bigIR at TREC 2021: Adopting Transfer Learning for News
Background Linking

Marwa Essam and Tamer Elsayed
{me1709534,telsayed}@qu.edu.qa
Computer Science and Engineering Department
Qatar University
Doha, Qatar

ABSTRACT

In this paper, we present the participation of the bigIR team at
Qatar University in the TREC 2021 news track. We participated
in the background linking task. The task mainly aims to retrieve
news articles that provide context and background knowledge to
the reader of a specific query article. We submitted five runs for
this task. In the first two, we adopted an ad-hoc retrieval approach,
where the query articles were analyzed to generate search queries
that were issued against the news articles collection to retrieve the
required links. In the remaining runs, we adopted a transfer learning
approach to rerank the articles retrieved given their usefulness
to address specific subtopics related to the query articles. These
subtopics were given by the track organizers as a new challenge
this year. The results show that one of our runs outperformed TREC
median submission, while others achieved comparable results.

1 INTRODUCTION

Motivated to help readers of online news articles to better under-
stand its content and gain more background knowledge on its con-
text, the news background linking task was proposed by the Text
REtrieval Conference (TREC) in 2018, with follow-ups in 2019, 2020
and 2021. The task mainly requires researchers to analyze an input
query news article to provide links to other news articles that the
reader can read to gain more context and background knowledge
on the content of the input article.

Many teams participated in this news background linking task,
providing different solutions to retrieve the required background
articles [1, 5, 7]. Surprisingly though, the most effective method
reported to date uses the whole content of the query article as a
search query in an ad-hoc setting to retrieve the background links.
Aside from the fact that this method is considered inefficient, as it
generates very long search queries, it is still far from being optimal;
it achieved nDCG@5 of 0.46, 0.63 and 0.59 in TREC 2018, 2019, and
2020 respectively [8—10], which leaves room for improvement.

In this paper, we demonstrate the participation of our bigIR team
at Qatar University in the background linking task in TREC 2021.
We submitted five runs for the task. One of our runs outperformed
TREC median submission, while others achieved comparable re-
sults. In two runs, we adopted an ad-hoc retrieval approach, where
we analyzed the query article to extract a search query that we
issued against the collection of the news articles to retrieve the
background links. To analyze the query articles, we adopted two
keyword extraction techniques: k-Truss [11], which is a graph-
based keyword extraction algorithm that we experimented with
before and showed promising results [3], and YAKE! [2], a sta-
tistical keyword extraction technique that was recently released

and achieved effective performance in keyword extraction that
outperformed many well-known baselines.

For the other three runs, we adopted a transfer learning approach
to rerank the articles, retrieved using the ad-hoc based approach,
given their relevance to the subtopics of the query article. Our ap-
proach mainly relied on splitting the retrieved articles into passages,
rerank those passages, using pre-trained transformer models, given
their relevance to the subtopics description, then use the passage
scores to assign article scores to rerank the news articles. We ex-
perimented with two pre-trained BERT-based reranker models to
rerank the passages: monoBERT [6], a relevance classifier model for
query-passage pairs, and DistilBERT-TAS-B [4], a sentence trans-
former model that is optimized for the task of semantic search.
Our results show that using the monoBERT model is better for the
background linking task.

The rest of this paper is organized as follows. We provide details
on the dataset released for this task and how we processed it in
Section 2. Details on how we generated the main news background
linking runs are discussed in Section 3. Details on how we applied
transfer learning to generate the subtopic runs are given in Section
4. Results are presented in Section 5. Finally, our conclusion and
future work are presented in Section 6.

2 DATASET AND PREPROCESSING

We used version 4 of the Washington Post news collection released
for the news track by TREC in 2021. The collection contains 728,626
news articles, published by the Washington Post, that span nine
years from 2012 to 2020. Within the dataset file, the news articles are
written as JSON objects. For each article, we extracted and stored
the metadata (title, author, publishing date, and URL), along with
the type of the article (e.g., opinions, sports, climate, politics, etc.).
For the article’s main content, we extracted from the JSON object
only the content that is marked by a “sanitized_html” type, and
ignored other descriptions of media or other embedded objects. We
then used JSOUP library? to extract the raw text from the HTML
text. We stored that text of the article, split into paragraphs (as
marked in the JSON object) into a mySQL database. We also used

3 ver. 8.0 to create an inverted index of the collection for

Lucene
ad-hoc retrieval purposes. To index the articles, we concatenated
all paragraphs, lower-cased the text, and removed stop words, all
non-alphabetical characters, and all single character terms. The
final preprocessed text was indexed as a text field in Lucene along

with the article’s metadata.

