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ABSTRACT
Background: Essential tremor (ET) is characterized by abnormal oscillatory muscle activity 
and cerebellar involvement, factors that can lead to proprioceptive deficits, especially in 
active tasks. The present study aimed to quantify the severity of proprioceptive deficits in 
people with ET and estimate how these contribute to functional impairments.

Methods: Upper limb sensory, proprioceptive and motor function was assessed in 
individuals with ET (n = 20) and healthy individuals (n = 22). To measure proprioceptive ability, 
participants discriminated the width of grasped objects and the weight of objects lifted 
with the wrist extensors. Causal mediation analysis was used to estimate the extent 
that impairments in upper limb function in ET was mediated by proprioceptive ability.

Results: Participants with ET had impaired upper limb function in all outcomes, and 
had greater postural and kinetic tremor. There were no differences between groups in 
proprioceptive discrimination of width (between-group mean difference [95% CI]: 0.32 
mm [–0.23 to 0.87 mm]) or weight (–1.12 g [–7.31 to 5.07 g]). Causal mediation analysis 
showed the effect of ET on upper limb function was not mediated by proprioceptive ability.

Conclusions: Upper limb function but not proprioception was impaired in ET. The effect 
of ET on motor function was not mediated by proprioception. These results indicate that 
the central nervous system of people with ET is able to accommodate mild to moderate 
tremor in active proprioceptive tasks that rely primarily on afferent signals from muscle 
spindles.
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INTRODUCTION

Essential tremor (ET) is the most common movement 
disorder and one of the most common neurological disorders 
[1, 2], surpassing stroke, multiple sclerosis and epilepsy [3]. 
It is characterized by kinetic tremor in the hands and may 
be accompanied by other forms of tremor (e.g. postural, 
intention, resting) with other motor and non-motor 
features that reflect the cerebellar system degeneration 
characteristic of this disease [4]. Unfortunately, ∼75% of 
people diagnosed with ET experience activity limitations 
(i.e. disability) in tasks such as eating, drinking, writing and 
mobility [5–7]. While tremor amplitude is generally related 
to the severity of activity limitations experienced by people 
with ET (R2 from 0.28 to 0.7) [6, 8–11], this is not always the 
case for postural tremor [11]. Moreover, tremor amplitude 
is not always related to self-reported tremor disability [11] 
or reduced quality of life [12]. This begs the question: do 
other deficits contribute to upper limb disability in ET?

Proprioceptive deficits are one possibility. Proprioception, 
which encompasses several senses, is required for 
normal human movement, and involves both central 
and peripheral structures and neural processes (for a 
review see Proske & Gandevia [13, 14]). In the presence 
of tremor, afferent signals from proprioceptors located in 
muscles (e.g. muscle spindles), joints and skin will signal 
these involuntary oscillations. That is, tremor will add 
noise to afferent proprioceptive signals [15]. In the case 
of muscle spindles that have contractile elements, the 
presence of tremor-related oscillatory activity in fusimotor 
drive would directly impact their ability to signal muscle 
length and changes in muscle length. In line with this view, 
wrist position sense is impaired in people with dystonia 
and tremor, but not in people with dystonia alone [16]. 
Some aspects of proprioception, such as the senses of 
force and heaviness, involve central motor commands 
that may be contaminated by tremor-related rhythmic 
oscillations in people with ET [14, 17–20]. Also, the central 
processing of proprioceptive signals involves various brain 
regions, including the cerebellum [21–28]. Given that ET 
is characterized by cerebellar system degeneration [4, 
20, 29–34], proprioceptive deficits are likely to be present 
in people with ET and contribute to their upper limb 
disability. In support of this view, individuals with cerebellar 
damage have impaired proprioception when active muscle 
contractions are involved (e.g. the sense of force and 
heaviness), with the magnitude of proprioceptive deficits 
positively correlated with motor disability [35, 36].

Despite the likely interplay between proprioception 
and tremor, as highlighted by Louis [37], few studies have 
investigated proprioceptive function in people with ET 

[38, 39]. Moreover, new treatment options are needed for 
people with ET and other forms of tremor [40, 41]. Thus, an 
important step forward is to better understand the sensory 
and motor deficits that contribute to functional limitations 
in these individuals.

To this end, the aim of the present study was to quantify 
the severity of proprioceptive deficits in ET and determine 
their contribution to functional impairments. We assessed 
upper limb sensory, proprioceptive and motor function, 
and administered a battery of upper limb functional tests 
in individuals with and without ET. Causal mediation 
analysis was used to estimate to what extent the effect of 
ET on a person’s upper limb function was mediated by their 
proprioceptive ability.

