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Abstract

Background: Optimal techniques for DC generation for immunotherapy in cancer are yet to be
established. Study aims were to evaluate: (i) DC activation/maturation milieu (TNF-a +/- IFN-o)
and its effects on CD8+ hTERT-specific T cell responses to class | epitopes (p540 or p865), (ii)
CD8+ hTERT-specific T cell responses elicited by vaccination with class | alone or both class | and
Il epitope (p766 and p672)-pulsed DCs, prepared without IFN-o, (iii) association between
circulating T regulatory cells (Tregs) and clinical responses.

Methods: Autologous DCs were generated from 10 patients (HLA-0201) with advanced cancer
by culturing CD 14+ blood monocytes in the presence of GM-CSF and IL-4 supplemented with
TNF-a [DCT] or TNF-a and IFN-a [DCTI]. The capacity of the DCs to induce functional CD8+
T cell responses to hTERT HLA-0201 restricted nonapeptides was assessed by MHC tetramer
binding and peptide-specific cytotoxicity. Each DC preparation (DCT or DCTI) was pulsed with
only one type of hTERT peptide (p540 or p865) and both preparations were injected into separate
lymph node draining regions every 2—3 weeks. This vaccination design enabled comparison of
efficacy between DCT and DCTI in generating hTERT peptide specific CD8+ T cells and
comparison of class | hTERT peptide (p540 or p865)-loaded DCT with or without class Il cognate
help (p766 and p672) in 6 patients. T regulatory cells were evaluated in 8 patients.
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Results: (i) DCTIs and DCTs, pulsed with hTERT peptides, were comparable (p = 0.45, t-test) in
inducing peptide-specific CD8+ T cell responses. (ii) Class Il cognate help, significantly enhanced (p
< 0.05, t-test) peptide-specific CD8+T cell responses, compared with class | pulsed DCs alone. (jii)
Clinical responders had significantly lower (p < 0.05, Mann-Whitney U test) T regs, compared with
non-responders. 4/16 patients experienced partial but transient clinical responses during
vaccination. Vaccination was well tolerated with minimal toxicity.

Conclusion: Addition of IFN-a to ex vivo monocyte-derived DCs, did not significantly enhance
peptide-specific T cell responses in vivo, compared with TNF-o. alone. Class Il cognate help
significantly augments peptide-specific T cell responses. Clinically favourable responses were seen

in patients with low levels of circulating T regs.

Introduction

Induction of an effective anti-tumour response requires
the active and integrated participation of host dendritic
cells (DCs), taking up tumour-associated antigens
(TAAgs) and generating Ag-specific T cells[1]. The transi-
tion of DCs from Ag-processing to Ag-presenting cells is
accompanied by increased expression of class I and II
major histocompatibility (MHC) proteins, CD80 and
CD86 co-stimulatory molecules and CD40 adhesion mol-
ecules. These changes enhance the ability of DCs to
present Ag to naive T lymphocytes in secondary lymphoid
compartments and, thereby, generate TAAg-specific cyto-
toxic T lymphocytes (CTLs). Activated and mature DCs
produce a range of cytokines, notably interleukin-12 (IL-
12), which stimulates CD4+ T helper 1 (Th1) cell activa-
tion and development[2]. Strategies for exploiting DCs to
induce T cell responses to tumours have used both in vivo
and ex vivo approaches in humans|1].

DC maturation and activation milieu

The generation of DCs from peripheral blood can be
achieved using a variety of maturation factors [3-8]. Puri-
fied CD14+ monocytes cultured with granulocyte macro-
phage-colony stimulating factor (GM-CSF) and IL-4 have
been used most frequently in clinical trials, to date [1,9].
Culturing blood monocytes in the presence of IL-4 and
GM-CSF is an efficient method to obtain large numbers of
DCs. However, these DCs exhibit an immature phenotype
(CD40 low/intermediate, CD86 low/intermediate and
CD1a high) [10-12]. Thus, additional factors are needed
to facilitate optimal activation and maturation of the cells
in vitro.

Tumour necrosis factor-alpha (TNF-a.) has been shown to
be a crucial inflammatory maturation factor that prevents
CD14+monocytes differentiating into macrophages and
drives them along the DC differentiation pathway[13].
TNF-a has also been recently shown to enhance survival
of ex vivo cultured DCs by inhibition of apoptosis [14].
Evidence is emerging that TNF-a matures DCs to the
CD70+ phenotype which is crucial for activating CD4+T
cells driving a Th1 response capable of augmenting CD8+

CTL responses [15-17]. TNF-q, therefore, has been used to
induce the maturation of DCs following a period of
expansion and differentiation of CD34+ or CD14+ mono-
cytes, as part of a cocktail of cytokines. Furthermore, DCs
engineered to express TNF-o maintain their maturation
status and induce more efficient anti-tumour immune
responses|[18]. Thus, TNF-a has been used in large scale
production of DCs for immunotherapy studies in humans
[19,20].

Interferon-alpha (IFN-a) is a potent immunoregulatory
cytokine, secreted early during the immune response by
monocytes/macrophages and other cells [21,22]. Type I
IFN is emerging as an important signal for differentiation
and maturation of DCs [23-27]. In the presence of GM-
CSF and IFN-a, monocytes are capable of differentiating
into IFN-DCs[28]. IFN-DCs show the phenotypical and
functional properties of partially mature DCs[28]. Such
DCs have the capacity to induce Th1 responses and to pro-
mote efficiently in vitro and in vivo the expansion of CD8+
T lymphocytes [29]. Although all these studies have invar-
iably used IFN-a and GM-CSF (without IL-4) to generate
their IFN-DCs, there are no clinical studies published, to
date, using the combination of GM-CSF, IL-4, TNF-a +
IFN-a to generate DCs for immunotherapeutic purposes.
However, the effect of IFN-a on the optimal maturation
and generation of monocyte-derived DCs with conse-
quent induction of optimal and maximal anti-tumour
CD8+ CTLs in patients with cancer, has yet to be estab-
lished. There has also been some conflicting evidence as
regards the function of IFN-a matured DCs [30,31].

Jonuleit's cocktail of TNF-q, IL-1, IL-6 and prostaglandin
E2 (PGE,) for maturing DCs, has been, until recently,
regarded as the gold standard for optimally maturing
monocyte-derived DCs [32]. However, recent studies have
shown that PGE, in this cocktail rendered monocyte-
derived DCs resistant to in vivo licensing by costimulatory
molecules, such as CD40, and failed to induce IL-12 but
produced the immune suppressive factor IL-10 [33,34].
Moreover, DCs matured with Jonuleit's cocktail have been
shown to promote the expansion of CD4+CD25+ foxp3
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high, T regulatory cells (Tregs) [35]. This was the rationale
for choosing to compare TNF-a by itself or in combina-
tion with IFN-a as a maturation and activation factor for
ex vivo monocyte-derived DCs, instead of the standard
Jonuleit's DC maturation cocktail. Our previous work in
vitro had demonstrated that monocyte-derived DCs
matured with TNF-a and IFN-o were phenotypically and
functionally superior to DCs matured with TNF-a
alone[36].

