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1. INTRODUCTION

The TREC 2016 Real-Time Summarization (RTS) Track
aims to explore techniques and systems that automatically
monitor streams of social media posts such as Twitter to
keep users up to date on topics of interest. We might think
of these topics as “interest profiles”, specifying the user’s
prospective information needs. In real-time summarization,
the goal is for a system to “push” (i.e., recommend or sug-
gest) interesting and novel content to users in a timely fash-
ion. For example, the user might be interested in poll results
for the 2016 U.S. presidential elections and wishes to be no-
tified whenever new results are published. We can imagine
two methods for disseminating updates:

e Scenario A: Push notifications. As soon as the sys-
tem identifies a relevant post, it is immediately sent to
the user’s mobile device via a push notification. At a high
level, push notifications should be relevant (on topic),
novel (users should not be pushed multiple notifications
that say the same thing), and timely (provide updates
as soon after the actual event occurrence as possible).

e Scenario B: Email digests. Alternatively, a user might
wish to receive a daily email digest that summarizes
“what happened” that day with respect to the interest
profiles. One might think of these emails as supplying
“personalized headlines”. At a high level, these results
should be relevant and novel; timeliness is not particu-
larly important, provided that the tweets were all posted
on the previous day.

For expository convenience and to adopt standard informa-
tion retrieval parlance, we write of users desiring relevant
content, even though “relevant” in our context might be
better operationalized as interesting, novel, and timely.

Real-Time Summarization is a new track at TREC 2016
and represents a merger of the Microblog (MB) Track, which
ran from 2010 to 2015, and the Temporal Summarization
(TS) Track, which ran from 2013 to 2015 [2]. The creation
of RTS was designed to leverage synergies between the two
tracks in exploring prospective information needs over doc-
ument streams containing novel and evolving information.
The task this year directly evolved from the real-time filter-
ing task in the TREC 2015 Microblog Track [6].

Despite superficial similarities, our task is very different
from document filtering in the context of earlier TREC Fil-

tering Tracks, which ran from 1995 [4] to 2002 [9], and
the general research area of topic detection and tracking
(TDT) [1]. The TREC Filtering Tracks are best understood
as binary classification on every document in the collection
with respect to standing queries, and TDT is similarly con-
cerned with identifying all documents related to a particular
event—with an intelligence analyst in mind. In contrast, we
are focused on identifying a small set of the most relevant
updates to deliver to users. Furthermore, in both TREC
Filtering and TDT, systems must make online decisions as
soon as documents arrive. In our case, for scenario A, sys-
tems can choose to push older content (latency is one aspect
of the evaluation), thus giving rise to the possibility of al-
gorithms operating on bounded buffers. Finally, previous
evaluations, including TDT, TREC Filtering, and Tempo-
ral Summarization, merely simulated the streaming nature
of the document collection, whereas participants in our eval-
uation actually operated on tweets posted in real time.

2. EVALUATION DESIGN

2.1 General Setup

The design of the TREC 2016 Real-Time Summarization
Track largely follows the design of the real-time filtering task
in the TREC 2015 Microblog Track [6]. Although we are
interested in exploring filtering techniques over streams of
social media posts in general, this year’s track restricted the
content under consideration to tweets due to their widespread
availability. In particular, Twitter provides a streaming API
through which clients can obtain a sample (approximately
1%) of public tweets, colloquially known as the “spritzer”.
This level of access is available to anyone who signs up for
an account.

During the official evaluation period, which began Tues-
day, August 2, 2016 00:00:00 UTC and lasted until Thurs-
day, August 11, 2016 23:59:59 UTC, participants’ systems
“listened” to Twitter’s live tweet sample stream to identify
relevant tweets with respect to users’ interest profiles.

System behavior during the evaluation period varied ac-
cording to the evaluation scenario:

Scenario A: Push notifications. As soon as the system
identifies a relevant tweet with respect to an interest profile,
it pushes (i.e., submits) the tweet to the RTS evaluation
broker (via a REST API). The evaluation broker records



the system submission and then immediately delivers the
tweet to the mobile devices of a group of human assessors as
a push notification in real time (more details in Section 2.4).

Each system was allowed to push at most ten tweets per
interest profile per day. This per-day tweet delivery limit
represents a crude attempt to model user fatigue in mobile
push notifications. Note, however, that in this design we
are not modeling real-world constraints such as “don’t send
users notifications in the middle of the night”. This simpli-
fication was intentional.

Scenario B: Email digests. The system is tasked with
identifying up to 100 tweets per day per interest profile.
These posts are putatively delivered to the user daily. For
simplicity, all tweets from 00:00:00 to 23:59:59 UTC are valid
candidates for that particular day. It is expected that sys-
tems will compute the results in a relatively short amount
of time after the day ends (e.g., at most a few hours), but
this constraint was not enforced. Each system recorded the
results (i.e., ranked lists) for each day, which were then up-
loaded to NIST servers in batch shortly after the evaluation
period ended.

The per-day limit of 100 tweets was arbitrarily set, but
at a value that is larger than what one might expect from
a daily email digest, primarily to enrich the judgment pool
(more details in Section 2.5). As with scenario A, we ne-
glected to model real-world constraints in favor of simplicity,
since defining a “day” in terms of UTC does not take into
account the reading habits of users in different time zones
around the world.

For scenario A, the RTS evaluation broker records system
outputs as they are received and thus we can be sure that
the participating systems are actually operating in real time.
For scenario B, systems were expected to conform to the
temporal constraints imposed by the task scenario (for ex-
ample, to not use “future knowledge” when ranking the
tweets), but there was no enforcement mechanism due to
the post-hoc batch submission setup.

An important consequence of the evaluation design is that,
unlike in most previous TREC evaluations, no collection or
corpus was distributed ahead of time. Since each partici-
pant “listened” to tweets from Twitter’s streaming API, the
collection was generated in real time and delivered to each
participant independently. In a 2015 pilot study [7], we ver-
ified that multiple listeners to the public Twitter sample
stream receive effectively the same tweets (Jaccard overlap
of 0.999 across six independent crawls over a three day sam-
ple in March 2015). This evaluation setup was adopted in
the TREC 2015 Microblog Track without any issue, thus
providing large-scale validation of the design. For evaluation
purposes (i.e., pool formation for judgments), the organiz-
ers also collected the live Twitter stream: this was accom-
plished by two independent crawlers in two geographically-
distributed datacenters on Amazon’s EC2 service. Note that
independent crawls do not increase coverage of the tweets
received; the sole purpose of the setup was to increase re-
dundancy, particularly robustness with respect to transient
network glitches that sometimes affect tweet delivery. The
union of these two crawls was designated as the “official”
collection.

Another substantial departure from most previous TREC
evaluations is the requirement that participants maintain a
running system that continuously monitors the tweet sam-
ple stream during the evaluation period. The track orga-

nizers provided boilerplate code and reference implementa-
tions, but it was the responsibility of each individual team
to run its own system, connect with the RTS evaluation
broker to submit results, and cope with crashes, network
glitches, power disruptions, etc. The TREC 2015 Microblog
Track, as well as other recent tracks at TREC that required
participants to maintain “live” systems, showed that this re-
quirement does not present an onerous barrier to entry for
participating teams.

