
CCNU_IRGroup @ TREC 2019 Deep Learning Track

Hao Hu1, Junmei Wang2, Xinhui Tu1 and Tingting He1

1School of Computer Science, Central China Normal University, Wuhan, China

2School of Mathematics and Statistics, Central China Normal University, Wuhan, China

hu_ha0@qq.com, wjm2018@mails.ccnu.edu.cn, {tuxinhui, tthe}@mail.ccnu.edu.cn

1 INTRODUCTION

The deep learning track consists of two tasks: passage ranking and document ranking. The former

focuses on long text retrieval, while the latter focuses on short text retrieval. Both tasks use a large

human-labeled set, which is from the MS-MARCO dataset. For different emphases of the two tasks,

we adopt two different BERT-based retrieval models. In Section 2 and 3, we will introduce our

methods in details. In Section 4 and 5, we will discuss the experiments setting and results.

2 PASSAGE RANKING TASK

Given BERT’s excellent performance in a broad range of NLP tasks, we wondered whether we

could take the context-dependent token representation learned by BERT to improve the perfor-

mance of an neural information retrieval model. Recently, many researches have proposed to apply

BERT to down-stream tasks through a feature-based method and have shown good performance,

such as SDNet [8]. In this task, we only modified the output layer of SDNet to accommodate the

retrieval task. Next, we will introduce the output layer of our model. As for the other layers, please

refer to SDNet [8].

In the output layer, we first calculate the cosine similarity of a query representation and each

passage token representation generated by SDNet based on the features extracted by BERT.

Secondly, we select top-k signals and project them into a multi-layer perceptron to get the final

decision score [2].

𝑢𝑞 =∑ 𝛽𝑖
𝑖

𝑢𝑖
𝑞
, 𝛽𝑖 ∝ exp⁡(𝑤𝑢𝑢𝑖

𝑞
)

s = softmax((𝑢𝑞)𝑇𝑊𝑠V)

𝑆𝐵𝐸𝑅𝑇−𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = MLP(topk(s))

where 𝑢𝑖
𝑞
 denotes the i-th query token representation. 𝑤𝑢 and 𝑊𝑠 are parameters to be learned.

V is a matrix whose column vector is a passage token representation.

BERT’s pre-training on surrounding contexts favors text sequence pairs that are closer in their

semantic meanings [1,4,6]. Guo et al. [3] discussed the differences between relevance matching and

semantic matching. They argue that the ad-hoc retrieval task is mainly about relevance matching,

such as exact matching signals, query term importance, and diverse matching requirement. In order

to capture relevance matching signals, we combine the BM25 model with our neural IR model. The

final relevance score can be calculated as follows:

Score = α ∙ 𝑆𝐵𝑀25 + (1 − α) ∙ 𝑆𝐵𝐸𝑅𝑇−𝑓𝑒𝑎𝑡𝑢𝑟𝑒

where 𝑆𝐵𝑀25 is the original BM25 score and 𝑆𝐵𝐸𝑅𝑇 is the feature-based BERT ranking score. The

hyperparameter α can be tuned via cross-validation.

2.1 Model Training

We use a hinge loss to train our model and the loss function is defined as:

L(𝑞, 𝑝−, 𝑝+, 𝜃) = max⁡(0, 1 − 𝑆𝐵𝐸𝑅𝑇−𝑓𝑒𝑎𝑡𝑢𝑟𝑒(q, 𝑝
+) + 𝑆𝐵𝐸𝑅𝑇−𝑓𝑒𝑎𝑡𝑢𝑟𝑒(q, 𝑝

−))

where 𝑆𝐵𝐸𝑅𝑇−𝑓𝑒𝑎𝑡𝑢𝑟𝑒(q, 𝑝
+) denotes the relevance score for a query and a relevant passage and

𝑆𝐵𝐸𝑅𝑇−𝑓𝑒𝑎𝑡𝑢𝑟𝑒(q, 𝑝
−) is the score for a query and a irrelevant passage. θ includes the parameters in

this neural model.

3 DOCUMENT RANKING TASK

Yang et al. [7] provide a solution for long document retrieval. Based on the hypothesis that a

document is related to a query if some sentences in the document are related, Yang et al. [7] first

splits the document into several sentences and calculates the similarity between each sentence and

a query, and then selects the top-k scoring sentences.