The first aim of our study, therefore, was to evaluate and
compare the efficacy of two different cytokine DC-matu-
ration and activation factors [TNF-a (DCT) vs. TNF-
o+IFN-a (DCTI)] for ex vivo generation of DCs from

CD 14+ monocytes activated with GM-CSF and IL-4. We
compared hTERT-specific CD8+T cell responses elicited in
vivo between the above two DC preparations. In our pre-
viously published work we had shown that this cytokine
combination (GM-CSF, IL-4, TNF-a + IFN-a.) was capable
of generating DCs in vitro from CD14+ monocytes
obtained from healthy individuals and patients with can-
cer[36]. These DCs were activated but relatively immature,
strongly phagocytic and induced CD8+T cell responses in
vitro. The approach we used recognized that IFN-a is a
potent cytokine inducing the maturation of DCs [26].
IFN-a, however, fails to terminally mature monocyte-
derived DCs, which is a great advantage in immuno-
therapy where antigen uptake and processing following
peptide pulsing of the DCs is required before they can be
used to vaccinate patients[37,38].

Human telomerase reverse transcriptase (hTERT)

hTERT is expressed in >85% of human tumours, and can
be regarded as a putative TAAg [39]. Two HLA-A2 binding
hTERT peptides, p540 and p865, are known to be immu-
nogenic in vitro [40]. DCs pulsed with p540 were also able
to induce tetramer positive T cell responses (detectable
after further in vitro stimulation) when injected into
patients with a variety of cancers [41,42]. In our study,
autologous DC vaccines were prepared with and without
INF-a, and each pulsed with a different hTERT peptide,
and administered simultaneously to separate lymph node
draining areas in the limbs. We evaluated our vaccination
protocols, using a previously well described design for
comparing two different DC preparations in the same
patient [43]. Peptide-specific MHC tetramer analysis was
used to track differential T cell responses to each vaccine,
allowing direct comparison of the in vivo function of both
vaccines in each patient. We adapted this study design fur-
ther to compare DCT vaccines pulsed with class I epitope
of hTERT, with or without class II epitopes. This strategy
has been used previously with melanoma-related antigen
class I peptides to compare the activity of immature and
mature DCs [43].

http://www.translational-medicine.com/content/7/1/18

The second aim of our study was to evaluate the ability of
DC preparations (DCT) pulsed with class 1T (p540 or
p865) and I1 (p766 and p672) epitopes of hTERT, to gen-
erate an enhanced hTERT-specific CD8+CTL response,
compared with using class I epitopes alone. CD4+ cognate
help generated by DCs pulsed with class II peptides has
been shown to be crucial to maintain the levels of CD8+T
cells in the circulation, through augmentation of T mem-
ory cell responses [44,45]. However, there are no pub-
lished studies on the use of class II cognate helper
peptides, with class I peptides of hTERT.

T regulatory cells

In mice, high levels of circulating Tregs are associated with
poor anti-cancer therapeutic responses [46-48]. T regs are
known to inhibit activation of CD8+ T cells and NK (nat-
ural killer) cells [49]. In humans, the reduced efficacy of
cell-mediated immunity as a result of ageing has been
attributed to concurrent enhancement of circulating Tregs
[49]. In clinical studies, reduction of circulating T regs by
chemotherapeutic agents has resulted in enhanced thera-
peutic anti-cancer responses [50,51]. However, there are
no studies published, to date, on T regs in the circulation
of patients undergoing hTERT-based immunotherapy and
no relationship has been established with clinical
responses.

The third aim of our study, therefore, was to evaluate the
levels of circulating T regs (CD4+CD25+foxp3 high phe-
notypic profile) in patients undergoing vaccination and to
establish any association with clinical responses.

In summary, we have employed a novel immunization
strategy in patients with advanced cancer by using two dif-
ferent DC maturation processes (10 patients) and two dif-
ferent DC peptide pulsing protocols (6 patients). We have
been able to document the enhanced generation of func-
tional peptide-specific CD8+ T cells, readily detectable ex
vivo without further re-stimulation in vitro. T reg levels
were also documented in vaccinees (8 patients); very low
levels were associated with partial clinical responses.
hTERT vaccination was safe and well tolerated. The results
obtained in our study are novel and have not been previ-
ously published, and are very relevant to the future devel-
opment of effective anti-cancer immunotherapy.

Materials and methods

Trial Eligibility

Ethical approval for vaccination of patients with advanced
cancer using DCs pulsed with synthetic peptides of hTERT
was obtained from the Lincolnshire Research Ethics Com-
mittee. Approval for the use of GMP grade hTERT peptides
and cytokines was obtained from the Medicines and
Healthcare Products Regulatory Agency (MHRA), UK.
Patients attending the United Lincolnshire Hospitals NHS
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Trust, with proven advanced and progressive malignant
disease, with no further effective anti-cancer therapeutic
option available, were invited to participate. HLA-0201
+ve, Hepatitis B&C -ve, HIV-ve patients were assessed for
suitability for the study. All patients had a WHO perform-
ance status of 2 or better. Women were either post-meno-
pausal or using suitable contraception. Patients were not
taking systemic steroids, nor did they have any medical
contraindication to enrolment.

Patients

Ten patients (6 with prostate cancer, 2 with malignant
melanoma, 1 with breast cancer and 1 with lung cancer)
were enrolled into the 1st phase of the study (A), which
was to compare DCT with DCTI. The 2nd phase of the
study (B) enrolled 6 patients (3 with prostate cancer, 1
with colorectal cancer, 1 renal cancer and 1 head and neck
cancer) and compared class I+II hTERT peptide-pulsed
DCTs with class I hTERT peptide-pulsed DCTs alone.

Trial Design

The trial was adapted from a previously validated protocol
by Jonuleit et al. for comparing T cell responses to vacci-
nation with mature and immature DCs[43]. It is based on
repeatedly inoculating the same lymph node draining
region with the same vaccine on each arm of the
patient[43]. In our study, each DC preparation (DCT or
DCTI) was pulsed with only one type of hTERT peptide
(p540 or p865) and both preparations were injected into
separate lymph node draining regions every 2-3 weeks.
This vaccination design enabled comparison of peptide-
specific CD8+T cell responses elicited between DCT and
DCTI vaccination protocols (phase I of the study; n = 10;
Figure 1A). A similar design was used to compare peptide-
specific CD8+T cell responses generated by DCs pulsed
with class I hTERT peptide (p540 or p865) alone or with
class II cognate help (p766 and p672, phase II of the
study; n = 6; Figure 1B). Peptides p766 and p672 are
known to be promiscuous[52]. Table 1 shows the HLA
class II profiles of the patients inoculated with p766 and
p672. This was carried out by the National Blood Service
Centre (Sheffield, UK), using the Tepnel Lifecodes
Luminex, UK, DNA analysis method.

DC Preparation

All patients had a temporary apheresis line (Bard, Craw-
ley, UK) inserted under local anaesthesia. Apheresis, using
a Kobe apheresis unit, was performed in the Stem Cell
Unit, Nottingham City Hospital. The sterile apheresis
product was transported to the Rayne Institute, King's
College Hospital, London (a registered GMP facility), for
vaccine production. The product was washed twice, in
MACS Buffer (Miltenyi Biotech). After counting, cells were
labelled with anti-CD14+ immunomagnetic beads.
CD14+ cells were purified using a paramagnetic filter
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(Clini Macs-Miltenyi Biotech)(6). The purified CD14+
cells were washed and then incubated in XVIVO-20 (Bio
Whittaker, Walkersville, USA) serum-free medium con-
taining gentamycin (100 pg/ml) at a cellular concentra-
tion of 3 x 105/ml in 150 ml culture flasks (Nunc, 175
cm?, Sigma-Aldrich, UK). Monocytes were cultured in
cytokines with purity in excess of 95% (recombinant
human IFN-o,, carrier free and 97% pure from PBL Bio-
medical Laboratories, New Jersey, USA; recombinant
human IL-4, GM-CSF and TNF-o, carrier free and 95%
pure from R&D Systems, Abingdon, UK) with prior
approval from the MHRA according to the two protocols.
The culture medium was supplemented with 1L-4 (500
IU/ml), GM-CSF (500 IU/ml) and TNF-a (110 IU/ml)
[DCT] or with (IL-4, GM-CSF, TNF-o. and IFN-o. (500 1U/
ml) [DCTI]. Cytokines and medium were replenished on
day 4. On day 7, non-adherent DCs were removed by gen-
tle rinsing, washed and then resuspended in 5 mls of
medium. DCs were pulsed with p540 or p865, 40 pg/ml
for 4 hours (h). They were then washed once before being
cryopreserved in aliquots of 1 ml of XVIVO containing
20% dimethyl-sulphoxide (DMSO, Insource, USA) at a
cellular concentration of 1 x 10° cells/ml.

