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ABSTRACT
The Musical Instrument Digital Interface (MIDI), introduced in 1983, revolutionized
music production by allowing computers and instruments to communicate efficiently.
MIDI files encode musical instructions compactly, facilitating convenient music shar-
ing. They benefit music information retrieval (MIR), aiding in research on music under-
standing, computational musicology, and generative music. The GigaMIDI dataset
contains over 1.4 million unique MIDI files, encompassing 1.8 billion MIDI note events
and over 5.3 million MIDI tracks. GigaMIDI is currently the largest collection of sym-
bolic music in MIDI format available for research purposes under fair dealing. Dis-
tinguishing between non-expressive and expressive MIDI tracks is challenging, as
MIDI files do not inherently make this distinction. To address this issue, we intro-
duce a set of innovative heuristics for detecting expressive music performance. These
include the distinctive note velocity ratio (DNVR) heuristic, which analyzes MIDI note
velocity; the distinctive note onset deviation ratio (DNODR) heuristic, which exam-
ines deviations in note onset times; and the note onset median metric level (NOMML)
heuristic, which evaluates onset positions relative to metric levels. Our evaluation
demonstrates these heuristics effectively differentiate between non-expressive and
expressive MIDI tracks. Furthermore, after evaluation, we create the most substan-
tial expressive MIDI dataset, employing our heuristic NOMML. This curated itera-
tion of GigaMIDI encompasses expressively performed instrument tracks detected by
NOMML, containing all General MIDI instruments, constituting 31% of the GigaMIDI
dataset, totaling 1,655,649 tracks.
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1 INTRODUCTION

The representation of digital music can be categorized
into twomain forms: audio and symbolic domains. Audio
representations of musical signals characterize sounds
produced by acoustic or digital sources (e.g., acoustic
musical instruments, vocals, found sounds, virtual instru-
ments, etc.) in an uncompressed or compressed way. In
contrast, symbolic representation of music relies on a
notation system to characterize the musical structures
created by a composer or resulting from a performance
(e.g., scores, tablatures, MIDI performance). While audio
representations intrinsically encode signal aspects corre-
lated to timbre, this is not the case for symbolic represen-
tations; however, symbolic representations may refer to
timbral identity (e.g., cello staff) and expressive features
correlated with timbre (e.g., pianissimo or forte dynam-
ics) through notations.

Multiple encoding formats are employed for the rep-
resentation of music. WAV is frequently utilized to store
uncompressed audio, thereby retaining nuanced tim-
bral attributes. In contrast, MIDI serves as a prevalent
format for the symbolic storage of music data. MIDI
embraces a multitrack architecture to represent musi-
cal information, enabling the generation of a score rep-
resentation through score editor software. This process
encompasses diverse onset timings and velocity levels,
facilitating quantification and encoding of these musical
events (MIDI Association, 1996a).

The choice of training dataset significantly influ-
ences deep learning models, particularly highlighted in
the development of symbolic music generation models
(Adkins et al., 2023; Briot, 2021; Briot and Pachet, 2020;
Brunner et al., 2018; Ens and Pasquier, 2020; Hernandez-
Olivan and Beltran, 2022; Huang et al., 2019; Payne, 2019;
von Rütte et al., 2023; Shih et al., 2022). Consequently,
MIDI datasets have gained increased attention as one of
themain resources for training these deep learningmod-
els.Within automaticmusic generation via deep learning,
end-to-endmodels use digital audio waveform represen-
tations of musical signals as input (Dieleman et al., 2018;
Manzelli et al., 2018; Zukowski and Carr, 2017). Auto-
matic music generation based on symbolic representa-
tions (Raffel and Ellis, 2016b; Zhang, 2020) uses digital
notations to represent musical events from a composi-
tion or performance; these can be contained, e.g., in a
digital score, a tablature (Sarmento et al., 2023a,b), or a
piano-roll. Moreover, symbolic music data can be lever-
aged in computational musicology to analyze the vast
corpus of music using MIR and music data mining tech-
niques (Li et al., 2012).