2.2  Run Submission

In both scenarios, systems were asked to only consider tweets
in English. Each team was allowed to submit up to three
runs for scenario A and three runs for scenario B. Runs for
scenario A involved registering with the RTS evaluation bro-
ker to request a unique token, which was used to associate
all submitted tweets to a particular run submission (see Sec-
tion 2.4).

Runs were categorized into three different types based on
the amount of human involvement:

e Automatic Runs: In this condition, system develop-
ment (including all training, system tuning, etc.) must
conclude prior to downloading the interest profiles from
the track homepage (which were made available before
the evaluation period). The system must operate with-
out human input before and during the evaluation pe-
riod. Note that it is acceptable for a system to perform
processing on the profiles (for example, query expansion)
before the evaluation period, but such processing cannot
involve human input.

e Manual Preparation: In this condition, the system
must operate without human input during the evalua-
tion period, but human involvement is acceptable before
the evaluation period (i.e., after downloading the interest
profile). Examples of manual preparation include human
examination of the interest profiles to add query expan-
sion terms or manual relevance assessment on a related
collection to train a classifier. However, once the eval-
uation period begins, no further human involvement is
permissible.

e Manual Intervention: In this condition, there are no
limitations on human involvement before or during the
evaluation period. Crowd-sourcing judgments, human-
in-the-loop search, etc. are all acceptable.

Participants were asked to designate the run type at sub-
mission time for the scenario B runs. For scenario A runs,
we asked each team about the type of each of their runs over
email after the evaluation period.

All types of systems were welcomed; in particular, man-
ual preparation and manual intervention runs are helpful in
understanding human performance and enriching the judg-
ment pool.

2.3 Interest Profiles

Interest profiles for real-time summarization are difficult to
develop because of their prospective nature—this was one
of the lessons learned from the real-time filtering task in the
TREC 2015 Microblog Track [6]. For retrospective ad hoc
topics over a static collection, it is possible for topic devel-
opers to explore the document collection to get a sense of
the amount of relevant material, range of topical facets, etc.



for a particular information need. Typically, topic devel-
opers prefer topics that have neither too many nor too few
relevant documents. This is not possible for RTS interest
profiles, which essentially requires “predicting the future”.
The track overview paper from TREC 2015 [6] provides more
discussion of these issues.

Just as in the TREC 2015 Microblog Track, we adopted
the “standard” TREC ad hoc topic format of “title”, “de-
scription”, and “narrative” for the interest profiles. The so-
called title consists of two to three keywords that provide the
gist of the information need, akin to something a user might
type into the query box of a search engine. The description
is a one-sentence statement of the information need, and the
narrative is a paragraph-length chunk of prose that sets the
context of the need and expands on what makes a tweet rel-
evant. By necessity, these interest profiles are more generic
than the needs expressed in typical retrospective topics be-
cause the topic developer does not know what future events
will occur. Thus, despite superficial similarities in format,
we believe that interest profiles are qualitatively different
from ad hoc topics.

Given the prospective nature of interest profiles, we em-
ployed the strategy of “overgenerate and cull”. That is,
we created many more interest profiles than there were re-
sources available for assessment, with the understanding
that we could cull a set of profiles after the fact to assess,
guided by actual assessor interest. For 2016, the interest
profiles were drawn from three sources:

1. 51 interest profiles that were assessed from the TREC
2015 Microblog Track, so that participants have access
to training data.

2. 107 additional interest profiles culled from the TREC
2015 Microblog Track—the old profiles were manually
filtered to retain those that were still applicable (e.g.,
throwing away profiles about events that have happened
already) and profiles for which there would hopefully be
a reasonable volume of relevant tweets.

3. 45 new interest profiles that were specifically developed
from scratch for this year’s track.

All interest profiles were made available to the participants
before the beginning of the evaluation period.

2.4 Online Judgments and Metrics

On key feature introduced in this year’s track is an online
evaluation component for scenario A whereby system out-
puts are assessed in an online manner. Our general approach
builds on growing interest in so-called “Living Labs” [11]
and related Evaluation-as-a-Service (EaaS) [3] approaches
that attempt to better align evaluation methodologies with
user task models and real-world constraints to increase the
fidelity of research experiments.

Our evaluation architecture is shown in Figure 1 and was
previously described in Roegiest et al. [10]; the entire evalua-
tion infrastructure is open source and available on GitHub.!
As the participating systems identify relevant tweets, they
are immediately pushed to the RTS evaluation broker, which
then immediately routes the tweets to assessors who have in-
stalled a custom app on their mobile devices. The tweets are

https://github.com/trecrts/trecrts-eval/
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Figure 1: Evaluation setup for scenario A showing
the use of mobile assessors who judge tweets in real
time, mediated by the RTS evaluation broker.

rendered as push notifications on the assessors’ mobile de-
vices and are added to an assessment queue in their app for
consideration.

This setup has a number of distinct advantages over tra-
ditional post-hoc batch evaluations:

e Gathering relevance judgments in an online fashion has
the potential to yield more situationally-accurate assess-
ments, particularly for rapidly developing events. With
post-hoc batch evaluations, there is always a bit of dis-
connect as the assessor needs to “imagine” herself at the
time the update was pushed. With our evaluation frame-
work, we remove this disconnect.

e An online evaluation platform allows for the possibility of
user-submitted information needs, thus giving assessors
the ability to judge tweets for interest profiles they are
genuinely interested in.

e An online evaluation platform opens the door to provid-
ing realistic, online feedback to participants, thus poten-
tially facilitating active learning approaches.

In this first year of the evaluation, we did not provide a
mechanism for user-submitted interest profiles or an API
for participants to receive feedback. However, we hope to
introduce these features in the future, and the existing in-
frastructure provides a solid foundation to build on.

In more detail, the evaluation proceeded as follows:

1. Prior to the beginning of the evaluation period, each
participant’s system “registers” with the RTS evaluation
broker (via a REST API call) to request a unique token,
which is used in future requests to associate all submit-
ted tweets to a particular system. For the purposes of
this discussion, each participant “run” is considered a
separate system.

2. Whenever a system identifies a relevant tweet with re-
spect to an interest profile, the system submits the result
to the RTS evaluation broker via a REST API, which
records the submission time.

3. The RTS evaluation broker immediately routes the tweet
to the mobile device of an assessor, where it is rendered
as a push notification containing both the text of the
tweet and the corresponding interest profile.

4. The assessor may choose to judge the tweet immediately,
or if it arrived at an inopportune time, to ignore it. Ei-
ther way, the tweet is added to the queue in a custom
app on the assessor’s mobile device, which she can access
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Figure 2: Screenshot of the mobile assessment app.

at any time to judge the queue of accumulated tweets.
Users have the option of logging out of the app com-
pletely, at which point they will cease to receive notifi-
cations.

5. As the assessor examines tweets and provides judgments,
the results are relayed back to the RTS evaluation broker
and recorded.

Our setup largely follows the interleaved evaluation meth-
odology for prospective notifications proposed by Qian et
al. [8]. For each tweet, the user makes one of three judg-
ments:

e relevant, if the tweet contains relevant and novel infor-
mation;

e redundant, if the tweet contains relevant information, but
is substantively similar to another tweet that the assessor
had already seen;

e not relevant, if the tweet does not contain relevant infor-
mation.

