work can be continued in many directions. A major part of our ongoing research
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is to incorporate a model matching operator into our framework. Currently, we assume

that model interconnections are identified manually. A natural question to ask is to what

extent this task can be automated. Existing matching techniques, e.g., (Bernstein et al.,

2004; Aumueller et al., 2005; Mandelin et al., 2006), only consider the three-way pat-

tern. That is, given a pair of models and an incomplete connector, they are concerned

with identifying the missing correspondences between the model pair and completing the

connector. The problem we would like to address is more general: given an incomplete

interconnection diagram over multiple models, how can we identify the unstated corre-

spondences and complete the diagram? We anticipate that model merging will play a

crucial role in answering this question. In particular, one may be able to identify likely

matches by first constructing a merge for an as-yet incomplete interconnection diagram,

and then analyzing the resulting merge for redundancies.

Another interesting topic for future work is traceability. Our current work on trace-

ability, reported in this chapter, only deals with the merge operator. To be able to trace

between the results of a complex model management manipulation and the source models

and mappings, every model management operator involved in the manipulation must es-

tablish proper traceability links between its operands and its output. In our future work,

we aim to study the traceability concerns of model management in a broader context.

A related problem to traceability is round-trip engineering. To effectively maintain a

set of evolving artifacts in a model management problem, it is important to be able to

propagate changes made to one artifact to other related artifacts. In future research, we

would like to look into ways to support round-trip engineering in our framework.



Chapter 5

Consistency Checking via Model

Merging

In this chapter, we present an approach for consistency checking of distributed models.

The key idea behind our approach is to employ model merging to reduce the problem

of checking inter -model consistency to checking intra-model consistency of a merged

model. We report on experimental results validating the feasibility and usefulness of our

approach.

5.1 Introduction

An important activity in distributed development is consistency checking. As we saw

in Chapter 2, consistency is a broad term and may have different interpretations in dif-

ferent contexts. In this chapter, we take consistency to mean conformance (see Section

2.2). Hence, consistency checking in our work means verifying models and their map-

pings against a desired set of properties and generating proper diagnostics if a violation

occurs. We concentrate on structural properties. These include, among others, well-

formedness constraints for the notation being used, and quality constraints, derived from

best development practices, for improving understandability, maintenance, and reuse.

130
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Figure 5.1: Pairwise inconsistency

For example, if models are expressed as class diagrams, well-formedness constraints

disallow cyclic inheritance in individual models. Additionally, the mappings defined

between models have to respect the acyclic inheritance constraint. To illustrate, consider

the class diagrams M1 and M2 in Figure 5.1 and the mapping R in the figure, specifying

the overlaps between the two models. In this example, R was defined by hand. Larger

problems require automation, usually achieved by (1) name matching if models have

a common vocabulary, (2) identifier matching if models have a common ancestor, or

(3) heuristic matching if models are independently-developed. Regardless of how the

mapping R is built, it is important to be able to check whether it respects the consistency

properties of interest, in this case acyclic inheritance.

AlthoughM1 andM2 are acyclic individually, they are not pairwise consistent because

R gives rise to a cycle. Specifically, Component inherits from Canvas =R Panel which is a

descendant of UIObject =R Component. This indicates either that we misunderstood the

nature of the overlaps between M1 and M2, or that there is a real disagreement between

the models.

The example in Figure 5.1 only considers pairwise consistency, i.e., consistency of a

pair of models with respect to a single mapping between them. In practice, we are often

faced with systems that have many models interrelated by many mappings. Therefore,

we not only need to check pairwise consistency, but also the consistency of a system as

a whole. This is known as global consistency checking.
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Figure 5.2: Consistency checking of a system of interrelated models

Global consistency checking cannot be done through pairwise checking (van Lam-

sweerde et al., 1998; Nuseibeh et al., 2001). For example, consider the system in Fig-

ure 5.2. The models in the figure are pairwise consistent when checked against the acyclic

inheritance constraint. But the system is globally inconsistent because the combination

of the information provided by R1, R2, R3 implies a loop in the inheritance chain. Specif-

ically, Component inherits from Canvas =R1 Panel which inherits from Container (in M2) =R2

Container (in M3) which inherits from UIObject =R3 Component.

This example underscores the need for a consistency checking technique that can

simultaneously use information from multiple models and mappings. Existing approaches

work well for pairwise checking. However, since these approaches do not clearly separate

consistency rules from model mappings, it becomes very difficult to generalize the rules

beyond pairwise checking.

We propose a consistency checking approach that addresses the above problem for

homogeneous models, i.e., models described in the same notation. Our work is motivated

by the observation that consistency checking of a set of (homogeneous) models can be

done in a more general and succinct way if we first merge the models according to the
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Merge

Container, ContainerCanvas, Panel

Component, UIObject

Figure 5.3: Merge of the models in Figure 5.2

mappings defined between them. The implementation of this approach requires a merge

operator that is well-defined for any system of interrelated models even when they are

inconsistent. We already developed such a merge operator in Chapter 4.

For example, rather than trying to check the acyclic inheritance constraint on the

system in Figure 5.2, we construct a merge, shown in Figure 5.3, and interpret the

constraint over it. By keeping proper traceability information, we project the diagnostics

obtained from consistency checking of the merge back to the source models and mappings.

In addition to providing a solution for verifying global consistency properties, our

approach has the advantage that it requires only a single consistency rule to be developed

for each consistency constraint – the rule applies no matter how many models are involved

and how they are interrelated with one another.

We provide an implementation of our approach within a logic-based constraint spec-

ification framework. To simplify the specification of consistency rules, we develop a set

of generic and reusable expressions capturing recurrent patterns across the constraints of

different modelling notations. We demonstrate the usefulness of these expressions for de-

scribing constraints over class and entity-relationship diagrams, and i∗ goal models (Yu,

1997).
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5.2 Background

Like in Chapter 4, our focus is on models with graph-based notations. However, whereas

we were there concerned with manual inspections and negotiation over these models, we

are here interested in complementary techniques for automated analysis of the models.

The kinds of automated analysis that motivate our work are largely orthogonal to the

belief annotation scheme we introduced in Chapter 4. Therefore, for capturing models

in this chapter, we use typed graphs without annotations, as defined in Section 4.4.3.

We assume every model element i (i.e., node or edge) has an implicit and immutable

attribute, called uid, that uniquely identifies i. We write i.uid to refer to the value of i’s

uid. To capture properties such as label, stereotype, colour, order, etc., we attach to every

element a set of (Property, value) tuples.

5.3 Relational Specification

Consistency constraints are commonly expressed as logical formulas. An important step

in developing a consistency checking framework is hence choosing an appropriate logical

formalism for specification of consistency rules.

We use the Relational Manipulation Language (RML) (Beyer et al., 2005) for spec-

ifying consistency rules. The logical core of RML is first order logic augmented with

transitive closure and counting operators. Transitive closure enables capturing reach-

ability constraints that are otherwise inexpressible in first order logic (Libkin, 2004).

Counting, in the form used in our work, does not offer additional expressive power; but,

having an explicit operator for counting provides a convenient shorthand for writing

constraints that involve multiplicities.

As we demonstrate in this chapter, first order logic with transitive closure, also known

as transitive closure logic, provides a rich basis for expressing consistency constraints;

and yet, the logic is tractable enough to be applicable to large modelling problems (see
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Theorem 3.99). Our focus in this chapter is on structural constraints, but our work

can be generalized to behavioural constraints as well. In particular, it is known that any

formula written in Computation Tree Logic (CTL) (Clarke et al., 1999) can be translated,

in linear time, into an equivalent transitive closure logic formula (Immerman & Vardi,

1997). This makes it possible to use the consistency checking framework to be presented

in this chapter as a CTL model checker, by translating CTL properties into transitive

closure logic before evaluating the properties.

In addition to meeting the expressive power requirements in our work, there are two

factors that make RML particularly appealing:

• RML’s domain-independent and easy-to-use syntax;

• RML’s highly-optimized interpreter, CrocoPat.

CrocoPat encodes relational predicates as Binary Decision Diagrams (BDDs) (Bryant,

1986) which are compact data structures for representing and manipulating relations.

The use of BDDs makes CrocoPat highly scalable in terms of both time and memory.

RML has an imperative style of execution and runs programs statement by state-

ment. A partial and slightly simplified grammar of the language is shown in Figure 5.4.

A

B C

D

The complete grammar is given in (Beyer & Noack, 2004). For example,

consider the graph shown at right, and assume that the relation E(x,y)

denotes “there is an edge from x to y”. To check if there exists a node

without any outgoing edges, we use the existential and universal quanti-

fiers, EX and FA in Figure 5.4, to define the expression EX(x, FA(y, !E(x, y))).

This expression holds over our example graph, witnessed by node A.

For another example, suppose we want to count the number of predecessors of A. The

expression #(E(x, ”A”)), for a free variable x, returns the number of all assignments ` to

x for which E(`, ”A”) holds. Hence, the expression evaluates to 2. The following program

prints to the standard output all these satisfying assignments, i.e., B and C:
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stmt ::= rel var(term, . . .) ; |

rel var(term, . . .) := rel expr ; |

IF rel expr { stmt . . . } ELSE {stmt . . . } |

FOR var IN rel expr {stmt . . . } |

WHILE rel expr { stmt . . . } |

PRINT print expr ;

rel expr ::= rel var(term, . . .) | rel expr op1 rel expr |

FA(var, rel expr) | /* ∀ quantification */

EX(var, rel expr) | /* ∃ quantification */

TC(rel expr) | /* transitive closure */

!rel expr | /* negation */

rel expr op2 rel expr | num expr op2 num expr

num expr ::= num literal | num expr op3 num expr |

#(rel expr) /* counting */

print expr ::= rel expr | term

term ::= var | str literal | STRING(num expr)

(1) op1 can be one of: ’|’ (or), ’&’ (and), ’–>’ (implies).

(2) op2 can be one of: ’=’, ’ !=’, ’<’, ’>’.

(3) op3 can be one of: ’+’, ’-’, ’*’, ’/’.

Figure 5.4: Partial grammar of RML
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FOR n IN E(x, ”A”) {

PRINT n;

}

Note that the relational expression after IN must have one free variable, here x.

Alternatively, we could use a WHILE loop to print the satisfying assignments:

P(x) := E(x,”A”);

WHILE EX(x, P(x)) {

Head(x) := P(x) & FA(y, P(y) –> (x <= y));

PRINT Head(x);

P(x) := P(x) & !Head(x);

}

In this program, we first define a unary relation P of the satisfying assignments. The

body of the WHILE loop is executed repeatedly as long as the condition of the loop holds,

i.e., as long as P is not empty. In each iteration, we compute a relation Head containing

the (lexicographically) smallest element of P. We then print this smallest element and

remove it from P.

