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ABSTRACT
Background: A long-standing question is why essential tremor often responds 
to non-intoxicating amounts of alcohol. Blood flow imaging and high-density 
electroencephalography have indicated that alcohol acts on tremor within the cerebellum. 
As extra-synaptic δ-subunit-containing GABAA receptors are sensitive to low alcohol 
levels, we wondered whether these receptors mediate alcohol’s anti-tremor effect and, 
moreover, whether the δ-associated GABAA receptor α6 subunit, found abundantly in the 
cerebellum, is required.

Methods: We tested the hypotheses that low-dose alcohol will suppress harmaline-induced 
tremor in wild-type mice, but not in littermates lacking GABAA receptor δ subunits, nor in 
littermates lacking α6 subunits. As the neurosteroid ganaxolone also activates extra-synaptic 
GABAA receptors, we similarly assessed this compound. The harmaline mouse model of 
essential tremor was utilized to generate tremor, measured as a percentage of motion power 
in the tremor bandwidth (9–16 Hz) divided by background motion power at 0.25–32 Hz.

Results: Ethanol, 0.500 and 0.575 g/kg, and ganaxolone, 7 and 10 mg/kg, doses that 
do not impair performance in a sensitive psychomotor task, reduced harmaline tremor 
compared to vehicle-treated controls in wild-type mice but failed to suppress tremor in 
littermates lacking the δ or the α6 GABAA receptor subunit.

Discussion: As cerebellar granule cells are the predominant brain site intensely expressing 
GABAA receptors containing both α6 and δ subunits, these findings suggest that this is 
where alcohol acts to suppress tremor. It is anticipated that medications designed 
specifically to target α6βδ-containing GABAA receptors may be effective and well-tolerated 
for treating essential tremor.

Highlights:

How does alcohol temporarily ameliorate essential tremor? This study with a mouse 
model found that two specific kinds of GABA receptor subunits were needed for alcohol 
to work. As receptors with both these subunits are found mainly in cerebellum, this work 
suggests this is where alcohol acts to suppress tremor.
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INTRODUCTION

Given a prevalence of at least 0.4% [1], 30 million or more 
persons worldwide have essential tremor (ET). Despite this 
large number, current treatments are often unsatisfactory, 
with many patients stopping their medications [2]. To 
date, drug discovery has been slow and seldom based on 
molecular targets.

Nineteenth-century clinicians observed that alcohol 
ameliorated tremor [3]. The sixth U.S. president, John 
Quincy Adams, who had familial ET, found that without 
his wine his tremor worsened [4]. Yet how low doses of 
alcohol reduce tremor remains unexplained. Resolution 
of this question would not only address an old puzzle but 
potentially identify a new target for ET therapy.

In controlled settings, alcohol reduces tremor in ET 
patients from 10 to 90 minutes after oral ingestion, with 
blood levels of 0.040–0.075 g/dL, below the driving limit in 
most U.S. states of 0.080 g/dL (17.3 mM) [5, 6]. If a small 
dose is infused into the brachial artery to produce an arm 
blood level equivalent to that associated with an oral dose 
that suppresses tremor, the local infusion does not affect 
tremor, suggesting that alcohol acts within the brain, not 
in the limb [7]. Two findings implicate the cerebellum in 
alcohol’s effect. High-density electroencephalography has 
shown that alcohol-induced tremor amplitude reduction is 
specifically associated with changes in cerebellar activity 
[8]. Blood flow imaging with positron emission tomography 
demonstrated that the cerebellum displays increased 
activity in ET [9–11]. Importantly, an alcohol dose that 
suppresses tremor, with a blood level of 0.035 g/dL, reduces 
cerebellar hypermetabolism [9]. This finding suggests 
that cerebellar cortical neurons are hyperactive and that 
alcohol reduces this hyperactivity [9]. Insofar as much of 
the cerebellar cortex is comprised of the massive cerebellar 
granule cell (CGC) population with its axonal projections, 
these cells are likely hyperactive in ET, and suppressed by 
alcohol.