METHODS

PARTICIPANTS
The two proprioceptive measures used in the present study 
have been shown to yield relatively precise estimates 
of between-group effects with sample sizes ranging 
from 10 to 21 [42–44]. Thus, we aimed to recruit ∼25 
participants per group. Twenty-five participants with ET 
(values shown as mean (SD) unless otherwise stated; 
age: 57.1 (21.7) years, 12 females) and 24 healthy age- 
and sex-matched control participants (age: 60.0 (21.0) 
years, 15 females) were recruited. All participants were 
≥18 years of age. Participants with ET met the diagnostic 
criteria in the Consensus Statement of the Classification of 
Tremors [45]. In addition, they had spectral plots of hand 
postural tremor and forearm electromyography (EMG) 
recorded under various loading conditions consistent 
with ET (electrophysiological outcomes 3 and 4 from Elble 
[46]). The medication regimen of participants was not 
altered for the experiment. Participants were excluded if 
they presented with muscle, joint or bone problems that 
affected their ability to perform daily tasks with the hands 
(e.g., rheumatoid arthritis, severe osteoarthritis, carpal 
tunnel syndrome), or if they had a neurological condition 
(e.g. Parkinson’s disease, stroke, multiple sclerosis).

Participants with ET were interviewed to determine how 
long they had been aware of their tremor, which parts of the 
body were affected, if there was a family history of tremor, 
and if they were taking medication for tremor. The more 
affected upper limb of participants with ET was tested, and 
the corresponding dominant or non-dominant upper limb 
was tested in the corresponding age- and sex-matched 
control participant. The study was approved by the University 
of New South Wales Human Research Ethics Committee 
(HC16918). All participants provided informed consent.
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GRIP STRENGTH AND TACTILE ACUITY
Maximal voluntary grip strength was measured in the 
test limb using a hand-held Jamar+ Digital Dynamometer 
(Lafayette Instrument Company, USA). Sitting in a straight-
backed chair with feet flat on the floor and arms hanging 
down, participants maximally squeezed the handle of the 
dynamometer for 2–3 s as strong verbal encouragement 
was provided. Three trials were performed and the maximal 
value across trials was retained.

Tactile acuity was assessed with von Frey monofilaments 
[47] applied to the hypothenar eminence of the test limb. 
Monofilaments were slowly applied and removed over ∼2 
s, and the skin was indented with a standardized force 
ranging from 0.008 to 300 g. The smallest force perceived 
was retained for analysis.

TREMOR ASSESSMENT

CLINICAL MEASURES
Tremor was assessed clinically in all participants using 
Sections A (upper extremity section only, maximum severity 
= 24) and B (maximum severity = 36) of the Fahn-Tolosa-
Marin Clinical Rating Scale (FTM) [48]. De-identified video 
images of participants performing scale items were assessed 
by a neurologist (DW). The Tremor Disability Questionnaire 
(TDQ) [49] was used with participants with ET to measure 
perceived functional limitation of daily activities due to 
tremor. We focused on the first 31 items of the questionnaire, 
which are used to tabulate a total hand tremor disability 
score, where higher scores indicate greater disability.

POSTURAL AND KINETIC TREMOR
Participants sat on a chair with the tested forearm 
supported on a table beside them. The shoulder was in 
∼45° of abduction, the forearm was in pronation, and the 
wrist and hand were unsupported over the edge of the 
table. A firm strap secured the distal end of the forearm 
to the table. Thus, the set-up permitted full wrist flexion 
and extension while greatly limiting wrist pronation and 
supination.

Muscle activity was recorded with EMG using pairs of 
Ag-AgCl electrodes (Cleartrace; ConMed Corporation, Utica, 
NY, USA) placed over the muscle belly of the flexor carpi 
radialis (FCR) and the extensor carpi radialis (ECR) with an 
inter-electrode distance of 3 cm. A ground electrode was 
placed over the olecranon process.

Postural tremor was measured using an accelerometer 
placed on the dorsum of the hand, 1 cm proximal to 
the head of the middle metacarpal bone (MMA7361L, 
Freescale Semiconductor Inc.; ±1.5 g-force or ±6 g-force 
range, where g-force = 9.81 m/s2) (Figure 1A). Kinetic 

tremor was measured using a magnetic rotary position 
sensor (MLX90316, Melexis Inc.) with an experimental set-
up similar to Héroux et al (Figure 1B) [50]. Briefly, the hand 
was clamped to a device at the palmar and dorsal aspects 
of the metacarpal heads. The clamps were connected to 
two shafts on either side of the wrist that rotated within 
low friction bearings, which allowed free flexion–extension 
movement of the wrist joint. A small magnetic disc fixed 
to the end of one of the shafts allowed the magnetic 
rotary position sensor to record angular displacement. All 
clamps, shafts, nuts and bolts were made of polylactic acid 
thermoplastic, and therefore the setup was light.