A screenshot of the mobile assessment app is shown in Fig-
ure 2. The icons below each tweet represent the relevant,
not relevant, and redundant judgments, respectively.

The entire evaluation is framed as a user study (with ap-
propriate ethics review and approval). A few weeks prior
to the beginning of the evaluation period, we recruited as-
sessors from the undergraduate and graduate student pop-
ulation at the University of Waterloo, via posts on various
email lists as well as paper flyers on bulletin boards. The
assessors were compensated $5 CAD to install the mobile
assessment app and $1 CAD per 20 judgments.

As part of the assessor training process, they subscribed
to receive notifications for profiles they were interested in,
selecting from the complete list given to all participants via
an online web interface. To encourage diversity, we did not
allow more than three assessors to select the same profile
(on a first come, first served basis).

The RTS evaluation broker followed the temporal inter-
leaving strategy proposed by Qian et al. [8], which meant
that tweets were pushed to the assessors as soon as the
broker received the submitted tweets. Although Qian et
al. only discussed interleaving the output of two systems,
it is straightforward to extend the strategy to multiple sys-
tems. The broker made sure that each tweet was only pushed
once (per profile), in the case where the same tweet is sub-
mitted by multiple systems at different times. Although one
can imagine a variety of different “routing” algorithms for
pushing tweets to different assessors that have subscribed
to a topic, this year we implemented the simplest possible
algorithm where the tweet was pushed to all assessors (that
had subscribed to the profile). This meant that the broker
might receive more than one judgment per tweet.

Another implication of this interleaved evaluation setup
is that an assessor will likely encounter tweets from differ-
ent systems, which makes proper interpretation of redun-
dant judgments more complex. A tweet might only be re-
dundant because the same information was contained in a
tweet pushed earlier by another system (and thus it is not
the “fault” of the particular system that pushed the tweet).
That is, the interleaving of outputs from different systems
was directly responsible for introducing the redundancy. Al-
though Qian et al. [8] proposed a heuristic for more accurate
credit assignment to cope with interleaving, in this evalua-
tion we simply counted the absolute number of judgments
of each type. From these counts, we computed “strict” pre-
cision, defined as:

relevant

(1)

relevant + redundant + not relevant

as well “lenient” precision, defined as:

relevant + redundant

(2)

relevant 4+ redundant + not relevant

Precision seemed like an appropriate metric given the cost
of push notifications in terms of interrupting the user. Note
that these precision computations represent a micro-average
(and mot an average across per-topic scores). This choice
was made because of the sparisty of judgments, which would
magnify the effects of interest profiles with few judgments.

Finally, we made the (arbitrary) decision of using “strict”
precision as the primary metric for assessing scenario A runs
using mobile assessors.

2.5 Batch Judgments and Metrics

In addition to the online evaluation by mobile assessors, the
track also employed a standard post-hoc batch evaluation
methodology that has been refined and validated over many
iterations in previous TREC evaluations. For scenario A,
the dual evaluation approach helps us validate the reliability
of our online mobile assessment methodology.

We adopted the Tweet Timeline Generation (TTG) eval-
uation methodology that was originally developed for the
TREC 2014 Microblog Track [5] and also used in the TREC



2015 Microblog Track [6]. The methodology has been ex-
ternally validated [15], and similar methodologies have been
deployed in evaluations dating back at least a decade; thus,
we can consider this approach mature and reliable. The
assessment workflow proceeded in two major stages: rele-
vance assessment and semantic clustering. Both were ac-
complished by NIST assessors.

Relevance assessments were performed using pooling with
a single pool across both scenario A and scenario B runs.
The pools were constructed from all submitted runs, taking
all tweets from Scenario A runs and up to 90 tweets (per
profile) from Scenario B runs. For scenario B runs, tweets
were added to the judgment pool in a round-robin fashion
across days. That is, the top-ranked tweet from each day
was first added to the pool, then the second-ranked tweet
from each day, and so on. If the process exhausted tweets
from a particular day before the 90 tweet limit had been
reached, tweets were selected from the remaining days until
the limit.

After pool formation, the next decision was the selection
of interest profiles to manually assess. In this case, the se-
lections of the mobile assessors provided an obvious guide.
Profiles to assess were selected by first taking those interest
profiles that had at least 50 distinct tweets judged by the
mobile assessors (there were 67 of these), and then elimi-
nating profiles whose pools were enormous or those about
events from 2015. NIST assessors ended up judging 56 pro-
files. The mean size of the pools was 1206 tweets, with
minimum 917 and maximum 1651.

These pools were then examined by NIST assessors. To
facilitate consistent judgments, tweets were first clustered by
lexical similarity. Each tweet was independently assessed on
a three-way scale of “not relevant”, “relevant”, and “highly
relevant”. Non-English tweets were marked as not relevant
by fiat. If a tweet contained a mixture of English and non-
English content, discretion was left to the assessor. As with
previous TREC Microblog evaluations, assessors examined
links embedded in tweets, but did not explore any additional
external content beyond those. Retweets did not receive any
special treatment and were assessed just like any other tweet.

All 56 profiles judged by NIST assessors have at least
one relevant judgment from the mobile assessors. However,
based on the NIST assessors, one interest profile has no rel-
evant tweets, three other interest profiles have exactly one
relevant tweet, and a total of 14 interest profiles have fewer
than 10 relevant tweets. At the other end of the scale, three
interest profiles have more than 200 relevant tweets, the
maximum being RTS10 (Hiroshima bomb reactions), with
364 relevant tweets.

After the relevance assessment process, the NIST assessors
proceeded to perform semantic clustering on the relevant
tweets using the tweet timeline generation (T'TG) protocol,
originally developed for the TREC 2014 Microblog Track [5,
15]. Unlike in previous years, where the clustering was per-
formed outside NIST, this year the same assessor performed
both the relevance judgments and the clustering.

The TTG protocol was designed to reward novelty (or
equivalently, to penalize redundancy) in system output. In
both scenario A and scenario B, we assume that users would
not want to see multiple tweets that “say the same thing”,
and thus the evaluation methodology should reward systems
that eliminate redundant output. Following the TREC 2014
Microblog Track, we operationalized redundancy as follows:

for every pair of tweets, if the chronologically later tweet
contains substantive information that is not present in the
earlier tweet, the later tweet is considered novel; otherwise,
the later tweet is redundant with respect to the earlier one.
In our definition, redundancy and novelty are antonyms, so
we use them interchangeably but in opposite contexts.

Due to the temporal constraint, redundancy is not sym-
metric. If tweet A precedes tweet B and tweet B contains
substantively similar information found in tweet A, then B is
redundant with respect to A, but not the other way around.
We also assume transitivity. Suppose A precedes B and B
precedes C: if B is redundant with respect to A and C' is
redundant with respect to B, then by definition C' is redun-
dant with respect to A.

In the instructions given to the NIST assessors, they were
not provided a particular target regarding the number of
clusters to form. Instead, they were asked to use their best
judgment, considering both the interest profile and the ac-
tual tweets.

