
ICTNET at TREC 2019 News Track

Yuyang Ding1,2, XiaoyingLian1,2, HouquanZhou1,2, ZhaogeLiu1,2, HanxingDing1,2, ZhongniHou1,2

1.University of Chinese Academy of Sciences, Beijing, China
2.CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology
{DingYuyang18s,LianXiaoying18s,ZhouHouquan18s,}@ict.ac.cn
{LiuZhaoge18s,DingHanxing18s,HouZhongni18z}@ict.ac.cn

Abstract

This paper describes our work in the background linking
task and entity ranking task in TREC 2018 News Track. We
explore four methods in background linking task and two
methods in entity ranking task. All of our methods largely
rely on off-the-shell open-source components(e.g., Solr for
indexing the documents), and follow the basic thoughts—
BM25 and relevance feedback. These methods differ in how
they analyze the given input to obtain a query and to what
extent the returned results are re-ranked taking meta data
of the document(e.g., publish dates) into account.

1. Introduction
The News track focuses on information retrieval in the

service of helping people read the news. In this TREC, there
are two tasks–background linking and entity ranking, con-
taining 600,000 news articles aiming to find how news is
presented on the web.

The goal of the background linking task is to develop
evaluation data to support researchers in developing sys-
tems that can help users contextualize news articles as they
are reading them. For example, a user is reading a specific
article (the query article), algorithms should recommend ar-
ticles that this person should read next that are the most use-
ful for providing context and background for the query ar-
ticle. It is reasonable to view this task as a specific kind
of news recommendation task that would be useful in any
news reading context, including the Posts website.

The second task, entity ranking, aims at separating im-
portant entities from non-important ones within an article.
In addition to providing links to articles that give the reader
background or contextual information, journalists some-
times link mentions of concepts, artifacts, and entities to in-
ternal or external pages with in depth information that will
help the reader better understand the article. Given a news
article with title and content that is annotated with entity
links to a set of entities, we are supposed to rank the the

given entities by importance for the article (i.e., saliency).
To solve this two tasks, we follow the basic thoughts

in information retrieval systems—relevance feedback and
BM25. Also, we support information retrieval research
using the popular open-source Solr search library which
allows researchers to easily replicate results with modern
ranking models on diverse test collections. These meth-
ods turn out to perform well. In our participation at the
news track, we submitted four different runs: three for back-
ground linking and the last for entity ranking.

The rest of this paper is structured as follows. Section 2
and 3 present the basic frameworks of the two news tasks:
background linking and entity ranking. Each section con-
tains several subsections explain the data analysis, related
methods, results and the final analysis. Section 4 concludes
the paper.

2. Background Linking
2.1. Kicker

As mentioned in Guideline, articles from the ”Opinion”,
”Letters to the Editor”, or ”The Post’s View” sections la-
beled in the”kicker” field, are not relevant. In order not to
miss information, we observe the distribution of documents
according to the ”kicker” filed. The results of the observa-
tion are shown in Figures 1.

There are a total of 184 different types of ”kickers”. Doc-
uments without ”kicker” filed are also counted as one cat-
egory named ”None”. The ”kicker” field can recall up to
39,885 documents and 3,323 documents on average. The
median number of recalled documents is 1585. The num-
ber of documents that can be recalled by the three types of
kickers that need to be ignored is 23074.

Figure 1 shows the distribution of documents recalled
by the kicker field. The horizontal axis is the number of
recalled documents, and the vertical axis is the number of
”kicker” types. There are 22 types of ”kicker” recalled doc-
uments below 10, and 90 types of ”kicker” recalled between
1000 and 10,000. It can be seen that the number of docu-

1

Figure 1. The distribution of documents recalled by the kicker
field. The horizontal axis is the number of recalled documents,
and the vertical axis is the number of ”kicker” types.

ments recalled by most ”kicker” is huge, so the types of
documents recalled by same ”kicker” can be very different.
Since there are many differences in documents belonging
to the same ”kicker”, and documents belonging to different
”kicker” also have many similar documents. Therefore, we
believe that the information brought by the ”kicker” field is
too confusing to help retrieve the relevant documents. In the
following work, the information of ”kicker” field is aban-
doned.

