
ICTNET at TREC 2019 Deep Learning Track
Jiangui Chen1,2, Yinqiong Cai1,2, Haoquan Jiang1,2
1 University of Chinese Academy of Sciences, Beijing, China

2 CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology
{chenjiangui18z, caiyinqiong18s, jianghaoquan18g}@ict.ac.cn

ABSTRACT
We participated in the Deep Learning Track at TREC 2019. We
built a ranking system which combines a search component based
on BM25 and a semantic matching component using pretraining
knowledge. Our best run achieves NDCG@10 of 0.6650, MAP of
0.2035.

1 INTRODUCTION
The Deep Learning Track aims to find the most relevant text for
a given query. Normally, users send a query to the system, and
the system should be able to retrieval a considerable number of
documents involved with the query. After which, various methods
are implemented to determine the final best answer.

Passage ranking can be seen as a text matching problem. Text
matching is essential in information retrieval and natural language
processing. A large majority of tasks can be formalized as a match-
ing problem. In question answering, we need to match questions
with answers. In ad-hoc retrieval, we are required to find rele-
vant documents for a query. And in natural language inference,
we expected to discover the relationship between premises and
hypothesis.

Most passage ranking task has a full ranking and re-ranking
subtasks. Generally, full ranking consists of two steps. The first
step is to narrow the search space when concerning with efficiency.
And the next step is required to dig the deep semantic informa-
tion of queries and passages. Traditional methods largely rely on
hand-craft features, which is inadequate and time-consuming. With
the blooming of deep learning technology, a wide range of neural
ranking models are applied to tackle the matching problems of
queries and passages[5].

In this paper, we propose a ranking system which combines a
search component based on BM25 and a semantic matching com-
ponent using pretraining knowledge. Given a query Q , The search
component is responsible to return relatively relevant passages.
Based on the passages retrieved by search component, semantic
matching component models the matching information between
the query and passages.

2 SYSTEM DESCRIPTION
2.1 Overview
As Figure1 shows, given query Q , we first retrieve top 1000 rele-
vant passages from the extended passage collection through Search
Component. Then we use Semantic Matching Component to rerank
the 1000 relevant passages. By comparing the final top 10 relevant
passages and ground truth, we can get the evaluation metrics on
query Q .

2.2 Search Component
Inspired by [9], we trained a model that predicts corresponding
queries for passages and then expand the passages with those pre-
dictions. After enriching passages with extra information, we then
index them. The search strategy is rough BM25 [12]. Results show
that the performance (MRR) of BM25 can improve over 0.03 by
expanding passages.

Concretely, we processed training data to construct query-passage
pairs. The passage is the corresponding positive examples of the
query. Then, we used these pairs to train a machine translation
model with the help of OpenNMT [6]1, in which passage is viewed
as source sequence while query is viewed as target sequence. The
machine translationmodel uses a transformer-based encoder-decoder
architecture. The encoder processes source sequence to a sequence
of hidden vectors and the decoder combines hidden representations
of previously generated words with source hidden vectors to predict
the probability distribution of next word. The encoder and decoder
are composed of six layers of transformer respectively.

After training the machine translation model, we utilized it to
predict queries for each passage in the collection. In the test-time,
decoding is done through beam search where multiple hypothesis
target predictions are considered at each time step. Eventually
we can get several predicted queries for each passage, then we
concatenate its predicted queries after each passage.

Subsequently, we index these passages using Anserini [14]. Then
BM25 is used to retrieve top 1000 relevant passages for each query
in training and development dataset.

2.3 Semantic Matching Component
The semantic matching component aims to re-rank the documents
retrieved by the search component. We have seen a rapid growth
of pretrain neural models recently, such as ELMo[10], OpenAI
GPT[11], BERT[2] and XLNet[15]. Models pretrained on a language
modeling task achieve promising results on various natural lan-
guage tasks. To leverage the ability of BERT, we introduced it as
the base unit of our semantic matching component.

Given a query Q consisting ofm tokens, we denotes it as Q =
q1q2 . . .qm , where qi is the i-th tokens of Q . Similarly, a passage P
can be denotes as P = p1p2 . . .pn , where pi is the i-th tokens of P
and n is the number of tokens of the passage.

The semantic matching component that we integrated has two
types, which are BERT and Conv-KNRM.

2.3.1 BERT. BERT was proposed by [2], which apples the bidi-
rectional of Transformer[13] to train language model. BERT ob-
tains new state-of-the-art results on a diversity of natural language
processing tasks. The pretrained BERT model can be used to cre-
ate state-of-the-art models for a wide range of task by only fine-
1https://github.com/OpenNMT/OpenNMT-py

Figure 1: Overview of Ranking System

tuned with just one additional output layer, without substantial
task-specific architecture modifications.