A potential mechanism by which alcohol may reduce 
cerebellar cortical activity is activation of extra-synaptic 
GABAA receptors that are located on CGCs. Extra-synaptic 
GABAA receptors, like synaptic receptors, are composed of 
two α and two β subunits but incorporate a δ instead of 
a γ subunit, and exert tonic rather than phasic inhibition. 
In these receptors, δ is usually associated with α4 subunits 
throughout the brain, but on CGCs α6 is the associated 
partner and is intensely expressed here; whereas α4 
levels in the cerebellum are much lower, being expressed 
in the Purkinje cell (PC) layer and molecular layer in mice 
[12, 13]. CGCs from α6 knockout (KO, α6–/–) mice lack 
GABA-mediated tonic inhibition [14]. The location of α6βδ 
receptors on CGCs, where they respond to GABA released 

by Golgi neurons, provides a mechanism for controlling the 
excitatory CGC drive to PCs.

Alcohol in levels as low as 3 mM enhances GABA-
mediated tonic currents by recombinant α6βδ and α4βδ 
GABAA receptors on oocytes [15], and in levels as low as 
10 mM in CGCs in slices [16, 17]. In addition, the activation 
of extra-synaptic receptors on CGCs by alcohol leads via 
an indirect circuit mechanism to increased GABA release 
by Golgi neurons, so that synaptic GABAA receptors are 
activated as well [18], thus contributing to inhibition of 
CGC activity. Alcohol fails to enhance GABA-mediated tonic 
currents or to enhance GABA release from Golgi neurons in 
cerebellar slices from δ–/– mice [18].

Based on alcohol effects on α6βδ CGC GABAA receptors 
at levels below the driving limit, we postulated that alcohol 
suppresses tremor by activating these receptors, so that 
δ and α6 subunits are required for alcohol’s anti-tremor 
action. To test this hypothesis, we utilized the mouse 
harmaline model, in which tremor is driven by rhythmic, 
coupled inferior olivary (IO) bursting [19]. Harmaline tremor 
is a symptom model, in which the brain areas activated 
during tremor overlap with the tremor circuit revealed 
by magnetoencephalography in ET [20], including the 
cerebellum [21], thalamus, motor cerebral cortex and 
brainstem [19]. This extensive circuitry overlap Is consistent 
with considerable pharmacologic overlap, in which many 
drugs exert similar actions on ET and harmaline tremor [22].

As an independent test of the hypothesis that activation 
of α6βδ GABAA receptors can suppress tremor, we 
examined the action of the neuroactive steroid ganaxolone 
on harmaline tremor. Ganaxolone is a derivative of 
allopregnanolone modified to resist degradation and avoid 
hormonal effects. Neuroactive steroids potentiate GABA-
mediated tonic currents in slices of dentate granule cells 
(expressing α4βδ) and of CGCs (expressing α6βδ), but not if 
slices are taken from δ KO (δ–/–) mice [23]. Ganaxolone, 10 
mg/kg, exerts anxiolytic effects in wild-type (WT, δ+/+) mice, 
but not in δ–/– mice [24]. We therefore sought to determine 
whether ganaxolone suppresses harmaline tremor in α6- 
and δ-subunit dependent fashion.

METHODS

STUDY DESIGN
Our objectives were to demonstrate that low-dose 
alcohol and ganaxolone can each suppress harmaline 
tremor in WT mice, and to determine whether littermate 
mice lacking either the δ or α6 GABAA receptor subunit 
fail to respond to this action. Because alcohol is rapidly 
cleared by mice [25], an effect of alcohol on tremor was 
anticipated to occur only in the first post-injection epoch 
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(E1). In the case of longer acting ganaxolone, all post-
injection E1 to E4 epochs were evaluated. Mice were 
selected, as the harmaline model is well-established in 
mice, and GABAA receptor subunit-null genotypes are 
available for this species. Mice were assigned randomly 
to dosing groups, and the quantitation was performed by 
automated software. Animal protocols conformed to the 
National Institute of Health’s Guide for the Care and Use 
of Laboratory Animals (NIH Publications No. 80–23, revised 
1978), and were approved by the Veterans Affairs Greater 
Los Angeles Institutional Animal Care and Use Committee. 
All efforts were made to minimize animal suffering and to 
reduce the number of animals used.