Patient Vaccination

Each patient received both types of vaccine at the same
time. In every other patient, the DCTI vaccine was pulsed
with p540 and the DCT vaccine pulsed with p865. In
alternate patients, the DCTI were pulsed with p865 and
the DCT pulsed with p540 (Figure 1A). Comparisons were
made for vaccinations with or without class II cognate
helper epitopes (p766 and p672), by both cognate helper
peptides with a different class I peptide in each alternate
patient (Figure 1B). DCs were pulsed with class I (40 pg/
ml for 4 h) and class II epitopes (40 pg/ml for 4 h) or class
I epitopes of hTERT (40 pg/ml for 4 h) only. Vaccines were
transported from the Rayne Institute, London to the
County Hospital, Lincoln, in dry ice, and thawed immedi-
ately prior to administration. Intradermal vaccinations
(total 1 ml) were delivered into either the upper or lower
limb, or the groin. Each type of vaccine (2 x 106 DCs/ml)
was always administered at the same site. Patients were
vaccinated 2 or 3 weekly for 2 to 21 cycles (Mean = 7
cycles), phlebotomy being performed immediately prior
to vaccination.

Delayed Type Hypersensitivity (DTH) Responses
Erythema and/or induration of 10 mm or greater (by cal-
lipers) at 48 h following vaccination, at the inoculation
site was considered a positive DTH response.

Tetramer Analysis of Peptide Specific T Cells

Tetramer analysis was performed on patients' peripheral
blood mononuclear cells (PBMCs). Tetramers were man-
ufactured by the tetramer facility at the National Institute
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Table I: HLA class Il phenotypes: MHC class Il allele phenotyping for patients (L001-L006) who were vaccinated with p766 (DRI, 7,

15) and p672 (DR4, 11, 15) of hTERT.
Patient HLA class Il

LoOI DRBI*04, DRBI*15;DQBI1%0302/07/08/1 |, DQBI1*06
L002 DRB1*04, DRBI1*1302/31/34/36/39/41;DRB1%0302/07/08/1 1, DQBI1*06
L003 DRBI*04, DRBI*07;DQBI1*0301/09/10/13, DQB1*0303/06/12
L004 DRBI*08, DRBI1*0301/15/16/28/35/40/51/53;DQB1*04, DQB1*06
L005 DRBI*03, DRBI1*04, DQBI1*02, DQBI1*0301/09
L006 DRBI*15;DRB5*01;DQBI*06

The alleles compatible with these peptides are in bold.

HLA Class Il testing was carried out by the National Blood Service Centre, Sheffield, UK. The method for HLA testing was through DNA analysis

(Tepnel Lifecodes Luminex, UK).

of Allergy and Immunity, Emery University, USA. Tetram-
ers were conjugated to Phycoerythrin (PE) and shipped at
a concentration of 1 mg/ml and the optimum working
dilution of the tetramer was determined by serial dilution;
1/125 to 1/150 was found to be optimal. Cells were
stained with fluorescein isothiocyanate (FITC)-conju-
gated anti-CD8 (Sigma Aldrich, UK) and PE-conjugated
tetramers for 30 min at 4°C. Cells were washed twice in
phosphate buffered saline (PBS) before being fixed in
0.5% paraformaldehyde.

T2 Cytotoxicity Assays

T2 cells (TAP deficient, HLA-A2.1+) were obtained from
the American Type Culture Collection (ATCC) and main-
tained in Iscove's Modified Dulbecco's Medium supple-
mented with glutamine, and penicillin and streptomycin
(100 TU/ml and 100 pg/ml, respectively, Sigma-Aldrich,
UK). Peptide-pulsed T2 cells (10,000), pre-labelled with
PKH26 (Sigma-Aldrich, UK), were incubated with mono-
nuclear cells at an effector to target cell ratio of 10:1 for 4
h, in 100 pl of tissue culture medium (TCM). The latter
consisted of RPMI 1640 medium (Sigma-Aldrich, UK.),
containing penicillin and streptomycin (100 IU/ml and
100 pg/ml, respectively; Sigma-Aldrich, UK) and 10%
heat-inactivated (56°C for 1 hr) foetal calf serum (FCS)
(Sigma-Aldrich, UK). Following incubation, cells were
stained with Annexin-V FITC (BD Pharmingen, UK) and
ToPro3 (Molecular Probes, UK) to demonstrate apoptosis
and cell necrosis, respectively[53]. Cells were analysed in
a flow cytometer. Gating of dot plots on PHK26+ cells
allowed separation of target and effector populations.
Cytotoxicity assays were done in triplicates, with T2 cells
either peptide-pulsed or not.

SCC-4 Cytotoxicity Assays

Cytotoxicity assays were carried out using a MHC pep-
tide+ (hTERT naturally expressed) cell line SCC-4 (squa-
mous cell carcinoma-4) and incubating with naive patient
PBMCs (n = 7) stimulated with DCTI and DCT in the pres-
ence of the 2 peptides p540 and p865, separately, follow-
ing 3 cycles of in vitro stimulation. The results are

included as supplementary data (SCC-4 cytotoxicity
assay). Radiated DCTIs and DCTs (10,000 cells) pulsed
with p540 or p865, when used to re-stimulate (x 3 times,
weekly) naive patient PBMCs (100,000 cells) were able to
generate cells capable of lysing SCC-4 cells. The cytotoxic-
ity was assessed after incubating 10,000 SCC-4 cells
(PKH26 prelabelled) with 100,000 PBMCs and incubated
for 4 h. Cells were stained with FITC-conjugated Annexin
V and ToPro3 (Sigma Aldrich, UK) and cells that were
PKH26+, annexin high and ToPro3 high were regarded as
dead. The SCC-4 cells were a gift from Prof Theresa L
Whiteside, University of Pittsburgh Cancer Centre.

Immunofluorescent Staining and Flow Cytometry

Expression of mononuclear phenotypic cell surface mark-
ers was assessed using FITC-conjugated Lineage cocktail
antibodies (CD3, CD14, CD16, CD19, CD20 and CD56;
Becton Dickinson Systems, Oxford, UK.), PE-conjugated
anti-HLA-DR and CD40, and allo-phyco-cyanin (APC)-
conjugated anti-HLA-DR (Pharmingen, UK), Phycoeryth-
rin cyanin-5 (PE-Cy5) conjugated anti-CD83 (Sigma-
Aldrich, UK) and PE-Texas red (ECD) conjugated anti-
CD86 (Beckman Coulter, UK). The EPICS ALTRA flow
cytometer equipped with blue, red, and violet lasers
(Beckman Coulter, UK.) was used in the analysis.

hTERT Peptides

For vaccinations studies, GMP grade hTERT peptides
(540ILAKFLHWL548, 865RLVDDFLLV873,766I11
LTDLQPYMRQFVAHL and 67211 RPGLLGASVLGLDDI,
Bachem®, Germany) were used. Prior to use, peptides were
dissolved in DMSO (Insource, USA). DCs were pulsed
with peptides for 4 h at a concentration of 40 pg/ml.