Postural and kinetic tremor were assessed with and 
without weights. For the weighted postural tremor 
condition, the hand was clamped on the palmar and dorsal 
aspect, which allowed a 300 g weight to be rigidly fixed. 
For the weighted kinetic tremor condition, the 300 g weight 
was fixed to the clamp that was part of the device used to 
measure kinetic tremor.

To assess postural tremor, participants held their wrist in 
neutral flexion-extension with fingers extended for 1 min 
with their eyes closed. To assess kinetic tremor, participants 
extended and flexed their wrist over 50° at a rate of 5°/s, 
starting with the wrist in 25° of flexion. Initially, participants 
looked at a monitor located 60 cm in front of them at eye 
height, where a target triangular waveform —two cycles of 
extension-flexion— was presented as well as a calibrated 
signal from the magnetic rotary position sensor.

Participants practiced slowly extending then flexing their 
wrist in synchrony with the triangular waveform; verbal 
feedback was provided to help participants maintain the 
target velocity. Once participants felt comfortable with the 
task, they closed their eyes and performed another two 
cycles of wrist extension-flexion, guided by verbal feedback 
from the experimenter. Visual feedback was not provided 
because, anecdotally, some individuals with ET report it 
worsens their tremor, and tracking a visual target introduces 
visuo-motor fluctuations in angular position in kinetic tremor 
testing [51]. One trial was recorded for each of the following 
conditions: postural unweighted, postural weighted, kinetic 
unweighted, kinetic weighted. Participants also performed 
two isometric maximal voluntary contractions (MVCs) with 
their wrist flexors and their wrist extensors. Each MVC lasted 
∼2 s with a 60 s rest between contractions, and strong verbal 
encouragement was provided during the contractions.

Signals from the accelerometer and magnetic rotary 
position sensor were sampled at 200 Hz using Spike2 
software with a 16-bit Cambridge Electronic Design (CED) 
1401 plus data acquisition board. Muscle activity signals 
were amplified (gain x1000) and filtered (20 to 500 
Hz bandpass, CED 1902, Cambridge, UK) prior to being 
sampled at 5000 Hz.
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PROPRIOCEPTION TESTING
We wanted to assess aspects of proprioception that might 
be impaired by tremor. Therefore, we focused on the 
ability to discriminate the width of objects actively grasped 
between the thumb and index finger (Figure 1C), and the 
ability to discriminate the weight of objects lifted with the 
wrist extensors (Figure 1D).

Discrimination thresholds –the smallest difference in 
weight or width that participants could detect in a given 
range– were determined using the transformed up-down 
staircase method with a two-alternative forced-choice 
procedure [52–54]. ‘Two-alternative forced-choice’ means 
that a reference stimulus and a test stimulus were presented 
in short succession in random order, and participants had to 
indicate which of the stimuli –first or second– was wider or 

heavier. ‘Transformed up-down staircase’ means that the 
width or weight of the test stimuli increased or decreased 
in fixed steps based on the number of correct or incorrect 
responses. Specially, we used a 1 up/2 down rule, where 
the test stimulus was made easier to discriminate (further 
in width or weight from the reference stimulus) after one 
incorrect response (i.e. 1 up) and harder to discriminate 
(closer in width or weight from the reference stimulus) after 
two correct responses (i.e. 2 down). We used a 2:1 ratio for 
the step sizes. That is, the step size to make the test stimulus 
easier to discriminate was two times bigger than the step 
size to make the test stimulus harder to discriminate. Details 
of the reference stimulus, the test stimuli and the step sizes 
used for width and weight discrimination are provided in 
their respective sections below.

Figure 1 Experimental set-up for tremor and proprioceptive testing.

(A) Experimental set-up to measure postural tremor without (left) and with (right) weight. An accelerometer was fixed to the dorsum of the 
hand, or on the device used to clamp the 300 g weight to the participant’s hand. Electromyography activity (EMG) was recorded with surface 
electrodes positioned over the extensor carpi radialis and flexor carpi ulnaris muscles (not shown). (B) Experimental set-up to measure kinetic 
tremor without (left) and with (right) weight. A magnetic rotary position sensor on the opposite side of the experimental set-up (not shown) 
captured the rotation of the experimental device. EMG was recorded from the extensor carpi radialis and flexor carpi ulnaris muscles (not 
shown). (C) Experimental set-up for width discrimination testing. (D) Experimental set-up for weight discrimination testing. The weights could 
be quickly and quietly slid onto and off from the dorsum of the device; they were held in place by a strong magnet embedded into the device.
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For both width and weight discrimination, two staircases 
were simultaneously assessed: one staircase assessed 
widths or weights that were smaller than the reference 
stimulus, while the other staircase assessed widths or 
weights that were bigger than the reference stimulus. As 
testing progressed, trials were randomly selected from 
one of the two staircases. Each staircase ended after six 
reversals. A reversal is a trial where prior trials have steps 
in the same direction and subsequent trials have steps in 
the opposite direction. For example, if a participant had 
two correct responses in a row (correct, correct [step 
down]) followed by an incorrect response (incorrect [step 
up]), the last trial would constitute a reversal. Similarly, if a 
participant had an incorrect response (incorrect [step up]) 
followed by two correct responses (correct, correct [step 
down]), the last trial would constitute a reversal. Custom 
software written in Python (v3.4) was used to generate the 
staircases and record participant responses.

