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Abstract

In this paper we report on our participation
in the TREC 2019 Conversational Assistance
Track which focuses on Conversational In-
formation Seeking (CIS) namely understand
the dialogue context and retrieve candidate re-
sponse information from collections provided.
We convert the CIS task into a standard in-
formation retrieval task and use both tradi-
tional IR model and neural IR model to rerank
the baseline official evaluation results. We
compare the results of models in two cate-
gories(four models in total), and give a sum-
mary for the solution of our work.

1 Introduction

Conversational Information Seeking is timely and
important with increased adoption of a new gener-
ation of conversational ‘assistant’ systems. The
focus of the TREC 2019 Conversational Assis-
tance is on understanding of information needs in
a conversational format and finding relevant re-
sponses using contextual information. Baseline
retrieval run on 30 example training topics, lim-
ited training data for the 30 topics judged from the
baseline retrieval run, as well as baseline retrieval
results of evaluation data for 50 evaluation topics
were provided as data. There are 10 queries in
each topic proposed in terms of conversation, and
every query has 1000 relevant documents retrieved
advance in baseline retrieved results for both train-
ing data and evaluation data. This task is similar
to conversational question answering or conver-
sational information retrieving, so we see main-
stream approaches in these area as follows:

1. Traditional matching methods basing on the
idea of TF-IDF, such as BM25.

2. Document matching extraction based on se-
mantic extraction.

3. Query and document’s pair wise learning.

Many open source search engines provide good
support for the first approach, and BERT [1] pro-
vides a strong support for the latter two methods.
Based on the above research background, we im-
plement the following four models for the TREC
2019 Conversational Assistance track:

1. For each query, we use elasticsearch to rerank
the baseline retrieval run on evaluation data.

2. For each query, we split each of its pre-
selected top 1000 documents in baseline re-
trieval run into short segments, then us-
ing BERT to get vectorized representation.
For each document, we calculate each of
its short segments’ vectorized representation
with query vectorized representation and get
a match socre, and select the highest score as
the document score.

3. We concatenate a query and a pre-selected
document and get the vectorized representa-
tion with BERT. With those representations
which have ranking label, we construct and
train a pair-wise ranking model.

4. We use the representations for all tokens in
BERT’s last layer as the documents’ and
queries’ word vector representation, then us-
ing Conv-knrm to calculate the final match
score.

In terms of model performance, the fourth
model performs better than the third model on
training data set. When actually evaluating 50 top-
ics, we select part of the results for manual anal-
ysis and find that the first model has the best per-
formance. A detailed discussion will be covered
in later sections.



2 Models

First, we use coreference resolution for each ques-
tion in multi-turn conversations. Then we use the
disambiguated questions as queries, and convert
the Conversational Information Seeking task into
a standard retrieval task. In this section, we intro-
duce our four models designed for this task.

2.1 Elasticsearch

Elasticsearch[2] is a full-text search engine.lt is
because Elasticsearch contains many advantages
that it becomes the most popular enterprise search
engine. That is, all kinds of documents can be ap-
plied with Elasticsearch, meanwhile, with a given
keyword, it can do scalable search and the results
it returns usually are closer to real-time than other
search engines. More importantly, with the rapid
development of Internet, we have to face the phe-
nomenon of sharp expansion of data volume, so
it is important to Search in massive amounts of
data and get results quickly. The distribution of
Elasticsearch makes it possible to support massive,
petabytes of big data searches, especially, Elastic-
search also has near real-time (second-level) per-
formance support at massive data levels, as well as
grammatical support for powerful search and ag-
gregation analysis. All of these advantages make
Elasticsearch more suitable for data analysis ap-
plications in big data scenarios.

In this task, for a variable query, we should
find the most 1000 releavent document in three
collections, that is, MS MARCO Passage Rank-
ing collection, the TREC CAR paragraph collec-
tion v2.0 and the TREC Washington Post Corpus
version 2, which consist of over ten million docu-
ments. First, we process all these documents into
xml format with TREC-CAST Tools. Next, we use
Elasticsearch to do further search sorting based on
the search results and queries given by the base-
line.