T regulatory Cell (Treg) Analysis

PBMCs at each vaccination time point for N009, NO10,
L001, L002, LO03, L004, LO05 and LOOG were stained for
T reg surface staining with CD4-ECD and CD25-PE
(Sigma-Aldrich, UK) was followed by intracellular stain-
ing with foxp3-Alexa4 (Pharmingen, UK) by a well estab-
lished protocol[54]. Lymphocyte region and CD4+ high/
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side scatter low region were gated onto CD25 and foxp3,
double positive quadrant (Figure 10). Total events
acquired were 200,000.

Statistical Methods

Data from groups were analysed using the student t-test
for parametric variables. Non-parametric variables were
compared using the Mann-Whitney-U test and Wilcoxon
sign rank test, and were considered significant if p < 0.05.
Statistical tests were performed using SPSS version 16.0
for Mac.

Results

Dendritic Cell Phenotype

The phenotypic profiles of the precursor monocyte popu-
lation is illustrated in Figure 2A. Figure 2B summarises the
phenotypic profiles of DCs generated ex vivo by different
processes. DCT and DCTI contained CD14+ cells at sub-
stantially lower levels (<5%) than the starting monocyte
population. There was upregulation of CD80, CD 86,
CD83, CD40, class I and class II with both the DCT and
DCTI preparations, when compared with the starting
monocyte precursor population. CD40 was not signifi-
cantly enhanced in either DCT or DCTI with added
cytokines, albeit both preparations had substantially
increased CD86+ DCs. CD83 expression (a marker of ter-
minally differentiated mature DCs) was less than 10% in
the majority (70%) of preparations, even with DCTL
CD80, CD86, CD83, CD40, class I and II did not show
statistically significant higher level of expression in DCTI,
compared with DCT preparations.

In Vivo Peptide Specific CD8+ T Cell Responses (Class |
Peptides)

Tetramer analysis was performed on PBMCs taken from
10 patients with advanced cancer who had been vacci-
nated on 2 to 8 occasions (Mean = 4) with DCT and DCTI
pulsed with hTERT peptides. Figure 3A and 3B show the
time course and flow cytometry plots for a patient (N001)
who developed the peak tetramer response to vaccination.
Flow cytometry plots are shown for both DC preparations
prior to, and after two courses of vaccination. In this par-
ticular patient with advanced breast cancer, p865 (DCTI)
produced a substantial generation of tetramer+, CD8+, T
cells. In fact, the responses generated to the two DC prep-
arations were atypical only in this particular patient. The
remaining patients showed the pattern of responses docu-
mented in 3C and 3D. Figure 3C and 3D are from a repre-
sentative patient (NO010) and show the comparable
magnitude of tetramer responses, elicited in all patients
(except N0OO1), to vaccination with DCT and DCTI. The
characteristic time course pattern of tetramer+ CD8+ T cell
responses was a peak observed after 2-3 courses of vacci-
nation, followed by a gradual tapering of the response to
base line levels. Whether this represents failure to mount

http://www.translational-medicine.com/content/7/1/18

a continuing optimal response or selective entry of CD8+
T cells into the tumour milieu is unclear. There was no
tetramer binding to CD8+ T cells using tetramers made
with an irrelevant peptide (MAGE-3), which was used as a
negative control. Figure 4 shows the mean +/- SD tetramer
responses elicited in all of the 10 patients studied. The pat-
tern of response to either class I hTERT peptide was com-
parable. Both DCT and DCTI vaccines generated
equivalent peptide-specific, tetramer+, CD8+ T cell
responses (Figure 4). Tetramer+CD8+ responses gener-
ated against each class I peptide are shown in Figure 5,
though this was not the primary objective of this study.
hTERT p865 pulsed-DCs regardless of DC activation pro-
tocol (DCT or DCTTI) appeared to generate better tetramer
responses in vivo, compared with p540-pulsed DCs. How-
ever, this was only of borderline significance (p = 0.06).

In Vivo Peptide-Specific CD8+ T Cell Responses (Class |
and Il Peptides)

Tetramer+ CD8+, T cell responses to hTERT class I epitope
peptide, linked with class II cognate help pulsed DCTs,
showed a strong tendency for enhancement, with signifi-
cant differences in 4 out of 6 post-vaccination time points,
in comparison with the use of class I peptide-pulsed DCTs
alone, as illustrated in Figure 6. Figure 7 demonstrates the
enhanced generation of tetramer+ CD8+ hTERT peptide-
specific T cell responses with class II cognate helper pep-
tides. This was seen irrespective of the class I peptide
(p540 vs. p865) used in the vaccination and in all the 6
individual patients studied. There was a 1.5 to 7 (mean
2.9) fold increase of tetramer+, CD8+ T cells with hTERT
class I peptides alone, when compared with CD8+T cell
responses to an irrelevant peptide (MAGE-3). This
response showed a 4.5 to 11 (mean 7) fold increase with
class I and II peptides. Figure 8 shows a representative
flow cytometric profile of plots of tetramer+CD8+ T cell
responses in patient L003, elicited from vaccinating with
a class I epitope alone compared with class I+II epitopes.
Table 1 shows that both class II epitopes of hTERT (p766
and p672) used in the study were promiscuous.

Ex Vivo Cytotoxicity of In Vivo Generated T Cells
T2-cytotoxicity

Cumulative cytotoxicity results for all patient samples
show that after two cycles of vaccination (the time point
associated with the maximal tetramer + CD8+ response,
in patients undergoing vaccination with class I peptides
only),, in vitro cytotoxicity against both peptides was
markedly increased, when compared with baseline levels
prior to vaccination. Figure 9A shows the cumulative cyto-
toxicity of PBMCs from patients against the T2 cell line
(TAP deficient) before and following 2 cycles of vaccina-
tion, comparing DCT and DCTI, for patients (N0O1-
NO010). Figure 9C shows the cumulative cytotoxicity of
PBMCs from patients against the T2 cell line (TAP defi-
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Figure 2

A. Phenotypic profiles of DC precursor CD |4+ monocytes. lllustrating the absence of DC markers on this monocyte
population. B. DC phenotypic profiles: Expression of DC phenotypic surface markers of DCT compared with DCTI prepara-
tions (n = 10); see materials and methods for details regarding DC culture conditions. Statistical analysis did not reveal any sta-
tistically significant difference between phenotypic markers for DCT and DCTI.
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Tetramer PE

A. Maximal tetramer response (DCT vs DCTI). Time course of tetramer response to vaccination in a patient (N0OI)
who generated the highest level of tetramer+CD8+T cells after 2 courses (V2), compared with baseline (V0). B. Flowcytome-
try of peak tetramer response: Tetramer flowcytometry plots for NOOI at VO and V2, 150,000 events were acquired and ana-
lysed. C. Representative tetramer response (DCT vs DCTI): Time course of tetramer responses to vaccination in a
representative patient (NO10) who generated equivalent tetramer+CD8+T cell responses to DCT and DCTI. D. Flowcytome-
try of representative tetramer response: Tetramer flowcytometry plots for NO10 at VO, VI and V2. MAGE-3 was used as the

control, non-TAAg; 150,000 events were acquired and analysed.

cient) comparing unpulsed, pre-vaccination and follow-
ing 2 cycles of vaccination (for patients LO01-L006).
Similarly, significant enhancement of hTERT-specific
cytotoxicity was observed following 2 courses of vaccina-
tion in LO01-L006. Vaccination of all our patients suc-
cessfully generated not only enhanced tetramer+ CD8+
positive T cells, but also functionally active cytotoxic T

cells, capable of destroying targets in a hTERT HLA*A201
class I specific manner.