2.2. Methods

Background linking is similar to ad-hoc search task. We
use the main article of one topic as query to create a candi-
date set of background documents with high retrieve scores.
Unfortunately, we don’t have enough labelled data. There-
fore, the keys to retrieve better background documents are
constructing a suitable query clause and making good use of
output documents with high confidence from unsupervised
method. Based on these motivations, here are our methods.

2.2.1 BM25 Baseline

BM25 [5] is one of the most popular and also the best mod-
els in the history of information retrieval. We use the de-
fault implementation of BM25 in solr to make our experi-
ments. Different from ad-hoc search task with a short query
as input, an article as query could have two defects. Firstly,
the influence of some relevant words maybe impaired by a
large set of irrelevant words. Secondly, the weights of the
paragraphs and titles of articles should be set differently to
simulate the attention of human readers.

As a consequence, we try a lot combinations of para-
graphs and titles to make better query clause: only title, only
first paragraph, title+first paragraph, concatenation of every
paragraphs, first sentences, all paragraphs. We find that the
best one was still the concatenation of all paragraphs. We
also search optimal weights combinations and finally set the
weight of content as 0.7 and the weight of title as 0.3.

The other methods are developed from this baseline
model.

2.2.2 BM25 with Rocchio

Except the dimension of query clause, we can also im-
prove performance by making use of results of unsupervised
method, which is also called pseudo relevance feedback.
The main idea of relevance feedback is that a user can’t
fully express his intention on the first try. So we need to ex-
pand the inaccurate query to its accurate semantic meaning
by user feedback. Specially, we don’t have labelled feed-
back. So we need to do pseudo relevance feedback by the
high-confidence subset of output documents from BM25.

In this method, we use the well-known Rocchio algo-
rithm [2]. Rocchio algorithm is a combination of Vector
Space Model(VSM) and pseudo relevance feedback model.
We see query articles and candidate articles as tf-idf feature
vectors. Then the task of retrieve is converted into calculat-
ing the similarity between two vectors. As figure 1, the dis-
tribution of feature vectors in space of relevant documents
is different from irrelevant documents. So we can use them
to modify the representation of query articles.

Figure 2. Rocchio algorithm

The formula for Rocchio relevance feedback is as fol-
lows:

~qopt = (1−α−β) ~qorg+α
1

|Cr|
∑

~dj∈Cr

~dj−β
1

|Cir|
∑

~dj∈Cir

~dj

(1)
We use BM25 to produce top 100 candidate documents and
select the top 20 relevant documents as Cr and bottom 20
irrelevant documents as Cir to create a new query which is
closer to the relevant and apart from the irrelevant. In the
last, we use the new query to retrieve top 20 documents by
BM25.

2

2.2.3 BM25 with Bert

Another way to make use of BM25 is to learn its pattern
of rank of candidate documents. Although there are no la-
belled relevant document list data, we think it still mean-
ingful to apply learning to rank method on high-confidence
output of BM25.

Bert [1] is the state of art neural network model which is
applied to almost all fields in NLP. So we apply pretrained
Bert model on the top 10 documents from BM25. Specif-
ically, we use some tricks to improve the result. First we
select the first paragraph of query and then randomly select
some other paragraphs to create a query. We do the same
thing to create a candidate document. Then Bert model
learns the score of the concatenation of the query and can-
didate. Second according to the rule of pair-wise learn-
ing to rank, we also create some ”weak queries” which not
include the most important first paragraph but include the
other paragraphs and then pair them with the former ”strong
queries”. Bert model learns from the pair and tries to make
the weak ones score lower than the strong ones. These tricks
help to create more data and build a more robust model.

2.2.4 Query likelihood and Relevance Model 3

Query likelihood(QL) [4] is a well-know information re-
trieval method. Based on language models built from each
document, QL ranks documents according to the likelihood
of the given query.

QL is usually combined with relevance feedback ap-
proaches, especially RM3. RM3 is an variant of relevance-
based language model(usually called RM)[3], and most
frequently-used in information retrieval tasks. RM assumes
that there exists a relevant language model and builds a
language model based on these results. The retrieval is
achieved by standard QL language model and this auxiliary
language model.