Elasticsearch’s scoring ideas are based primar-
ily on bm25[3] and tfidf[4]. Lucene[5] (and thus
Elasticsearch) uses the Boolean model to find
matching documents, and a formula called the
practical scoring function to calculate relevance.
This formula borrows concepts from term fre-
quency/inverse document frequency and the vec-
tor space model but adds more-modern features
like a coordination factor, field length normaliza-
tion, and term or query clause boosting. The for-
mula of Lucene calculateing for the score is as fol-

lows:
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where the score(q,d) is the relevance score of
document d for query q. queryNorm(q) is the
query normalization factor. coord(q,d) is the co-
ordination factor.Where overlap is to retrieve the
number of terms in the hit query, maxoverlap is
the total number of terms in the query. tf(¢,d)
is the term frequency for term ¢ in document
d. idf(t) is the inverse document frequency for
term t, numDocs is the acount of all documents,
docF'req is the amount of documents that contains
term t. t.get Boost() is the boost that has been ap-
plied to the query,and can be seen as the weight of
each term. norm(t,d) is the field-length norm,
combined with the index-time field-level boost,
if any.numTerms is terms’ counts of a docu-
ment.Finally, sum all of the weights for each term
t in the query ¢ for document d.

2.2 BERT Based Models

We have seen a rapid growth of pre-train neural
language models recently, such as ELMo[6], Ope-
nAl GPT[7], BERT. They promote the develop-
ment of a lot of tasks in natural language under-
standing. We select BERT as our base model. Un-
like traditional word embedding, BERT is contex-
tual — the representation of a word is a function
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Figure 1: BERT+Sim Model

of the entire input text, taking word dependencies
and sentence structures into account. BERT is pre-
trained on a large corpus and thus, it can encode
many language features in its contextual represen-
tation. BERT is also well suited for the retrieval
task as its NSP task can help the interaction-based
model judge the relationship between two pieces
of text very well.

In this paper, we use the fine-tuned BERT re-
leased by [8] who augment the primitive BERT
with search knowledge by continuing to train it on
a large sample of Bing web search log. We use
this Bing-augment BERT as our feature-extraction
model and try three methods to rerank the top-k
baseline results based on the contextual represen-
tation produced by this Bing-augment BERT.

2.2.1 BERT + Sim

For most documents, the length of a document is
always too long compared to a query’s length, and
it may be inaccurate if we compute the cosine sim-
ilarity between a query and a document directly.
We thus split each document into many short seg-
ments. We set the length of each segment to be
twice the length of a correspond query and the last
segment’s length may be shorter than that. We use
BPE [9] to tokenize each token in each sentence
and record the length of each tokenized sentence.
We add token [CLS] at the start of the tokenized
sentence and add [SEP] at the end of the sentence
whether it is a query or a segment of a document.
We set the max input length of the BERT to be a
fixed number. We fill the token [PAD] if the length
of the tokenized sentence is shorter than the max
input length.

As shown in figure 1, for each query-document
pair, we first get split tokenized segments of the

document and get their tokens’ embedding at the
first layer of the model. Then we feed the tokens’
embedding of the query and each segment into the
Bing-augment BERT. We use average pooling for
tokens’ representations of the BERT’s last layer to
get the final representation of a sentence(a query
or a segment) at the model’s second layer.

We compute the final representation’s cosine
similarity between a query and each segment of a
document at the last layer of the model. Then we
get some similarity values for a query-document
pair. For the ith segment of document, the similar-
ity is

sim; = cos(Rq, Rpseg_i) (8)

We use the max similarity value as the final sim-
ilarity score for the document with respect to the

query.