SCC-4 cytotoxicity

SCC-4 cytotoxicity was significantly enhanced (p < 0.001)
when peptide loaded DCTs and DCTIs were used to res-
timulate naive patient PBMCs (N001-N010) compared
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Tetramer+ CD8+ T cell responses (mean +/- SD) to only class | hTERT pulsed DCs. Vaccinations with DCT and
DCTl in 10 patients. Both vaccines (DCT and DCTI) were equivalent in eliciting CD8+T cell responses and there were no sta-
tistically significant differences between DCT and DCTI at any vaccination time point (NS-not significant, p = 0.45, t-test).
CD8+T cell tetramer+ response to an irrelevant HLA*A201 MAGE antigen, not used in the vaccination, was measured as a

negative control; 150,000 events were acquired and analysed.

with no peptide, as illustrated in Figure 9B. This was a sur-
rogate measure of in vitro cytotoxicity against naturally
processed peptides of hTERT, as SCC-4 is known to inher-
ently express hTERT peptides on its surface.

T Regulatory Cell Responses

T regulatory cell responses were documented and tracked
in a total of 8 patients (there being insufficient samples
for the remaining patients). A flow cytometry plot of
Tregs, representative of that observed in patients experi-
encing progression of disease, is illustrated in Figure 10. In
the 8 patients where Tregs were monitored, it was interest-
ing to note that all patients who experienced disease
regression (responders) had a mean circulating T reg level
of < 0.5% throughout vaccination (Figure 11), compared
with those who had disease progression (non-respond-

ers), in which a progressive increase of Tregs was observed
during the course of the study.

Delayed Type Hypersensitivity (DTH) Responses

Five out of 10 patients (50%) in the DCT vs. DCTI group
developed DTH responses at the inoculation sites. The
average DTH response in this group was 2.2 cm and con-
sisted of erythema or induration whichever was the great-
est. All patients (100%) developed DTH responses in the
hTERT class I+11 vs. class I peptide-pulsed DCs group (Fig-
ure 12). The average DTH response was 2.83 c¢m in this
group of patients. There was no obvious correlation
between DTH responses elicited and the clinical responses
documented. All the 4 patients (prostate cancer) who
demonstrated a partial response had a DTH response > 20
mm (Figure 12)
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Box plot comparing tetramer responses to class | hTERT peptide. Class | peptides of hTERT (p540 and p865) were
compared for the efficacy of the tetramer response. hTERT-p865 generated a higher tetramer response compared with
hTERT-p540, though this was not statistically significant (p = 0.06. Wilcoxon signed rank test). Values are represented as

median(bar), interquartile range (box) and range (whiskers).

Clinical Responses

Four out of a total of 16 vaccinated patients experienced
favourable clinical responses; 4 prostate cancer patients
had partial disease resolution, as assessed by serial moni-
toring of circulating PSA >10% (Table 2). However, all
patients experienced disease progression upon discontin-
uation of immunotherapy. Circulating prostate specific
antigen (PSA) levels were reduced twice in 2 patients and
once in the other 2 patients with advanced prostate cancer
during vaccination. The fall in PSA was at least 1.5% and
upto 56%. The average fall in PSA was 19% (Table 2). Dis-
ease stabilization occurred in a patient with colorectal
cancer who was inoperable due to loco-regional invasion
of the left kidney and adjoining tissues by the tumour.
None of the patients received any concurrent therapy dur-
ing vaccination. All the favourable responders did not
have altered renal function or serum albumin levels dur-
ing the vaccination course, to account for the changes in
PSA.

Toxicity

The vaccination was well tolerated by all patients who
experienced only grade I toxicity (NCI grade), consisting
of flu-like symptoms and fever related to the vaccination
itself. However, two patients had jugular vein complica-
tions (1 thrombosis, 1 sepsis) related to apheresis line
insertion, which required hospitalization. One of these 2
patients died from septic complications, as a result of the
of apheresis line insertion.

Discussion

Vaccination of cancer patients using autologous DCs,
pulsed ex vivo with peptides/tumour lysates, is a promis-
ing strategy, being investigated to treat patients with
advanced disease and no further effective therapeutic
options available. The best approach has not, as yet, been
identified [9]. The current study design was based on a
dual vaccination protocol originally used to enable com-
parisons to be made of the efficacy of activated and imma-
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Tetramer+ CD8+T cell responses (mean +/- SD) to class | £ Il hTERT pulsed DCs. Vaccinations with DCTs pulsed
with class | hTERT epitope alone compared with or without class Il epitopes in 6 patients. DCTs pulsed with class I+l epitopes
showed a strong tendency to enhance tetramer+CD8+T cell responses which were significant (p < 0.05, t-test) at specific vac-
cination time points V2, V3, V4 and V6 (ie 4 out of the 6 post-vaccination time points). CD8+T cell tetramer+ response to an
irrelevant HLA*A201 MAGE antigen, not used in the vaccination, was measured as a negative control; 150,000 events were

acquired and analysed.

ture DCs, using melanoma specific peptide epitopes [43].
The use of hTERT peptides allowed this approach to be
used with a wide range of tumour types, as hTERT pep-
tides are expressed on >85% of cancers [55-57].

The optimal stage of DC activation and maturation for
generating tumour vaccines is dependent on various com-
ponents of the vaccination strategy being employed. An
effective vaccine requires the capacity to process and
present TAAgs, potency in stimulating T cell responses,
stability of the phenotype following in vivo administra-
tion, the ability to migrate to sites of T cell activation and
generation of CTLs. Activated and mature DCs results in
antigen-specific immunity, while fully immature and
inactivated DCs can induce inhibition of the immune

response and the generation of tolerance to TAAgs. In con-
trast, partially mature but activated DCs are optimal for
antigen-loading strategies that require internalization and
cell processing. CD83 expression, generally, is regarded as
a marker of terminally mature DCs. Some studies [58,59]
have suggested that antigen loading of relatively imma-
ture DCs is superior to antigen loading of terminally
mature DCs, as measured by the ability of the DCs to stim-
ulate T cell responses in vitro. A recent study, however, has
documented contradictory findings[60]. There is, as yet,
no general consensus, on this issue and published evi-
dence supports both strategies, using fully or partially
mature DCs. We chose to peptide-pulse our DCs on day 7,
at the end of the culture period, when the DCs were acti-
vated but partially mature. Our assessment of the pub-
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A, B, C and D. Post-vaccination tetramer analysis with DCT pulsed with class | + class || h-TERT. tetramer+ CD8+T cell
responses (mean +/- SD) to DCTs pulsed with class | hTERT epitope alone compared with or without class Il epitopes from
patients LOO1-L004; E and F. Responses were higher and statistically significant (p < 0.05) in patients LOOI, L002, L003 and
LO04; Responses were higher with class Il epitopes but not significant (NS) statistically in patients LO0O5 and L006 (p = 0.089 and
p = 0.109) when analysed using the independent t-test. Each histogram represents either baseline (V0) tetramer response or
mean (SD) tetramer responses assessed over multiple time points as indicated in the parethesis (VI-Vx; Vx being the last vac-
cination time point). CD8+T cell tetramer+ response to an irrelevant HLA*A20| MAGE antigen, not used in the vaccination,

was measured as a negative control; 150,000 events were acquired and analysed.

lished evidence that both antigen capture and processing
pathways are downregulated in terminally mature DCs
and, therefore, peptide pulsing of partially mature DCs
was the preferred strategy to use.