Prm1(t | q) ∝
∑

D∈DR

P (t | t)
∏
qi∈q

P (qi | D) (2)

Prm3(t | q) = (1− λ) · PMLE(t | q) + λ · PRM1(t | q)
(3)

We test the standard QL model and QL+RM3 model.
In the former, we use Jelinek-Mercer smoothing method in
language model and apply the parameter λ to 0.7 for queries
are long. In the latter, we use top-20 results returned by QL
as relevance documents and apply the rm3 interpolation pa-
rameter to 0.4. We test constructing query in different ways.
Since the title and the first paragraph usually contains useful
information about the news, we try constructing query with
title and title+first paragraph respectively. Furthermore, we
make the full text as query as well.

Figure 3. Relevance Language Model 3(RM3) algorithm

BM25 Rocchio QL RM3
nDCG@5 0.5757 0.4438 0.5651 0.5633
MAP 0.389 0.3157 0.3948 0.4012
Rprec 0.4446 0.3739 0.4545 0.4506

Table 1. Results for all topics (median) and our four methods on
the background linking task

2.3. Result

We report results of our runs in the background link-
ing task in Table 1. We observer that the BM25 baseline
run performs best on nDCG@5 in total 60 topics, whereas
the RM3 and Query likelihood respectively perform best on
MAP and RPEC.

The precision-recall curves in Figure 4 shows that the
performance of RM3, Query likelihood and BM25 are
nearly similar, and the Rocchio method where the pseudo-
relevance feedback is used based on BM25 significantly
performs worse than the other methods. This indicates that
the news takes a deep and complex knowledge relevance
with its related background news. As a result of this, sim-
ply expanding query with similar semantic words cannot
improve the performance of the query model.

Figure 4. Precision-Recall Curves for the four methods

To further investigate the performance of our methods

3

Method Gain/Loss Topics

BM25 + 880, 841, 874
BM25 - 855, 829
Rocchio + 880, 841, 882, 884
Rocchio - 855, 867,858,830
Query Likelihood + 880, 885, 841, 874
Query Likelihood - 867, 858, 829
RM3 + 880, 885, 841, 861, 874
RM3 - 867, 858, 853

Table 2. Topics for which our methods achieved the highest gain
(+) or loss (-) on the background linking track

and explain how pseudo-relevance feedback degrade per-
forms of BM25, cases analysis was performed on the re-
sult for each topic. We list the topics where our methods
gain highest and lowest nDCG@5 scores in Table 2. It has
been observed that Rocchio method where expand query
for BM25 gains less score than the original BM25 on the
topic 874. After reading the title and content of the arti-
cle in the topic 874, we find that some metaphor are used
in the title to describe the main idea of the article, i.e.,
the phrase ”house flipping” to describe a housing exchang-
ing. It is clear that the semantic of the word ”flipping” has
been changed greatly from its original definition when it
combines with the word ”house”. However, when pseudo-
relevance feedback is used to expand the query which is
based on the article title, it has large probability to add syn-
onyms whose semantic is same as the original definition
of the word ”flipping” to the query. Hence, more articles
which contains the word with its original semantic are re-
trieved to the results, and the performance of the Rocchio is
definitely worse than the method without pseudo-relevance
feedback.

3. Entity Linking

3.1. Method 1

Entity linking task aims to sort entities in a news article
according to their salience. Each entity has a wiki id. In
this method, we relate each entity with the corresponding
wiki page and regard the entity linking task as retrieval in
these wiki pages. The returned ranking is used as the entity
ranking.

Given the official wikidump data, we first build index on
wiki pages of entities appeared in the dataset. It is efficient
since we do not need to build index on all wiki pages. We
consider the news article as ”query” and wiki pages of en-
tities as documents to be retrieved. Similar to background
linking task, we try different query constructing methods in-
cluding title, title+first paragraph and the full text. We use
BM25 as our retrieval model and the parameters are tuned.

M1 M2
nDCG@5 0.6800 0.7191

Table 3. nDCG@5 for all topics (median) and our two methods
(M1, M2) on the news track 2018 dataset

The retrieval results are filtered to make sure they only con-
tains entities occured in this news article.