For the semantic clustering, the assessors were shown all
the relevant tweets (from the judgment pool) for a single
interest profile within a custom assessment interface. The
tweets were shown in the left pane in chronological order,
while the list of current clusters were shown in a pane on
the right side. For each tweet in the left pane, the assessor
could either use that tweet as the basis for a new cluster, or
add it to one of the existing clusters. In this way, clusters
representing important pieces of information (comprised of
semantically similar tweets) are constructed incrementally.
To aid the clustering process, assessors could enter a short
textual description for each cluster and then sort the tweets
by similarity to a selected cluster, as a way to speed up the
process of finding additional relevant tweets for that cluster.
Users could also retroactively move a tweet from a cluster
back into the left pane, such that it could then be assigned
to a different cluster. The output of the assessment process
(for each interest profile) is a list of clusters, where tweets
in each cluster represent a particular “facet” of the overall
information need.

2.5.1 Scenario A Metrics

For Scenario A, we computed a number of metrics from the
relevance judgments and clusters provided by the NIST as-
sessors, detailed below. As previously discussed, push notifi-
cations should be relevant (on topic), novel (users should not
be pushed multiple notifications that say the same thing),
and timely (provide updates as soon after the actual event
occurrence as possible). Unlike the TREC 2015 Microblog
Track as well as previous Temporal Summarization Tracks
(cf. [2]), which devised single-point metrics that attempted
to incorporate both relevance, novelty, and timeliness, we
decided this year to separately compute metrics of output
quality (relevance and novelty) and latency (timeliness).
We envision that systems might trade off latency with
output quality: For example, a system might wait to ac-
cumulate evidence before pushing tweets, thus producing
high-quality output at the cost of high latency. Alterna-
tively, a low-latency system might aggressively push results
that it might “regret” later. Computing metrics of output
quality separately from latency allows us to understand the
potential tradeoffs. Additionally, we believe this approach
is appropriate because we have no empirical evidence as to
what the “human response curve” to latency looks like—



that is, how much should we discount a quality metric based
on tardiness? Attempting to formulate a single-point met-
ric collapses meaningful distinctions in what users may be
looking for in systems.

Expected Gain (EG) for an interest profile on a particular
day is defined as follows:

S EL0) 3)

where N is the number of tweets returned and G(t) is the
gain of each tweet:

e Not relevant tweets receive a gain of 0.
e Relevant tweets receive a gain of 0.5.
e Highly-relevant tweets receive a gain of 1.0.

Once a tweet from a cluster is retrieved, all other tweets from
the same cluster automatically become not relevant. This
penalizes systems for returning redundant information.

Normalized Cumulative Gain (nCG) for an interest
profile on a particular day is defined as follows:

236w (4)

where Z is the maximum possible gain (given the ten tweet
per day limit). The gain of each individual tweet is com-
puted as above. Note that gain is not discounted (as in
nDCG) because the notion of document ranks is not mean-
ingful in this context.

The score for a run is the mean of scores for each day over
all the profiles. Since each profile contains the same number
of days, there is no distinction between micro- vs. macro-
averages. An interesting question is how scores should be
computed for days in which there are no relevant tweets: for
rhetorical convenience, we call days in which there are no
relevant tweets for a particular interest profile (in the pool)
“silent days”, in contrast to “eventful days” (where there
are relevant tweets). In the EG-1 and nCG-1 variants of the
metrics, on a “silent day”, the system receives a score of one
(i-e., a perfect score) if it does not push any tweets, or zero
otherwise. In the EG-0 and nCG-0 variants of the metrics,
for a silent day, all systems receive a gain of zero no matter
what they do. For more details about this distinction, see
Tan et al. [14].

Therefore, under EG-1 and nCG-1, systems are rewarded
for recognizing that there are no relevant tweets for an in-
terest profile on a particular day and remaining silent (i.e.,
does not push any tweets). The EG-0 and nCG-0 variants
of the metrics do not reward recognizing silent days: that is,
it never hurts to push tweets.

Gain Minus Pain (GMP) is defined as follows:

a-y G-(1-a)-P (5)

The G (gain) is computed in the same manner as above.
Pain P is the number of non-relevant tweets that the system
pushed, and « controls the balance between the two. We
investigated three a settings: 0.33, 0.50, and 0.66. Note that
this metric is the same as the linear utility metric used in
the TREC Filtering Tracks [4, 9], although our formulation

is slightly different. Thus, our metric is not novel, which we
see as an advantage since it builds on previous work.

In summary, for scenario A, we report EG-1, EG-0, nCG-1,
nCG-0, and GMP (with o = {0.33,0.50,0.66}). EG-1 was
considered the primary metric.

Latency. In addition to the quality metrics above, we re-
port, only for tweets that contribute to gain, the mean and
median difference between the time the tweet was pushed
and the first tweet in the semantic cluster that the tweet
belongs to (based on the NIST assessors).

For example, suppose tweets A, B, and C are in the same
semantic cluster, and were posted 09:00, 10:00, and 11:30,
respectively. No matter which of the three tweets is pushed,
the latency is computed with respect to the creation time of
A (09:00). Therefore, pushing tweet C' at 11:30 and pushing
tweet A at 11:30 gives the same latency.

2.5.2 Scenario B Metrics

Scenario B runs were evaluated in terms of nDCG as fol-
lows: for each interest profile, the list of tweets returned per
day is treated as a ranked list and from this nDCG@10 is
computed. Note that in this scenario, the evaluation metric
does include gain discounting because the email digests can
be interpreted as ranked lists of tweets. Gain is computed in
the same way as in scenario A with respect to the semantic
clusters. Systems only receive credit for the first relevant
tweet they report from a cluster.

The score of an interest profile is the mean of the nDCG
scores across all days in the evaluation period, and the score
of the run is the mean of scores for each profile. Once again,
the micro- vs. macro-average distinction is not applicable
here. As with scenario A, we computed two variants of the
metric: with nDCG-1, on a “silent day”, the system receives
a score of one (i.e., a perfect score) if it does not push any
tweets, or zero otherwise. In nDCG-0, for a silent day, all
systems receive a gain of zero no matter what they do.

3. RESULTS

To provide a track-wide baseline and also a point of compari-
son for this year’s participants, we deployed the “YoGosling”
system [13], which is a simplified reimplementation of the
best-performing automatic system from the TREC 2015 Mi-
croblog Track [12]. The system was originally designed for
scenario A, but we adapted it for scenario B by simply run-
ning the system on all tweets collected at the end of the day,
keeping the same exact scoring model and scoring thresholds
as implemented for scenario A.

3.1 Scenario A

For Scenario A, we received 41 runs from 18 groups. These
runs pushed a total of 161,726 tweets, or 95,113 unique
tweets after de-duplicating within interest profiles (but not
de-duplicating across profiles).

For the online evaluation of scenario A systems, we re-
cruited a total of 18 assessors, 13 of whom ultimately pro-
vided judgments. Of these, 11 were either graduates or
undergraduate students at the University of Waterloo. In
total, we received 12,115 judgments over the assessment pe-
riod, with a minimum of 28 and a maximum of 3,791 by an
individual assessor. We found that 10,605 tweets received a
single judgment, 743 tweets received two judgments, and 8
tweets received three judgments. Overall, 122 interest pro-



l Assessor [ Judgments Profiles Messages Response ‘
1 53 4 1619 3.27%
2 3305 10 7141 46.28%
3 136 10 5860 2.32%
4 327 8 3795 8.62%
5 949 12 6330 14.99%
6 28 12 7211 0.39%
7 281 10 4162 6.75%
8 1908 15 7754 24.61%
9 3791 33 16654 22.76%

10 680 16 7257 9.37%
11 107 43 22676 0.47%
12 324 2 938 34.54%
13 226 12 7058 3.20%

Table 1: Assessor statistics. For each assessor,
columns show the number of judgments provided,
the number of interest profiles subscribed to, the
maximum number of push notifications received,
and the response rate.

files received at least one judgment; 93 received at least 10
judgments; 67 received at least 50 judgments; 44 received at
least 100 judgments.