For a last example, suppose we want to define a relation Reachable(x, y) that holds iff

“there is a path from x to y”. This is done by the following statement:

Reachable(x, y) := TC(E(x, y));

In the above statement, TC denotes the transitive closure operator. The semantics of TC

for a relation E with two free variables is described recursively as follows:

TC(E(x, y)) ≡ E(x, y) ∨ ∃z.E(x, z) ∧ TC(E(z, y)) 1

1More precisely, TC coincides with the trcl~x,~y operator in Definition 3.97 when |~x| = |~y| = 1.
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5.4 Consistency Checking of Individual Models

As already stated, our approach for checking the consistency of a set of distributed models

is to first merge the models into a single model and then check the consistency of this

model against the constraints of interest. In this section, we develop a flexible platform

for consistency checking of individual models. In Section 5.5, we show how this platform

can be used for consistency checking of distributed models.

5.4.1 Translating Models to Relational Predicates

To evaluate relational expressions over a model, we translate it into a set of predicates. In

Figure 5.5, we provide an algorithm, GraphToRml, for translating a model described

as a typed graph into RML statements.

To illustrate the algorithm, consider the class diagram in Figure 5.6, expressed as a

typed graph. We show in Figure 5.7 the translation of this class diagram into RML.

To understand the translation, recall from Section 4.4.3 that if the meta-model of the

modelling language being used is given by a graph M, every model is a standard graph

G equipped with a type function t : G→M, mapping each element of G to an element

of M. The type function respects the structure of G: If t maps an edge e of G to an

edge u of M, the endpoints of e are respectively mapped to those of u, as illustrated in

Figure 5.6. Note that in the figure, M is the extends–implements fragment of the meta-model

for Java class diagrams. A similar example was given in Figure 4.9 (Chapter 4).

5.4.2 Generic Consistency Checking Expressions

We provide a set of generic expressions for specifying structural consistency constraints

over individual models. These expressions capture a number of recurring patterns that

we have observed in the consistency constraints of class diagrams, e.g., (Unified Modeling

Language, 2003; Egyed, 2000), goal models (Horkoff, 2006; Liaskos, 2007), and database
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Algorithm. GraphToRml

Input: Graph G = (N,E, sourceG, targetG), and type function t : G→M.

Output: A set of RML statements.

1: for every node and edge i in G :

2: if i is a node:

3: output Node(i.uid)

4: else : /* i is an edge */

5: output Edge(i.uid)

6: output Source(i.uid, sourceG(i).uid)

7: output Target(i.uid, targetG(i).uid)

/* Translate type information */

8: output Type(i.uid, t(i))

/* Translate properties */

9: for every property (Propertyk, valk) of i :

10: if valk is boolean :

11: if valk = true : output Propertyk(i.uid)

12: else : output Propertyk(i.uid, valk)

Figure 5.5: GraphToRml algorithm

schemata (Spaccapietra & Parent, 1994).

Table 5.1 shows some illustrative consistency constraints for these notations. Some

of these constraints (e.g., C1, C4, and C6) capture fundamental well-formedness crite-

ria, while others (e.g., C2, C5, and G1) describe desirable model qualities. The table

provides an implementation of the constraints in RML with occurrences of our generic

expressions bolded and underlined. We discuss these expressions under the following

three headings:
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extends extends

classinterface implements

G

M

t

Set AbstractSet HashSet
uid=n1 uid=e1 uid=n2 uid=e2 uid=n3

Figure 5.6: Example class diagram described as a typed graph

Node(”n1”); Node(”n3”); Type(”e1”, ”implements”);

Type(”n1”, ”interface”); Type(”n3”, ”class”); Edge(”e2”);

Label(”n1”, ”Set”); Label(”n3”, ”HashSet”); Source(”e2”, ”n3”);

Node(”n2”); Edge(”e1”); Target(”e2”, ”n2”);

Type(”n2”, ”class”); Source(”e1”, ”n2”); Type(”e2”, ”extends”);

Label(”n2”, ”AbstractSet”); Target(”e1”, ”n1”);

Figure 5.7: RML encoding of the model in Figure 5.6

• Compatibility expressions, used for ensuring compatibility of the type of an

edge with the types of its endpoints.

• Multiplicity expressions, used for defining a minimum and a maximum number

for edges of a given type incident to a node.

• Reachability expressions, used for checking existence of paths of edges of a

given type between two nodes.
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C1. An implements edge relates a class to an

interface (Unified Modeling Language, 2003)

C1() := FA(e, Type(e, ”implements”) –> Compatibleclass,interface(e));

C2. Every abstract class has a concrete

implementation (Egyed, 2000)

C2() :=FA(c1, Type(c1, ”class”) & Abstract(c1) –> EX(c2,

(Concrete(c2) & Reachableextends(c2, c1))));

C3. A class does not extend more than one

class (Egyed, 2000)

C3() := FA(c, Type(c, ”class”) –> SourceMultiplicity01
extends(c));

C4. Inheritance is acyclic (Unified Modeling

Language, 2003)

C4():= FA(c, Type(c, ”class”) –> !OnCycleextends(c));

C5. All classes are reachable from a root

class (Egyed, 2000)

C5() := FA(c1, Type(c1, ”class”) –> EX(c2, Type(c2, ”class”) &

IsRoot(c2) & Reachableextends(c1, c2)));

C6. Final classes do not have subclasses (Egyed,

2000)

C6() := FA(c, Type(c, ”class”) & Final(c) –>

TargetMultiplicity0
extends(c));

C7. Inheritance is redundancy-free (Egyed, 2000) C7() := FA(c1, Type(c1, ”class”) & FA(c2, Type(c2, ”class”) –>

!RedundantPathsextends(c1, c2)));

C8. Every entity has a unique key (Spaccapietra &

Parent, 1994)

C8() := FA(e, Type(e, ”entity”) –> SourceMultiplicity1
key link(e));

i∗
G

oa
l
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s

G1. Goal dependencies are acyclic (Horkoff, 2006) G1() := FA(g, Type(g, ”goal”) –> !OnCycledepends(g));

G2. A resource does not have multiple

dependers (Horkoff, 2006)

G2() := FA(r, Type(r, ”resource”) –> SourceMultiplicity01
depends(r));

G3. Each loop in a goal decomposition tree includes

at least one OR-decomposition (Liaskos, 2007)

G3() := FA(g1, Type(g1, ”goal”) –> !OnCycledecomposes(g1) | EX(g2,

Type(g2, ”goal”) & ORNode(g2) & ReachViadecomposes(g1, g2, g1)));

G4. Parallel contribution links do not

exist (Liaskos, 2007)

G4() := FA(g1, Type(g1, ”goal”) & FA(g2, Type(g2, ”goal”) –>

!ParallelEdgescontributes(g1, g2)));

G5. Goal fulfillment cannot precede subgoal

fulfillment (Liaskos, 2007)

G5() := FA(g1, Type(g1, ”goal”) & FA(g2, Type(g2, ”goal”) &

Reachabledecomposes(g1, g2) –> !Eprecedes(g2, g1)));

Table 5.1: Examples of well-formedness and quality constraints
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classinterface

extends

implements

extends

**0..1 0..1 **
M

Figure 5.8: Example of multiplicity annotations

Compatibility Expressions

Compatibility constraints constitute the most primitive class of well-formedness criteria

for conceptual models. Typed graphs automatically enforce compatibility constraints

through their structure-preserving type function t (e.g., see Figure 5.6). We can also

easily express these constraints in logical terms: To verify that the source and the target

of an edge are respectively of types β and γ, we define Compatibleβ,γ(x) that holds for all

edges x satisfying the compatibility constraint:

Compatibleβ,γ(x) := EX(n, EX(m, Source(x, n) & Target(x, m) –>

Type(n, β) & Type(m, γ)));

There are numerous instances of compatibility constraints in the notations we studied.

Since these constraints are very similar, we show only one, namely, C1, in Table 5.1.

Multiplicity Expressions

Multiplicity constraints are often specified using annotations over the meta-model graph.

Figure 5.8 shows the meta-model of Figure 5.6 annotated with multiplicity constraints.

For example, consider the extends self-loop incident to the class node. According to the

annotations of this edge, a class can extend at most one (i.e., 0..1) class, but each class

can be extended by several (i.e., ∗) classes.

Given a multiplicity-annotated meta-modelM, we produce a set of logical expressions

for validating conformance of an instance model to the multiplicity constraints prescribed

by M. Each edge in M gives rise to two multiplicity expressions – one for each endpoint.
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We consider multiplicity annotations of four kinds: “k”, “k..l”, “k..∗”, and “∗”, where

k and l are constants. An RML program for checking a multiplicity annotation “k..l”

attached to the source side of a meta-model edge α is as follows:

SourceMultiplicitykl
α (x):= FALSE(x);

FOR n IN Node(v) { /* v is a dummy free variable */

IF ( k ≤ #(Source(e, n) & Type(e, α)) ≤ l) {

SourceMultiplicitykl
α (x):= (x=n) | SourceMultiplicitykl

α (x);
}

}

The program initializes SourceMultiplicitykl
α (x) to an empty unary relation, FALSE(x). If a

node n respects the multiplicity constraint, it gets added to the relation SourceMultiplicitykl
α (x).

The multiplicity expression SourceMultiplicity♠α (x), where ♠ is “k” or “k..∗”, can be imple-

mented similarly2. Implementation of a multiplicity constraint attached to the target

side of a meta-model edge is done by replacing Source(e, n) with Target(e,n) in the above

program. In Table 5.1, constraints C3, C6, C8, and G2 use multiplicity expressions.

Another useful expression similar to multiplicity expressions is for detecting parallel

edges of a given type. This is implemented by ParallelEdgesα(x, y) shown below:

ParallelEdgesα(x, y) := FALSE(x, y);

FOR n IN Node(v) { /* v is a dummy free variable */

FOR m IN Node(w) { /* w is a dummy free variable */

IF (#(Source(e, n) & Target(e, m), & Type(e, α)) > 1) {

ParallelEdgesα(x, y):= ((x=n) & (y=m)) | ParallelEdgesα(x, y);
}

}
}

2No expression is needed for the “∗” multiplicity annotation.
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This program initializes ParallelEdgesα(x, y) to an empty binary relation, FALSE(x, y),

and then, adds to it all pairs (n, m) of nodes between which there are parallel edges. An

example constraint using ParallelEdgesα(x, y) is G4 in Table 5.1.

Finally, we note that our multiplicity expressions all work by testing whether “there

exists at least, at most, or exactly c elements satisfying some property ϕ”, where c is a

constant number. These tests are already expressible in first order logic. The formula for

the “at least” case is: ∃x1∃x2 . . . ∃xk

∧
i6=j(xi 6= xj) ∧

∧
ϕ(xi). The other two cases are

similar. Hence, our use of RML’s counting operator is merely a matter of convenience.

Generally speaking, RML’s counting operator does provide additional expressive power.