In computational creativity and musicology, a criti-
cal aspect is distinguishing between non-expressive per-
formances, which are mechanical renditions of a score,
and expressive performances, which reflect variations
that convey the performer’s personality and style. MIDI

files are commonly produced through score editors or
by recording human performances using MIDI instru-
ments, which allow for adjustments in parameters, such
as velocity or pressure, to create expressively performed
tracks.

However, MIDI files typically do not contain metadata
distinguishing between non-expressive and expressive
performances, and most MIR research has focused on
file-level rather than track-level analysis. File-level anal-
ysis examines global attributes such as duration, tempo,
and metadata, aiding structural studies, while track-
level analysis explores instrumentation and arrangement
details. The note-level analysis provides the most gran-
ular insights, focusing on pitch, velocity, and microtim-
ing to reveal expressive characteristics. Together, these
hierarchical levels form a comprehensive framework for
studying MIDI data and understanding expressive ele-
ments of musical performances.

Our work categorizes MIDI tracks into two types: non-
expressive tracks, defined by fixed velocities and quan-
tized rhythms (though expressive performances may
also exhibit some degree of quantization), and expres-
sive tracks, which feature microtiming variations com-
pared with the nominal duration indicated on the score
as well as dynamics variations, translating into veloc-
ity changes across and within notes. To address this,
we introduce novel heuristics in Section 4 for detecting
expressive music performances by analyzing microtim-
ings and velocity levels to differentiate between expres-
sive and non-expressive MIDI tracks.

The main contributions of this work can be summa-
rized as follows: (1) The GigaMIDI dataset, which encom-
passes over 1.4 million MIDI files and over five million
instrument tracks, is introduced. This data collection is
the largest open-source MIDI dataset for research pur-
poses to date. (2) We have developed novel heuristics
(Heuristic 1 and 2) tailored explicitly for detecting expres-
sive music performance in MIDI tracks. Our novel heuris-
ticswere applied to each instrument track in theGigaMIDI
dataset, and the resulting values were used to evalu-
ate the expressiveness of tracks in GigaMIDI. (3) We pro-
vide details of the evaluation results (Section 5.2) of
each heuristic to facilitate expressive music performance
research. (4) Through the application of our optimally per-
forming heuristic, as determined through our evaluation,
we create the largest MIDI dataset of expressive per-
formances, specifically incorporating instrument tracks
beyond those associated with piano and drums (which
constitute 31%of theGigaMIDI dataset), totaling over 1.6
million expressively performed MIDI tracks.

2 BACKGROUND

Before exploring the GigaMIDI dataset, we examine sym-
bolic music datasets in existing literature. This sets the
stage for our discussion onMIDI’smusical expression and
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performance aspects, laying the groundwork for under-
standing our heuristics in detecting expressivemusic per-
formance from MIDI data.

2.1 SYMBOLIC MUSIC DATA
Symbolic formats refer to the representation of music
through symbolic data, such as MIDI files, rather than
audio recordings (Zeng et al., 2021). Symbolic music
understanding involves analyzing and interpreting music
on the basis of its symbolic data, namely information
about musical notation, music theory, and formalized
music concepts (Simonetta et al., 2018).

Symbolic formats have practical applications in music
information processing and analysis. Symbolicmusic pro-
cessing involves manipulating and analyzing symbolic
music data, which can be more efficient and easier to
interpret than lower-level representations of music, such
as audio files (Cancino-Chacón et al., 2022).

The Musical Instrument Digital Interface (MIDI) is a
technical standard that enables electronicmusical instru-
ments and computers to communicate by transmitting
event messages that encode information such as pitch,
velocity, and timing. This protocol has become integral to
music production, allowing for the efficient representa-
tion and manipulation of musical data (Meroño-Peñuela
et al., 2017). MIDI datasets, which consist of collections
ofMIDI files, serve as valuable resources formusicological
research, enabling large-scale analyses of musical trends
and styles. For instance, studies utilizing MIDI datasets
have explored the evolution of popular music (Mauch
et al., 2015) and facilitated advancements in music tran-
scription technologies through machine learning tech-
niques (Qiu et al., 2021). The application of MIDI in
various domains underscores its significance in both
the creative and analytical aspects of contemporary
music.