Sim = max{sim;}(i = 1,2,..,num_seg) (9)

2.2.2 BERT + MLP

For this model, we don’t split documents into a lot
of segments, we concatenate a query and a docu-
ment with a [SEP] token as shown in figure 2 in-
stead.

First, we construct a lot of positive-negative
document pairs for each query according to their
different relative score for the same query. For ex-
ample, two documents of relative score 2 and O,
we regard the document of score 2 as a positive
sample and the document of score 0 as a negative
sample.

Second, we get the BPE tokenized sentences’
embedding of the two documents and padding
them to the same length. For both documents, we
concatenate the sequence embedding of the query



- TCLs]
» b S
S,
MLP MLP =Pt
=
[," BERT T BERT )
. Query i Document 1 : Query Document 2

Ellllll 000D 00 O oooes.) | Ellllll 000 0O CoooOmEBen)

QQ#@&Q-

and the document with a [SEP] token’s embed-
ding. We feed the concatenated embedding for
two query-document pairs into the Bing-augment
BERT.

Third, we get the token [CLS]’s representation
of the last BERT layer for both query-document
pairs and feed two representations into a same
MLP network. The MLP’s output unit’s dimen-
sion is one. So we get two predicted score ¥
and ¢ for two query-document pairs. We use the
hinge loss to train our BERT + MLP model.

l:Z Z max(0,
9 d+d-eDf
y(d") —y(d™) = (f(a.d") = f(g,d")))
(10)
where D;r © are q s pairwise preferences,

d*ranks higher than d~, y(d") and y(d~) are
their true relative scores, f(q,d") and f(q,d™)
are the predicted relative scores. For the sake of
brevity, we use 4 for f(q,d") and 9 for f(q,d™)
in figure 2.

2.2.3 BERT + Conv-knrm

In information retrieval task, the query and doc-
ument often match at n-grams, such as phrases,
concepts and entities. However, people usually
treat n-grams identically to words, which greatly
explode the parameter space, and suffer from
data sparsity. In this paper, we use the Conv-
knrm, a Convolutional Kernel-based Neural Rank-
ing Model that models n-gram soft matches for ad-
hoc search[10], which uses convolutional neural
networks to represent n-grams of various lengths
and soft matches them in a unified embedding
space. The n-gram soft matches are then utilized
by the kernel pooling and learning-to-rank layers
to generate the final ranking score.

In our work, we combine the Bing-augment
BERT and Conv-knrm model, in which BERT
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Figure 2: BERT+MLP Model

provides the query and document embedding rep-
resentations and then employ Conv-knrm model
on the query and document words’ embeddings
to get the final ranking score as showing in Fig-
ure 3. In detail, we use the query and document
as input of the Bing-augment BERT respectively,
and generate the output of the last layer as cor-
responding word embedding. While the query
words’ embedding and document words’ embed-
ding have been obtained, the convolutional layer
applies convolution filters to compose n-grams
from the text(query or document). To be detail, we
will get h,q, kinds n-grams(1, 2, ..., Apmqq), for
each h-grams h € {1, ..., hynas }, the CNN layer
converts the text embedding into h-gram embed-
ding GZ or G;. And the same set of convolu-
tion filters is used to compose all n-grams thus the
model only needs to learn the CNN weights for
combining word-level embeddings, which have
much fewer parameters. Then the cross-match
layer matches query n-grams and document n-
grams of different lengths. The unified embedding
representations allow cross-matching n-grams of
different lengths, and it generates h2, . transla-
tion matrices. After that, kernel-pooling which
has K Gaussian kernels is applied to count the
soft matches of word or n-gram pairs at K differ-
ent strength levels. In this step, we get K soft-TF
features for each of the h2, . translation matrices
in M. Finally, a ranking score is been computed
by the learning-to-rank layer which combines the
soft-TF ranking features through neural network
layer. For an overview, we refer to [10].

All of the BERT and Conv-knrm layers are
differentiable, and standard pairwise learning-to-
rank is used to train the combined model jointly.
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Figure 3: BERT + Conv-knrm Model

where D; " are q s pairwise preferences:
dTranks higher than d~. In our work, as show
in the train data, there are three categories rank
scores namely O, 1, 2.