Uhttps://trec.nist.gov/data/wapost/
Zhttps://jsoup.org/
3http://lucene.apache.org/

3 AD-HOC BASED RETRIEVAL OF
BACKGROUND LINKS

We used mainly an ad-hoc based retrieval approach to generate our
first two submitted runs: QU_LeadPar and QU_YakeTruss. Our
approach mainly relies on extracting keywords from the article that
best indicate its relevant subtopics, weigh these keywords according
to its influence in the article, and then generate a weighted search
query out of these keywords. The query is then issued against
an index of the news article collection to retrieve the required
background links. More precisely, let N be the set of extracted terms
from an input query article, and assume that each term t; € N has
a weight wy,, that indicates its importance in the query article. We
choose k € N terms with the highest weights to construct the
search query Q as follows:

0 = {(t1, wr,), (12, wty), ooos (B, Wiy)} (1)

To generate our first run QU_LeadPar, we simply extracted the
unique terms that appeared in the title of the query article plus its
first 16 leading paragraphs, and used these as search terms, with
their weight assigned as the term frequencies. We opted to extract
the terms for this run from only the 16 leading paragraphs, as our
experiments on the queries from last years showed that using 16
paragraphs on average is sufficient to achieve high effectiveness.

To generate the second run QU_YakeTruss, we adopted two
keyword extraction methods to extract the keywords from the query
article; namely k-Truss [11], a graph-based algorithm, and YAKE![2],
a recent statistical algorithm. We then used linear interpolation
to aggregate their assigned weights to the extracted keywords to
generate the final search query as follows:

Wy, = a* WTruss, + (1 — a) * WYAKE;, 2)

where WTruss;, and WYAKE;, are the weights assigned by the
k-Truss and YAKE! methods respectively to the term #;. In our run,
we set the interpolation parameter alpha to 0.5. After interpolating
the term weights from k-Truss and YAKE!, we selected the top
100 terms to generate our search query. Both methods are briefly
described below along with how we used them to assign the weights
to the different terms.

3.1 k-Truss

k-Truss [11] is a graph decomposition technique that mainly relies
on converting the text into a graph of words and analyzing this
graph to reveal the most influential words/nodes. To build this
graph, the unique terms in the text are added as nodes, then a
sliding window goes over the text from left to right, creating edges
between co-occurring terms within the window. The edges are
weighted with the co-occurring frequency of the terms. k-Truss
analyzes the created graph by decomposing it into a set of nested
subgraphs through iteratively pruning weak edges. Precisely, k-
Truss prunes an edge from the k-1 subgraph if it is not supported
by at least k-2 other edges that form triangles with that edge. A
node with no more connecting edges is pruned from the graph
as well. Finally, each node is assigned a truss number equal to the
maximum subgraph number in which it resides. A truss number can
then be used as a node’s weight. However, this will result in many
nodes having the same weight. Therefore, in this work, we adopted

the work in [11], and assigned a weight to the node (the term) equal
to the sum of truss numbers of its neighbors in the original graph of
text. Figure 1 shows an example of applying k-Truss decomposition.
In our run, we set the width of the sliding window to 3.

o0 °0-: o 0" 0.
2 ‘ 2

3 3 1
® s @ ® s @2
o 0© o ©

(a) (b)

Figure 1: Decomposing a graph into subgraphs. (a) original
graph (b) 3-Truss decomposition.

3.2 YAKE!

YAKE! is a statistical keyword extraction method that was proposed
recently, and outperformed many well-known keyword extraction
methods [2]. It mainly aggregates the following statistical features
of a term in the text to calculate its weight:

e The term frequency.

e How frequent the term is mentioned starting with a capital
case letter excluding the beginning of a sentence, or marked
as an acronym.

e The position of the term in the document, favoring more
terms that occur at the beginning of the document.

e The percentage of different sentences in which the term
appears, on an assumption that terms that occur in different
sentences are more influential.

e The term context, by capturing the number of different terms
that co-occur with the term on both its left and right sides,
on the assumption that the higher this number is, the less
significant the term will be.

After aggregating YAKE! features, and as reported by its authors
according to the aggregation equation[2], the smaller the YAKE!
value of a term is, the more significant it is. Since in our work we
assign weights to terms that reflect their influence, we convert this
score to a boost score by taking its reciprocal value.