Symbolic music processing has gained attention in the
MIR community, and several music datasets are avail-
able in symbolic formats (Cancino-Chacón et al., 2022).
Symbolic representations of music can be used for style
classification, emotion classification, and music piece
matching (Zeng et al., 2021). Symbolic formats also play
a role in the automatic formatting of music sheets.

XML-compliant formats, such as the WEDEL format,
include constructs describing integrated music objects,
including symbolic music scores (Bellini et al., 2005).
Besides that, the Music Encoding Initiative (MEI) is an
open, flexible format for encoding music scores in a
machine-readable way. It allows for detailed representa-
tion of musical notation and metadata, making it ideal
for digital archiving, critical editions, and musicological
research (Crawford and Lewis, 2016).

ABC notation is a text format used to represent music
symbolically, particularly favored in folk music (Cros Vila
and Sturm, 2023). It offers a human-readablemethod for
notating music, with elements represented using letters,
numbers, and symbols. This format is easily learned, writ-
ten, and converted into standard notation or MIDI files
using software, enabling convenient sharing and play-
back of musical compositions (Figure 1).

Csound notation, part of Csound software, symbol-
ically represents electroacoustic music (Licata, 2002).
It controls sonic parameters precisely, fostering com-
plex compositions blending traditional and electronic ele-
ments. This enables innovative experimentation in con-
temporary music. Max Mathews’ MUSIC 4, developed in
1962, laid the groundwork for Csound, introducing key
musical concepts to computing programs.

With the proliferation of deep learning approaches,
often driven by the need for vast amounts of data, the
creation and curation of symbolic datasets have been
active in this research area. The MIDI format can be con-
sidered the most common music format for symbolic
music datasets, despite alternatives such as the Essen
folk music database in ABC format (Schaffrath, 1995),
JSB Chorales Dataset available via MusicXML format and
Music21 (Boulanger-Lewandowski et al., 2012; Cuthbert
and Ariza, 2010), and Guitar Pro tablature format (Sar-
mento et al., 2021).

Focusing on MIDI, Table 1 showcases symbolic music
datasets. MetaMIDI (Ens and Pasquier, 2021) is a col-
lection of 436,631 MIDI files. MetaMIDI comprises a
substantial collection of multi-track MIDI files primarily
derived from an extensive music corpus characterized
by longer duration. Approximately 57.9% of MetaMIDI
includes a piece that has a drum track.

Figure 1 Four classes (NE = non-expressive, EO = expressive onset, EV = expressive velocity, and EP = expressively performed) using
heuristics in Section 4.2 for the expressive performance detection of MIDI tracks in GigaMIDI.
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Dataset Format Files Hours Instruments

GigaMIDI MIDI >1.43M >40,000 Misc.

MetaMIDI MIDI 436,631 >20,000 Misc.

Lakh MIDI MIDI 174,533 >9,000 Misc.

DadaGP Guitar Pro 22,677 >1,200 Misc.

ATEPP MIDI 11,677 1,000 Piano

Essen
Folksong

ABC 9,034 56.62 Piano

NES Music MIDI 5,278 46.1 Misc.

MID-FiLD MIDI 4,422 >40 Misc.

MAESTRO MIDI 1,282 201.21 Piano

Groove
MIDI

MIDI 1,150 13.6 Drums

JSB
Chorales

MusicXML 382 >4 Misc.

Table 1 Sample of symbolic datasets inmultiple formats, includ-
ing MIDI, ABC, MusicXML, and Guitar Pro formats.

ATEPP = Automatically Transcribed Expressive Piano
Performances.

The Lakh MIDI dataset (LMD) encompasses a collec-
tion of 174,533 MIDI files (Raffel, 2016), and an audio-
to-MIDI alignment matching technique (Raffel and Ellis,
2016a) is introduced, which is also utilized in MetaMIDI
for matching musical styles if scraped style metadata is
unavailable.