Inspired by [8], we used BERT as re-ranker to leverage the sub-
stantial ability of BERT. The query Q was marked as sentence A,
and the passage P was marked as sentence B. Following the original
implementation, we then fed the concatenate representation into
BERT. We use BERT-base model as a regression task. It uses the
representation of ‘[CLS]’ in last layer as the matching features and
combines them linearly with weight w. The ranking score from
BERT includes all term pair interactions between the query and
passage via the cross-match attentions of transformer. Thus it is an
interaction-based matching model.

For each query and passage, BERT would eventually output a
value denoting the matching score. Hence we obtain:

si j = BERT (Qi , Pj) (1)

For a query Qi , which has k relevant passages. For each passage
with respect to Qi , we gained a list of scores, [si1, si2, . . . , sik]. The
top-1 passage was selected by sorting scores in descent order.

2.3.2 Conv-KNRM. Conv-KNRM, which stands for a Convolu-
tional Kernel-based Neural Ranking Model, is a state-of-the-are
neural ranking model. It was proposed by [1]. Conv-KNRM utilizes
the ability of convolutional neural networks to represent n-grams of
various lengths and soft matches them in a unified embedding space.
Before generating the final score of each query and passage pair,
kernel pooling and learning-to-rank layers are applied by feeding
the n-gram soft matches signals. The architecture of Conv-KNRM
is showed in Figure 2.

Query Q and passage P were first fed into embedding layer,
which maps tokens of Qi , i.e. [q1,q2, . . . ,qm], and tokens of Pi ,
i.e.[p1,p2, . . . ,pn] into distributed representations. Convolutional
layer was followed by embedding layer to generate n-grams em-
bedding, which takes multiple tokens into account. The key to
advantages of Conv-KNRM is to use cross-matching n-grams. The
query n-grams and passage n-grams of various lengths, which cap-
ture different granularity of semantic information different, were
matched by cross-match layer. Translation matrices produced by
cross-match layer were fed into kernel pooling layer to generate
soft-TF features. In the end, learning-to-rank layer combines the
highly extracted signals to generate ranking score.

Identical to Section 2.3.1, Conv-KNRM produces a list of ranking
scores. After sorting scores, we obtain the highest relevant passages.

We train BERT and Conv-KNRM by using cross-entropy loss:

L = −
∑

j ∈Spos

log(sj) −
∑

j ∈Sneд

log(1 − sj) (2)

where Spos is the set of relevant passage with respect to query,
while Sneд is the set of non-relevant ones.

3 EXPERIMENT
3.1 Experimental Setup
We conducted a series of experiments on TREC-Deep Learning
passage ranking datasets.

Data. The passage ranking dataset is built using technology and
data from Microsoft’s Bing[7]. Its passage collection includes 8.8M
passages extracted from 3.5M URLs. There are 1,010,916 unique real
queries that were generated by sampling and anonymizing Bing
usage logs. These queries are divided into three parts for train, dev
and test, as Table 1 shows. It also provides qrels files which has a
QID to PID mapping of when a question has had a passage marked
as relevant. The average length of queries and passages is 5.9 and
57.7 respectively.

#Sample

collection total 8841823

4*query total 1010916
train 808731
dev 101093
test 101092

2*qrel train 532761
dev 59273

Table 1: Passage ranking dataset

Evaluate Metrics.We adopt four evaluation measures, i.e. Preci-
sion (P), Recall (R), MAP and NDCG, to evluate the performance of
our proposed system.

Experimental Details.
We first used BM25 to retrieve top 1000 relevant passages for

each query in train dataset. The parameter of BM25 is set to b1=0.8,
k=0.6. At training time, we constructed the training set in the fol-
lowing way. The passages from qrels file were positive samples and

2

0.2, … 0.1, … 0.5, … 0.4, … -0.1, … 0.1, … 0.8, …

hamlet best lines to be or not

𝑔## … 𝑔$# 𝑔#% … 𝑔$%

𝐺'#
(unigrams)

𝐺'%
(bigrams)

𝑔## … 𝑔(#… 𝑔#% … 𝑔(%…

𝐺'#
(unigrams)

𝐺'%
(bigrams)

<PAD>

Query Document

Kernel pooling

...

Kernel pooling

...

Kernel pooling

...

Kernel pooling

...