3.3 Background Links Retrieval

For retrieving the background links, we used Lucene’s default rank-
ing model. We used the “type” field from the retrieved articles
to filter out the ones that are “Opinions”, “Letters to the Editor”,
or “The Post’s View”, as they were declared by TREC to be non-
relevant. We also filtered out all articles that were published after
the query article. Finally, we submitted the first 100 background
articles retrieved (after removing duplicates).

4 TRANSFER LEARNING FOR NEWS
BACKGROUND LINKING

The news background linking task this year involved the new sub-
mission of "subtopic” runs. In these runs, the researchers are asked

Candidate Background Links

Generate a search Retrieve candidate
query background links

Query Topic File

Split each candidate link

into passages

\] | 0]

\] | | |

\] [] "]

\] | 0 |
|

v

Rerank passages given Assign articles score Arrange and generate
subtopic description given passages rank reranked articles list

:

-

Reranked Background Links

Figure 2: A high level overview of the background links retrieval system used for generating the "subtopic" runs

to retrieve news articles that address a specific subtopic that is ei-
ther: 1) mentioned in the query article; thus the background article
is supposed to give more details on the subtopic, or 2) not mentioned
in the query article, but somehow related to it; thus reading about
it will allow the query article’s reader to gain more knowledge on
its context. The description of the subtopics for each query article
was given by the organizers of the track within the description of
the query article topics, and participants were only allowed to use
this description to generate “subtopic” runs. In our participation for
the background linking task, we generated three “subtopic” runs.
In this section, we first describe our general approach to generate
these runs, then we discuss each of them.

4.1 Approach Overview

To generate the “subtopic” runs, we first used a search query ex-
tracted from the query article to retrieve an initial set of 100 candi-
date background links from the news articles collection. As with
our first two runs, we filtered out irrelevant articles and articles
that were published after the query article. We then adopted a
transfer learning approach to rerank this candidate set, given the
description of each subtopic. More precisely, we adopted two pre-
trained BERT-based reranker models to rerank the candidate back-
ground links given the subtopics description. The models we used
are: monoBERT [6], which is a relevance classifier model that was
trained on the MS MARCO dataset,* ranking document passages
given how they answer an input question, and Disti[BERT-TAS-B [4],
whic is also trained on MS MARCO for passage reranking, but with
balanced topic-aware sampling.

Since both models were trained on reranking passages, which
is of small size compared to the long news articles, we split each
candidate background article into passages, and feed those passages
along with the subtopic description as a query to the reranker
model. This is to avoid important text truncation if the articles
are fed directly along with the subtopics to the reranker model.

“https://microsoft.github.io/msmarco/

For simplicity, we consider each paragraph in the candidate article
as a single passage, and any paragraph that is less than 20 terms
in length is concatenated with its predecessor in a single passage.
After reranking the passages, we assign each candidate article a
score equal to the maximum relevance score assigned to any of
its passages. Finally, we rerank the candidate articles given their
scores. Figure 2 shows an outline of the adopted retrieval approach.

4.2 Submitted Subtopic Runs

Our submitted runs are described as follows:

e QU_SP_MBERT: In this run, we obtained initially the set of
candidate background links using the 16 leading paragraph
of the query article along with its title as a search query, and
monoBERT was used as a reranker model.

e QU_SP_MSM: In this run, we obtained initially the set of
candidate background links using the 16 leading paragraph
of the query article along with its title as a search query, and
DistilBERT-TAS-B was used as a reranker model.

e QU_SS_MSM: In this run, we obtained initially the set of
candidate background links using a concatenation of all
subtopics of the query article along with its title as a search
query, and DistilBERT-TAS-B was used as a reranker model.

5 OFFICIAL TREC RESULTS

Table 1 shows the results as provided to us by the track organiz-
ers for the main background linking task. In this task, nDCG@10
was used as the official evaluation metric this year. As can be seen,
QU_leadPar outperformed the TREC median for this task. This
result, as in previous years of the track, shows again the effective-
ness of using almost the full article as a search query to retrieve the
background links. QU_YakeTruss did not achieve similar results,
eliminating the need for the extensive keyword extraction process,
at least for effectiveness purposes.

Table 2 shows the results for the subtopic runs. For these runs,
the organizers reported also the Precision@10 evaluation metric.