2.2 MUSIC EXPRESSION AND PERFORMANCE
REPRESENTATIONS OF MIDI
We use the terms “expressive MIDI,” “human-performed
MIDI,” and “expressive machine-generated MIDI” inter-
changeably to describe MIDI files that capture expres-
sively performed (EP) tracks, as illustrated in Figure 1.
EP-class MIDI tracks capture performances by human
musicians or producers, emulate the nuances of
live performance, or are generated by machines
trained with deep learning algorithms. These tracks
incorporate variations of features, such as tim-
ing, dynamics, and articulation, to convey musical
expression.

From the perspective of music psychology, analyz-
ing expressive music performance involves understand-
ing how variations of, e.g., timing, dynamics, and tim-
bre (Barthet et al., 2010) relate to performers’ inten-
tions and influence listeners’ perceptions. Repp’s research
demonstrates that expressive timing deviations, such as
rubato, enhance listeners’ perception of naturalness and
musical quality by aligning with their cognitive expecta-
tions of flow and structure (Repp, 1997b). Palmer’s work

further reveals that expressive timing and dynamics are
not random but rather result from skilledmotor planning,
as musicians use mental representations of music to
execute nuanced timing and dynamic changes that
reflect their interpretive intentions (Palmer, 1997).

Our focus lies on two main types of MIDI tracks: non-
expressive and expressive. Non-expressive MIDI tracks
exhibit relatively fixed velocity levels and onset devia-
tions, resulting in metronomic and mechanical rhythms.
In contrast, expressive MIDI tracks feature subtle
temporal deviations (non-quantized but humanized or
human-performed) and greater variations in velocity
levels associated with dynamics.

2.2.1 Non-expressive and expressively performed
MIDI tracks
MIDI files are typically produced in two ways (exclud-
ing synthetic data from generative music systems): using
a score/piano roll editor or recording a human perfor-
mance. MIDI controllers and instruments, such as a key-
board and pads, can be utilized to adjust the parameters
of each note played, such as velocity and pressure, to pro-
duce expressively performed MIDI. Being able to distin-
guish non-expressive and expressive MIDI tracks is useful
in MIR applications. However, MIDI files do not accom-
modate such distinctions within their metadata. MIDI-
track-level analysis formusic expression has received less
attention fromMIR researchers than MIDI-file-level anal-
ysis. Previous research regarding interpreting MIDI veloc-
ity levels (Dannenberg, 2006) and modeling dynamics/
expression (Berndt and Hähnel, 2010; Ortega et al.,
2019) was conducted, and a comprehensive review of
computational models of expressive music performance
is available in (Cancino-Chacón et al, 2018). Genera-
tion of expressive musical performances using a case-
based reasoning system (Arcos et al., 1998) has been
studied in the context of tenor saxophone interpre-
tation and the modeling of virtuosic bass guitar per-
formances (Goddard et al., 2018). Velocity prediction/
estimation using deep learning was introduced at the
MIDI note level (Collins and Barthet, 2023; Kim et al.,
2022; Kuo et al., 2021; Tang et al., 2023).

2.2.2 Music expression and performance datasets
The aligned scores and performances (ASAP) dataset
has been developed specifically for annotating non-
expressive and expressively performed MIDI tracks
(Foscarin et al., 2020). Comprising 222 digital musi-
cal scores synchronized with 1,068 performances, ASAP
encompasses over 92 hours of Western classical piano
music. This dataset provides paired MusicXML and quan-
tized MIDI files for scores, along with paired MIDI files
and partial audio recordings for performances. The align-
ment of ASAP includes annotations for downbeat, beat,
time signature, and key signature, making it notable for
its incorporation of music scores aligned with MIDI and
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audio performance data. The MID-FiLD (Ryu et al., 2024)
dataset is the sole dataset offering detailed dynamics
for Western orchestral instruments. However, it primarily
focuses on creating expressive dynamics via MIDI Control
Change #1 (modulation wheel) and lacks velocity varia-
tions, featuring predominantly constant velocities, as ver-
ified by our manual inspection. In contrast, the GigaMIDI
dataset focuses on expressive performance detection
through variations of micro-timings and velocity levels.