The distribution of judgments by assessors is shown in
Table 1. The columns list: assessor id, the number of judg-
ments provided, the number of profiles subscribed to. The
fourth column shows the sum of all push notifications for
the profiles that each assessor subscribed to: this captures
the maximum number of push notifications that the asses-
sor could have received during the evaluation period. Note
that we do not have the actual number of notifications each
assessor received because the assessor could have logged out
during some periods of time or otherwise adjusted the lo-
cal device settings (e.g., to disable notifications). The final
column shows the response rate, computed as the fraction
between the second and fourth columns, which is a lower-
bound estimate. From this table, we see that some assessors
are quite diligent in providing judgments, while others are
more sporadic.

It was originally our intention to build mobile assessment
apps for both Android and iOS, but due to technical issues
with the app development framework we were using, we were
unable to deploy a stable iOS app in time. As a result, all
assessors used the Android app. Some assessors encountered
display issues with tweets during the evaluation period, due
to the wide range of devices owned by the assessors. Since
this was not anticipated during testing, we did our best to
support these assessors and to provide workarounds on the
fly. While the overall assessment experience could have been
more refined, the entire setup worked as expected.

After the evaluation, while compiling results, we discov-
ered that from the RTS evaluation broker’s perspective, some
tweets were pushed before they were actually posted on
Twitter. Since it is unlikely that participants had created
time traveling devices, we attributed the issue to clock skew
on the broker. Note that since the broker was an EC2 in-
stance in the cloud that was shut down soon after the evalu-
ation ended, there was no way to debug this issue to obtain
confirmation. The only reasonable solution we could come
up with was to add a temporal offset to all pushed tweets.

We set this offset to 139 seconds, the maximum gap be-
tween a system push time and the posted time of the tweet
(on Twitter itself).

Results of the evaluation by the mobile assessors are shown
in Table 2. For each run, the columns show the number
of tweets that were judged relevant (R), redundant (D),
and not relevant (N); the number of unjudged tweets (U);
the length of each run (L), defined as the total number of
tweets pushed by the system for the interest profiles that
have at least one judgment. The next column shows the
fraction of pushed tweets that were judged (C), defined as
(R+D+N)/L. The table also reports the mean (t) and me-
dian (f) latency of pushed tweets in seconds, measured with
respect to the time the original tweet was posted. Next, the
table shows “strict” and “lenient” precision (as defined in
Section 2.4), with 95% binomial confidence intervals. The
final column shows the run type: ‘A’ denotes automatic and
‘P’ manual preparation.

The rows in Table 2 are sorted by “strict” precision, but
sorting by “lenient” precision doesn’t greatly affect the rank-
ings of the systems. The YoGosling baseline (Waterloo-
Clarke, WaterlooBaseline-50) is noted in the results table.
The placement of the YoGosling baseline suggests that the
community has made quite a bit of progress on this task,
since the best performing run from last year now falls in the
middle of the pack.

Results of the evaluation by NIST assessors are shown
in Table 3. The columns list the various metrics discussed
in Section 2.5 and also the mean and median latency in
seconds. Note that latency is computed with respect to the
first tweet in each cluster, and thus a system may have a high
latency even if it pushes a tweet immediately. The second
to last column shows the length of each run, defined as the
number of notifications pushed for the interest profiles that
were assessed. The final column shows the run type: ‘A’
denotes automatic and ‘P’ manual preparation. The rows
are sorted by EG-1, the primary metric. The YoGosling
baseline is also marked in the results table; we see that it
also places in the middle of the pack.

For reference, an empty run (i.e., doing nothing) would
receive a score of 0.2339 for EG-1 and nCG-1 (with all other
scores being zero). This is also shown in Table 3. As with
the TREC 2015 Microblog Track, the baseline of doing noth-
ing is surprisingly competitive given the current battery of
metrics. The same observation has been noted in previous
TREC Filtering Tracks. In a precision-focused task such as
this, it is very important for systems to “keep quiet”, which
translates into the task of recognizing when there are no
relevant documents.

Figure 3 shows a heatmap of the distribution of relevant
and highly-relevant tweets by the NIST assessors: each col-
umn corresponds to an interest profile and each row corre-
sponds to a day in the evaluation period. Figure 4 is orga-
nized in the same manner, but we only show the first tweet
in each cluster.

Figure 5 shows scatterplots for “strict” precision (left) and
“lenient” precision (right) vs. median latency. Each solid
square represents a run. We do not see, overall, a trade-
off between output quality and latency. That is, systems
with higher latencies, which have more time to accumulate
evidence on relevance and novelty, do not tend to perform
better in terms of the various quality metrics.

The same scatterplots for batch evaluation metrics are



MB226
- MB229
4 MB230
4 MB239
-+ MB254
- MB256
- MB258
- MB265
- MB267
4 MB276
- MB286
4 MB319
4 MB320
4 MB332
4 MB351
- MB358
4 MB361
- MB362
- MB363
- MB365
4 MB371
- MB377
4 MB381
- MB382
4 MB391
-4 MB392
- MB409

5!
T
s}

{mB4108.
1MBa14 @
1 MB420
1mBazs
1 mB431
1mB43e
1 mBa3s
1 MB440
1RTs1
1RTs2
1RTs4
1RTS5
1RTs6
1RTS10
1RTS13
1RTS14
1RTs19
1RTS21
1RTS24
1RTS25
1 RTS27
1RTS28
1 RTS31
| RTS32
| RTS35
| RTS36
1 RTS37
1 RTS43

2016/08/02 [
2016/08/03 -
2016/08/04 -
2016/08/05 |-
@ 2016/08/06 |
S 2016/08/07 |-
2016/08/08 |-
2016/08/09 -
2016/08/10 -
2016/08/11 |-

Figure 3: Heatmap of the distribution of all relevant

days of the evaluation in rows.

MB226

MB229
4 MB230
4 MB239
4 MB254
4 MB256
4 MB258
4 MB265
4 MB276
- MB286
4 MB319
- MB320
4 MB332
- MB351
- MB358
4 MB361
- MB362
- MB363
4 MB365

MB371

MB377
4 MB381
4 MB382
4 MB391

and highly-relevant tweets:

- MB392
4 MB409
4 MB410

interest profiles in columns,

Topics

MB414
MB420
4 MB425
4 MB431
4 MB436
4 MB438
- MB440
H RTS2
4 RTS4
- RTS5
- RTS6
-4 RTS13
4 RTS14
4 RTS19
- RTS21
-4 RTS24
- RTS25
-4 RTS27
- RTS28
-4 RTS32
- RTS35
- RTS36
RTS37
RTS43

2016/08/02
2016/08/03
2016/08/04
2016/08/05

2 2016/08/06

S 2016/08/07
2016/08/08
2016/08/09
2016/08/10
2016/08/11

AN EENE ez

. RTS1
. RTS31

... .. RTS10
||
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days of the evaluation in rows.

shown in Figure 6 (EG-1, EG-0, nCG-1, and nCG-0) and
Figure 7 (GMP with o = {0.33,0.50,0.66}). The scenario
A runs are shown as solid squares. Once again, we do not ob-
serve any strong relationship between system output quality
(as measured by the various metrics) and latency.