[Run | nDDCG@10 |
| TREC’21-Median | 0.3581 |
QU _leadPar 0.3774
QU _YakeTruss | 0.3418

Table 1: nDCG @10 scores for the submitted runs for the main
background linking task compared to TREC’21 median

l Run [nDCG@10 [Precision@ 10 ‘

| TREC'21-Median [0.2177 \ 0.1974 |
QU_SP_MBERT | 0.2176 0.1956
QU_SP_MSM 0.1983 0.1674
QU_SS_MSM 0.2019 0.1815

Table 2: Effectiveness scores for the submitted runs for the
subtopic runs of the background linking task compared to
TREC’21 median

We clearly notice that the results are generally much lower than the
main background linking task, indicating the challenging nature for
this specific type of news background linking. It can be also noticed
that using monoBERT for reranking the passages in this task is
generally better than using DistilBERT-TAS-B, as its performance
is comparable to the TREC median in both evaluation metrics.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present our bigIR group’s participation in the
background linking task in TREC 2021. This year, we adopted two
approached to tackle the problem of news background linking. The
first is ad-hoc retrieval based, which depends on the extraction of a
search query from the input article to retrieve the required links.
The results showed that using the most frequent items extracted
from the 16 leading paragraphs of the query article achieved the
best results among our submitted runs. The second approach gen-
erated subtopics runs, which mainly depends on using BERT-based
reranker models to rerank the retrieved articles given their rele-
vance to the described subtopic. Our results for those runs showed
that using monoBERT as a reranker model achieved comparable
results to the TREC median for this task. The results also showed
that the effectiveness for those runs is generally much lower than
the main background linking task, which leaves a big room for
improvement in the future.

Our future work will initially focus on investigating the effect
of the different parameters that we adopted in the design of our
approach on the results achieved by our runs. For instance, we used
the date filter to filter out articles that were published after the query
article, and we believe that we might have missed relevant articles
this way, specially if the query article was published early in the
news collection. We will also work on addressing the subtopic-based
news linking problem as it is challenging. We aim to investigate
other models that best represent the candidate news articles along
with the subtopics for reranking.

ACKNOWLEDGMENTS

This work was made possible by NPRP grant# NPRP 11S-1204-

170060 from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the responsi-

bility of the authors.

REFERENCES

[1] Agra Bimantara, Michelle Blau, Kevin Engelhardt, Johannes Gerwert, Tobias
Gottschalk, Philipp Lukosz, Shenna Piri, Nima Saken Shaft, and Klaus Berberich.
2018. htw saar @ TREC 2018 News Track. In Proceedings of the Twenty-Seventh
Text REtrieval Conference (TREC).

[2] Ricardo Campos, Vitor Mangaravite, Arian Pasquali, Alipio Jorge, Célia Nunes,
and Adam Jatowt. 2020. YAKE! Keyword extraction from single documents using
multiple local features. Information Sciences 509 (2020), 257-289.

[3] Marwa Essam and Tamer Elsayed. 2019. bigIR at TREC 2019: Graph-based
Analysis for News Background Linking.. In Proceedings of the Twenty-Eighth Text
REtrieval Conference (TREC).

[4] Sebastian Hofstatter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling. In Proc. of SIGIR.

[5] Kuang Lu and Hui Fang. 2019. Leveraging Entities in Background Document
Retrieval for News Articles. In Proceedings of the Twenty-Eighth Text REtrieval
Conference (TREC).

[6] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[7] Dwaipayan Roy Rahul Gautam, Mandar Mitra. 2020. TREC 2020 NEWS Track
Background Linking Task. In Proceedings of the Twenty-Ninth Text REtrieval
Conference (TREC).

[8] Ian Soboroff, Shudong Huang, and Donna Harman. 2018. TREC 2018 News Track
Overview. In Proceedings of the Twenty-Seventh Text REtrieval Conference (TREC).

[9] Ian Soboroff, Shudong Huang, and Donna Harman. 2019. TREC 2019 News Track

Overview. In Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC).

Ian Soboroff, Shudong Huang, and Donna Harman. 2020. TREC 2020 News Track

Overview. In Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC).

Antoine Tixier, Fragkiskos Malliaros, and Michalis Vazirgiannis. 2016. A graph

degeneracy-based approach to keyword extraction. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing. 1860-1870.

=
=2

—_
o

	Abstract
	1 Introduction
	2 Dataset and Preprocessing
	3 Ad-hoc based Retrieval of Background Links
	3.1 k-Truss
	3.2 YAKE!
	3.3 Background Links Retrieval

	4 Transfer learning for News Background Linking
	4.1 Approach Overview
	4.2 Submitted Subtopic Runs

	5 Official TREC Results
	6 Conclusions and Future Work
	References