Our previous work [36] in breast cancer patients has
clearly demonstrated that such DCTs and DCTIs have an
optimal antigen uptake capacity and upregulation of
CD86, CD40 and class I, but low levels of CD83, as is
expected of non-terminally mature DCs. The phenotypic
profile of the DCTs and DCTIs generated from monocytes
obtained from cancer patients in the present study show
similar changes, except for low expression of CD40. As the
method of DC generation and phenotypic analysis were
similar in these two studies, it is possible that the only dif-
fering variables, namely disease profile and tumour load
(operable breast cancer in the earlier study [36] and
advanced cancers of differing pathological types in the
current study) of these two patient groups, was responsi-
ble for the different CD40 expressions observed.

The persistence of antigen presentation by the ex vivo-
loaded DC is a critical parameter determining DC immu-
nogenicity. It takes at least several hours for the injected
DCs to reach the lymph nodes and, even then, continued
presentation of antigen is necessary for inducing an effec-
tive anti-tumour response|[61,62]. Since turnover of pep-
tide-MHC complexes is slowed (albeit not abolished
upon full DC maturation) especially for peptide-MHC
class I complexes, the density of peptide-MHC complexes
can be substantially reduced before the ex vivo antigen-
loaded DCs reach the regional lymph node[63]. Several
studies have demonstrated a correlation between antigen
persistence in the DC and magnitude of the immune
response elicited by vaccination [64-66]. This was another
reason to use activated but partially mature DCs in our
study.

The first aim of our study, therefore, was to compare
(using the dual vaccination protocol) specific cytokine
combinations (TNF-a +/- IFN-a) to generate activated and
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Figure 8

Representative flowcytometry plots (class | X 1l pulsed DCT). Tetramer+CD8+T cell responses (in patient L003) elic-
ited from vaccinating with the class | (p865) epitope alone compared with the class | (p540)+ class |l epitopes (p766 and p672),
through vaccination time points V0-V4 (VO: baseline, V4: following 4th vaccination). The arrow highlights the enhanced
response at V4 compared with V0. CD8+T cell tetramer+ response to an irrelevant HLA*A201 MAGE antigen, not used in the
vaccination, was measured as a negative control; 150,000 events were acquired and analysed.

functional DCs from circulating CD14+ monocyte precur-
sors in patients with advanced cancer. The intention was
to optimize anti-tumour, peptide-specific CD8+ T cell
responses on vaccination in vivo and study their effects on
CD8+ hTERT-specific T cell responses to class I epitopes
(p540 or p865) of hTERT. In the study reported here,
autologous DCTs and DCTIs were produced and pulsed
with different hTERT class I-restricted peptides, regarded
as putative TAAgs. A few studies have concluded that
hTERT p540 is not expressed or is cryptic on the surface of
tumour cells and that immunization of cancer patients
with hTERT p540 leads to the production of T cells that do
not recognize tumour cells in vivo based on this epitope
[67-69).

In contrast to these studies, the ability of our vaccination
strategy to generate tetramer+ CD8+T cells specific to
p540 of hTERT highlights its possible usefulness as a
tumour target. Comparable supporting evidence has been
demonstrated by others [70,71]. We observed that the
generation of tetramer+ CD8+T cells to hTERT p540
tended to be less efficient compared with hTERT p865.
However, in the in vitro cytotoxicity assays, both T cells
generated by both peptides were equivalent in lysing SCC-
4 cells (expressing MHC class I and hTERT).

Tetramer analysis allowed careful documentation and
tracking of peptide-specific CD8+ T cells produced as a
result of the in vivo immunizing activity of each type of DC

Page 14 of 23

(page number not for citation purposes)



Journal of Translational Medicine 2009, 7:18 http://www.translational-medicine.com/content/7/1/18

"1 DCT . DCTI
g % . g 25
g g |
2 20
& 5 ==,
E1s —_—x 21
g 10 J X ‘%L 10 e X
2 3
Es gs
# L L # S
Pre-vaccination(V0) Post-vaccination (V2) A Pro-vaccination(V0) Post-vaccination (V2)

2 Pulsed T2+PBMC
(post-vaccination, V2)

|

Pulsed T2+PBMC X
(pre-vaccination, V0)

r
v
|

e
o
1

-
@
!

107 Unpulsed T2+PBMC X

(pre- vaccination, V0)

5

\ ==

% Peptide Specific Cytotoxicity

B
[ No Peptide Hp540 p865
40
—— p<0.001 p<0.001

<
b p<0.001 p<0.001
Q
7]
b
2
x
B 2
=)
Q
ES
c
3 10
=

0

DCTI stimulated PBMCs DCT stimulated PBMCs
C

Figure 9 (see legend on next page)

Page 15 of 23

(page number not for citation purposes)



Journal of Translational Medicine 2009, 7:18

http://www.translational-medicine.com/content/7/1/18

Figure 9 (see previous page)

A. Cytotoxicity against peptide-pulsed T2 cells before and after 2 cycles of vaccination (N00I-NO10, phase I).
Enhanced cytotoxicity before and after 2 cycles of vaccination with peptide-labelled T2 cells. Graph on the left shows cytotox-
icity of PBMCs generated using DCT vaccine, that on the right shows cytotoxicity of PBMCs generated using DCTI vaccine;
10,000 PKH-labelled T2 events were acquired and analysed. Statistically significant cytotoxicity was observed following 2 vacci-
nations compared with baseline (X: p = 0.04, Wilcoxon signed rank test). Values are represented as median (bar), interquartile
range (box) and range (whiskers). B. Cytotoxicity against peptide-pulsed T2 cells before and after 2 cycles of vaccination
(LOOI-LO006, phase II): Cumulative cytotoxicity (mean, SD) before and after 2 cycles of vaccination with peptide labelled T2
cells at an effector to target cell ratio of 10:1. Unlabelled T2 cells were used as a negative control; 10,000 PKH-labelled T2
events were acquired and analysed. Statistically significant cytotoxicity was observed following 2 vaccinations compared with
baseline (X: p = 0.028, Wilcoxon signed rank test). Values are represented as median (bar), interquartile range (box) and range
(whiskers).C. SCC-4 targeted ex vivocytotoxicity of PBMCs (N0O0I-NO0O07, phase I): Cumulative cytotoxicity of T cells generated
by 3 re-stimulations of naive patient PBMCs in vitro by DCT & DCTI with p540, p865 or no peptide; 10,000 SCC-4 cells were
incubated with 100,000 PBMC:s for this assay. 10,000 PKH+SCC-4 events were acquired and analysed. Results are represented
as mean (SD). Statistically significant SCC-4 cytotoxicity was observed with DCT and DCT] re-stimulated PBMCs compared
with PBMCs restimulated without the class | peptides (X: p < 0.001, t-test), thus showing evidence of cytotoxicity against natu-

rally processed hTERT peptides of SCC-4.

following vaccination. The clinical and laboratory data
presented also shows that both peptides are immunogenic
in vivo in patients who possess a large tumour load and
who probably are immunosuppressed. The tetramer+
CD8+T cells, generated by our vaccination programme,
also were functionally effective in killing in vitro anti-can-
cer targets in an hTERT-specific, HLA-A201 restricted man-
ner.