3.2 Scenario B

For scenario B, we received a total of 40 runs from 15 groups.
Evaluation results based on NIST assessors are shown in
Table 4. Runs are sorted by nDCG-1, with the YoGosling
baseline (YoGoslingBSL) marked. For reference, the empty
run would have received an nDCG-1 score of 0.2339, also
shown in the results table.

The separation of quality metrics from latency allows us
to unify the evaluation of scenario A and scenario B runs—
we can simply convert scenario B runs into scenario A runs
by pretending that all tweets were emitted at 23:59:59, and
then running the evaluation scripts for scenario A exactly
as before. The results of this conversion are shown in Fig-
ure 6 and Figure 7, where the scenario B runs are shown
as empty squares. We would have expected that scenario B
runs, on the whole, outperform scenario A runs (on quality
metrics), since they had the advantage of accumulating ev-
idence throughout the entire day. This, however, does not
appear to be the case. Nevertheless, we believe this way of
visualizing the results frames mobile push notifications and
email digests as variants of the same underlying task, just
differing in the amount of latency that is tolerated.

4. CONCLUSIONS

The TREC 2016 Real-Time Summarization Track had sev-
eral innovative elements. Building on previous Microblog
evaluations, we emphasized working systems that operate
on the live Twitter stream, in an attempt to narrow the gap
between research and practice. We continued to refine eval-

uation metrics as we better understand the nuances of push
notifications. Most notably, this track represents, to our
knowledge, the first deployment of an interleaved evaluation
framework for prospective information needs, providing an
opportunity to examine user behavior in a realistic setting.
Our efforts will continue with another instance of the track
in TREC 2017.
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‘ team run R D N U L ‘ C ‘ T T ‘ P (strict) P (lenient) ‘ type ‘
COMP2016 run3-13 193 4 141 1243 1573 | 0.215 14 14 | 0.5710 (0.5177, 0.6227) 0.5828 (0.5296, 0.6342) | P
COMP2016 run2-12 47 1 38 424 508 | 0.169 13 13 | 0.5465 (0.4416, 0.6475) 0.5581 (0.4529, 0.6584) | P
COMP2016 runl-11 54 1 50 498 600 | 0.175 13 13 | 0.5143 (0.4199, 0.6077)  0.5238 (0.4291, 0.6168) | P
CLIP CLIP-A-1-08 91 1 89 507 679 | 0.267 493 40 | 0.5028 (0.4306, 0.5748)  0.5083 (0.4360, 0.5802) | A
umd _hcil UmdHcilBaseline-49 20 0 22 176 218 | 0.193 3863 1323 | 0.4762 (0.3336, 0.6228) 0.4762 (0.3336, 0.6228) | A
CLIP CLIP-A-2-09 158 7 171 911 1227 | 0.274 485 25 | 0.4702 (0.4175, 0.5236)  0.4911 (0.4380, 0.5443) | A
CLIP CLIP-A-3-10 170 7 189 1071 1418 | 0.258 472 25 | 0.4645 (0.4140, 0.5157) 0.4836 (0.4328, 0.5347) | A
prna PRNATaskA3-36 80 10 116 936 1134 | 0.182 380 39 | 0.3883 (0.3244, 0.4564) 0.4369 (0.3709, 0.5052) | A
IRIT iritRunBiAm-21 201 6 323 1674 2177 | 0.243 13 13 | 0.3792 (0.3389, 0.4213)  0.3906 (0.3500, 0.4327) | A
PKUICST run2-32 245 16 389 2197 2813 | 0.231 39 37 | 0.3769 (0.3405, 0.4148)  0.4015 (0.3645, 0.4397) | A
prna PRNABaseline-34 26 0 44 228 293 | 0.239 502 30 | 0.3714 (0.2677, 0.4885) 0.3714 (0.2677, 0.4885) | A
prna PRNATaskA2-35 117 7 191 1337 1640 | 0.192 1074 77 | 0.3714 (0.3199, 0.4260) 0.3937 (0.3413, 0.4486) | A
QU QUExpP-38 45 1 76 348 463 | 0.263 155 15 | 0.3689 (0.2885, 0.4573)  0.3770 (0.2960, 0.4656) | A
PKUICST runl-31 220 18 360 1997 2566 | 0.233 38 38 | 0.3679 (0.3302, 0.4073)  0.3980 (0.3595, 0.4378) | A
QU QUExpT-39 33 1 56 280 365 | 0.247 108 17 | 0.3667 (0.2745, 0.4698)  0.3778 (0.2846, 0.4810) | A
PKUICST run3-33 200 15 333 1830 2347 | 0.233 38 37 | 0.3650 (0.3257, 0.4061)  0.3923 (0.3523, 0.4338) | A
QU QUBaseline-37 56 3 108 477 635 | 0.263 219 17 | 0.3353 (0.2681, 0.4099)  0.3533 (0.2848, 0.4283) | A
WaterlooClarke WaterlooBaseline-50 | 148 12 286 1461 1888 | 0.236 44 42 | 0.3318 (0.2897, 0.3768) 0.3587 (0.3156, 0.4043) | A
ISIKol MyBaseline-24 184 18 375 2610 3169 | 0.182 13 14 | 0.3189 (0.2822, 0.3580) 0.3501 (0.3123, 0.3899) | A
WaterlooLin WaterlooBaseline-51 | 145 8 303 1367 1804 | 0.253 46 46 | 0.3180 (0.2769, 0.3621) 0.3355 (0.2937, 0.3801) | A
NUDTSNA nudt_sna-29 262 34 546 3187 4011 | 0.210 47 46 | 0.3112 (0.2808, 0.3432)  0.3515 (0.3200, 0.3844) | A
NUDTSNA nudt_sna-30 49 19 94 776 937 | 0.173 35 34 | 0.3025 (0.2370, 0.3771)  0.4198 (0.3465, 0.4967) | A
udel udelRunTFIDF-44 119 8 292 1101 1504 | 0.279 30 28 | 0.2840 (0.2429, 0.3290)  0.3031 (0.2610, 0.3487) | A
udel_fang UDInfoDFP-47 632 91 1526 6945 9133 | 0.246 | 37954 33732 | 0.2810 (0.2628, 0.3000) 0.3215 (0.3025, 0.3411) | A
IRLAB_DA-IICT runA_daiict_irlab-23 | 105 10 259 1721 2083 | 0.180 1314 1224 | 0.2807 (0.2376, 0.3283)  0.3075 (0.2629, 0.3560) | P
HLJIT MyBaseline-17 86 3 220 692 993 | 0.311 34 23 | 0.2783 (0.2313, 0.3308)  0.2880 (0.2404, 0.3409) | A
udel_fang UDInfoSPP-48 467 66 1180 5171 6841 | 0.250 | 37900 33537 | 0.2726 (0.2521, 0.2942) 0.3112 (0.2897, 0.3335) | A
udel_fang UDInfoSFP-46 591 89 1537 7014 9179 | 0.242 | 37522 33162 | 0.2666 (0.2486, 0.2854) 0.3067 (0.2879, 0.3262) | A
HLJIT MyBaseline-18 63 7 168 833 1067 | 0.223 16 22 | 0.2647 (0.2127, 0.3242)  0.2941 (0.2399, 0.3549) | A
udel udelRunTFIDFQ-45 | 113 6 327 1138 1568 | 0.284 29 28 | 0.2534 (0.2152, 0.2957)  0.2668 (0.2279, 0.3097) | P
HLJIT HLJIT_LM-19 47 4 141 560 744 | 0.258 23 20 | 0.2448 (0.1894, 0.3102)  0.2656 (0.2082, 0.3323) | A
IRIT Hamid-20 354 35 1067 5470 6887 | 0.211 80 56 | 0.2431 (0.2218, 0.2658)  0.2672 (0.2451, 0.2905) | A
IRIT IritIrisSDA-22 136 17 448 1467 2060 | 0.292 14 14 | 0.2263 (0.1946, 0.2614)  0.2546 (0.2214, 0.2909) | A
NUDTSNA nudt_sna-28 2 0 7 61 69 | 0.130 32 32 | 0.2222 (0.0632, 0.5474) 0.2222 (0.0632, 0.5474) | A
udel udelRunBM25-43 2 1 6 38 47 | 0.191 27 27 | 0.2222 (0.0632, 0.5474)  0.3333 (0.1206, 0.6458) | P
CCNU2016NLP CCNUNLPrunl1-06 19 0 95 728 842 | 0.135 72 18 | 0.1667 (0.1094, 0.2457) 0.1667 (0.1094, 0.2457) | P
CCNU2016NLP CCNUNLPrun2-07 17 3 89 763 870 | 0.125 50 26 | 0.1560 (0.0997, 0.2356)  0.1835 (0.1220, 0.2665) | P
BJUT BJUTmyrf-03 136 53 1411 9656 11240 | 0.142 | 10059 549 | 0.0850 (0.0723, 0.0997) 0.1181 (0.1032, 0.1349) | A
BJUT BJUTmydt-04 97 57 1141 9390 10677 | 0.121 | 13912 540 | 0.0749 (0.0618, 0.0905) 0.1189 (0.1024, 0.1377) | A
BJUT BJUTmydt-05 54 10 899 8145 9102 | 0.106 6912 542 | 0.0561 (0.0432, 0.0724) 0.0665 (0.0524, 0.0840) | A
QUT_RTS QUT_RTS-40 0 0 11 89 100 | 0.110 | 88103 94647 | 0.0000 (0.0000, 0.2588) 0.0000 (0.0000, 0.2588) | A