The MAESTRO (Hawthorne et al., 2019) and Groove
MIDI (Gillick et al., 2019) datasets focus on singular
instruments, specifically piano and drums, respectively.
Despite their narrower scope, these datasets are note-
worthy for including MIDI files exclusively performed by
human musicians. Saarland Music Data (SMD) contains
piano performance MIDI files and audio recordings, but
SMDonly contains 50 files (Müller et al., 2011). The Vienna
4 × 22 Piano Corpus (Goebl, 1999) and the Batik-plays-
Mozart Corpus MIDI dataset (Hu and Widmer, 2023)
both provide valuable resources for studying classical
piano performance. The Vienna 4 × 22 Piano Corpus fea-
tures high-resolution recordings of 22 pianists perform-
ing four classical pieces with the aim of analyzing expres-
sive elements such as timing and dynamics across per-
formances. Meanwhile, the Batik-plays-Mozart dataset
offers MIDI recordings of Mozart pieces performed by the
pianist Batik, capturing detailed performance data such
as note timing and velocity. Together, these datasets
support research in performance analysis and machine
learning applications in music.

The Automatically Transcribed Expressive Piano Per-
formances (ATEPP) dataset (Zhang et al., 2022) was
devised for capturing performer-induced expressive-
ness by transcribing audio piano performances into
MIDI format. ATEPP addresses inaccuracies inherent
in the automatic music transcription process. Simi-
larly, the GiantMIDI-Piano dataset (Kong et al., 2022),
akin to ATEPP, comprises artificial intelligence (AI)-
transcribed piano tracks that encapsulate expressive per-
formance nuances. However, we excluded the ATEPP
and GiantMIDI-Piano datasets from our expressive music
performance detection task. State-of-the-art transcrip-
tion models are known to overfit the MAESTRO dataset
(Edwards et al., 2024) due to its recordings originating
from a controlled piano competition setting. These per-
formances, all played on similar YamahaDisklavier pianos
under concert hall conditions, result in consistent acous-
tic and timbral characteristics. This uniformity restricts
the models’ ability to generalize to out-of-distribution
data, contributing to the observed overfitting.

3 GIGAMIDI DATA COLLECTION

We present the GigaMIDI dataset in this section and its
descriptive statistics, such as the MIDI instrument group,
the number of MIDI notes, ticks per quarter note, and

musical style. Additional descriptive statistics are in Sup-
plementary file 1: Appendix (A.1).

3.1 OVERVIEW OF THE GIGAMIDI DATASET
The GigaMIDI dataset is a superset of the MetaMIDI
dataset (Ens and Pasquier, 2021), and it contains
1,437,304 unique MIDI files with 5,334,388 MIDI instru-
ment tracks, and 1,824,536,824 (over 109; hence, the
prefix “Giga”) MIDI note events. The GigaMIDI dataset
includes 56.8% single-track and 43.2% multi-track MIDI
files. It contains 996,164 drum tracks and 4,338,224 non-
drum tracks. The initial version of the dataset consisted of
1,773,996 MIDI files. Approximately 20% of the dataset
was subjected to a cleaning process, which included
deduplication achieved by verifying and comparing the
MD5 checksums of the files. While we integrated certain
publicly accessible MIDI datasets from previous research
endeavors, it is noteworthy that over 50%of theGigaMIDI
dataset was acquired through web-scraping and orga-
nized by the authors.

The GigaMIDI dataset includes per-track loop detec-
tion, adapting the loop detection and extraction algo-
rithm presented in (Adkins et al., 2023) to MIDI files.
In total, 7,108,181 loops with lengths ranging from 1
to 8 bars were extracted from GigaMIDI tracks, cover-
ing all types of MIDI instruments. Details and analysis
of the extracted loops from the GigaMIDI dataset will
be shared in a companion paper report via our GitHub
page.

3.2 COLLECTION AND PREPROCESSING OF
THE GIGAMIDI DATASET
The authors manually collected and aggregated the
GigaMIDI dataset, applying our heuristics for MIDI-
based expressive music performance detection. This
aggregation process was designed to make large-
scale symbolic music data more accessible to music
researchers.