ANIMALS
δ –/– (δ KO, Gabrd–/–) mice were donated by the University of 
California at Los Angeles, where they had been backcrossed 
for over 11 generations with C57BL6/J mice. α6–/– (α6 KO, 
Gabra6–/–) mice were obtained from Jackson Laboratories 
(Bar Harbor, ME). These had been generated with a 129x1/
SvJ x 129S1/Sv cell line inserted into a C57BL6/J blastocyst 
and were backcrossed with δ+/+ mice in our laboratory 
for 10 generations. Heterozygote mice were interbred to 
produce offspring that were genotyped with polymerase 
chain reaction (Transnetyx, Memphis, TN) and δ+/+, δ–/–; and 
α6+/+, α6–/– littermates respectively used for experiments. 
Both sexes were used as adults, and mice had ad libitum 
access to food and water.

TEST PROCEDURES
To ensure that doses of alcohol or ganaxolone used 
in harmaline experiments did not cause psychomotor 
impairment that could non-specifically suppress tremor, 
we first tested these drugs in the straight wire test, a highly 
sensitive test for drug-induced impairment [26]. The ability 
of adult δ+/+ mice not receiving harmaline to pass the test at 
various alcohol or ganaxolone doses was assessed. Results 
were confirmed with α6+/+mice. In this test, a mouse is 
suspended by the front paws from a rigid, 2-mm diameter 
wire. For the mouse to pass at a specific drug dose, it had 
to stay on the wire at least 10 seconds and touch the wire 
with a hind paw within those 10 seconds, and do so on 
each test conducted at 10-minute intervals for one hour 
following drug administration. A drug dosage passed only 
if all 6/6 mice passed all such testing.

Testing at various doses sought to determine the highest 
dose at which 6/6 mice passed; only this or lower doses 
were utilized in subsequent harmaline experiments. Each 
mouse received any drug or harmaline only once.

To assess motion power, each mouse was placed on an 
8.1-cm diameter mesh on top of a 24.1-cm high cylinder 
that rested on a Convuls-1 Replacement Sensing Platform 
model 1335-1A (Columbus Instruments, Columbus, OH), 

fitted with a load sensor, connected to a Grass model P511 
AC amplifier (Grass Instruments, West Warwick, RI) with 1 
and 70 Hz filter settings. Digitally recorded motion power 
was analyzed using Spike2 software (Cambridge Electronic 
Design; UK) to perform Fourier transformation of the data 
into frequency spectra. Data were sampled at 128 Hz. 
Prior experience indicated that in mice harmaline-induced 
tremor occurs at 9–16 Hz, creating a corresponding motion 
power peak on digital frequency spectra [27, 28]. To avoid 
changes in tremor power due merely to changes in overall 
activity level, this tremor-associated bandwidth motion 
power was divided by background overall activity motion 
power to form the measure of analysis, motion power 
percentage (MPP): (9–16 Hz motion power)/(0.25–32 Hz 
motion power) x 100, as previously described [28].