Table 2: Evaluation of scenario A runs by the mobile assessors. The first two columns show the participating
team and run. The next columns show the number of tweets that were judged relevant (R), redundant (D),
and not relevant (N); the number of unjudged tweets (U); the length of each run (L), defined as the total
number of tweets pushed by the system for the interest profiles that have at least one judgment. The next
columns show the fraction of pushed tweets that were judged (C), defined as (R+ D+ N)/L; the mean (¥) and
median (f) latency of pushed tweets in seconds, measured with respect to the time the original tweet was
posted; “strict” and “lenient” precision, with 95% binomial confidence intervals. The final column shows the
run type: ‘A’ denotes automatic and ‘P’ manual preparation. Rows are sorted by “strict” precision, and the
YoGosling baseline (WaterlooClarke, WaterlooBaseline-50) is noted.



‘ team run ‘ EG-1 EG-0 nCG-1 nCG-0 GMP33 GMPsg GMP g6 ‘ mean median ‘ length ‘ type ‘
COMP2016 run3-13 0.2698 0.0483 0.2909 0.0695 -0.3262 -0.2054  -0.0916 | 91549 24 443 | P
QU QUBaseline-37 0.2643 0.0321 0.2479 0.0157 -0.1357 -0.0888  -0.0447 | 173843 62478 169 | A
COMP2016 runl-11 0.2565 0.0244 0.2515 0.0194 -0.0804 -0.0464 -0.0144 | 120947 7545 128 | P
COMP2016 run2-12 0.2559 0.0220 0.2483 0.0143 -0.0585 -0.0326  -0.0082 | 154939 10055 101 | P
QU QUExpT-39 0.2552 0.0230 0.2455 0.0133  -0.0986  -0.0647 -0.0329 | 141163 46025 124 | A
QU QUExpP-38 0.2519 0.0233 0.2413 0.0127 -0.1641 -0.1134  -0.0657 | 161403 56863 178 | A
IRIT iritRunBiAm-21 0.2493 0.0332 0.2541 0.0380 -0.5464  -0.3817  -0.2267 | 102630 23 572 | A
prna PRNABaseline-34 0.2423 0.0119 0.2402 0.0098 -0.0770  -0.0522  -0.0289 | 81480 317 88 | A
CLIP CLIP-A-2-09 0.2407 0.0354 0.2382 0.0328 -0.2556  -0.1656  -0.0809 | 121940 12090 323 | A
CLIP CLIP-A-3-10 0.2397 0.0361 0.2415 0.0380 -0.3149  -0.2085 -0.1083 | 122959 3346 378 | A
NUDTSNA nudt_sna-30 0.2392 0.0214 0.2417 0.0238 -0.4295 -0.3067 -0.1911 | 370851 468940 422 | A
CLIP CLIP-A-1-08 0.2366 0.0206 0.2254 0.0093 -0.0950 -0.0629 -0.0328 | 227092 178997 113 | A
PKUICST run2-32 0.2347 0.0400 0.2433 0.0487 -0.7343 -0.5183 -0.3150 | 145028 22229 751 | A
NUDTSNA nudt_sna-28 0.2344 0.0004 0.2352 0.0013 -0.0416 -0.0299 -0.0189 | 436939 583469 39 | A
PKUICST runl-31 0.2342 0.0342 0.2447 0.0447 -0.6382  -0.4500 -0.2729 | 135444 22242 655 | A
prna PRNATaskA2-35 0.2342 0.0253 0.2302 0.0213 -0.4666 -0.3317  -0.2047 | 120735 210 463 | A
Empty run 0.2339 0.0000 0.2339 0.0000 0.0000 0.0000 0.0000 - - - -
PKUICST run3-33 0.2329 0.0311 0.2343 0.0325 -0.5735 -0.4071 -0.2506 | 135116 42691 574 | A
prna PRNATaskA3-36 0.2329 0.0240 0.2290 0.0201 -0.3365 -0.2348  -0.1391 | 172796 3322 351 | A
QUT_RTS QUT_RTS-40 0.2315 0.0011 0.2306 0.0003 -0.0688 -0.0509 -0.0340 | 145162 145162 60 | A
WaterlooLin WaterlooBaseline-51 | 0.2298 0.0244 0.2315 0.0261  -0.5773  -0.4165 -0.2652 81515 74 549 | A
WaterlooClarke WaterlooBaseline-50 | 0.2289 0.0253 0.2330 0.0295 -0.6000 -0.4317 -0.2733 | 120909 8718 576 | A
HLJIT MyBaseline-18 0.2276 0.0383 0.2283 0.0390 -0.3698 -0.2576  -0.1520 | 185335 18755 391 | A
udel udelRunBM25-43 0.2205 0.0009 0.2202 0.0006 -0.0093 -0.0067 -0.0043 | 267113 267113 9| P
IRIT IritIrisSDA-22 0.2181 0.0270 0.2317 0.0406 -1.1275 -0.8161 -0.5229 | 123013 13047 1059 | A
umd_hcil UmdHcilBaseline-49 | 0.2145 0.0038 0.2114 0.0007 -0.0664 -0.0482 -0.0311 | 186006 226867 60 | A
HLJIT MyBaseline-17 0.2085 0.0246 0.2018 0.0178 -0.4070 -0.2929  -0.1854 | 96672 10044 388 | A
NUDTSNA nudt_sna-29 0.1891 0.0320 0.2261 0.0689 -1.7681 -1.2835 -0.8273 | 135997 32730 1643 | A
udel udelRunTFIDF-44 0.1885 0.0475 0.1779 0.0368 -0.5584  -0.3897  -0.2310 | 118965 1783 589 | A
udel udelRunTFIDFQ-45 | 0.1879 0.0415 0.1781 0.0317 -0.6412 -0.4536  -0.2770 | 118760 5905 648 | P
HLJIT HLJIT_LM-19 0.1752 0.0109 0.1788 0.0145 -0.3256  -0.2357  -0.1511 | 174582 56865 305 | A
ISIKol MyBaseline-24 0.1748 0.0391 0.1766 0.0409 -1.0095 -0.7246  -0.4564 | 127914 13907 981 | A
IRLAB_DA-IICT runA _daiict.irlab-23 | 0.1708 0.0440 0.1546 0.0278 -0.7448 -0.5397  -0.3467 | 176709 36152 698 | P
CCNU2016NLP CCNUNLPrunl1-06 0.1699 0.0003 0.1714 0.0018 -0.1732 -0.1290  -0.0874 | 355559 355559 146 | P
CCNU2016NLP CCNUNLPrun2-07 0.1643 0.0000 0.1643 0.0000 -0.2070 -0.1545 -0.1050 0 0 173 | P
IRIT Hamid-20 0.1224 0.0402 0.1916 0.1095 -2.5321 -1.8348 -1.1785 | 112089 75 2372 | A
udel_fang UDInfoSPP-48 0.0915 0.0594 0.1859 0.1538 -2.2833 -1.6344  -1.0237 | 137202 65971 2236 | A
udel_fang UDInfoDFP-47 0.0699 0.0574 0.2150 0.2025 -2.9761 -2.1313 -1.3361 | 130313 59284 2906 | A
udel_fang UDInfoSFP-46 0.0642 0.0517 0.1972 0.1847 -3.0633 -2.2018 -1.3909 | 124759 59085 2954 | A
BJUT BJUTmydt-05 0.0639 0.0014 0.0711 0.0086 -3.8657 -2.8813  -1.9547 | 149217 851 3250 | A
BJUT BJUTmydt-04 0.0339 0.0017 0.0408 0.0087 -4.5325 -3.3781 -2.2917 | 281845 283652 3809 | A
BJUT BJUTmyrf-03 0.0113 0.0077 0.0276 0.0240 -4.5495 -3.3763  -2.2722 | 232487 186427 3885 | A