WIDTH DISCRIMINATION
Participants were seated with the tested forearm and hand 
resting on a table beside them. The forearm was in neutral 
pronation-supination.

A 40 mm wide 3D printed rectangular object served 
as the reference stimulus, and a series of rectangular 
objects with widths ranging from 25 to 55 mm, in 1 mm 
increments, served as the test stimuli. One staircase 
started with participants comparing widths of 25 mm and 
40 mm, while the other staircase started with participants 
comparing widths of 55 mm and 40 mm. The hand and all 
objects were concealed from view during testing. When 
participants made two correct judgments, the width of the 
test stimulus was incremented by 1 mm (i.e. step down, 
making judgment harder), whereas it was incremented 
by 2 mm when an error was made (i.e. step up, making 
judgment easier).

Each trial consisted of a series of three ‘open-pinch’ 
maneuvers: ‘open’ instructed participants to spread their 
index finger and thumb as wide as possible, and ‘pinch’ 
instructed participants to close their index finger and thumb 
to grasp the object being presented or to bring the index 
finger and thumb in contact with one another (Figure 1C). 
For the first ‘open-pinch’ maneuver, the reference object 
or the test object was presented; the order of presentation 
was randomized for each trial. For the second ‘open-pinch’ 
maneuver, participants pinched their index finger and 
thumb together. For the third ‘open-pinch’ maneuver, the 
object that remained (reference or test) was presented.

WEIGHT DISCRIMINATION
Participants were seated with the tested forearm in 
pronation and supported on a table beside them. The 

hand was positioned in a device similar to that used to test 
kinetic tremor, except that this device had a rigid stop that 
limited wrist flexion to 30° and a top clamp on the dorsum 
of the hand that was fitted with a strong earth magnet. 
The rigid stop allowed participants to rest fully in between 
each active wrist extension, and the magnet allowed the 
reference and test weights to be secured to the dorsum of 
the hand (Figure 1D).

Weights were made using small plastic containers filled 
with metal ball bearings and foam. The foam was packed 
firmly to ensure the ball bearings did not shift during 
testing. In addition, metal washers were glued to the 
bottom of the plastic containers to ensure a strong hold 
with the magnet. The reference stimulus weighed 200 g 
and the test stimuli ranged in weight from 100 to 300 g, 
in 5 g increments. One staircase started with participants 
comparing weights of 100 g and 200 g, while the other 
staircase started with participants comparing weights of 
300 g and 200 g. The hand, the testing device, and all 
weights were concealed from view during testing. When 
participants made two correct judgments, the weight of 
the test stimulus was incremented by 5 g (i.e. step down, 
making judgment harder), whereas it was incremented 
by 10 g when an error was made (i.e. step up, making 
judgment easier).

Each trial consisted of a series of two ‘lift’ maneuvers. 
For each lift, participants actively extended their wrist from 
30° flexion to 30° extension, and lowered their wrist down. 
The reference object and the test object were randomly 
presented during either the first or the second ‘lift’.

UPPER LIMB FUNCTION
The ABILHAND questionnaire [55] was used to measure 
perceived ability to perform daily activities that require the 
use of both hands. Participants with ET were instructed 
to score their manual ability based on when their tremor 
was most severe. The sum of raw scores was converted 
to log-odds probability units (i.e. logits), with lower logits 
indicating greater disability. The Box and Block Test [56] 
was used to measure unilateral gross manual dexterity. 
Participants were instructed to transfer wooden blocks (2.5 
cm3), one by one, from one box compartment to another 
as quickly as possible for 1 min. The total number of blocks 
transferred was recorded, with higher values indicating 
greater gross manual dexterity. Finally, the 9 Hole Peg Test 
[57] was used to measure finger dexterity. Participants were 
instructed to transfer pegs from a container into holes on a 
board one by one as quickly as possible, then transfer them 
back to the container. Participants performed two trials 
following a short practice. The mean time (s) to complete 
the two trials was recorded, with lower times indicating 
greater dexterity.
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DATA ANALYSIS
Acceleration and angular displacement signals were 
calibrated and band-pass filtered (0.5 to 40 Hz, 4th 
order, dual-pass, Butterworth). Postural tremor during 
unweighted and weighted conditions was calculated as 
the root-mean-square of the acceleration signal. Kinetic 
tremor during unweighted and weighted conditions was 
calculated as the average root-mean-square of the angular 
displacement signal over the middle 40° of each of the 50° 
flexion and extension movements.