Final Ranking
Score

Word
Embedding

Convolutional
Layer

Cross-match
Layer

Soft-TF
Features

Figure 2: Architecture of Conv-KNRM

negative samples were sampled from results of BM25. Concretely,
each query has 100 negative samples, which are consisted of top 50
relevant passages of BM25 and 50 passages randomly sampled from
the remaining 950 relevant passages. Because each query has 1.04
positive samples on average, we duplicated each positive sample
twice for making full use of negative samples. All our experiments
were carried out using MatchZoo-py [3, 4]2. With MatchZoo-py,
we can easily use pairwise method for model training. A training
pair is consisted of a query, a positive sample and four negative
samples. For each training epoch, we resampled four negative sam-
ples for each positive sample. At prediction time, for improving
performance, we only used top 50 or 100 relevant passages of BM25
for re-rank.

We conducted three experiments on required dataset, named
BERT2, CKNRM_B and CKNRM_B50, respectively.

BERT2 applies BERT on the concatenated query and passage
sequence. The length of query and passage is fixed as 20 and 150
respectively. BERT is fine-tuned from the pretrained BERT-BASE
model released by Google. AdamW optimizer is applied to optimize
the model, with 5e-5 of learning rate, 0.9 and 0.98 of betas. The
warmup step is set to 6 during each epoch and batch size was 16.

CKNRM_B uses the sequence output of last layer in BERT as
input. BERT was fine-tuned with Conv-KNRM end-to-end. For
Conv-KNRM, max n-gram is 3, the number of Gaussian kernels is
11 and we use 128 filters in each convolution layer. The model is
trained using Adam optimizer on a typical GPU, and batch size is
64. Initial learning rate is set to 1e-3. The learning rate decays with
factor 0.9 every three epochs.

CKNRM_B50 uses the same model as CKNRM_B, but only uti-
lizes top 50 relevant passages of BM25 at prediction time.

2https://github.com/NTMC-Community/MatchZoo-py

3.2 Result and Discussion

RUN P@10 R@10 NDCG@10 MAP@10

BERT2 0.5581 0.2415 0.6650 0.2035
CKNRM_B 0.5698 0.2437 0.6481 0.1924
CKNRM_B50 0.5302 0.1971 0.6014 0.1404

Table 2: Evaluation results for runs based on automatic
judgements

Table 2 shows the results of our submitted runs. As shown in
the table, BERT2 achieves best results although we only added a
learning-to-rank layer and fine-tuned on it. This demonstrates that
the effectiveness and robustness of pretraining models.

When combining pretraining language models like BERT and
traditional neural ranking model Conv-KNRM, we can see a slight
decrease in the evaluation results. This is because the representation
produced by BERT is already highly extracted, which includes the
semantic information of two original texts and the interactions
between them. When feeding them into Conv-KNRM, the duplicate
operations of Conv-KNRM may disturb the information that BERT
has distilled previously.

4 CONCLUSION
We participated in the Deep Learning Track at TREC 2019. We pro-
posed a ranking system which combines a search component based
on BM25 and a semantic matching component using pretraining
knowledge. The search component narrows down searching space
for a given query, while the semantic matching component models
the matching signals. Future work includes introducing external

3

knowledge to help modeling the matching signals between query
and passages.

REFERENCES
[1] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional

neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of
the eleventh ACM international conference on web search and data mining. ACM,
126–134.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[3] Yixing Fan, Liang Pang, JianPengHou, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng.
2017. Matchzoo: A toolkit for deep text matching. arXiv preprint arXiv:1707.07270.

[4] Jiafeng Guo, Yixing Fan, Xiang Ji, and Xueqi Cheng. 2019. MatchZoo: A Learning,
Practicing, and Developing System for Neural Text Matching. In Proceedings of
the 42Nd International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’19). ACM, New York, NY, USA, 1297–1300. https:
//doi.org/10.1145/3331184.3331403

[5] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen
Wu, W Bruce Croft, and Xueqi Cheng. 2019. A deep look into neural ranking
models for information retrieval. arXiv preprint arXiv:1903.06902 (2019).

[6] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M.
Rush. 2017. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In
Proc. ACL. https://doi.org/10.18653/v1/P17-4012

[7] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human-Generated MAchine

Reading COmprehension Dataset.
[8] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.

arXiv preprint arXiv:1901.04085 (2019).
[9] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document

Expansion by Query Prediction. arXiv preprint arXiv:1904.08375 (2019).
[10] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018).

[11] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. 2018. Improving language understanding by genera-
tive pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper.
pdf (2018).

[12] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[14] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of Lucene
for information retrieval research. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
1253–1256.

[15] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv preprint arXiv:1906.08237 (2019).

4

https://doi.org/10.1145/3331184.3331403
https://doi.org/10.1145/3331184.3331403
https://doi.org/10.18653/v1/P17-4012

	Abstract
	1 Introduction
	2 System Description
	2.1 Overview
	2.2 Search Component
	2.3 Semantic Matching Component

	3 Experiment
	3.1 Experimental Setup
	3.2 Result and Discussion

	4 Conclusion
	References