For example, given relations A and B, there is no first order logic formula for testing if

the cardinality of A is larger than that of B. This query is easily expressible in RML.

Reachability Expressions

Several consistency constraints involve finding nodes that are reachable or unreachable

via edges of a certain type. For example, in goal modelling, we may want to ensure that

all goals are reachable via goal decomposition edges. In UML class diagrams, we may

want to check that all descendants (via inheritance edges) of a given class have a certain

property. For an edge of type α, we define a relation Reachableα(x, y) that holds iff a path

from x to y made up of α-edges exists:

Eα(x, y) := EX(e, Source(e, x) & Target(e, y) & Type(e, α));

Reachableα(x, y):= TC(Eα(x, y));

For example, in the class diagram of Figure 5.11, Reachableextends(”E”,”A”) holds, indi-

cating that E reaches A via extends edges.

A special case of reachability analysis is cycle detection. Cycles of edges of certain

types can be indicative of a modelling problem. In class diagrams, for example, inheri-

tance can never be cyclic. For an (edge) type α, the following RML statement creates a
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relation OnCycleα(x) that holds for all nodes x residing on a cycle of α-edges:

OnCycleα(x) := Reachableα(x, x);

Reachability is also used for detecting path redundancies. For example, if we have

three classes A, B, C, such that C extends B and B extends A, it would be redundant to

have an extends edge from C to A because this is already implied by the path C→B→A.

Existence of multiple paths of edges of the same type between two nodes can be captured

by RedundantPathsα(x, y) defined as follows:

ReachViaα(x, z, y) := (Reachableα(x, z) | (z = x)) &

Reachableα(z, y) ;

DistinctPathEndsα(x, y) := EX(v, EX(z, ReachViaα(x, v, y) &

ReachViaα(x, z, y) & Eα(z, y) &

Eα(v, y) & !(z = v)));

RedundantPathsα(x, y) := EX(z, (ReachViaα(x, z, y) | (y = z)) &

DistinctPathEndsα(x, z)) | ParallelEdgesα(x, y);

ReachViaα(x, z, y) holds iff there is a path (of length ≥ 1) from x to y passing through

z. DistinctPathEndsα(x, y) holds iff there are paths from x to y whose final edges (to y) are

different. And, RedundantPathsα(x, y) holds iff there are distinct paths or parallel edges

from x to y.

As evidenced by Table 5.1, expressions involving variants of reachability are very

common. In particular, C2, C5, and G5 require checking reachability in its general

form; C4, G1, and G3 require checking cyclicity; and C7 requires checking redundancy.
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5.4.3 Instrumentation of Consistency Constraints

To obtain useful diagnostics from the relational interpreter, we instrument each consis-

tency constraint with appropriate messages. The details of instrumentation depend on

the nature of the consistency constraint in question and the kinds of feedback users are

interested in. We provide two examples below:

Example I: Multiple Inheritance. To facilitate exploration of multiple inheritance

violations, it is very helpful to include in the feedback the set of parents (i.e., super-

classes) of every offending class. To do so, we instrument SourceMultiplicity01
extends(x), defined

in Section 5.4.2, as follows:

1: FOR n IN !SourceMultiplicity01
extends(x) {

2: PRINT n, ” violates single inheritance”, ENDL;

3: Parent(y) := EX(e, Source(e,n) & Target(e,y) & Type(e, ”extends”));

4: PRINT [” Parent: ”] Parent(y);

5: }

Assuming that we already computed the relation SourceMultiplicity01
extends(x), the above

code does the following: For every class n with multiple parents, it outputs n (line 2). It

then computes the set of n’s parents (line 3), and outputs the set (line 4).

If we execute the above code over the model in Figure 5.11, the resulting feedback is

going to be as follows:

B violates single inheritance

Parent: A

Parent: C

This transcript, in addition to identifying B as an inconsistent element, provides

context information about the inconsistency. Hence, we can immediately know that it is

the relationship of B with A and C that causes B to fail the check.



Chapter 5. Consistency Checking via Model Merging 147

Example II: Cyclic Inheritance. When exploring cyclic inheritance violations, we

are interested not only in the individual offending classes, but also in the cyclic paths over

which these classes appear. To report the cyclic paths in the feedback, we instrument

OnCycleextends(x), defined in Section 5.4.2, as follows:

1: FOR n IN OnCycleextends(x) {

2: PRINT n, ” is on a cycle (”;

3: R(x,y) := EX(e, Source(e, x) & Target(e, y) & Type(e, ”extends”));

4: Current(x) := (x = n);

5: WHILE (!(Current(z) & Inherits(z, n))) {

6: Passes(x, y, u) := TC(R(x, y)) & TC(R(y, u));

7: Admissible(x) := EX(z, Current(z) & R(z, x) & Passes (z, x, n));

8: Previous(x) := Current(x);

9: Current(x) := Admissible(x) & FA(y, Admissible(y) –> (x <= y));

10: PRINT Current(x), ”→”;

11: R(x,y) := !Previous(x) & !Current(y) & R(x,y);

12: }

13: PRINT ”self)”, ENDL;

14: }

In the above code, we iterate over the classes in OnCycleextends and print a cycle for

each. Specifically, for every n ∈ OnCycleextends, we compute a set Admissible of n’s successors

that have a path back to n (line 7). We choose an arbitrary element from Admissible (line

9) – in our code, the element with the smallest (lexicographic) value. After printing this

successor (line 10), the process continues recursively, having removed from the inheritance

relation the edge from n to the printed successor (line 11). The process ends when a full

cycle has been printed.
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Executing the above code over the model in Figure 5.11 results in the following output:

B is on a cycle (C → E → self)

C is on a cycle (E → B → self)

E is on a cycle (B → C → self)

Note that in the instrumentation code for cyclic inheritance, we ignored symmetries

between inconsistencies. Therefore, the diagnostics include distinct errors for the same

cycle in Figure 5.11.

5.5 Consistency Checking of Distributed Models

In this section, we generalize the platform developed in Section 5.4 to distributed models.

A common approach for extending consistency checks to distributed models is to write

consistency rules for the mappings between models, e.g., (Easterbrook & Nuseibeh, 1996;

Nentwich et al., 2003). For example, if we have a mapping R that equates elements of

two models M1 and M2, we may wish to check that the mapping does not introduce

cycles. This can be achieved by checking that each model individually is acyclic, and

writing a new rule to check the mapping:

MCycleα(x,y) := R(x, y) & EX(z, EX(t, R(z, t) &

Reachableα(x, z) & Reachableα(t, y)));

If we apply this rule to M1 and M2, the relation MCycleα holds for all pairs (x,y) of

mapped elements that give rise to a cycle across the two models3.

This pairwise approach is cumbersome for several reasons. First, it requires many new

consistency rules: each existing consistency constraint (for a single model) may need to

3Formally, MCycleα is applied to the disjoint union of M1 and M2.
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Figure 5.9: Overview of our consistency checking approach

be re-written to take into account each type of mapping that can hold between models. It

also introduces an undesirable coupling between consistency rules and model mappings.

Consistency rules refer to the possible mappings between models, and model mappings

must be checked for their impact on the consistency rules.

Second, this approach does not easily generalize beyond pairwise checking. This is

because global consistency rules must consider the interactions between different map-

pings in the system. For example, a global rule to check for cyclic inheritance in a system

such as that of Figure 5.2 would need to refer to all of the mappings between the models

in the scope of a single rule. This makes the specification of global consistency rules very

complex.

We present an alternative approach that does not suffer from these problems. An

overview of our approach is shown in Figure 5.9. Given a set of models and mappings,

we begin by constructing a merged model as described in Chapter 4. This model is

translated into a set of relational predicates using the algorithm in Figure 5.5. The

result, along with the consistency rules of interest, is sent to a relational interpreter for
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consistency checking and producing diagnostics for any inconsistencies found. Users can

then explore these diagnostics and project them back to the source models and mappings

by utilizing the traceability data produced during the merge operation.

To illustrate our approach, consider the example system of models in Figure 5.10.

Figure 5.11 shows the merge computed for the system using the merge operator developed

in Chapter 4. The traceability information for the classes in the merge is shown in

Figure 5.12. Similar traceability information is stored for the inheritance links (not

shown). Evaluating the merge against the instrumented constraints of Section 5.4.3

yields two inconsistencies: (1) B has two superclasses; (2) B, C, E form a cycle. We

already saw the generated diagnostics in Section 5.4.3. Navigation from these diagnostics

to the source models and mappings is made possible by hyperlinking the diagnostics to

the traceability data associated with the elements of the merge.

For example, Figure 5.13 depicts a hyperlinked version of the multiple inheritance

diagnostics in Section 5.4.3. Navigating a link in the diagnostics retrieves the traceability

data (projections) for the element in question. Figure 5.13 shows the projections for class

A of the merge. Like the diagnostics, projections are in a hyperlinked format, allowing

one to navigate to the source models and mappings involved in the inconsistencies.

Note that the projections include all available information about the origins of the

selected element. This information may not be minimal, i.e., not all models and map-

pings appearing in the projections are necessarily responsible for the occurrence of the

inconsistency in question. For example, model M4 and mappings R3, R4 do not play a

role in the violation of single inheritance – the violation would occur even if we removed

M4, R3, and R4 from the system in Figure 5.10. However, as shown in Figure 5.13, M4

and R3 appear in the projections for A.

For a simple system like the one in Figure 5.10, it may be reasonable to repeat the

merge with different subsets of M1, . . . ,M4 and R1, . . . , R4, and identify the minimal

subsystem that can produce a particular violation. This is, however, exponential in
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Diagnostics Projections
B violates single inheritance
      Parent: A
      Parent: C

Elements:

  A(M1)
  A(M4)
Mappings:

  R3:A(M4)→A(M1)

☚

Figure 5.13: Hyperlinking diagnostics to traceability data

the number of models and mappings in the system, and hence not scalable to large

systems. Scalable solutions may be found for certain constraints and certain patterns of

interconnecting the models, but we have not explored this in our work yet.

On the other hand, filtering out information that is seemingly irrelevant to the oc-

currence of an inconsistency may not be always desirable. For example, although model

M4 and mapping R3 are not responsible for the violation of single inheritance, they may

still be involved in a resolution of the problem. For example, a possible resolution is to

create a new mapping between M4 and M3 and unify A and C. Deducing this resolution

needs the knowledge that R3 unifies A in M4 and A in M1, and filtering out M4 and R3

from the diagnostics would effectively eliminate this alternative.

5.6 Preservation of Logical Properties

An interesting question that arises in global consistency checking is whether any of the

logical properties of a set of models carry over to their merge. More specifically, given a

set of models and a property ϕ, can we state anything about the satisfaction of ϕ over

the merge of the models, provided that some (or all) of the original models satisfy ϕ?