Muscle activity signals were mean-removed, filtered 
(20 to 450 Hz bandpass, 4th order, dual-pass Butterworth), 
rectified, and filtered again (40 Hz low pass, 4th order, dual-
pass Butterworth). Maximal FCR and ECR EMG activity across 
the two MVC trials was determined and used to normalize 
the EMG recorded during postural and kinetic tremor testing.

Power spectra were computed for acceleration, angular 
displacement and EMG signals using the method of disjoint 
segments [58]. Spectra were estimated by averaging the 
finite Fourier transforms calculated over 12 non-overlapping 
windows of 5 s, resulting in a frequency resolution of 0.2 Hz.

To calculate proprioceptive discrimination thresholds, 
the absolute difference between the width or weight of the 
reference stimulus and the weight or width of each reversal 
(test stimuli) was first computed. Next, the initial reversal 
of each staircase was removed. Finally, the mean of the 
remaining 10 reversals (5 from each staircase) was computed 
to provide a discrimination threshold for width (in mm) and 
weight (in g).

STATISTICAL ANALYSIS
Robust regression was used to compare outcomes between 
groups using the rreg function in Stata (v13) in separate 
models, adjusting for grip strength and tactile acuity. Robust 
regression is more resistant to outlying observations (which 
are prevalent in participants with ET) than ordinary least 
squares regression methods, and allows 95% confidence 
intervals (CI) of between-group mean differences to be 
determined in natural units of the outcomes, without 
needing to log-transform the data [59]. If the 95% CI of 
the between-group mean difference crosses zero, we infer 
that there is no difference between groups.

Applying an approach from epidemiology, exploratory 
causal mediation analysis was conducted to estimate if the 
effect of ET on function was mediated by proprioception, with 
tremor amplitude as a second mediator. Causal mediation 
analysis aims to estimate effects that are mediated through 
specific pathways. Plausible mechanisms are specified in a 
directed acyclic causal graph, and adjustments are made to 
control for confounding [60, 61]. The analysis then partitions 
the average total effect of an exposure on an outcome into 
the average effect acting through a mediator (the average 
causally mediated effect), and the average direct effect.

A causal graph (Figure 2A) was developed by the 
investigator team using subject matter expertise, and 
generated using DAGitty software [62]. Arrows indicate the 
flow of causation between variables. Under the assumed 

Figure 2 Causal graph and highlighted paths of the plausible 
mechanism of essential tremor on function mediated by 
proprioception and tremor amplitude.

(A) Full causal graph with (B) paths of total effect highlighted, (C) 
paths of average causally mediated effect highlighted, and (D) 
paths of average direct effect highlighted.
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causal graph, the effect of ET (exposure) on upper limb 
function (outcome) is mediated by proprioception and tremor 
amplitude, where the mediators are causally dependent. 
Grip strength and tactile acuity are potential confounders. 
Causal mediation analysis was performed using the 
multimed function within the mediation package in R (v3.6) 
[63, 64]. This analysis partitioned the total effect (Figure 2B) 
into the average causally mediated effect (Figure 2C) and 
the average direct effect (Figure 2D), controlling for 
confounders. To reduce the number of comparisons and 
minimize Type I error, causal mediation analysis was 
conducted to estimate the effect of ET that is mediated by 
proprioceptive discrimination (width, weight), accounting 
for the effect of postural and kinetic tremor amplitude only 
measured under weighted conditions [50] on functional 
outcomes (i.e. Fahn-Tolosa-Marin Clinical Rating Scale for 
Tremor, ABILHAND, Box and Block Test, 9-Hole Peg Test) in 
separate models. For each outcome, we report estimates 
of the average causally mediated effect and the average 
direct effect (in participants with ET, and averaged between 
ET and control groups), and the total effect.

When mediators are causally dependent (Figure 2A), the 
average causally mediated effect assumes that interactions 
between the primary mediator (proprioception) and 
outcome (function) do not depend on the exposure (ET); 
this is known as the homogenous treatment assumption 
[63, 64]. To assess the validity of this assumption, 
multimed was used to perform sensitivity analyses using 
bootstrapped simulation to generate separate sensitivity 
plots for participants with ET and control participants.