Table 3: Evaluation of scenario A runs by NIST assessors. The columns marked “mean” and “median” show
the mean and median latency with respect to the first tweet in each cluster. The second to last column
shows the length of each run, defined as the number of notifications pushed for the interest profiles that were
assessed. The final column shows the run type: ‘A’ denotes automatic and ‘P’ manual preparation. Rows
are sorted by EG-1. The YoGosling baseline (WaterlooClarke, WaterlooBaseline-50) and the empty run are
noted.



team run [ nDCG-1 nDCG-0 [ type

COMP2016 PolyURunB3 0.2898 0.0684 | manual preparation
NUDTSNA nudt_sna 0.2708 0.0529 | automatic

QU QUJIM16 0.2621 0.0300 | automatic

QU QUJMDR24 0.2558 0.0237 | automatic
COMP2016 PolyURunB1 0.2536 0.0215 | manual preparation
COMP2016 PolyURunB2 0.2523 0.0184 | manual preparation
IRIT RunBIch 0.2481 0.0321 | automatic
WaterlooLin YoGoslingBSL 0.2352 0.0299 | automatic
PKUICST PKUICSTRunB3 0.2348 0.0151 | automatic

QU QUDRS 0.2344 0.0094 | automatic

Empty run 0.2339 0.0000

prna PRNATaskB1 0.2334 0.0352 | automatic
NUDTSNA nudt_biront 0.2306 0.0681 | automatic
WaterlooLin YoGoslingLMGTFY 0.2273 0.0327 | automatic

prna PRNATaskB2 0.2244 0.0226 | automatic

ISIKol isikol_tag 0.2213 0.0196 | automatic

IRIT AmILPWSEBM 0.2208 0.1262 | automatic

ISIKol isikol_ti 0.2189 0.0171 | automatic

udel udelRunBM25B 0.2151 0.0008 | manual preparation
udel udelRunTFIDFQB 0.1991 0.0330 | manual preparation
prna PRNATaskB3 0.1987 0.0665 | automatic
IRLAB_DA-IICT IRLAB2 0.1972 0.0169 | manual preparation
udel udelRunTFIDFB 0.1970 0.0363 | automatic
CCNU2016NLP CCNUNLPrunl 0.1732 0.0018 | manual preparation
PKUICST PKUICSTRunB2 0.1569 0.1569 | automatic
CCNU2016NLP CCNUNLPrun2 0.1554 0.0000 | manual preparation
IRLAB_DA-IICT IRLAB 0.1532 0.0711 | manual preparation
udel_fang UDInfo_TImN 0.1451 0.1416 | automatic
udel_fang UDInfo_TImNIm 0.1445 0.1410 | automatic
PKUICST PKUICSTRunB1 0.1423 0.1423 | automatic
udel_fang UDInfo TN 0.1315 0.1279 | automatic

CLIP CLIP-B-MAX 0.1244 0.0173 | automatic

BJUT bjutgbdt 0.1200 0.0914 | automatic

HLJIT HLJIT_ LM 0.1155 0.1155 | automatic

HLJIT HLJIT_LM_TIME 0.1145 0.1145 | automatic

IRIT IritIrisSDB 0.1062 0.0651 | automatic

BJUT bjutdt 0.0978 0.0978 | automatic

CLIP CLIP-B-2015 0.0718 0.0718 | automatic

HLJIT HLJIT_ LM_URL 0.0638 0.0638 | automatic

BJUT bjutrf 0.0582 0.0582 | automatic

CLIP CLIP-B-MIN 0.0312 0.0312 | automatic

Table 4: Evaluation of scenario B runs by NIST assessors.
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Figure 6:

Median Latency (hours)
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Scatterplots for various metrics vs. median latency. Each point represents a run: solid squares

denote scenario A runs; empty squares denote scenario B runs treated as if they were scenario A runs. The
solid horizontal line denotes the score of the empty run for EG-1 and nCG-1.
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Figure 7: Scatterplots for GMP (different a) vs. median latency. Each point represents a run: solid squares
denote scenario A runs; empty squares denote scenario B runs treated as if they were scenario A runs.