3.2. Method 2

Method 2(M2) and Method 1(M1) have the same central
idea. They all think that the more related to the query docu-
ment the wiki page is, the more important is the entity in the
query document which owns the wiki page. That is, if the
wiki page owned by the entity is ranked higher in the result
set returned by the query document, then the importance of
the entity is higher, and the final score should be larger. The
correspondence between the entity and the wiki page is de-
termined by the ”enwiki” owned by each wiki page, and a
wiki page will contain multiple ”enwiki”.

M2 assumes that if the ”enwiki” of an entity ei is in the
”enwiki” of a wiki page Wi, then considers that the wiki
page Wi corresponds to the entity ei. That is, the entity ei
owns the wiki page Wi, and the wiki page Wi also points to
the entity ei. The biggest difference between M2 and M1 is
that each entity ei selects multiple related wiki pages Wi to
build an index. In a query, the final ranking ranki of each
entity ei is only related to the ranking of the highest ranked
wiki page Wibest in the query result set.

The specific process of M2 is as follows. First, the top M
wiki pages of each entity ei are retrieved according to ”en-
wiki”, and the full-text index of the body of all wiki pages is
constructed. At the same time, each wiki page Wi uniquely
points to an entity ei. The entire body concatenate with ti-
tle of each document is used as the query. Then retrieve N
related wiki pages in the full-text index constructed in the
previous step as the result set R. Find the ranki of the wiki
page Wibest in the result set R of the M wiki pages owned
by each entity ei. Finally, the entity ei scores M − ranki
in the document.

The pre-processing of Washington Post and Wiki dumps
in M2 only includes uppercase to lowercase, eliminating
stop words and stemming. By extending the wiki pages
owned by each entity, M2 have become our best way to per-
form on entity ranking tasks.

3.3. Result

Since at the time of writing, entity ranking runs for other
participants are not yet available, we observed the perfor-
mance of each method on the news track 2018 dataset, using
nDCG@5 as the primary effectiveness measure.

The performance of each method is shown in Table 3.
As can be seen from the table, M2 has significantly im-

4

Method Gain/Loss Topics
M1 - 810, 818
M1 + 433, 802, 805, 813, 816
M2 - 362, 810, 818
M2 + 347, 433, 802, 804, 806, 819

Table 4. Topics for which our methods achieved the highest gain
(+) or loss (-) on the entity linking track

proved the performance compared with M1. M2 mainly
benefits from Pseudo relevance feedback, all the wiki pages
are point to one entity, which intangibly enriches the in-
formation carried by each entity, so that the query can bet-
ter match the most relevant aspects of the entities, thereby
more accurately measuring the entity importance in the doc-
ument.

To further observe how our method performs, we list
some of the highest and lowest nDCG@5 scores in Table 4.
M1 and M2 performed poorly on both the 810 and 818 top-
ics, and performed well on both the 433 and 802 topics. It
has been observed that it is easy to obtain low scores when
there is a majority of unrelated entities in a document, and
it is easier to obtain high scores when most related entities
are available. This is mainly because our method use rank
to distinguish whether the entity and the topic are strongly
or weakly related. An entity will always have its final rank
whether it is related or not. As a result, our approach tends
to think that entities are related to topic, so it performs well
on topics with many related entities, but performs poorly on
topics with few related entities.

4. Conclusion

In this year’s News Track, we take part in all of the two
tasks. In the task of background linking, we investigate
using paragraphs in different ways to construct our query.
We use BM25 to retrieve document and combine Rocchio,
Bert and other methods to enhance its performance. Results
show that the performance on long text is unsatisfactory.

In the task of entity ranking, we follow the basic idea
that the more related to the query document the wiki page
is, the more important is the entity in the query document
which owns the wiki page. We select multiple related wiki
pages for each entity to build an index. It perform well on
topics with many related entities while perform poorly on
topics with few related entities.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[2] Thorsten Joachims. A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. Technical report,
Carnegie-mellon univ pittsburgh pa dept of computer science,
1996.

[3] Victor Lavrenko and W. Bruce Croft. Relevance based lan-
guage models. In Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’01, pages 120–127, New
York, NY, USA, 2001. ACM.

[4] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[5] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic
relevance framework: Bm25 and beyond. Foundations and
Trends R© in Information Retrieval, 3(4):333–389, 2009.

5