Regarding data collection, we manually gathered
freely available MIDI files from online sources such as
Zenodo,¹ GitHub,² and public MIDI repositories by web
scraping. The source links for each subset are provided
via our GitHub webpage.³ During aggregation, files were
organized and deduplicated by comparing MD5 hash val-
ues. We also standardized each subset to the General
MIDI (GM) specification, ensuring coherence; for exam-
ple, non-GM drum tracks were remapped to GM. Man-
ual curation was employed to assess the suitability of
the files for expressive music performance detection,
with particular attention to defining ground truth tracks
for expressive and non-expressive categories. This pro-
cess involved systematically identifying the character-
istics of expressive and non-expressive MIDI track sub-
sets by manually checking the characteristics of MIDI
tracks in each subset. The curated subsets were sub-
sequently analyzed and incorporated into the GigaMIDI
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dataset to facilitate the detection of expressive music
performance.

To improve accessibility, the GigaMIDI dataset has
been made available on the Hugging Face Hub. Early
feedback from researchers in music computing and MIR
indicates that this platform offers better usability and
convenience compared with alternatives such as GitHub
and Zenodo. This platform enhances data preprocess-
ing efficiency and supports seamless integration with
workflows, such as MIDI parsing and tokenization using
Python libraries such as Symusic4 and MidiTok5 (Fradet
et al., 2021), as well as deep learning model training
using Hugging Face. Additionally, the raw metadata of
the GigaMIDI dataset is hosted on the Hugging Face Hub6

(see Section 8).
As part of preprocessing GigaMIDI, single-track drum

files allocated to MIDI channel 1 are subjected to re-
encoding. This serves the dual purpose of ensuring their
accurate representation on MIDI channel 10, drum chan-
nel, while mitigating the risk of misidentification as a
piano track, denoted as channel 1. Details of MIDI chan-
nels are explained in Section 3.3.1.

Furthermore, all drum tracks in the GigaMIDI dataset
were standardized through remapping on the basis of the
General MIDI (GM) drummapping guidelines (MIDI Asso-
ciation, 1996b) to ensure consistency. Detailed informa-
tion about the drum remapping process can be accessed
via GitHub. In addition, the distribution of drum instru-
ments, categorized and visualized by their relative fre-
quencies, is presented in Appendix A.1 (Gómez-Marín et
al., 2020).

3.3 DESCRIPTIVE STATISTICS OF THE
GIGAMIDI DATASET
3.3.1 MIDI instrument group
The GigaMIDI dataset is divided into three primary sub-
sets: “all-instrument-with-drums,” “drums-only,” and
“no-drums.” The “all-instrument-with-drums” subset
comprises 22.78% of the dataset and includes multi-
track MIDI files with drum tracks. The “drums-only” sub-
set makes up 56.85% of the dataset, containing only
drum tracks, while the “no-drums” subset (20.37%) con-
sists of both multi-track and single-track MIDI files with-
out drum tracks. As shown in Figure 2, drums-only files
typically have a high-density distribution and are mostly
under 50 bars, reflecting their classification as drum
loops. Conversely, multi-track and single-track piano files
exhibit a broader range of durations, spanning 10–300
bars, with greater diversity in musical structure.

MIDI instrument groups, organized by program num-
bers, categorize instrument sounds. Each group cor-
responds to a specific program number range, repre-
senting unique instrument sounds. For instance, pro-
gram numbers 1 to 8 on MIDI Channel 1 are associ-
ated with the piano instrument group (acoustic piano,
electric piano, harpsichord, etc). The analysis in Table 2

Figure 2 Distribution of the duration in bars of the files from
each subset of the GigaMIDI dataset. The x-axis is clipped to
300 for better readability.

IGN: 1-8 Events IGN: 9-16 Events

Piano 60.2% Reed/Pipe 1.1%

CP 2.4% Drums 17.4%

Organ 1.8% Synth Lead 0.5%

Guitar 6.7% Synth Pad 0.6%

Bass 4.2% Synth FX 0.3%

String 1.1% Ethnic 0.3%

Ensemble 2.1% Percussive FX 0.3%

Brass 0.7% Sound FX 0.3%

Table 2 Number of MIDI note events by instrument group in per-
centage (IGN = instrument group number, CP = chromatic percus-
sion, and FX = effect).

focuses on the occurrence of MIDI note events across the
16 MIDI instrument groups (MIDI Association, 1996b).
Channel 10 is typically reserved for the drum instrument
group.