Monocyte-derived DCs, matured with IFN-a and pulsed
with viral peptides (HIV, EBV) are found to be very effec-
tive in inducing virus-specific T cell responses [29,72]. An
in vitro study maturing monocyte-derived DCs using IFN-
o has demonstrated cross-talk between DCs and NK cells
with TNF-a mediating this intercellular communication,
thereby, inducing a superior CD8+ T cell response in vitro
[73]. These results are at variance with earlier studies in
which DCs expressed high levels of CD83, when grown in
the presence of TNF-a. [74]. In all these studies the proto-
cols used to generate IFN-DCs did not utilize IL-4. Gener-
ating DCs from CD14+monocytes using GM-CSF, IL-4
and maturing them with TNF-a + IFN-o. (DCT and DCTI)
is a novel strategy which was based on our previous work
using monocytes from patients with operable breast can-
cer [36]. DCTIs are superior in phenotype and function
compared with DCTs, as shown in a previously published
in vitro study [36]. In contrast, in our present in vivo study,
both DCTs and DCTIs were comparable in inducing pep-
tide-specific T cell responses, following vaccination. The
cohort of patients in the previous study had early operable
breast cancer, whereas the current study included patients
with advanced malignancies, with differing pathological
types and who had failed to respond to a range of anti-
cancer treatments. The differences seen may partly reflect
tumour-specific efficacy of the immune response, with
DCTIs being superior in early breast cancer patients[36].

Alternately, these differences illustrate the fact that in vitro
observations pertaining to the efficacy of cancer immuno-
therapy do not always mirror in vivo anti-cancer responses.

We documented low levels of hTERT-specific CD8+T cells
(higher than MAGE-specific CD8+T cells) in the circula-
tion prior to vaccination in most patients. This finding is
in concordance with that published by Filaci et al. (2006),
who demonstrated the presence of low numbers of
hTERT-specific CD8+T cells in the circulation of cancer
patients[75]. However, enhancement of hTERT-specific
CD8+ T cells in the circulation, following vaccination in
our study were substantially greater than previously docu-
mented in the literature, using class  hTERT peptides [42].
Vonderheide et al (2004) did not employ a maturation
stimulus in the preparation of the autologous DCs used in
their studies[42]. Further, in vitro stimulation of lym-
phocytes was required in a related study to achieve the
level of tetramer+ T cells observed ex vivo in our study [76].
By contrast, we were able to detect them in the circulation
of our vaccinated patients without requiring any ex vivo
culture and expansion of T cell subsets.

Our second aim, was to compare and contrast (using the
dual vaccination protocol) the ability of the DC prepara-
tion (DCT) pulsed with class 1 (p540 or p865) and II
(p766 and p672) epitopes of hTERT, to generate an
enhanced hTERT-specific CD8+T cell response compared
with class I epitopes alone on DCs (DCT). The role of
CD4+ T cell help in generating and sustaining CD8+T cell
responses has long been emphasized and a consensus is
emerging that CD4+ T cell help may be particularly
important for the proper establishment of CD8+ memory
T cells, but may not be essential for generating primary
CD8+ CTL responses|77]. Earlier studies suggest that cog-
nate CD4+ T cell help is a prerequisite for optimal activa-
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Figure 10

Fox-p3

Representative flowcytometry plots of CD4+CD25+foxp3 high (T regs). T regs from patient LOOI, tracked through
vaccination. Data shown are for baseline and just prior to the 4th and 6t vaccinations; 200,000 events were acquired and ana-

lysed.

tion of CD8+ CTLs for the generation of memory cells
[44,45]. In animal models, help was particularly impor-
tant for the development and function of low avidity
CD8+ memory T cells[78,79]. Thus, we hypothesised that
concurrent use of CD4+ class II peptides would prolong
the T cell response to vaccination, and improve any CIL
function generated. Class II peptides from hTERT with
promiscuous binding to human HLA-DR have been
described. We used a combination of 2 peptides (p672
and p766) which are presented by HLA-DR1, 4, 7, 11 and
15, and are naturally processed from hTERT expressing
tumour cells[52]. These haplotypes were present on the
peptide-pulsed DCs of our vaccinees in phase II (Table 1).
The use of hTERT class Il p766 and p672 epitopes, in com-
bination with class I p540 or p865 peptides, to optimize
the vaccination protocol has not been previously pub-

lished. The use of class II peptides derived from the TAAg
(rather than exogenous helper antigen such as keyhole
limpet haemocyanin) opened the possibility of CD4+ T
cell-induced anti-tumour effects, which have been dem-
onstrated in murine model systems with class II negative
tumour cells [80,81]. Cognate CD4+ T cell help appeared
to significantly augment the CD8+ anti-tumour immune
response in all patients vaccinated with class I+II hTERT
peptide-pulsed DCs, which may explain the 2/6 (33%)
clinical responders (2 transient tumour regressions) in
this group, as compared with only 2 clinical responders
(20%, both transient tumour regressions) in the 10
patients vaccinated without class II cognate helper
epitopes. Tetramer+ CD8+ T cells generated by vaccina-
tion with class I peptide-pulsed DCTs and class I+II pep-
tide-pulsed DCTs, were functionally efficient in killing
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T regulatory cells from 8 vaccinated patients. Four patients experienced partial disease resolution (responders); four
had stable or progressive disease during vaccination (non-responders). NO09 and NO |0 were vaccinated with only class | pep-
tide pulsed DCs, whilst LOOI-L006 were vaccinated with both class | and Il peptide-pulsed DCs. Lymphocytes were gated on
CD4+ high/side scatter low region which in turn was gated onto CD25 and foxp3, double positive quadrant. Total events
acquired were 200,000. Values are represented as median (bar), box (interquartile range) and whiskers (range). The patient
with the lowest median T reg value (N009, non-responder) was compared with the T reg values of all the responders and was
found to be significantly higher (p < 0.05) using the Mann Whitney-U test. Values are represented as median (IQR) for the
duration of the course for each patient. The number of vaccinations varied from 4-21. T reg values were measured at each

vaccination time point.

peptide-pulsed T2 targets. To the best of our knowledge,
this is the first such finding from vaccination of cancer
patients using DCs pulsed with these combinations of
class I and II peptides of hTERT.

The study was carefully designed to compare immune
responses within individual patients, rather than patient
groups. Maintaining the levels of TAAg-specific CD8+ T
cells in the circulation is the summation of the capacity to

generate them and their possible loss (apoptosis and/or
migration into the tumour milieu). Enhanced levels of cir-
culating TAAg-specific CTLs does not always correlate with
favourable clinical responses in immunotherapy; there
appears to be good evidence to the contrary [82]. How-
ever, disparity between the numbers of TAAg specific
CD8+T cells in metastatic tumours in lymph nodes and in
the circulation is well documented [83,84]. The absence
of TAAg-specific T cells in the circulation suggests that
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Patient Age Sex Primary Metastasis Histology

Cancer

N0O1 53 F Breast Ribs Adenocarcinoma (+)

N002 70 M Lung Femur Non-small cell ca (++)

NO03 68 M Prostate Vertebrae Adenocarcinoma (+)

NO04 72 M Prostate Vertebrae Adenocarcinoma (++)

NO05 74 M Prostate Pelvic hone Adenocarcinoma (+++)

N006 61 F Skin Lung Malignant melanoma (++)

N0OO7 76 M Prostate Vertebrae Adenocarcinoma (++)

NO08 79 M Skin Humerus Malignant melanoma (++)

NO09 64 M Prostate Vertebrae Adenocarcinoma (++)

NO10 81 M Prostate Vertebrae/ Adenocarcinoma (++)

femur

L001 52 F QOro- Lung Adenoidcystic carcinoma (+)
pharynx

L002 73 M Recto- Renal Adenocarcinoma (+)
sigmoid

L003 82 M Prostate Humerus Adenocarcinoma (++)

L004 69 M Kidney Lungs/clavicle Adenocarcinoma (++)