Mice were acclimated to the platform, then 15 minutes 
of pre-harmaline baseline motion data collected, then 
harmaline (Sigma-Aldrich, St. Louis, MO), 20 mg/kg in 4 
ml saline/kg injected subcutaneously. Once tremor had 
developed, within 5 minutes, motion power was again 
assessed during two successive 15-minute epochs with an 
intervening 5-minute rest in the home cage. Drugs or vehicle 
were injected intraperitoneally in a volume of 10 ml/kg at the 
end of the second harmaline tremor epoch. Ethanol (Thermo 
Fisher, Canoga Park, CA) was injected in doses of 0, 0.40, 
0.50, or 0.575 g/kg in saline. Motion power accession was re-
initiated 10 minutes after injection for four more 15-minute 
epochs on the elevated platform (E1 to E4), with intervening 
5-minute rests. Procedures with ganaxolone (Tocris Bio-
Techne, Minneapolis, MN) were the same, but the doses 
0, 3.5, 7, 10 mg/kg, prepared in 45% (2-hydroxypropyl)-β-
cyclodextrin (Sigma-Aldrich) diluted 1:1 in saline, were used.

DATA ANALYSES
Mean MPP values were compared using a repeated measure 
(mixed) analysis of variance (ANOVA) model. A repeated 
measures model was utilized as MPP values in each animal 
were measured repeatedly across time epochs from 
baseline to E4. Residual errors were examined using normal 
quantile plots (not shown) to confirm that the errors have a 
normal distribution, as required by this parametric model. 
The Shapiro-Wilk test for normality confirmed that the 
errors followed a normal distribution. The model-based 
means and pooled standard errors (SEs) were analyzed and 
p values determined for dose comparisons at each receptor 
genotype and time. Mean comparisons under the repeated 
measure ANOVA model were carried out using the Fisher 
least significant difference (LSD) criterion, after Miller, 1981, 
section 2.7 [29]. The Fisher LSD allows comparisons among 
the four dose levels such that the overall chance of a false 
positive (type I error) is alpha = 0.05 or less. Computations 
were performed using R 4.0.5 (R Foundation for Statistical 
Computing, Vienna, Austria, https://www.R-project.org/).

https://www.R-project.org/
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RESULTS

TREMOR SUPPRESSION BY LOW-DOSE ALCOHOL 
REQUIRES GABAA RECEPTOR δ AND α6 SUBUNITS
In δ+/+ and α6+/+ mice, the motion power percentage 
(MPP) that fell by chance within the 9–16 Hz bandwidth 
approximated 30–35% during the 15-minute pre-harmaline 
baseline (B) (Figure 1A, 1C). With harmaline administration, 
motion power became dominated by tremor, so that the 
MPP approximated 75–83% during the two 15-minute 
harmaline pre-treatment epochs (H1, H2).

The alcohol dose 0.575 g/kg was chosen as the highest 
tested dose, as 6/6 δ+/+ mice passed all straight wire tests 
at this dose, whereas not all passed at 0.600 g/kg. Based 
on published pharmacokinetic data in mice [25], 0.500 
and 0.575 g/kg are estimated to produce blood levels of 
0.06 and 0.07 g/dL respectively at the midpoint of the first 
post-injection 15-minute epoch (E1), comparable to the 
blood level of 0.040–0.075 g/dL associated with tremor 
suppression in ET [5, 6, 30].

Following injection of saline vehicle or alcohol 0.40, 0.50, 
or 0.575 g/kg in δ+/+ mice, (n = 11, 11, 12, 11 respectively), 
tremor was reduced by the 0.500 and 0.575 g/kg doses 

during post-treatment epoch E1 compared to the vehicle 
group (Figure 1A, p < 0.0001, p < 0.0001 respectively), but 
not at 0.400 g/kg (p = 0.6318). Tremor in the 0.500 and 
0.575 g/kg groups recovered to control levels during the 
following epochs, consistent with rapid alcohol clearance.

Littermate δ –/– mice exhibit normal behavior and are 
indistinguishable from δ+/+ mice. They displayed pre-
harmaline baseline and pre-treatment harmaline MPP 
values comparable to those of δ+/+ mice, indicating no 
alteration in harmaline tremor response. Figure 1B displays 
motion power in 11, 11, 12, 11 δ –/– mice receiving vehicle 
or alcohol 0.40, 0.50, 0.575 g/kg respectively, and shows 
that, in contrast to δ+/+ mice, 0.500 and 0.575 g/kg failed 
to reduce tremor during E1 (p = 0.6410, p = 0.9179 
respectively). These findings indicate that the extra-
synaptic GABAA receptor δ subunit is required for tremor 
suppression by low-dose alcohol.