RESULTS

Twenty-four healthy control participants and 25 
participants with ET took part in the study. Based on their 
medical history, EMG and tremor power spectra from 
weighted and unweighted postural tremor testing, and 
clinical tremor assessments (i.e. FTM), 7 participants were 
excluded (Controls: 2, ET: 5). The 2 control participants were 
outliers for postural tremor amplitude (>3 SD from group 
mean) and inspection of the power spectra revealed that 
they had spectral peaks characteristic of synchronized 
oscillatory muscle activity (wrist extensor EMG) and 
pathological tremor (acceleration). In 3 of the participants 
from the ET group, inspection of the power spectra revealed 
an EMG spectral peak that shifted to a lower frequency in 
the weighted condition, indicating that the tremor was 
likely not of central origin (i.e. it was possibly enhanced 
physiological tremor) [46]. The other 2 participants from 
the ET group had postural tremor amplitudes that, on the 

day of testing, were in the range of values for the control 
group. Inspection of their power spectra revealed no sharp 
peaks indicative of pathological tremor. One of these 
participants had a family history of ET.

In 15/20 participants with ET, the dominant hand was 
the more affected hand tested for proprioceptive abilities, 
and in 19/22 control participants the dominant hand was 
tested. In participants with ET, 35% (7/20) took medications 
for essential tremor. The mean (SD) time since the onset of 
noticeable hand tremor was 16.8 (13.0) years.

Participants with ET had impaired upper limb function 
for all outcomes, and greater postural and kinetic tremor 
when compared to control participants (Table 1). However, 
there were no differences between groups in proprioceptive 
discrimination of width (mean difference [95%CI]: 0.32 mm 
[–0.23 to 0.87 mm]) or weight (–1.12 g [–7.31 to 5.07 g]; 
Figure 3).

Causal mediation analysis showed the effect of ET on 
upper limb function was not mediated by proprioceptive 
discrimination of width or weight (Table 2). In general, 
sensitivity plots indicated that average causally mediated 
effects were not sensitive to the homogenous treatment 
assumption. That is, interactions between proprioception 
and function did not depend on whether participants 
had ET or not. Thus, under this causal graph, we can be 
confident that the effects of ET on function were not 
mediated by proprioception.

DISCUSSION

Essential tremor is a multifaceted neurological disorder 
associated with a variety of motor, sensory and cognitive 
deficits [10, 65, 66], the majority of which can contribute 
to activity limitations. Here we measured two distinct 
proprioceptive abilities, width and weight discrimination, 
in the more severely affected hand of people with ET and 
determined whether these proprioceptive abilities are 
causally linked to upper limb functional deficits.

In line with previous studies, our group of individuals with 
ET presented with kinetic tremor, postural tremor, and upper 
limb functional deficits [6, 31, 67, 68]. While all participants 
with ET had tremor in the limb in which proprioception was 
tested, we found no evidence of proprioceptive deficits. 
That is, compared to the age- and sex-matched healthy 
participants, there was little to no difference on average in 
the ability of participants with ET to discriminate the width 
of grasped objects or the weight of lifted objects.

Why were proprioceptive deficits not present? 
Based on clinical disability and tremor scores [6, 68], 
participants in the present study had mild to moderate 
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ET. Since the severity of tremor and its relationship to 
functional limitations scales logarithmically in ET [6, 67], 
it is possible that proprioceptive deficits in these tasks are 
only present in individuals with more severe ET. Although 
this may seem like the standard fallback argument to 
explain negative results in studies involving people with 
ET, it remains valid: there may be a limit to the amount 
of tremor-related proprioceptive noise on afferent signals 
from muscle spindles that the central nervous system can 
accommodate. This hypothesis should be confirmed (or 
refuted) by conducting a comparable experiment across 
the full range of tremor severity.

Another possibility is that the types of proprioceptive 
tasks tested in the present study (width and weight 
discrimination) are simply not impaired in ET. This would 
imply that tremor-related noise superimposed over both 
efferent and afferent neural signals does not impact the 
ability of people with ET to discriminate the width of a 
grasped object or the weight of a lifted object, tasks that 
rely on proprioceptive signals from muscles spindles [70, 
71]; receptors that should be affected by the rhythmic 
oscillatory motor drive characteristic of ET. In other words, 
the brain is able to compensate or account for the presence 
of this neural noise on afferent signals from muscle spindles 
when making these judgments.

To date, few studies have investigated the presence 
of proprioceptive deficits in people with ET. In their 

study, Semrau et al [39] found no proprioceptive deficits 
in individuals with severe tremor requiring deep brain 
stimulation. However, the joints they assessed –the 
elbow and shoulder– are less affected by tremor, and 
the experimental tasks required people to match the 
position or movement of a limb at rest, a state during 
which tremor is less likely to occur. Although not purely a 
test of proprioception, it is worth highlighting that people 
with ET and people with cerebellar degeneration both 
have difficulty distinguishing between two closely timed 
finger movements elicited by indwelling electrical muscle 
stimulation [38, 69, 72], a task that involves cerebellar 
neural computations [73, 74].