3 Experiments

In our experiments, we convert all sentences of the
whole data set to lowercase form.

We use the training data with judgments re-
leased by Trec cast as our experiment data, there
are 1930 labeled query-document pairs in total.
We split the labeled data into train set, valida-
tion set and test set with the proportion of 8:1:1.
For BERT+MLP model and BERT+Conv-knrm
model, we use train set and validation set during
the training process and test the models’ ability on
the test data set. Finally, we use our trained model
to rerank the baseline results provided by trec cast
using indri on the evaluation data containing 50
evaluation topics. For Elastic search model and
BERT+Sim model, we directly rerank the baseline
evaluation results provided by trec cast using the
two models.

3.1 Experimental Settings

For Elastic search model, We use the default sort-
ing algorithm of Elasticsearch, which the result
is returned in reverse order according to the de-
gree of relevance (matching degree) of the docu-
ment and the query. The larger the score (_score),
the higher the correlation.

The documents used for Elastic search are pro-
cessed as the following examples:

<DOC>
<DOCNO>CAR_000000afeldab525b3d
bl17db77£350b187441a9%ed
</DOCNO>
<DOCHDR>

</DOCHDR>

<BODY>The 1913 Johannisthal A
ir Disaster happened close to
the air field, killing all 28
passengers.The German astrona
ut Rein hard Furrer died on S
eptember 9,1995 during histor
ic flight.

</BODY>

</DOoC>

<DOC>
<DOCNO>MARCO_0</DOCNO>
<DOCHDR>

</DOCHDR>

<HTML>

<BODY>The presence of communi
cation amid scientific minds
was equally important to the
success of the Manhattan Proj
ect as scientific intellect w
as. The only cloud hanging ov



er the impressive achievement
of the atomic researchers and
engineers is what their succe
ss truly meant;hundreds of th
ousands of innocent lives obl
iterated.

</BODY>

</HTML>

</DoC>

<DOC>
<DOCNO>WAPO_b2e89334-33£f9-11e
1-825f-dabc29fd7071-1</DOCNO>
<DOCHDR>https://www.washingto
npost.com/sports/colleges/dan
ny—-coale—-jarrett-boykin-are-a
-perfect-1-2-punch-for-virgin
ia-tech/2011/12/31/gIQAAaW4SP
_story.html
</DOCHDR>
<HTML>
<BODY>
<span class="dateline">NEW OR
LEANS ?</span> Whenever a <a
href="http:// www.washingtonp
ost.com/blogs/hokies—Jjournal"
title="www.washingtonpost.com
">Virginia Tech</a> offensive
coach is asked how the most p
rolific receiving duo in scho
ol history came to be, inevit
ably the first road game in 2
008 against North Carolina co
mes up.
</BODY>
</HTML>

</DOC>

After we getting the converted data,before using
elasticsearch for search sorting, we need to create
corresponding indexs for all documents.What’s
more,considering the large amount of data, we
used the method of importing large documents
specified by elasticsearch— —divide large docu-
ments into smaller chunks of bulk document then
import. The code are as follows:

#!/bin/bash

#split —1 10000 marco. json
/macro_bulk
#BULK_FILES=./tmp/marco_bulk*
for £ in ./tmp2/*; do

./tmp

curl —-H "Content-Type: appli
cation/json" —-XPOST "localho
st: 9200/test/_bulk" —--data-—
binary "@Sf" >> /dev/null
temp_file=5${f:16}
partl="localhost:9200/"
part2="/_bulk"
#curl —-H "Content-Type:a
ppliaction/Jjson" —XPOST
Spartls$temp_fileSpart2 -
—-data-binary "@S$f" >> /d
ev/null
echo $f >> ./import.log
done