As with δ+/+ mice, 6/6 α6+/+ mice passed the straight 
wire test at the alcohol dose 0.575 g/kg. After α6+/+ mice 
were injected with vehicle or alcohol 0.40, 0.50, or 0.575 
g/kg (n = 12, 11, 12. 12 respectively), tremor was reduced 
by the 0.500 and 0.575 g/kg doses during post-treatment 
epoch E1 compared to the vehicle group (Figure 1C, p = 

Figure 1 Alcohol effect on harmaline tremor. Motion power in groups of mice followed sequentially during 15-minute epochs at baseline 
(B), pre-treatment harmaline (H1, H2), and after vehicle or alcohol injection (arrow, E1–E4). (A) In δ+/+ mice ethanol, 0.50 and 0.575 g/kg, 
suppressed tremor during E1 compared to vehicle controls but (B) not in δ –/– littermates. (C) Similarly, in α6+/+ mice ethanol, 0.50 and 0.575 
g/kg, suppressed tremor during E1 compared to vehicle controls but (D) not in α6 –/– littermates. * P < 0.05, ** P < 0.01, *** P < 0.001, ANOVA.
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0.0009, p < 0.0001 respectively), but not at 0.40 g/kg (p 
= 0.890).

Littermate α6–/– mice appear normal, without motor 
anomalies, and displayed normal baseline and pre-
treatment MPP harmaline values, indicating a normal 
tremor response (Figure 1D). On treatment with vehicle or 
0.40, 0.50, 0.575 g/kg alcohol (n = 12 all groups), in contrast 
to littermate WT mice, 0.50 and 0.575 g/kg alcohol failed 
to reduce tremor during E1 (p = 0.7981, p = 0.9317 
respectively). These findings indicate that the GABAA 
receptor α6 subunit is required for tremor suppression by 
low-dose alcohol.

TREMOR SUPPRESSION BY GANAXOLONE 
REQUIRES GABAA RECEPTOR δ AND α6 SUBUNITS
In δ+/+ mice the highest dose of ganaxolone passed by 6/6 
animals in straight wire testing was 10 mg/kg and therefore 
this was the highest dose used. This dose was lower than 
the dose 33 mg/kg required to produce ataxia on the 
rotarod test [31]. On injection of ganaxolone 0, 3.5, 7, and 
10 mg/kg to 11, 11, 10, 11 δ+/+ mice respectively, 3.5 mg/kg 
had no significant effect on tremor (Figure 2A) compared 
to the vehicle-treated group, while 7 mg/kg reduced 
tremor during E1 to E4, (p = 0.0002, 0.0011, 0.0067, 0.0002 
respectively). The dose 10 mg/kg also suppressed tremor 

during E1 to E4 (p = 0.0164, < 0.0001, < 0.0001, = 0.0030 
respectively). In contrast, when δ –/– littermate mice were 
administered vehicle, 3.5, 7, 10 mg/kg ganaxolone (n = 11 
all groups), no tremor suppression occurred in any epoch at 
any dose (Figure 2B).