We already know that some interesting properties do not carry over – in fact, this is

the main reason why we need global consistency checking in the first place. For example,

all the models in the systems of Figures 5.2 and 5.10 are acyclic, whereas the merges

computed for both systems turn out to be cyclic. For another example, all the models in
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5.10 satisfy the single inheritance property, but this property is violated by the merge.

Despite the above, some properties of the source models are indeed preserved across

merge. For example, we know from Section 4.4.3 that merges are always well-typed,

meaning that a merge satisfies all the compatibility properties (i.e., properties similar

to C1 in Table 5.1) that the source models satisfy. Since type preservation is explicitly

guaranteed by the algebraic definition of our merge operator, there is no need for a logic-

based machinery to reason about it. However, the algebraic definition of merge, by itself,

does not provide mechanisms for reasoning about more advanced logical properties.

In this section, we report on some preliminary results that allow us to establish a

connection between the algebraic and logical characteristics of our framework. We use

these results to reason about preservation of consistency constraints.

Like in the earlier parts of this chapter, we assume classical semantics for logical

properties. In particular, this means that property satisfaction is independent of the

belief annotations introduced in Chapter 4. Our preservation results can be used for

annotated models if the annotations are treated as recipes for either keeping or filtering

elements from the source models. For example, if the annotations are drawn from the

lattice in Figure 4.12, we may want to filter out elements marked refuted (8). Our

arguments are valid as long as the source models remain graphs after filtering.

Alternatively, one can use non-classical semantics for evaluating properties in the

presence of the annotations (Gurfinkel, 2007). For example, in (Nejati et al., 2007),

we use a form of three-valued semantics to reason about preservation of behavioural

properties when multiple variants in a product family are merged. Generalizing these

existing non-classical results from temporal logics to the more expressive logics used in

this thesis has not been attempted here and is left for future work. The key challenge in

this regard is to provide a logical characterization of how belief annotations evolve across

mappings. This evolution cannot be expressed using classical homomorphism mappings.
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5.6.1 General Results

Recall from Chapter 4 that we characterize the merge operation using graph colimits.

As we explained in Section 4.3, a colimit-based merge offers three key features:

F1 Merge yields a family of mappings, in our case graph homomorphisms, one from

each source model onto the the merged model.

F2 The merged model does not contain any unmapped elements, i.e., every element in

the merged model is the image of some element in the source models.

F3 Merge respects the mappings in the source system, i.e., the image of each element in

the merged model remains the same, no matter which path through the mappings

in the source system one follows.

From F1 and Lemma 3.103 (in Chapter 3), it follows that graph colimits preserve

the existential positive fragment of transitive closure logic, and more generally, that of

least fixpoint logic (LFP).

Theorem 5.1 If an existential positive LFP formula ϕ is satisfied by some source model

M , any merge in which M participates will satisfy ϕ as well.

By F2 and the above theorem, we obtain the following result regarding preservation

of universal properties.

Theorem 5.2 Let ϕ(x) be an existential positive LFP formula with a free variable x. If

the formula ψ = ∀xϕ(x) is satisfied by all the source models, ψ will be satisfied by any

merge of the models as well.

Notice that Theorem 5.2 allows the introduction of only one universal quantifier. To

gain intuition on what happens when additional universal quantifiers are introduced,

consider the system in Figure 5.14(a) and let the relation E(x, y) denote the graph

edge relation. Both models in Figure 5.14(a) are complete graphs and hence satisfy the
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Figure 5.14: Illustration for violation of universal properties

property ∀x ∀y Node(x) ∧ Node(y) ⇒ E(x, y) 4. However, the property is violated over

the resulting merge shown in Figure 5.14(b), because there is no edge from node a to

node d and vice versa. The general observation here is that, when there is more than

one universal quantifier, universally quantified variables can be assigned values from non-

shared parts of different source models. In such a case, property satisfaction over the

individual source models may not extend to the merge.

Currently, we do not know whether F3 leads to further property preservation results.

Also, it may be possible to trade off development flexibility in favour of a broader class

of preserved properties, e.g., by using more constrained mappings for relating models, or

by placing restrictions on the patterns used for interconnecting the models. We leave an

elaboration of these topics to future investigations.

5.6.2 Preservation of Consistency

Below, we employ the results of Section 5.6.1 to reason about preservation of consistency.

Compatibility Properties. Although preservation of compatibility properties is al-

ready established through algebraic means, it is interesting to see if the same can be

4The property uses implication and hence has negation. But the negation can be resolved, because
every element in the universe that is not a node is an edge. Therefore, the property is equivalent to
∀x∀y Edge(x) ∨ Edge(y) ∨ E(x, y).
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done through logical means. For example, consider C1 in Table 5.1, and remember from

Section 5.4.2 that Compatibleclass,interface(e) can be written as an existential positive

property. The sub-formula Type(e, ”implements”) of C1 appears in negated form, but the

negation can be resolved, knowing that (1) the set of types is fixed and, (2) every element

has a type. More precisely, if the set of types is {t1, . . . , tn}, the formula ¬Type(e, t`) can

be replaced with
∨

i6=` Type(e, ti). Hence, by Theorem 5.2, C1 is preserved.

Multiplicity Properties. One can show through simple counter-examples that none

of the following lift from the source models to the merge:

• There exists at least c elements satisfying ϕ.

• There exists exactly c elements satisfying ϕ.

• There exists at most c elements satisfying ϕ.

It is easy to see why the “exactly” and “at most” cases do not get preserved, noting

that the merge normally has more information than any of the source models. To under-

stand why the “at least” case is not preserved, note that homomorphisms (and functions

as well) are not necessarily one-to-one, and can therefore shrink the number of elements

satisfying a property. For example, consider the system of models in Figure 5.15(a) and

its merge in Figure 5.15(b). For simplicity, the models are discrete graphs, i.e., sets, and

their mappings are functions. Although M1,M2,M3 all satisfy the property “there exists

at least three (distinct) nodes”, the merge has only two nodes, hence violating the prop-

erty. It is important to mention that the flexibility to fuse together multiple elements

of the same source model is not an undesirable feature and is indeed valuable when one

needs to perform an abstraction during merge (Kalfoglou & Schorlemmer, 2005).

Reachability Properties. An interesting consequence of Lemma 3.103 is preservation

of paths, i.e., the expression Reachableα(x, y) defined in Section 5.4.2. To see how this
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Figure 5.15: Illustration for violation of multiplicity properties

can be used for reasoning about consistency, consider C2 in Table 5.1. Using the argu-

ment we gave when discussing preservation of compatibility properties, we know that the

negation of Type(c1, ”class”) can be resolved. Further ¬Abstract(c1) can be replaced with a

positive property, say Concrete(c1). It now follows from Theorem 5.2 that C2 is preserved.

Similarly, it is easy to check that C5 in Table 5.2 is preserved as well.

5.7 Evaluation

In this section, we provide initial evidence for the feasibility and usefulness of our con-

sistency checking framework.

5.7.1 Tool Support

We have implemented our approach into a prototype tool, TReMer+ (see Chapter 6).

The tool allows users to verify a system of interrelated models against a given set of

consistency rules using the process shown in Figure 5.9. Consistency rules are evaluated

by the CrocoPat relational interpreter (Beyer et al., 2005).
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# elements (nodes + edges)

500 1,000 5,000 10,000

Dangling Edges < 1 sec < 1 sec 5 sec 10 sec

Parallel Edges < 1 sec 1 sec 15 sec 57 sec

Type Violations < 1 sec < 1 sec 4 sec 11 sec

Multiple Inheritance < 1 sec < 1 sec 7 sec 24 sec

C
o
n
si

st
e
n
cy

R
u
le

Cyclic Inheritance 1 sec 3 sec 1 min 6 sec 4 min 48 sec

Table 5.2: Consistency checking running times

5.7.2 Computational Scalability

To validate computational scalability, we need to ensure that both model merging and

(intra-model) consistency checking are scalable. The complexity of our merge algorithm is

linear in the size of the input models and mappings (see Section 4.7.1). This is dominated

by the complexity of consistency checking for most interesting consistency constraints.

To ensure that our approach scales in practice, we used CrocoPat for checking some

representative consistency rules over UML domain models with 500 to 10,000 elements.

These were structurally realistic models assembled from smaller real-world models. We

introduced inconsistencies of various kinds into these models so that about 10% of the

elements in each model appeared in the results of inconsistency analysis. Table 5.2

shows the running times for a number of checks on a Linux PC with a 2.8 GHz Pentium

CPU and 1 GB of memory. The reported times include finding the inconsistencies and

generating proper diagnostics for them. The results indicate that the method is scalable

to handle realistically large modelling problems.

5.7.3 Case Study

We motivated our work in this chapter by two main improvements it brings to distributed

development: (1) Eliminating the need to have separate rules for checking consistency of
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models and consistency of mappings; and (2) Generalization from pairwise consistency

checking to global consistency checking where the interactions between different mappings

in the system are also considered.

Writing consistency rules is usually a laborious task; hence, the first improvement

increases productivity by requiring the development of just a single rule for each con-

sistency constraint. To evaluate the practical utility of the second improvement, we

conducted an exploratory study using our tool TReMer+. The study was aimed at in-

vestigating how global consistency checking could facilitate the analysis of relationships

between distributed models. We based our study on models developed by students as

an assignment in a recent offering of a senior undergraduate course on object-oriented

analysis and design. To ensure privacy, these models were anonymized by a third party

prior to our study.

The assignment had the students write a UML domain model for a hospital based

on a short and intentionally ambiguous textual description. This description is provided

in Appendix A. We studied five models developed independently by five individual

students. These models, shown in Figures A.1–A.5 (of Appendix A), are roughly equal

in size, each with 60 to 70 elements; however, there are remarkable discrepancies in the

way the models are structured. Other studies suggest that such discrepancies are very

common when models are developed independently (Svetinovic et al., 2005; Easterbrook

et al., 2005).

The main goals of our study were: (1) to construct a coherent set of mappings to

express the overlaps between the studied models; and (2) to systematically explore how

these models differed from one another. To achieve these, we began by hypothesizing a

set of preliminary mappings between the models, shown in Figure 5.16.

In addition to the source models, M1–M5, the system in Figure 5.16 includes a

model named Helper1. This model is used for bridging missing information between the

source models. For example, to capture patients’ visits to the hospital, all models except
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Figure 5.16: Hypothesizing the mappings between the source models

M1 envisage two domain concepts, InpatientVisitRecord and OutpatientVisitRecord, whereas

model M1 envisages only one concept, PatientVisitRecord. To describe the relationships

between these concepts, we include in Helper1 a model fragment like the one shown

in Figure 5.17, stating that InpatientVisitRecord and OutpatientVisitRecord are subclasses of

PatientVisitRecord. We then map PatientVisitRecord in Helper1 to the corresponding concept

in M1 (through the mapping MapH1M1), and similarly map InpatientVisitRecord and

OutpatientVisitRecord in Helper1 to the corresponding concepts in M2–M5.
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Figure 5.17: Describing missing information using helper models

Further, note that we did not have to state all pairwise mappings in the system of

Figure 5.16, because the mappings are transitive. For example, equating Technician in M1

and Technician in M2 (through Map12), and equating Technician in M1 and TechnicalStaff in

M3 (through Map13), automatically equates Technician in M2 and TechnicalStaff in M3.