Then we can set the query to search for elastic-
search. The search settings are given by the fol-
lowing code:

seach_body = {"query": {"match":
{"id":query}}}
res = es.search(index=[all index
s], body=seach_body)
for hit in res['hits']['hits']:
id = hit["_source"]["id"]
body = hit["_source"] ["body"]

All of the three BERT-based models are based
on the Bing-augment BERT. It is augmented based
on the primitive BERT-base-uncased model.The
number of BERT layers is 12, the hidden size
is 768 and the number of attention heads is 12.
For BERT+Sim model, the max length of all the
queries is 20 and thus we set the length of a short
segment to be 40. We set the max input length
of BERT to be 100. For BERT+MLP model and
BERT+Conv-knrm model, we set the max input
length of BERT to be 512. We use adam optimiser
to train the MLP model and the Conv-knrm model
with learning rate of Se-5 , betas of (0.9,0.98) and
epsilon of 1e-8. In BERT+Conv-knrm model, the
max n-grams number is 3, the number of convo-
lution filters is 128, and the number of Gaussian
kernels is 11.

3.2 Experimental Results

Table 1: Performance comparisons for BERT+MLP
and BERT+Conv-knrm on labeled test data set.

Model MRR | MAP | NDCG@3 | NDCG@5
BERT+MLP 0.3372 | 0.3060 0.2314 0.2605
BERT+CONV-KNRM | 0.4368 | 0.4007 0.2452 0.2713




We use MRR, MAP, NDCG@3 and NDCG@5
as automatic metrics for BERT+MLP model and
BERT+Conv-knrm model as those two models
need training. As can be seen from table 1,
We can get competitive performance using only
BERT+MLP model. The Bing-augment BERT
has a strong ability to model the interaction of
query and document. The representations ex-
tracted by BERT help the MLP model to give a
more accurate match score for query-document
pairs. When we use BERT+Conv-knrm model, we
have a bigger improvement in the performance of
ranking retrieved documents.

Finally, we compare the performance of all the
models on the evaluation data set by human evalu-
ation. We firstly sample 10 evaluation topics with
ranking results provided by four models. For each
topic, we judge whether the top-10 retrieved doc-
uments for each query match the query well for
all the four models. We find that the results pro-
vided by Elasticsearch has the best performance
however. We finally submit the results using Elas-
ticsearch model.

4 Results

Experimental result evaluation is generated by the
assessed documents. The evaluation consists of
MAPNDCG and so on, which contains 91 met-
rics.And the results are as follows:

Table 2: Performance comparisons for our results and
median results of all submissions.

results MAP@5 | NDCG@5 | NDCG@ 1000
median 0.0337 0.2656 0.3622
elasticsearch | 0.0193 0.1641 0.2574

According to the results from the official return,
we made another statistics.

1. On MAP@5,We have 75 turns with a higher
score than the median.

2. On NDCG@5,We have 70 turns performing
better than the median.

3. On NDCG@1000,the scores of 58 turns in
our method are higher than those in median.

There are 173 turns in total on the evaluation
dataset, and it seems that our results is a little
worse on the above three metrics. According to the
model results we submitted, we can conclude that
only using traditional search model solely may be

not a good idea in information retrieval task be-
cause of not utilizing the ground truth. However,
in this TREC, the ground truth is too few to ob-
tain a better results for neural IR model. Thus, the
lack of ground truth is a dilemma for us to train
the neural IR model and get a promising results.

5 Conclusion

In this paper, we use a variety of models aiming
for tackle the problem of the TREC 2019 Conver-
sational Assistance Track, including the traditional
model such as Elasticsearch and the combination
BERT-based models i.e. cosine similarity, MLP
and Conv-knrm. The BERT+Conv-knrm model
perform better than the BERT+MLP model on the
relavant documents reranking task on the training
dataset. On the evaluatation dataset, we find that
the Elasticsearch model has the best performance
by human evaluation however. Traditional mod-
els still have strong ability in information retrieval
tasks.
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