Although MIDI groups/channels often align with spe-
cific instrument types in the General MIDI specification
(MIDI Association, 1996a), composers and producers can
customize instrument number allocations based on their
preferences.

The GigaMIDI dataset analysis reveals that most MIDI
note events (77.6%) are found in two instrument groups:
piano and drums. The piano instrument group has more
MIDI note events (60.2%) because most piano-based
tracks are longer. The higher number of MIDI notes in
piano tracks compared to other instrumental tracks can
be attributed to several factors. The inherent nature of
piano playing, which involves ten fingers and frequently
includes simultaneous chords due to its dual-staff layout,
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naturally increases note density. Additionally, the piano’s
wide pitch range, polyphonic capabilities, and versatility
in musical roles allow it to handle melodies, harmonies,
and accompaniments simultaneously. Piano tracks are
often used as placeholders or sketches during composi-
tion, and MIDI input is typically performed using a key-
board defaulting to a piano timbre. These characteristics,
combined with the cultural prominence of the piano and
the practice of condensing multiple parts into a single
piano track for convenience, result in a higher density of
notes in MIDI datasets.

The GigaMIDI dataset includes a significant propor-
tion of drum tracks (17.4%), which are generally shorter
and contain fewer note events compared to piano tracks.
This is primarily because many drum tracks are designed
for drum loops and grooves rather than for full-length
musical compositions. The supplementary file provides a
detailed distribution of note events for drum sub-tracks,
including each drum MIDI instrument in the GigaMIDI
dataset. Sound effects, including breath noise, bird
tweets, telephone rings, applause, and gunshot sounds,
exhibit minimal usage, accounting for only 0.249% of the
dataset. Chromatic percussion (2.4%) stands for pitched
percussions, such as glockenspiel, vibraphone, marimba,
and xylophone.

3.3.2 Number of MIDI notes and ticks per
quarter note
Figure 3(a) shows the distribution for the number of MIDI
notes in GigaMIDI. According to our data analysis, the
span from the 5th to the 95th percentile covers 13 to 931
notes, indicating a significant presence of short-length
drum tracks or loops.

Figure 3(b) illustrates the distribution of ticks per quar-
ter note (TPQN). TPQN is a unit that measures the reso-
lution or granularity of timing information. Ticks are the
smallest indivisible units of time within a MIDI sequence.
A higher TPQN valuemeansmore precise timing informa-
tion can be stored in aMIDI sequence. Themost common
TPQN values are 480 and 960. According to our data anal-
ysis of GigaMIDI, common TPQN values range from 96 to
960 between the 5th and 95th percentiles.

3.3.3 Musical style
We provide the GigaMIDI dataset with metadata regard-
ing musical styles. This includes our manually curated
style metadata by listening to and annotating MIDI files
on the basis of the Musicmap style topology (Crauwels,
2016), displayed in Figure 4. We organized all the musi-
cal style metadata from our subsets, including remap-
ping drumming styles (Gillick et al., 2019) and DadaGP
(Sarmento et al., 2021) to Musicmap style topology.
The acquisition of scraped style metadata, encompass-
ing audio–text match style metadata sourced from
the MetaMIDI subset (Ens and Pasquier, 2021), is con-
ducted. Subsequently, all gathered musical style meta-
data undergoes conversion, adhering to the Musicmap
topology for consistency.

The distribution of musical style metadata in the
GigaMIDI dataset, illustrated in Figure 5, is based on
the Musicmap topology and encompasses 195,737 files
annotated with musical style metadata. Notably, preva-
lent styles include classical, pop, rock, and folk music.
These 195,737 style annotations mostly originate from a
combination of scraped metadata acquired online, style
data present in our subsets, and manual inspection con-
ducted by the authors.

A major challenge in utilizing scraped style metadata
from the MetaMIDI subset is ensuring its accuracy of
metadata. To address this, a subset of the GigaMIDI
dataset, consisting of 29,713 MIDI files, was carefully
reviewed through music listening and manually anno-
tated with style metadata by a doctoral-level music
researcher.