As with alcohol, findings with α6+/+ mice replicated 
those seen with δ+/+ mice as expected given the extensive 
backcrossing of our α6 colony with δ+/+ to achieve a uniform 
genetic background. In straight wire testing, 6/6 α6+/+ mice 
passed the test at the highest ganaxolone dose used, 10 
mg/kg. In tremor experiments, vehicle or ganaxolone 
3.5, 7, 10 mg/kg was injected into α6+/+ mice, n = 12 all 
groups. The dose 3.5 mg/kg exerted no effect on tremor 
compared to cyclodextrin vehicle-treated controls. The 
dose 7 mg/kg reduced tremor during post-injection 
epochs E1 to E4 (Figure 2C, p = 0.0189, 0.0010, < 0.0001, < 
0.0001 respectively). The dose 10 mg/kg caused borderline 
reduction at E1 (p = 0.0618) and reduced tremor during 
E2 to E4 (p = 0.0002, 0.0001, 0.0021, respectively). In 
contrast, when vehicle or ganaxolone 3.5, 7, 10 mg/kg was 
administered to littermate α6–/– mice (n = 12 all groups), no 
dose exerted tremor suppression in any epoch compared 
to vehicle controls (Figure 2D). These results indicate that 
the δ and α6 GABAA receptor subunits are needed for these 
doses of the neurosteroid to suppress tremor.

Figure 2 Ganaxolone effect on harmaline tremor. Motion power during baseline (B), pre-treatment harmaline (H1, H2), and after vehicle 
or ganaxolone injection (arrow, E1–E4). (A) In δ+/+ mice ganaxolone, 7 and 10 mg/kg, suppressed tremor following injection compared to 
vehicle controls but (B) not in δ –/– littermates. (C) Similarly, in α6+/+ mice ganaxolone, 7 and 10 mg/kg, suppressed tremor compared to 
vehicle controls but (D) not in α6 –/– littermates. * P < 0.05, ** P < 0.01, *** P < 0.001, ANOVA.
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DISCUSSION

CGCs intensely express α6 GABAA receptors, both synaptic, 
with γ2, and extra-synaptic, with δ subunits. In δ–/– mice, 
cerebellar α6 is not reduced, but γ2 expression is increased, 
reflecting a compensatory increase in α6βγ2 receptors 
[32, 33]. A deletion of α6 causes more profound changes, 
so that 50% of cerebellar GABAA receptors are lost, with 
both synaptic and extra-synaptic receptors severely 
affected as indicated by depletion of δ and γ2 subunits 
[34, 35]. Yet α6–/– mice display no motor deficits and are 
agile [34, 35]. Upregulation of voltage-independent 
potassium conductance in CGCs appears to underlie the 
compensation [14], and offers an explanation why these 
KO mice display normal motor function. Moreover, the 
expression of harmaline tremor depends on the integrity 
of a circuit involving IO, PCs, and the deep cerebellar nuclei 
(DCN), discussed below, which lack α6βδ GABAA receptors.

We found that alcohol in low doses estimated to produce 
blood levels comparable to those associated with tremor 
reduction in ET suppressed harmaline tremor in WT mice, 
but not in KO littermates lacking the α6 or the δ GABAA 
receptor subunit. The failure of the KO mice to show tremor 
suppression is not due to enhanced alcohol metabolism, as 
ethanol pharmacokinetics are normal in these mice [36, 37].

Outside the cerebellum, α6 is expressed in the trigeminal 
ganglion [38], cochlear nuclei [39, 40], and faintly in the 
spinal trigeminal nucleus [13]. In the cochlear nuclei, α6 
and δ appear not to be expressed in the same cells [39]. In 
these locations, α6 GABAA receptor activation is unlikely to 
affect tremor. Within cerebellum, α6 expression is virtually 
limited to the CGC layer [13], so that this is the likely site of 
alcohol’s anti-tremor action. Concerning the requirement 
for the δ subunit for alcohol’s anti-tremor action, it is logically 
conceivable that alcohol has a two-target effect on both 
α4βδ GABAA receptors in an unknown location and on α6βγ2 
receptors that are abundant on CGCs but, given that α6βδ 
and α4βδ receptors are comparably sensitive to alcohol 
[15], and that they are much more sensitive to alcohol than 
are α6βγ2 GABAA receptors [15], this interpretation appears 
unlikely. The most plausible explanation for our findings 
is that low-dose alcohol suppresses tremor by enhancing 
GABA-mediated tonic currents in CGCs by activating α6βδ 
GABAA receptors. This interpretation is consistent with the 
finding that alcohol at 10 mM (equivalent to 0.05 g/dl) 
enhances GABA-mediated tonic currents in slices of CGCs 
[16]. This level is comparable to blood levels that suppress 
ET tremor [5, 6] and to estimated blood levels found to 
suppress harmaline tremor. This interpretation is also 
compatible with high-density EEG evidence that alcohol 
acts on the cerebellum [8] and with observations that 
alcohol reduces cerebellar hypermetabolism [9, 10].