LO05 68 M Prostate Chest wall Adenocarcinoma (++)

L006 62 M Prostate Pelvic bone Adenocarcinoma (+)

Study Number Tumour Clinical Peak DTH
phase of Volume Response  %Tetramer+ (mm)
(AorB) Vaccines Assessment CD8+ T cells
(x fold rise
from baseline)
A 5 Callipers PD 5.02 (x500) Nil
A 2 X-ray PD 0.13(x130) Nil
A 4 PSA PD 3.37(x168) Nil
A 8 PSA PR 1.5(x131) 25
14.28%
A 4 PSA PD 2.55(x128) 30
A 3 Callipers PD 0.07(x3.5) Nil
A 4 PSA PD 1.04(x26) Nil
A 4 Callipers PD 0.16(x5) 20
A 4 PSA PD 0.96(x46) 15
A 6 PSA PR 1.34 20
1.37
56.47% (x6)
24.20%
B 21 MRI PD 0.13(x6) 45
B 15 CEA PD 0.43(x9) 15
B 10 PSA PR 0.51(x11) 35
11.2%
B 6 X-ray PD 0.42(=4) 25
B 6 PSA PR 0.31 30
7.7% 0.39
1.5% (x500)
B 3 PSA PD 0.19(x4) 20

+ well differentiated; ++ moderately differentiated; +++ poorly differentiated

A: DCT and DCTI vaccines pulsed with different class | epitopes of nTERT
B: DCT vaccines pulsed with class 1+/-class Il epitopes of h\TERT

X-ray: Plain radiograph; MRI: Magnetic Resonance Imaging

DTH: Delayed type hypersensitivity response (in mm)

PD:

Figure 12

PSA: Prostate Specific Antigen
CEA: Carcinoembryonic antigen

Progression of disease; PR: Partial resolution of disease (percentage resolution on one or two separate occasions)

Clinico-pathological summary. Relevant clinical and pathological data for all patients who underwent vaccination with

hTERT-pulsed DCs.

homing of the tumour-specific T cell populations to
tumour sites contributes to the effectiveness of the anti-
tumour immunity generated [85]. Unfortunately, due to
the limited availability of tumour samples and ethical
considerations for invasive biopsies in advanced meta-
static disease, we were unable to demonstrate tumour
infiltration by hTERT-specific CD8+T cells in regional
draining lymph nodes and in metastatic tumour deposits.
Nevertheless, the trend observed (low levels of tetramer+
CD8+T cells in the circulation of patients experiencing a
partial tumour regression) favours the postulate of

tumour infiltration. The possible correlation between low
levels of tetramer+CD8+Tcells in the periphery and clini-
cal response as suggested by our observations (Figure 12),
requires further investigation.

Moreover, the reductions of PSA levels in the circulation
(surrogate marker of anti-cancer responses) observed in 4
of the 16 vaccinated patients with advanced prostatic can-
cer, who were not receiving any form of curative therapy,
is worth noting. Two of our patients with prostate cancer
(NO10 and LOO5 in Figure 12) demonstrated PSA reduc-

Table 2: PSA values: Baseline and reduction of blood PSA levels for patients who showed partial clinical responses following

vaccination with the vaccination time point.

Patient PSA Vaccination PSA Vaccination Percentage reduction
baseline time point (V) Post-response time point (V)
levels (ug/l)
(ng/L)
NO004 2320 N 2030 1 14.28%
NOIO0 2798 \1 1218 V2 56.47%
NoIlo 3218 V3 2439 V4 24.20%
Lo03 232 v7 206 V8 11.20%
L005 465 V2 429 V3 7.7%
Lo05 639 V4 629 V5 1.5%

None of these patients had altered renal function or change in serum albumin during vaccination to account for variations in PSA levels. Normal

reference range for PSA is 0-5 pg/L.
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tions on two separate occasions during vaccination.
Unlike melanoma, advanced prostate cancers, without
any effective anti-cancer therapy, are not known to regress
spontaneously. In Uro-oncology, reduction of PSA levels
in the circulation are regarded as indicating favourable
responses to treatment of metastatic prostate cancer [86].
The PSA level correlates well with advancing clinical stage
in untreated patients and is a reliable biological marker of
response to treatment [87-90]. Therefore, we consider the
reduction of PSA levels in the vaccinated patients as being
indicative of a favourable response. However, there are no
universally agreed criteria as to the grade of the clinical
response based on the fall in PSA.

There were 2 cases of central venous catheter-related com-
plications-N002 (thrombosis) and NO11 (sepsis). NOO1
was treated with anti-coagulants and recovered. However,
NO11 died due to gram-negative septicemia before vacci-
nation could commence. The frequency of these events
are well within the probability of documented occurrence
(about 10%)[91,92].

The third aim of our study was to document the presence
of T regs and their relationship to clinical responses in vac-
cinated patients. Low levels (mean < 0.5%) of circulating
T regs were found in all clinical responders (prostate can-
cer patients) who had transient tumour regression. High
levels of T regs have been shown to inhibit anti-cancer T
cell response in mice [46-48]. To the best of our knowl-
edge, this is the first documentation of a correlation
between clinical responses and T regs in cancer patients
undergoing hTERT-pulsed DC vaccination. This novel
finding is of substantial significance in hTERT-based
immunotherapy in particular, and cancer immuno-
therapy in general.

Studies in man have shown that potent immunosuppres-
sive T regs can be selectively and transiently eliminated
and memory T cells increased by pre-treatment with low
dose oral cyclophosphamide, using specified therapeutic
regimens [93-96]. Such an approach should lead to a sus-
tained and unhindered generation of hTERT specific CTLs
by the vaccine, as the proposed dose and frequency of
cyclophosphamide to be used has no detrimental effects
on the remaining T cell subsets of lymphocytes [93-96].
Denileukin diftitox (Onzar) is a recombinant protein
comprising IL-2 fused with the alpha chain of diphtheria
toxin, (DAB389+IL-2), capable of transiently eliminating
T regs. Phase II/III clinical trials, involving stage IV cutane-
ous T cell lymphoma and Non-Hodgkin's lymphoma
patients, has demonstrated intravenous denileukin difti-
tox inducing disease regression (partial and complete in
20-30% of patients). This is due to inhibition of protein
synthesis in cells expressing high and intermediate affinity
IL-2 receptors, thereby, reducing the T reg (CD4+

http://www.translational-medicine.com/content/7/1/18

CD25+foxp3+) population [97-101]. A tumour vaccina-
tion trial, using MAGE and MART peptides to directly vac-
cinate stage IV melanoma patients who were pre-treated
with denileulin diftitox, exhibited prominent peptide-
specific CTL responses with concurrent reduction of T regs
[50]. In light of our T reg findings and the above studies,
we suggest that T reg monitoring and abrogation are
potentially useful strategies to both predict and induce
beneficial clinical responses in hTERT-based anti-cancer
immunotherapy.

In summary, the data presented demonstrates for the first
time that the ex vivo generation of optimally-activated DCs
(DCT), preferentially pulsed with class I+II peptides, were
able to induce hTERT-specific CD8+CTL generation in
vivo. IFN-alpha, when added simultaneously with GM-
CSF, IL-4 and TNF-alpha, did not appear to induce a supe-
rior CD8+ T cell response, whereas cognate help for vacci-
nating DCs appeared to augment CD8+ T cell responses.
Clinical responses do not always correlate with the levels
of tetramer+CDS8+T cells in the circulation. However, cir-
culating levels of T regs may predict those likely to have a
beneficial clinical response. Our findings will help to
establish novel strategies designed to produce clinically
effective and immunologically relevant vaccination proto-
cols.
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