After specifying the preliminary mappings between the models, we employed global

consistency checking as a way to discover anomalies in these mappings, and later to

investigate the differences between the models with respect to the mappings between

them. Below, we describe our findings and highlight the advantages of global consistency

checking.

First, we automatically constructed a merge based on the preliminary mappings de-

fined between the models. The merge is shown in Figure A.6 (of Appendix A). Con-

sistency checking of this merge revealed several potential anomalies. In particular, the

merge had 3 sets of identically-named concepts and 8 sets of parallel links (edges). All of

these anomalies were due to the unstated overlaps between the models, which manifested

themselves as duplicate elements in the merge. Note that, although not observed in our

study, the anomalies could have had other causes. For example, some identically-named

concepts could have been homonyms, and some parallel links could in fact have been

necessary to distinguish between the different link roles.
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Figure 5.18: Alternative ways of building associations between concept pairs

The generated inconsistency diagnostics along with the traceability data stored for

the merge allowed us to quickly identify the origins of duplicate elements and unify them

by defining new correspondences. If we wanted to do this by pairwise checking of the

five source models, we would have needed to check (5 ∗ 4)/2 = 10 individual mappings

between model pairs. Constructing a merge and checking global consistency made it

possible to perform this task in a single shot. Further, as we mentioned earlier, for global

consistency checking, we do not even have to state all mappings between model pairs,

because merge automatically accounts for the transitive nature of the mappings.

After refining the preliminary mappings with the newly discovered correspondences,

we concentrated on analyzing structural discrepancies between the source models. These

discrepancies were primarily due to the use of competing alternatives for capturing the

relationships between the concepts in the domain. For example, to relate the StaffMember

and Schedule concepts, one could choose among several alternatives, e.g., (1) an unlabelled

undirected association, (2) a labelled directed association either saying “StaffMember has

a Schedule” or “Schedule belongs to StaffMember”, and (3) a composition link expressing a

containment relation between StaffMember and Schedule.

Model merging provided a convenient way to bring together and visualize the alter-

natives used in different models for relating concept pairs. As an example, Figure 5.18

shows the relevant fragment of the merge for the StaffMember–Schedule pair.

To detect and enumerate alternative choices for relating concept pairs, we developed

a variant of the parallel edges rule (see Section 5.4.2), which ignored link types and
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directionality. Checking the merged model against this rule yielded 19 groups of links.

Each group captured the set of alternatives proposed in different models for relating

two specific concepts. The groups referenced a total of 70 links in the source models.

Being able to simultaneously view all proposed alternatives for relating two concepts is

crucial for resolving conflicts and building consensus between the source models. Pairwise

checking would have allowed us to deal with only two alternatives at a time.

Finally, we re-examined the source models to apply the knowledge gained from our

analysis, by marking ill-conceived elements that needed to be filtered out. At this step,

global consistency checking provided us with quick feedback on the impact of removing

an element from one model on other models. For example, if we marked concepts Inpatient

and Outpatient in M1 for filtering, we could automatically check all other models which

envisage these concepts, to verify that no (non-deleted) links were incident to these

concepts. Such links would become anomalous as soon as the Inpatient and Outpatient

concepts were actually deleted from M1. Employing pairwise checking for performing

such sanity checks after a change can be costly or even ineffective when more complex

sanity criteria are involved.

In summary, constructing merged models and checking global consistency allowed us

to do various types of analysis that would be either expensive or impossible to do by

pairwise checking. The traceability information generated during the merge operation

made it possible to project inconsistencies back to the originating models and mappings,

and take steps to resolve them. Since our merge process is fully automatic, we did not

incur overhead costs for generalizing from pairwise to global consistency checking.

5.8 Related Work

Generic constraint expressions. Developing generic expressions for describing cor-

rectness properties of models is not a new idea. For example, (Dwyer et al., 1999; Konrad
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& Cheng, 2005) provide templates for capturing temporal properties of systems. How-

ever, these templates are specifically for behavioural models, and are inapplicable to

non-behavioural ones such as class diagrams. The closest work to ours is that of (Wahler

et al., 2006), which describes a set of constraint patterns for UML models. However, this

work lacks generality and only considers the family of UML notations. In contrast, our

work applies to a wider class of notations including those for goal and entity-relationship

models.

Consistency checking. As we saw in Chapter 2, consistency checking of distributed

models is a well-studied topic in requirements engineering. In this domain, the term

“inconsistency” usually refers to a situation where a pair of models do not obey a re-

lationship that should hold between them (Nuseibeh et al., 1994). This definition is

restrictive in that it makes inconsistency a pairwise notion; however, it has the advan-

tage of being easily applicable to heterogeneous models. Our work, in contrast, treats

inconsistency as a global notion, but its scope is currently limited to homogeneous models

only.

Early approaches to consistency checking of viewpoints use standard first order logic

for writing consistency rules (Easterbrook & Nuseibeh, 1996). The expressiveness of

these approaches is limited because first order logic cannot capture reachability. Recent

work on consistency checking of viewpoints addresses these limitations by using more

expressive logics. For example, xlinkit (Nentwich et al., 2003) employs first order logic

augmented with a transitive closure operator for describing consistency rules. Similarly,

(Paige et al., 2007) explores the use of theorem proving and object-oriented programming

to provide a rich platform for constraint specification. These approaches indeed offer

sufficient expressive power to cover a wide range of consistency constraints; however,

they do not address the key problem tackled in our work, which is consistency checking

of arbitrary systems of models and mappings.
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The idea of consistency checking via merge was first explored in prior work by East-

erbrook and Chechik (Easterbrook & Chechik, 2001). The work uses temporal logic

model checking to reason about behavioural properties of state machine models when

they are merged. This earlier work considers only binary merges, and further, is inappli-

cable to structural models, because temporal logic cannot capture important structural

constraints such as multiplicities (Libkin, 2004). Other consistency checking approaches

based on temporal logic suffer from similar expressive power limitations if applied to

structural models.

Several consistency checking approaches work by consolidating different modellers’

descriptions into a unified knowledge-base and checking its overall consistency. For ex-

ample, (Gervasi & Zowghi, 2005) translates textual requirements into a knowledge-base

of logical statements and finds inconsistencies by applying theorem proving and model

checking. These approaches can reason about global consistency; however, to build a

unified knowledge-base, they assume that modellers have already agreed on a unified

vocabulary. We do not make this assumption in our work and use explicit mappings to

capture the relationships between the vocabularies of different models. This makes it

possible to hypothesize alternative relationships between these vocabularies and explore

how each alternative affects global consistency properties.

There is a large body of research specifically dealing with consistency in UML. For

UML models, consistency rules are usually described in the Object Constraint Language

(OCL) (Object Constraint Language, 2003). Several tools exist for checking UML mod-

els against OCL expressions, e.g., the Dresden OCL toolkit (Hussmann et al., 2002).

Despite their merits, these tools are not suited to requirements modelling because of

OCL’s strong orientation towards the design and implementation stages (Vaziri & Jack-

son, 1999). Instead, we used a highly expressive and domain-independent language for

specifying consistency rules. This makes our framework adaptable to a variety of mod-

elling notations, including those used in requirements engineering.



Chapter 5. Consistency Checking via Model Merging 166

5.9 Summary and Future Work

We presented an approach for consistency checking of distributed models. The approach

enables detecting global inconsistencies that would not otherwise be identified if we only

checked the consistency of individual models and individual mappings between them.

Our approach can reduce any multi-model consistency checking problem to a single-

model consistency checking problem via model merging. Hence, it requires developing

only a single rule for each consistency constraint – the rule applies no matter how many

models are involved and how they are related to one another.

To simplify the specification of consistency rules, we have developed a set of generic

expressions for characterizing recurrent patterns in structural constraints of conceptual

models. We demonstrated the usefulness of our expressions for specifying the constraints

of class and entity-relationship diagrams, and goal models.

Our work has a number of shortcomings that we plan to address in the future. Par-

ticularly, the work currently applies to homogeneous models only. Extending the work

to heterogeneous models poses a challenge because this would involve merging models

represented in different notations. It is possible to merge a set of heterogeneous models

by translating them into a single notation first, but such a translation discards the struc-

tural and visual properties of the models. As a result, merges might no longer be an ideal

context for exploration of inconsistencies. One possible way to address this problem is

to develop techniques that allow users to directly explore inconsistencies over the source

models and mappings. These techniques can still utilize merge for automated analysis,

but the feedback provided to users should be interpretable independently of the merge.

Our approach would also benefit from a model slicing operator, so that we can extract

a desired aspect of a set of models based on a given criterion. In particular, when the

source models are large, we may want to hide the complete merge from the user and,

at any given time, only show the slice that is relevant to the inconsistency instance

being explored. Alternatively, we may want to compute slices of the source models
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before constructing a merge. For example, to find cyclic inheritance violations in class

diagrams, we only need the class objects and their inheritance links; therefore, we can

filter out all the attributes, methods, dependencies, associations, etc. from the source

models before merging them.

Finally, we need to further study the usefulness of our approach by conducting user

trials and observing how users employ global consistency checking for exploring systems

of interrelated models.



Chapter 6

Tool Support

In this chapter, we describe a tool, TReMer+, that implements the model merging and

consistency checking approaches discussed in Chapters 4 and 5, respectively.

About the tool. The initial version of our tool was named iVuBlender (Sabetzadeh &

Easterbrook, 2005a). This early version only supported the merge approach in Chapter 4.

In a later iteration, reported in (Sabetzadeh & Nejati, 2006; Sabetzadeh et al., 2007b),

iVuBlender was redesigned so that the merge process was no longer coupled with a partic-

ular merge algorithm. The tool was then extended with the behavioural merge operator

in (Nejati et al., 2007), and its name was changed to TReMer, which stands for Tool

for Relationship-Driven Model Merging. In a third iteration, reported in (Sabetzadeh

et al., 2008), TReMer was extended with the consistency checking approach described in

Chapter 5, and the tool’s name was suffixed by a +, giving the tool its current name.

6.1 Tool Overview

In this section, we discuss TReMer+’s implementation and methodology of use.

168
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Figure 6.1: Architecture of TReMer+

6.1.1 Implementation

The overall architecture of TReMer+ is shown in Figure 6.1. The main building blocks

of the tool are:

User Interface. TReMer+ provides a visual user interface for editting models, building

relationships between models, and defining systems of interrelated models. The user

interface further enables navigation of inconsistency diagnostics and traceability

links. TReMer+ currently supports entity-relationship diagrams, state machines,

and simple UML domain models. In the future, we plan to extend the tool to

support other notations, such as goal models and detailed class diagrams.