We also found that the neurosteroid ganaxolone, in doses 
that do not cause impairment on the straight-wire test, 
reduces tremor in WT mice, but not in littermates lacking the 
α6 or δ subunit. Neurosteroids activate α6βδ and α4βδ extra-
synaptic GABAA receptors [23] and, like alcohol, are positive 
allosteric modulators, enhancing GABA-mediated tonic 
inhibition, but bind to different sites on the receptor [41–43]. 
In addition, using similar methodology, we have previously 
reported that gaboxadol suppresses harmaline tremor in WT 
mice at doses that do not cause psychomotor impairment, 
but fails to suppress tremor in littermates lacking the α6 or 
δ subunit [44]. In contrast to the positive allosteric action of 
ethanol and ganaxolone, gaboxadol is a selective agonist of 
extra-synaptic GABAA receptors [45]. Overall, we have found 
that three compounds that activate extra-synaptic δ GABAA 
receptors, but bind to different receptor sites, each suppress 
harmaline tremor in α6- and δ-dependent fashion.

α6βδ GABAA receptor-mediated reduction of CGC activity 
would reduce parallel fiber firing, and hence PC simple 
spikes (SSs). We postulate that the downstream effect is to 
reduce excessive PC complex spike (CS) synchrony, thereby 
reducing tremor [19]. A PC CS is a spike burst triggered at 
the climbing fiber-PC synapse [46]. Within small regions 
of cerebellar cortex PC CSs are dynamically synchronized 
by clusters of climbing fiber-projecting IO neurons that 
are coupled via gap junctions [47]. When PC CSs are more 
synchronized, their convergent projection to DCN neurons 
is more effective in producing inhibition [48, 49], promoting 
hyperpolarization-induced rebound bursting [50] that is 
transmitted to the thalamus. Intra-IO Injection of the 
GABAA receptor antagonist picrotoxin promotes IO coupling, 
increases PC CS synchrony, and the amplitude of evoked 
movement in rats [51], and in some animals elicits tremor 
in association with increased PC CS synchrony [52]. Two 
other agents that increase IO coupling, systemic harmaline 
and intra-olivary serotonin receptor 2a agonists [53–55], 
also increase PC CS synchrony [55, 56] and induce tremor 
[54, 57]. Hotfoot17 mice exhibit ET brain-like features of 
aberrantly increased terminal climbing fiber innervation 
of multiple PCs [58]; tremor occurs that depends, as with 
harmaline tremor, on an intact IO [58, 59], intact climbing 
fiber-PC synapses [53, 54, 58], and on GABA release from 
PC axon terminals in DCN [58, 60]. In hotfoot17 mice, 
increased PC synchrony appears mainly due to aberrant 
climbing fiber multi-PC innervation [58]. Local field 
potentials reveal cerebellar oscillations that are coherent 
with both IO bursting and with tremor in hotfoot17 mice 
[58]. Interestingly, the majority of ET patients also display 
cerebellar oscillations [58], suggesting that increased PC CS 
synchrony may underlie ET tremor.