A limitation of the present study is that we focused solely 
on traditional proprioceptive tests that involve relatively 
simple neural computations to detect, discriminate and 
match proprioceptive signals. There is a category of 
proprioceptive judgments that require proprioceptive-
based central representations to be transformed into other 
frames of reference, which adds complexity and involves 
higher-level brain functions [21–28, 75]. Future studies on 
proprioceptive deficits in ET could include both classes of 
proprioceptive tests.

To estimate how proprioceptive deficits contribute to 
functional limitations, causal mediation analysis provides 
an approach that is related to, but more informative than 
simple correlation analysis. This is because it estimates 

OUTCOME CONTROL  
(n = 22)

ESSENTIAL TREMOR  
(n = 20)

BETWEEN-GROUP  
MEAN DIFFERENCE*

BETWEEN-GROUP  
MEAN DIFFERENCE (95% CI)†

Grip strength (kg) 32.4 (9.4) 34.8 (11.8) 2.3 (–4.3 to 8.9) –

Tactile acuity (g) 0.17 (0.25) 0.32 (0.34) 0.14 (–0.05 to 0.33) –

Postural tremor, unweighted (ms–2) 0.04 (0.01) 0.15 (0.14) 0.10 0.03 (0.01 to 0.04)

Postural tremor, weighted (ms–2) 0.05 (0.01) 0.20 (0.19) 0.16 0.04 (0.03 to 0.05)

Kinetic tremor, unweighted (deg) 0.36 (0.01) 0.65 (0.36) 0.30 0.14 (0.06 to 0.23)

Kinetic tremor, weighted (deg) 0.35 (0.10) 0.53 (0.20) 0.17 0.11 (0.04 to 0.18)

FTM-A (a.u.; max score 24) 1.0 (1.2) 5.6 (3.4) 4.2 4.0 (2.6 to 5.4)

FTM-B (a.u.; max score 36) 3.1 (2.8) 10.2 (5.0) 6.0 6.3 (3.8 to 8.7)

FTM-AB (a.u.; max score 60) 4.1 (4.0) 15.8 (7.8) 10.2 10.5 (6.8 to 14.2)

TDQ (%) – 0.19 (0.11) – –

ABILHAND logits (a.u.) 5.11 (1.13) 2.90 (1.27) –2.09 –2.06 (–2.90 to –1.22)

Box and Block Test (n) 69 (11) 58 (11) –10 –9 (–16 to –1)

9-Hole Peg Test (s) 18.5 (2.9) 24.5 (6.5) 5.0 3.9 (1.4 to 6.5)

Table 1 Proprioception, tremor amplitude and functional outcomes.

Within-group mean (SD) for all outcomes. Between-group mean differences (95% CI) are provided for grip strength and tactile acuity. For 
all other outcomes, between-group mean differences from linear regression (*) and between group mean differences (95% CI) for robust 
regression (†) are adjusted for grip strength and tactile acuity. Legend: a.u.: arbitrary units; FTM: Fahn-Tolosa-Marin Clinical Rating Scale; 
TDQ: Tremor Disability Questionnaire.
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mediated effects under a plausible causal structure, 
adjusts for potential confounding, and tests the validity of 
assumptions using sensitivity analysis. We found that the 
effect of ET on upper limb function was not mediated by 
proprioceptive discrimination of width or weight. Overall, 
the 95% CI about the between-group mean differences for 
all outcomes were narrow, indicating we can be confident 
about our findings because estimates were precise.

Why did we perform causal mediation analysis if there 
was no between-group difference in proprioceptive abilities? 
The aim of this study was to determine the contribution 
of proprioceptive deficits to functional impairments in 
ET. If we adopted a traditional approach, we would have 
correlated proprioceptive ability with measures of upper 
limb function even though proprioceptive abilities were not 
different between groups. The absence of a meaningful 

Figure 3 Proprioceptive outcomes of (A) width discrimination threshold and (B) weight discrimination threshold.

Panels show individual participant data (gray circles), group mean and SD (black circle and error bar), between-group mean difference and 
95% CI (black triangle and error bar), and the line of no between-group difference (dashed gray line).
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difference in proprioceptive abilities between participants 
with ET and healthy controls would not have influenced 
whether correlations were performed. This is because the 
absence of a between-group difference does not indicate 
whether proprioceptive abilities are, or are not, related to 
upper limb function. Therefore, by extension, the absence 
of a between-group difference in proprioceptive abilities in 
the present study did not influence whether we carried out 
the planned causal analysis.

CONCLUSION

People with ET presented with both kinetic and postural 
tremor, which was accompanied by impaired upper limb 
function. However, proprioceptive discrimination of width 
and weight were not impaired in these individuals, nor 
was the effect of ET on function causally mediated by 
proprioception.