Merge Library. TReMer+ defines a plugin interface for the merge operation and can

work with any merge algorithm that realizes this interface. Currently, we provide

implementations for two merge algorithms: one is the algorithm in Chapter 4, and

the other – the behavioural merge algorithm in (Nejati et al., 2007). In this chapter,

we illustrate only the former algorithm. For a detailed treatment and illustrations

of the latter, see (Nejati, 2008).
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Traceability Link Generator. TReMer+ provides generic primitives for establishing

traceability between merged models and their sources. The traceability links for

a merged model are stored in an XML document. This document is rendered as

hypertext by the user interface for easier navigation.

Consistency Checking Interface. As we explained in Chapter 5, TReMer+ does not

implement a consistency checking engine of its own. Instead, it uses an external

relational manipulation tool, CrocoPat (Beyer et al., 2005), for verification of con-

sistency properties. To interact with CrocoPat, TReMer+ implements an interface

responsible for (1) translating graphical models into CrocoPat’s predicate language;

(2) invoking CrocoPat with a user-selected set of consistency rules; and (3) commu-

nicating the inconsistency diagnostics generated by CrocoPat to the user interface

for presentation to the user.

Consistency Rule Sets. TReMer+ has rules for checking well-formedness of entity-

relationship diagrams, UML domain models, and state machines. These rules are

specified in an XML file which can be easily modified or extended by end-users. To

simplify the specification of consistency rules, TReMer+ provides a set of generic

expressions capturing common patterns in the structural constraints of graph-based

models. We discussed these expressions in Chapter 5.

TReMer+ is written in Java. It is roughly 15K lines of code, of which 8.5K implement

the user interface, 5.5K implement the tool’s core functions (model merging, traceabil-

ity, and serialization), and 1K implement the interface for interacting with CrocoPat.

The tool uses JGraph (http://www.jgraph.com/) for editting and visualizing models,

and EPS Graphics2D (http://www.jibble.org/epsgraphics/) for exporting models to

PostScript vector graphics. TReMer+ was publicly released in May 2007. The tool is

freely available at http://www.cs.toronto.edu/∼mehrdad/tremer/
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Define initial system 
of models
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(see Chapter 4)
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(see Chapter 5)
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* Define new models / relationships
* Revise existing system of models
* Define new system of models

Figure 6.2: Methodology of use of TReMer+

6.1.2 Methodology of Use

Figure 6.2 shows the general methodology of use for TReMer+. We start by defining

an initial system of models and then compute the merge of the system. The resulting

merge is subjected to various types of exploratory analysis. For example, the merge may

be used for manual inspection, or for automatic consistency checking. These analyses

often trigger a round of elaboration, where the existing models and relationships are

refined and, if necessary, additional models and relationships are introduced to account for

any newly discovered aspects of the problem. The interconnection diagram representing

the existing system is then revised, or alternatively, a new interconnection diagram is

defined, to reflect the elaboration results. After this, we may initiate a new iteration by

recomputing the merge and following the subsequent activities.
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6.2 Illustrative Applications

In this section, we provide two illustrative use cases for TReMer+: The first use case

concerns brainstorming and inspection, and the second – consistency checking.

6.2.1 Brainstorming and Inspection

One of the motivating examples in Chapter 4 was the collaborative development of a

database schema (Section 4.5.3). The example showed how merged models can be used

for brainstorming and manual inspection. Below, we describe how TReMer+ supports

the activities in that motivating example.

Figure 6.3 shows screenshots of the initial models elicited from the stakeholders,

Mary and Bob. To describe the relationships between these models, we define a system

of models through the interconnection diagram in Figure 6.4. In this interconnection

diagram, we declare that we want to relate Mary’s and Bob’s models through a connector

model, Connector1, and two mappings C1-To-Mary and C1-To-Bob. Here, the

connector model captures the overlaps between the two source models and the mappings

capture how these overlaps are represented in each of the two models.

TReMer+ provides a convenient way for describing mappings. For this purpose,

model pairs are shown side-by-side. A correspondence is established by first clicking an

element of the model in the left pane and then an element of the model in the right

pane. Figure 6.5 illustrates this for the mapping C1-To-Bob. To show the desired

correspondences, we have added to the screenshot a set of dotted lines indicating the

related elements.

After creating the connector model and establishing mappings from it to the source

models, we proceed to construct the merge. The result is shown in Figure 6.6. To

ensure that the merge is laid out properly, TReMer+ provides a set of automatic layout
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Figure 6.3: Stakeholders’ models in the brainstorming and inspection example

Figure 6.4: Interconnection diagram for relating the stakeholders’ models
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Figure 6.5: Screenshot of the user interface for building mappings

Figure 6.6: Automatically computed merge for the diagram in Figure 6.4
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Figure 6.7: The Clone and Evolve feature in TReMer+

algorithms1. During the merge process, the tool prompts the user to choose a layout

algorithm, and applies the chosen algorithm to the result before displaying it. Currently,

TReMer+ cannot preserve the layout of the source models, and ignores all their visual

cues during merge. This is a usability issue that we plan to address in the future.

The merge in Figure 6.6 is then manually inspected by the stakeholders. As per the

scenario in Chapter 4, Mary (1) deems the employed by relationship redundant, (2) renames

Company to Corporation, and (3) adds an aggregation link from Corporation to Department. To

reflect these changes, we evolve Mary’s original model. To make the evolution process

more convenient, TReMer+ provides a “Clone and Evolve” feature. Given a model M ,

the features creates a clone M ′ of M and further establishes an identity mapping from

M to M ′ so that the relationship between the clone and its ancestor is preserved. We

show in Figure 6.7 how this feature is used to create a clone of Mary’s model.

Figure 6.8 shows Mary’s evolved model, Mary-Evolved, after applying all the de-

sired changes. To represent the belief annotations, we use color coding: The default

color represents proposed (!), blue and magenta respectively represent confirmed (4)

1These algorithms come with the JGraph editting and visualization framework.
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Figure 6.8: Revised perspective of the first stakeholder

and refuted (8), and red represents disputed (�). For example, in the model shown in

Figure 6.8, the employed by relationship as well as the links incident to it are refuted. The

remaining elements are at the proposed level.

We must now state that employed by in Mary’s model indeed corresponds to the ele-

ment with the same name in Bob’s model. To illustrate TReMer+’s ability to establish

direct mappings without introducing connector models (see Section 4.7.3), we declare

this correspondence in a slightly different manner than described in Chapter 4: Instead

of using a connector model, we define a direct (and partial) mapping between Mary-

Evolved and Bob. This mapping is shown in Figure 6.9. The interconnection diagram

after incorporating Mary’s evolved model is shown in Figure 6.10. The merge computed

for this diagram is shown in 6.11.

Finally, we create an evolved version of Bob’s model, again through the Clone and

Evolve feature of the tool. Figure 6.12 shows the new model after applying Bob’s beliefs,

i.e., confirming the employed by relationship (and its incident links). Through this model,
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Figure 6.9: Mapping models without introducing connectors

Figure 6.10: Interconnection diagram after first evolution

Bob expresses his certainty about the correctness of the employed by relationship. The

interconnection diagram incorporating this evolution and the resulting merge are shown

in Figures 6.13 and 6.14, respectively.
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Figure 6.11: Merged model after first evolution

Figure 6.12: Revised perspective of the second stakeholder
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Figure 6.13: Interconnection diagram after second evolution

Figure 6.14: Final merge capturing the revisions of both stakeholders
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As can be seen from Figure 6.14, the employed by relationship (and its incident links)

are displayed in red, meaning that there is a disagreement about the elements. Resolving

the disagreement may require a round of negotiation. But, this can be deferred to later

stages, because the disagreement is clearly labelled as such in the current merge and will

be so represented in any future merge until the disagreement is addressed.

We may now wish to discard the current merge and start over the elaboration cycle,

noting that the goal of merge at such an early stage of development is not to create a

blueprint, but rather to let the stakeholders and developers experiment with possible

alternatives and gain more knowledge about the system being built. The increments

in knowledge were explicitly captured by evolving the source models, and the points of

disagreement can be reproduced whenever desired, by recomputing the merge. Hence,

discarding the current merge does not result in the loss of any conceptual information.

6.2.2 Consistency Checking

In Section 6.2.1, we described how to build systems of interrelated models in TReMer+

and merge them. We now concentrate on the consistency checking and inconsistency

navigation capabilities of TReMer+.

Figure 6.15 shows an overview of the consistency checking use case in TReMer+:

Having defined a system of interrelated models, we begin by merging the system. This

yields a (potentially inconsistent) merged model along with traceability links from it to

the source system. In the next step, we check the consistency of this merged model

against the (intra-model) constraints of interest using CrocoPat (Beyer et al., 2005), and

generate appropriate diagnostics for any violations found. By utilizing the traceability

data for the merge, TReMer+ enables navigation from the diagnostics to the source

models and mappings involved in every inconsistency instance.

To illustrate consistency checking in TReMer+, we use the system in Figure 5.2

(Chapter 5) as the running example. We have provided in Figure 6.16 screenshots of the
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Inconsistency 

Navigation

Source System

Merge

+
<traceinfo model="ex" diagram="Threeway">!
 <element uid="645">!
   <lineage view="Rob" uid="25"/>!
 </element>!
 <element uid="644">!
   <lineage view="Rob" uid="21"/>!
 </element>!
 <element uid="646">!
   <lineage view="Rob" uid="32"/>!
   <lineage view="Connector1" uid="343"/>!
   <lineage view="Sue" uid="12"/>!
   <unifier name="C1-To-Sue" srcuid="343" tgtuid="12"/>!
   <unifier name="C1-To-Rob" srcuid="343" tgtuid="32"/>!
 </element>!
 <element uid="647">!
   <lineage view="Sue" uid="2"/>!
 </element>!
 <element uid="643">!
   <lineage view="Rob" uid="19"/>!
   <lineage view="Connector1" uid="341"/>!
   <lineage view="Sue" uid="6"/>!
   <unifier name="C1-To-Sue" srcuid="341" tgtuid="6"/>!
   <unifier name="C1-To-Rob" srcuid="341" tgtuid="19"/>!
 </element>!
</traceinfo>

Merged Model

CrocoPat

<html>!
  <head>!
    !
  </head>!
  <body>!
    <h2>!
      Diagnostics for <a href="view://merge/none">merge</a>!
    </h2>!
    <em><font color="#FF0000">(note the filters 
applied)</font></em><hr><strong>Objects !
    with multiple parents:</strong>!
!
    <ul>!
      <li>!
        <a 
href="view://merge/258">merge/258</a>&#160;<em><font 
color="#FF00FF">&#160;&#160;(&#160;Parents:&#160;<a 
href="view://merge/257">merge/257</a>&#160;&#160;<a 
href="view://merge/260">merge/260</a>&#160;&#160;)</font></
em>!
      </li>!
    </ul>!
    <hr>!
  </body>!
</html>Traceability

Data Diagnostics

Figure 6.15: Consistency checking with TReMer+.

models and mappings in that system. Note that the mappings were established directly

without using connector models.