The degree of IO coupling, and hence PC CS synchrony, 
is modulated by afferents to the IO. Intra-IO GABA release 
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inhibits coupling, thereby reducing PC CS synchrony [52, 
61]. The main afferent source of GABA to IO is the massive 
GABAergic projection from DCN [62]. These IO-projecting 
DCN neurons in turn receive GABAergic projections from 
PCs as their main input and appear to integrate ongoing 
activity [63, 64], such as PC SSs. Because PCs receive 
climbing fibers from IO cells that receive afferents from 
DCN neurons to which they project (a tri-synaptic circuit), PC 
SSs can influence CS synchrony within the same cerebellar 
cortical region. When picrotoxin is applied to cerebellar 
cortex in anesthetized rats, local PC SSs increase, and PC 
CS synchrony also increases via the tri-synaptic circuit 
[65]. Similarly, if CGC hyperactivity underlies cerebellar 
hypermetabolism that occurs in ET [9, 10], the resulting 
increase in PC SSs could exacerbate tremor by promoting 
PC CS synchrony which, as discussed above, underlies 
tremor in the harmaline and hotfoot17 animal models, 
and is the probable basis of cerebellar oscillations in ET. 
Application of the GABAA receptor agonist muscimol to rat 
cerebellar cortex leads to reduced PC SSs and reduced CS 
synchrony [65]. In this case, reduced PC SS firing disinhibits 
DCN neurons so that they release more GABA within IO, 
reducing coupling and downstream PC CS synchrony. In 
parallel, Boecker et al. [9] found that low-dose alcohol 
reduces cerebellar hypermetabolism in ET patients and 
moreover increases metabolism in the region of the IO, 
which they interpreted as due to increased DCN axonal 
firing [9], comparable to muscimol’s tri-synaptic circuit 
action in rats [65].

A potential limitation is that we did not perform Western 
blot to confirm reductions of α6 or δ subunits in KO mice. 
However, such reductions are well-established in such mice 
identified by genotyping. A limitation was that we did not 
study the effect of alcohol or ganaxolone on α4 KO mice. 
As doses causing psychomotor impairment are likely in part 
due to activation of α4βδ extra-synaptic GABAA receptors 
present in many brain areas, the study of these drugs in α4 
KO mice might have allowed higher doses to be tested that 
do not cause psychomotor impairment, thereby providing 
insight into the potential efficacy of α6βδ-selective drugs. For 
example, in WT mice, gaboxadol at 10 mg/kg causes sedation 
and impaired rotarod performance, whereas α4 KO mice do 
not exhibit such impairments although the drug is free to 
act on α6βδ GABAA receptors in these mice [66]. Similarly, 
ganaxolone exhibited only moderate efficacy against tremor 
in WT mice in the present study, but might have exhibited 
more efficacy in α4 KO mice if they tolerate higher doses.

The GABA hypothesis of ET postulates that a disturbance 
of GABA function occurs in ET [67]. In the circuit discussed 
above, synchronous GABA release from PC terminals in 
DCN is required for tremor expression, whereas GABA 

receptor activation in IO or CGCs can suppress tremor by 
reducing PC synchrony. This concept offers a framework 
for considering how dysfunction of GABA transmission 
may contribute to tremor. However, the present finding 
that activation of α6βδ GABAA receptors suppresses tremor 
in the harmaline model does not necessarily implicate 
dysfunction of these receptors in ET. Cerebellar cortical 
hypermetabolism in ET [9] may be due, for example, to 
heightened afferent excitatory drive rather than intrinsic 
GABA receptor dysfunction.

The tri-synaptic pathway concept offers a mechanism 
how positive allosteric modulators or agonists of α6βδ extra-
synaptic GABAA receptors on CGCs, such as low-dose alcohol, 
ganaxolone, and gaboxadol, could suppress tremor, via a 
downstream effect on PC CS synchrony. Since the effect of 
alcohol in ET is to normalize cerebellar metabolism [9], a 
selective α6βδ receptor modulator may be well-tolerated. 
However, none of these compounds are selective for α6βδ 
receptors; to our knowledge there are currently none. The 
concurrent activation of α4βδ GABA receptors, for example, 
is problematic, as this may be associated with undesirable 
effects [44]. Our results suggest that the α6βδ receptor 
is a promising target for drug development. As CGCs also 
strongly express α6βγ2 GABAA receptors, these may also 
constitute a viable therapeutic target.
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