ABBREVIATIONS

average causally mediated effect, ACME; average direct 
effect, ADE; electromyography, EMG; essential tremor, 
ET; extensor carpi radialis, ECR; Fahn-Tolosa-Marin Clinical 

Rating Scale, FTM; flexor carpi radialis, FCR; maximal 
voluntary contraction, MVC; Tremor Disability Questionnaire, 
TDQ.
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OUTCOME 1° 
MEDIATOR

2° 
MEDIATOR

ACME (ET) ACME (AVERAGE) ADE (ET) ADE (AVERAGE) TOTAL EFFECT

FTM (a.u.) Width Postural –0.4 (–3.5 to 2.7) –0.4 (–3.3 to 2.5) 10.6 (6.1 to 15.0) 10.6 (6.3 to 14.9) 10.2 (6.9 to 13.2)

Width Kinetic 0.1 (–1.2 to 1.3) 0 (–1.0 to 1.1) 10.2 (6.6 to 13.8) 10.2 (6.8 to 13.6) 10.2 (6.7 to 13.4)

Weight Postural –0.4 (–3.2 to 2.4) –0.4 (–2.9 to 2.0) 10.6 (6.5 to 14.8) 10.6 (6.5 to 14.8) 10.2 (6.9 to 13.3)

Weight Kinetic –0.1 (–1.8 to 1.6) –0.1 (–1.1 to 1.0) 10.3 (6.9 to 13.8) 10.3 (6.9 to 13.7) 10.2 (7.0 to 13.4)

ABILHAND
logits 
(a.u.)

Width Postural 0.03 (–0.71 to 0.76) 0 (–0.73 to 0.73) –2.01 (–3.11 to –1.03) –2.09 (–3.01 to –1.09) –2.09 (–2.83 to –1.37)

Width Kinetic 0.05 (–0.23 to 0.32) 0.01 (–0.25 to 0.27) –2.07 (–2.91 to –1.23) –2.10 (–2.88 to –1.32) –2.09 ( –2.81 to –1.38)

Weight Postural 0.01 (–0.65 to 0.67) 0.01 (–0.63 to 0.65) –2.10 (–3.03 to –1.18) –2.10 (–3.02 to –1.19) –2.09 (–2.83 to –1.36)

Weight Kinetic 0.02 (–0.32 to 0.36) 0.02 (–0.25 to 0.29) –2.11 (–2.86 to –1.36) –2.11 (–2.85 to –1.37) –2.09 (–2.79 to –1.37)

Box and 
Block
Test (n)

Width Postural –1 (–7 to 5) –1 (–6 to 4) –9 (–16 to –1) –9 (–16 to –1) –10 (–16 to –4)

Width Kinetic 0 (–3 to 3) 0 (–3 to 2) –9 (–16 to –3) –9 (–16 to –3) –10 (–16 to –4)

Weight Postural 0 (–6 to 5) 0 (–6 to 5) –9 (–17 to –2) –9 (–17 to –2) –10 (–16 to –4)

Weight Kinetic 0 (–2 to 2) 0 (–2 to 2) –10 (–16 to –3) –10 (–16 to –3) –10 (–16 to –3)

9–Hole 
Peg
Test (s)

Width Postural –0.1 (–2.4 to 2.1) 0 (–1.8 to 1.9) 4.8 (1.2 to 8.5) 5.0 (1.4 to 8.7) 5.0 (2.1 to 8.0)

Width Kinetic –0.3 (–2.0 to 1.5) 0 (–1.1 to 1.1) 4.8 (1.4 to 8.2) 5.1 (1.8 to 8.4) 5.0 (2.2 to 8.0)

Weight Postural 0 (–3.3 to 3.2) 0 (–2.5 to 2.6) 5.0 (1.4 to 8.6) 5.0 (1.5 to 8.6) 5.0 (2.2 to 8.0)

Weight Kinetic –0.1 (–2.6 to 2.3) –0.1 (–1.4 to 1.2) 5.1 (2.1 to 8.1) 5.1 (2.2 to 8.1) 5.0 (2.2 to 8.1)

Table 2 The effect of essential tremor on function that was causally mediated by proprioceptive discrimination (primary, 1°), where 
tremor amplitude was also a mediator (secondary, 2°).

Only tremor amplitude during the weighted condition was analysed [50]. Estimates of the average causally mediated effect (ACME), the 
average direct effect (ADE) and all 95% CI were determined under the homogenous treatment assumption, adjusted for grip strength and 
tactile acuity. Mean total effects correspond to linear regression between-group mean differences (Table 1). For brevity, only the ACME and ADE 
for participants with ET and averaged between groups are shown. Legend: a.u.: arbitrary units; FTM: Fahn-Tolosa-Marin Clinical Rating Scale.
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