The interconnection diagram for the system is shown in Figure 6.17(a), and the re-

sulting merge in Figure 6.20 (for now, ignore the diagnostics). Using interconnection

diagrams in the consistency checking problem offers two advantages: (1) It allows devel-

opers to narrow down the scope of their analysis to a desired subsystem. For example, if

we were interested in pairwise checking of M1 and M2 (with respect to R1), we would use

the interconnection diagram in Figure 6.17(b). (2) The project may include outdated or

competing versions of the models and mappings, in which case one needs to explicitly

choose the versions to be included in the analysis.

Figure 6.18 shows how CrocoPat is invoked by TReMer+. In the first step, the model

to be checked is translated into a set of first order predicates using the translation algo-

rithm in Figure 5.5 (Chapter 5). The result, along with a user-selected set of consistency

rules, is then passed to CrocoPat for consistency checking and generation of diagnostics.

Rule selection is done through the dialog box shown in Figure 6.19.

The diagnostics generated by CrocoPat are presented to the user through TReMer+’s

user interface. Figure 6.20 shows the diagnostics for the merge in our running example.

As can be seen from the figure, the diagnostics refer to model elements through their



Chapter 6. Tool Support 182

R1

R2

R3

M1

M2

M3

Figure 6.16: Models and mappings in the consistency checking example
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(a) (b)
Figure 6.17: Interconnection diagrams for consistency checking

Translation

Model (visual)

CrocoPat

<html>
  <head>
    
  </head>
  <body>
    <h2>
      Diagnostics for <a href="view://merge/none">merge</a>
    </h2>
    <em><font color="#FF0000">(note the filters 
applied)</font></em><hr><strong>Objects 
    with multiple parents:</strong>

    <ul>
      <li>
        <a 
href="view://merge/258">merge/258</a>&#160;<em><font 
color="#FF00FF">&#160;&#160;(&#160;Parents:&#160;<a 
href="view://merge/257">merge/257</a>&#160;&#160;<a 
href="view://merge/260">merge/260</a>&#160;&#160;)</font></
em>
      </li>
    </ul>
    <hr>
  </body>
</html>

<rule domain = "Entity Relationship Diagrams" default="on">
  <short-description>Cyclic inheritance</short-description>
  <long-description>
      Checks for cycles in the generalization hierarchy.
  </long-description>
  <rml>
<![CDATA[
  R(x, y) := Node(x) & Node(y) & EX(e, Head(e, x) & Tail(e, y) & Type(e, 
"Generalization"));
  Cycles(x, y) := TCFAST(R(x, y)) & (x = y);
  OnCycle(x) := Cycles(x, x);

  didPrint := 0;

  PRINT "<strong>Objects on cyclic inheritance paths</strong> (<em>Only one cycle per
object is shown</em>):<br>", ENDL;
  PRINT "<ul>", ENDL;

  FOR t IN Title(v) {
    FOR n IN OnCycle(x) {
      didPrint := 1;
      CurrentR(x,y) := R(x,y);
      z:=n;

      PRINT "<li><a href=''view://", t, "/", n, "''>" , t, "/", n, "</a>&nbsp;",
            "<font color=''#FF00FF''><em>&nbsp;&nbsp;(Cycle:&nbsp;";

      WHILE (!R(z, n)) {
        ReachVia(x, y, u) := TCFAST(CurrentR(x, y)) & TCFAST(CurrentR(y, u));
        T(v) := CurrentR(z, v) & ReachVia(z, v, n);

        FIRST() := TRUE();
        FOR m IN (T(v)) {
          IF (FIRST()) {
            PRINT "<a href=''view://", t, "/", m, "''>" , t, "/", m, "</a>&#8594;";
            next := m;
          }
          FIRST() := FALSE();
        }
        CurrentR(x,y) := (x != z) & (y != next) & CurrentR(x,y);
        z := next;
      }
      PRINT "<a href=''view://", t, "/", n, "''>self</a>)</em></font></li>", ENDL;
    }
  }
  IF (didPrint = 0) {
    PRINT "<font color=''006600''>None</font>", ENDL;
  }
  PRINT "</ul><hr>", ENDL;
]]>
    </rml>
</rule>

Node("256");
Label("256", "Canvas");
Type("256", "Entity");
Certainty("256", "proposed");
Node("257");
Label("257", "Component");
Type("257", "Entity");
Certainty("257", "proposed");
Node("258");
Label("258", "Widget");
Type("258", "Entity");
Certainty("258", "proposed");
Edge("259");
Type("259", "Generalization");
Certainty("259", "proposed");
Src("259", "258");
Tgt("259", "257");
Edge("260");
Type("260", "Generalization");
Certainty("260", "proposed");
Src("260", "257");
Tgt("260", "256");
Edge("261");
Type("261", "Generalization");
Certainty("261", "proposed");
Src("261", "256");
Tgt("261", "258");

Model (relational)

Consistency 
Rules

Diagnostics

Figure 6.18: Invoking CrocoPat

Figure 6.19: Choosing the consistency rules
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Component/UIObject

Container/Container

Canvas/Panel

Figure 6.20: Inconsistency diagnostics

unique identifiers (uids). The results for our example indicate that the inheritance hier-

archy is cyclic. The inconsistency report includes a list of offending classes, and for each

such class, a counterexample path. Currently, we ignore symmetries between inconsis-

tencies; hence, three distinct errors are reported for the same cycle in Figure 6.20.

In the diagnostics, textual references to model elements are hyperlinked to the actual

graphical elements. Typically, inconsistencies are explored in the following way:

1. The user clicks a link in the diagnostics. This causes the corresponding graphical

element in the (merged) model to be highlighted. At the same time, the traceability

data for the clicked element is retrieved and displayed. Figure 6.21 shows the setting

immediately after the user has clicked Merge/47 (i.e., Canvas/Panel) in the diagnostics.
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The traceability data, shown in the projections pane, makes it possible to trace the

element back to its sources, i.e., Canvas in M1, Panel in M2, and the correspondence

between these two elements defined in R1.

2. Using the traceability information (which is also in a hyperlinked format), the user

navigates to the originating models and mappings behind the inconsistencies. For

example, if the user clicks M2/uid:19 in the projections pane of Figure 6.21, she

will be taken to the screen shown at the bottom right of the figure, with the Panel

element highlighted. Similarly, if she clicks R1/(uid:15, uid:19), she will be taken to

the screen at the bottom left, with Canvas and Panel highlighted in the mapping.

This helps the user understand why Canvas and Panel were unified.

TReMer+ further provides traceability at the level of interconnection diagrams, shown

in Figure 6.22. The navigation process is exactly as explained above, with the only

difference being that the data in the projections pane points to the abstract models and

mappings in the interconnection diagram inducing the merge. This is useful when the

user does not want to zoom into the details of the source models and mappings, and

only wants to get a bird’s eye view of the models and mappings involved in a particular

inconsistency instance.

Finally, we note that, similarly to the brainstorming and inspection use case in Sec-

tion 6.2.1, the merge in our consistency checking use case was not intended to be the end

result. Instead, the merge was used for identification and exploration of anomalies in the

source models and mappings.

6.3 Summary and Future Work

We presented a tool, TReMer+, for merging and consistency checking of distributed

models. We provided two illustrative use cases, showing how the tool can be applied in

practice.
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Component/UIObject

Container/Container

Canvas/Panel

Figure 6.21: Inconsistency navigation
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Component/UIObject

Container/Container

Canvas/Panel

Figure 6.22: Traceability at the level of interconnection diagrams
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In the future, we would like to extend TReMer+ with model matching and slicing

operators to support more complex exploratory analyses. Another important area for

future work is to improve the usability of TReMer+ so that it can be used in large-scale

studies.

TReMer+ is part of a broader research effort to build usable model-based development

tools. A complementary aspect is a project aimed at developing a customizable Eclipse-

based platform for model management. A preliminary outline of this project is given

in (Salay et al., 2007).



Chapter 7

Conclusion

To conclude, we summarize our main contributions, describe current limitations, and

provide directions for future work.

7.1 Thesis Summary

After reviewing the conceptual and mathematical background for our work in Chap-

ters 2 and 3, we presented the following contributions:

• In Chapter 4, we developed a framework for merging incomplete and inconsistent

models. We introduced a formalism, called annotated graphs, with a built-in an-

notation scheme for capturing incompleteness and inconsistency. We showed how

structure-preserving mappings can be used to specify the relationships between dis-

parate models expressed as annotated graphs, and provided a general algorithm for

merging arbitrary systems of (interrelated) models. We addressed the problem of

traceability in model merging and described methods for establishing traceability

links between a merged model and the source models and mappings.

• In Chapter 5, we developed an approach for verifying global consistency properties

of systems of models. The approach works by first constructing a merged model

189
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and then verifying this model against the consistency constraints of interest. We

showed how the traceability information generated during merge can be utilized

to project the inconsistencies found over the merged model back to the source

models and mappings. We presented a set of reusable expressions for defining

consistency constraints in conceptual modelling. We illustrated the use of the

developed expressions in the specification of consistency rules for class, entity-

relationship, and goal diagrams. We evaluated our consistency checking approach

using a case study.

• In Chapter 6, we described a tool implementing our merge and consistency checking

techniques and illustrated the tool through simple exemplars.

Throughout the thesis, we emphasized the need to treat model management as a set of

activities over systems of models, rather than over individual models and pairs of models.

We believe that such treatment holds the potential to address many of the exploration

and integration problems that developers face in distributed software projects.

7.2 Limitations

Below, we highlight the important limitations of our work.

Approach Limitations. Our focus in this thesis was on homogeneous models. We

have not attempted to generalize our work to heterogeneous models yet. One could

apply our merge technique to heterogeneous models by translating all the models into a

single notation first, but such a translation discards the structure of the original models

and the visual aspects of the original notations.

Since we use a merged model for exploration of inconsistencies, our consistency check-

ing technique is currently limited to homogeneous models, too. This limitation can be

addressed by augmenting the inconsistency exploration process so that inconsistencies are
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not visualized over the merge but directly over the source models and mappings. This

makes the model merging step transparent to end-users; therefore, having to translate

the models into a single notation before merge will no longer be an issue for consistency

checking.

Tool Support and Evaluation Limitations. The ultimate evaluation of our con-

tributions is whether developers faced with real model management tasks find our work

useful. In particular, we would like to know (1) whether our merge and consistency

checking operators improve time-to-completion of complex modelling activities? and (2)

whether the operators improve the quality of the developed artifacts, e.g., in terms of

understandability, validity, consistency, abstraction, etc?