Score𝑑 = β ∙ 𝑆𝑑𝑜𝑐 + (1 − β) ∙∑𝑤𝑖

𝑛

𝑖

𝑆𝑖

where 𝑆𝑑𝑜𝑐 is the matching score calculated by the traditional retrieval model and 𝑆𝑖 is the i-th

top sentence score according to BERT fine-tuned on sentence-level dataset. The hyperparameter

β⁡ and 𝑤𝑖 can be tuned via cross-validation. In this task, We reproduce this model and choose

BM25 as the traditional retrieval model to calculate 𝑆𝑑𝑜𝑐.

4 EXPERIMENTAL

4.1 Datasets

4.1.1 Passage ranking datasets.

In order to calculate the BM25 score, we build the index over the entire passage collection file

which includes 8.8 million passages. Both the indexing and the BM25 scoring process are

accomplished on the Parrot, which is a Python-based Interactive Platform for Information Retrieval

[5]. We randomly extract 10% of the data, about 9.7 million passages, from triples.train.small.tsv to

build the training set.

4.1.2 Document ranking datasets.

Multi-genre Natural Language Inference (MNLI) is used as the fine-tuning corpus. MNLI is a

large-scale, crowdsourced, implicit classification task.

4.2 Settings

We use the BERT-Large [1] in both subtasks. We set the parameters b=0.4, k1=0.9, k2=8 in the

BM25 model.

4.2.1 Passage ranking task

We use Adam with learning rate of 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 and use a dropout probability

of 0.4 on all layers to train our model, but freeze all parameters of BERT when train the model and

we change the maximum length of a sentence in BERT to 256. We select top 10 matching signals in

the output layer. The linear interpolation weight α = 0.8.

4.2.2 Document ranking task

We use a sliding window of length 100 to split the document into sentences and select the top 3

score sentences to calculate the final score. The linear interpolation weight β = 0.9.

5 RESULTS

Our methods’ performance can be observed in tables 1 and 2.

Table 1: BM25+SDNet+feature-based BERT results in Passage Ranking Task, compared to

summary statistics across the 37 submitted runs

Run MAP nDCG P@10

Runid2 0.2781 0.5492 0.6163

TREC Median 0.3864 0.6457 0.5651

Table 2: BM25+ fine-tuning BERT results in Document Ranking Task, compared to summary

statistics across the 38 submitted runs

Run MAP nDCG P@10

Runid1 0.2366 0.4299 0.5977

TREC Median 0.2989 0.5393 0.6906

We can see that we have not achieved good results on both tasks. After analysis, we argue that

there are two reasons for the failure in the passage ranking task. The first one is that we only use

10% of the data to train the model. The second reason is that we only consider the matching of

tokens, and ignore the matching of sentences. However, as we know that BERT can capture the

matching features between two sentences very well, because BERT is trained to predict whether the

next sentence is true or not in the pre-training process. And the reason for failure in the document

ranking task is that we do not fine tune the BERT on MSMARCO datasets.

REFERENCE

[1] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language

understanding[J]. arXiv preprint arXiv:1810.04805, 2018.

[2] Fan Y, Guo J, Lan Y, et al. Modeling diverse relevance patterns in ad-hoc retrieval[C]//The 41st International

ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2018: 375-384.

[3] Guo J, Fan Y, Ai Q, et al. A deep relevance matching model for ad-hoc retrieval[C]//Proceedings of the 25th

ACM International on Conference on Information and Knowledge Management. ACM, 2016: 55-64.

[4] Qiao Y, Xiong C, Liu Z, et al. Understanding the Behaviors of BERT in Ranking[J]. arXiv preprint

arXiv:1904.07531, 2019.

[5] Tu X, Huang J, Luo J, et al. Parrot: A Python-based Interactive Platform for Information Retrieval

Research[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 2019: 1289-1292.

[6] Tenney I, Das D, Pavlick E. Bert rediscovers the classical nlp pipeline[J]. arXiv preprint arXiv:1905.05950,

2019.

[7] Yang W, Zhang H, Lin J. Simple applications of bert for ad hoc document retrieval[J]. arXiv preprint

arXiv:1903.10972, 2019.

[8] Zhu C, Zeng M, Huang X. Sdnet: Contextualized attention-based deep network for conversational question

answering[J]. arXiv preprint arXiv:1812.03593, 2018.