Providing answers to these questions depends not only on the technical merits of our

operators, but also on the usability of the tool that implements the operators. Our current

tool is a prototype developed primarily to prove feasibility. Despite the considerable effort

we have invested in building tool support, more work is required before our tool is usable

enough for deployment in large-scale projects. The evaluation presented in this thesis

only demonstrated the novel analyses that our operators make possible. We do not yet

have sufficient empirical evidence to determine how these analyses translate into improved

productivity and quality.

7.3 Future Directions

In this section, we outline some of the research threads that we intend to follow in our

future work.

7.3.1 Richer Framework for Exploratory Analysis

One of the shorter-term focuses of our future research is to extend our existing set of

model management operators to support richer exploratory activities. A key aspect of this
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agenda is to provide a semi-automated (interactive) Match operator, so that developers

can seed some of the more obvious relations, and iteratively refine the results by applying

matching and conducting manual inspections. Alternatively, a developer may want to

assess the output of the Match operator through automated analyses, e.g., consistency

checking, to ensure that the matching results lead to meaningful relationships between

the models.

Another interesting topic would be to develop a Slice operator. Such an operator will

be a great aid for exploration by allowing developers to quickly narrow down the scope

of their investigation to the desired aspects of a large model or relationship.

7.3.2 Enhancing Usability

With hindsight, one of the most significant outcomes of our efforts towards building dis-

tributed modelling tools has been to demonstrate how little infrastructure is available

for implementing such tools. The key observation here is that existing modelling plat-

forms, e.g., the Rational Software Architect (IBM Rational Software Architect, 2007), are

primarily aimed at centralized development, where all developers contribute to a single

holistic model. These platforms lack support, particularly in terms of user interface, for

important distributed development activities such as constructing explicit relationships

between models, and defining and navigating systems of interrelated models.

In this thesis, we proposed and prototyped a rich graphical front-end that supports

some of these activities. In the future, we intend to enhance this front-end so that it can be

used by practitioners in production environments. This calls for interdisciplinary research

between software engineering, human-computer interaction, and cognitive psychology,

with the ultimate goal of developing highly usable interfaces for distributed development.
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7.3.3 Formal Semantics for Models

For a long time, models were perceived as peripheral artifacts to programs, and were used

only for documentation purposes. As a result, models were seldom subject to rigorous

analysis and there was little need to formalize their semantics. The perception of the role

of models in software development has changed dramatically in the past few years thanks

to the increasing popularity of model-driven engineering, which promotes models, rather

than programs, as the focus and primary artifacts of development. With this change of

perception has come a growing realization that models need to have formal semantics if

they are to be used as the basis for automated verification, transformation, and testing

of software.

In future research, we would like to study ways to formalize the semantics of models

and leverage the use of models for automated reasoning about safety, security, and relia-

bility of software systems. Our work will focus on domain-specific modelling languages,

i.e., languages created specifically to address problems in a particular domain. Examples

of such languages include SysML (OMG Systems Modeling Language, 2006), a subset

of the UML language tailored to systems engineering applications, and Boxtalk (Zave

& Jackson, 2002), a state machine language customized for building telecommunication

features. While these languages offer less generality than their general-purpose coun-

terparts, they are much more amenable to formalization, and hence provide a lot more

credibility in terms of the results that can be derived from automated analysis of models.

7.3.4 Scalability and Ultra-Large-Scale Systems.

Modelling and analysis techniques that scale well are crucial to the future of software

engineering. It is expected that existing development paradigms will fail beyond certain

scale thresholds (Cheng & Atlee, 2007). A class of systems that defy existing paradigms

are the emerging Ultra-Large-Scale (ULS) systems (Feiler et al., 2006). Examples of ULS
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systems include next-generation health-care systems, and critical infrastructure manage-

ment systems (e.g., systems that control water, communication, and power supplies).

The challenges anticipated in the development of ULS systems have a lot in com-

mon with the challenges seen in today’s distributed software projects. Specifically, ULS

systems will include software created and modified by dispersed teams with different back-

grounds, goals, and stakeholders. Therefore, a ULS system will necessarily be made up

of overlapping artifacts, with potential inconsistencies in their design and usage. Hence,

effective construction of ULS systems will depend on having scalable techniques for in-

consistency management. We believe the premises for the research reported in this thesis

are very much in line with the needs of ULS systems. In the future, we would like to

study the problem of inconsistency management in the context of very large and hetero-

geneous systems and develop innovative model manipulation techniques with potential

for application to ULS systems.



References

Alagic, S., & Bernstein, P. 2001. A Model Theory for Generic Schema Management.

Pages 228–246 of: Proceedings of the 8th International Workshop on Database Pro-

gramming Languages.

Alanen, M., & Porres, I. 2003. Difference and Union of Models. Pages 2–17 of: Pro-

ceedings of the 6th International Conference on The Unified Modeling Language,

Modeling Languages and Applications.

Aumueller, D., Do, H., Massmann, S., & Rahm, E. 2005. Schema and Ontology Match-

ing with COMA++. Pages 906–908 of: Proceedings of the 2005 ACM SIGMOD

International Conference on Management of Data.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (eds).

2003. The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

Barr, M., & Wells, C. 1984. Toposes, Triples and Theories. Grundlehren Math. Wiss.

Springer. ftp://ftp.math.mcgill.ca/pub/barr.

Barr, M., & Wells, C. 1999. Category Theory for Computing Science. third edn. Montreal,

Canada: Les Publications CRM Montréal.
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Appendix A

Hospital Case Study Information

In this appendix, we provide additional information about the case study in Chapter 5.

A.1 Problem Description

The hospital system description handed out to students is as follows1.

A.1.1 Background

The hospital gives around-the-clock medical care, diagnosis and treatment to the sick

and injured on both an inpatient and an outpatient basis. The hospital is divided into

several wards, described below. The medical team is comprised of physicians, technicians

(technical staff), nurses, and administrative assistants.

A.1.2 Wards, Rooms, Units, Beds and Equipment

Wards have rooms for patients to stay in. Rooms have beds, and beds are numbered per

room, so a combination of the ward, room, and bed number will uniquely identify every

bed in the hospital.

1I thank Paul Gries for his invaluable help with preparing this description.
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The pieces of equipment in a ward can be mobile or stationary. If stationary, a piece

will be assigned to a single ward room or unit; and if mobile, it will be assigned to the

general storage area in the ward. Equipment is not shared between wards. For each piece

of mobile equipment, there is a booking calendar to keep track of when and where the

piece is needed.

Wards also have units, such as critical care units and operating room units. The

set of units varies from ward to ward, but every ward has a single general storage area

unit. Each unit has a textual description outlining its responsibilities, as well as a list of

equipment in that unit.

A.1.3 Display Units and Scanners

Every ward unit and room has a display and a scanner. The display can show everything

from a medical team member’s schedule to a patient’s history. The scanner is connected

to the display, and can be used to scan both the wrist band of a patient (described below)

and the id card of a member of the medical team.

A.1.4 Medical Team

Each medical team member has a name and a unique id number, and all team members

carry an id card containing that information.

Nurses are affiliated with a single ward, while physicians and technicians can be

affiliated with several different wards. All personnel have access to a calendar detailing

the hours that they need to be present at the various wards. Nurses record physicians’

decisions such as diagnoses, medical procedures that are to be performed (and when),

new prescriptions (including medication, amount, and schedule), cancelled prescriptions,

whether a patient needs to be transferred (and to which ward), and whether a patient can

check out of the hospital. These are written on paper and handed to an administrative

assistant to enter. The administrative assistant needs to figure out who needs to be at a
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particular procedure before they enter it in the system.

Here are some necessary items for the system:

• Each procedure has a list of medical equipment necessary to perform that proce-

dure. A procedure will only be scheduled when all pieces of equipment are available.

• The technicians can view their schedule and move equipment as necessary.

• Physicians have a set of patients they are assigned to. Nurses and physicians can

review a patient’s medical history.

• Everyone needs to be able to see a list of the medical procedures in which they are

involved.

• Physicians need to be able to get a list of their patients to be visited in a ward.

A.1.5 Patients

Unless new patients are in a life-threatening situation, they must register at the hospital.

This involves an administrative assistant scanning their health card, which contains their

name, address, and a unique health card number. After registering they receive an early

diagnosis by a physician in which they are classified as either an ”inpatient” or an ”out-

patient”. An inpatient is a person who is admitted at least for one night to the hospital;

and an outpatient is a person who visits the hospital for diagnosis or treatment without

spending the night. This is determined by the physician doing the initial assessment.

Outpatients on a return visit may arrive at the hospital and go straight to the ward

where they are to receive treatment.

Each patient, be that an inpatient or an outpatient, has a profile capturing the pa-

tient’s name, address, health card number, and their general health-related remarks. For

each outpatient visit, an outpatient visit record is created storing the date and time of

the visit, the patient’s health problem, the name(s) of the physician(s) who attended

to the patient, the diagnosis, and the prescribed medication. For each inpatient visit,
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an inpatient visit record is created storing the date and time of admission, the patient’s

health problem(s), the early diagnosis, and the name(s) of the physician(s) involved in

making the early diagnosis. To facilitate the management of inpatients, a wristband is

produced for each inpatient at admission. The hospital’s medical team will use special

handheld scanners to scan the wristbands and fetch the inpatient visit records, described

below.

During each stay at the hospital, an inpatient may be transferred several times be-

tween different wards and between different parts of a single ward. For each ward stay, a

ward stay record is created. The information stored in a ward stay record includes a list

of intra-ward stays, a list of medical procedures performed on the patient during their

stay at the ward, the name(s) of the physicians attending to the patient while at the

ward, a ward-specific diagnosis and a ward-specific medication chart. The ward nurses

use these charts to administer the required medication. The information stored in an

intra-ward stay record includes the date and time when the patient checked in the cor-

responding ward room or unit, the checkout date and time, and if applicable, the id of

the bed assigned to the patient within the room or unit.

Patients in a life-threatening situation are assessed and treated as normal, but without

registering them first. They are all issued a wristband at some point for identification,

and flagged in the system as not having registered.

A.2 Source Models and Their Merges

Figures A.1–A.5 show the five source models in our study. Figure A.6 shows the merge

of these models with respect to the preliminary mappings that we manually defined

between the models. Additionally, we provide a coherent merge after evolving the models

and refining their mappings through multiple rounds of global consistency checking and

manual inspections. Note that elements which were found to be ill-conceived during our

analysis were filtered out from this final merge.
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Figure A.1: Source model I
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Figure A.2: Source model II
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Figure A.3: Source model III
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Figure A.4: Source model IV
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Figure A.5: Source model V
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Figure A.6: Merge with respect to our preliminary mappings



Appendix A. Hospital Case Study Information 222

Figure A.7: Final merge after refining the source models and mappings