MetaMIDI integrates scraped style metadata and
associated labels obtained through an audio–MIDI
matching process.7 However, our empirical assess-
ment, based on manual auditory analysis of musi-
cal styles, identified inconsistencies and unreliability
in the scraped metadata from the MetaMIDI subset
(Ens and Pasquier, 2021). To address this, we manu-
ally remapped 9,980 audio–text-matched musical style
metadata entries within the MetaMIDI subset, ensur-
ing consistent and accurate musical style classifications.
Finally, these remappedmusical styles were aligned with

Figure 3 Distribution of files in GigaMIDI according to (a) MIDI notes, and (b) ticks per quarter note (TPQN).
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Figure 4 Musicmap style topology (Crauwels, 2016).

Figure 5 Distribution of musical style in GigaMIDI.

the Musicmap topology to providemore uniform and reli-
able information on musical style.

We provide the audio–text-matched musical style
metadata available using three musical style metadata:
Discogs,8 Last.fm,9 and Tagtraum,10 collected using the
MusicBrainz11 database.

4 HEURISTICS FOR MIDI-BASED
EXPRESSIVE MUSIC PERFORMANCE
DETECTION

Our heuristic design centers on analyzing variations in
velocity levels and onset-time deviations from a met-
ric grid. MIDI velocity replicates the hammer veloc-
ity in acoustic pianos, where the force applied to the
keys determines the speed of the hammers, subse-
quently affecting the energy transferred to the strings
and, consequently, the amplitude of the resulting vibra-
tions. This concept is integrated into MIDI keyboards,
which replicate hammer velocity by using MIDI veloc-
ity levels to control the dynamics of the sound. A veloc-
ity value of 0 produces no sound, while 127 indicates
maximum intensity. Higher velocity values yield louder

notes, while lower ones result in softer tones, analo-
gous to dynamics markings such as pianissimo or fortis-
simo in traditional performance. Onset-time deviations
in MIDI represent the difference between the actual
note timings and their expected positions on a quan-
tized metric grid, with the grid’s resolution being deter-
mined by the ticks per quarter note (TPQN) of the MIDI
file. These deviations, often introduced through human
performance, play a crucial role in conveying musical
expressiveness.

The primary objective of our proposed heuristics
for expressive performance detection is to differentiate
between expressive and non-expressive MIDI tracks by
analyzing velocity and onset-time deviations. This anal-
ysis is applied at the MIDI track level, with each instru-
ment track undergoing expressive performance detec-
tion. Our heuristics, introduced in the following sections,
assess expressiveness by examining velocity variations
andmicrotimings, offering a versatile framework suitable
for various GM instruments.

Other related approaches for this task are more spe-
cific to acoustic piano performance rather than being
tailored to MIDI tracks. Key overlap time (Repp, 1997a)
and melody lead (Goebl, 2001) focus on acoustic piano
performances, analyzing legato articulation and melodic
timing anticipation, which limits their application to piano
contexts. Similarly, linear basis models (Grachten and
Widmer, 2012) focus on Western classical instruments,
particularly the acoustic piano, and rely on score-based
dynamics (e.g., crescendo, fortissimo), making them less
applicable to non-classical or non-Western music. Such
dynamics can be interpreted in MIDI velocity levels,
and our heuristics consider this aspect. Compared with
these methods, our heuristics offer broader applicabil-
ity, addressing dynamic variations and microtiming devi-
ations across a wide range of MIDI instruments, mak-
ing them suitable for detecting expressiveness in diverse
musical contexts.

4.1 BASELINE HEURISTIC: DISTINCT NUMBER OF
VELOCITY LEVELS AND ONSET-TIME DEVIATIONS
This baseline heuristic focuses solely on analyzing the
count of distinct velocity levels (“distinct velocity”) and
unique onset-time deviations (“distinct onset”) without
considering the MIDI track length. Generally, longer MIDI
tracks show more distinct velocities and onset devia-
tions than shorter ones. Designed as a simpler alterna-
tive to the more sophisticated Heuristics 1 and 2, this
baseline has limited accuracy for MIDI tracks of varying
lengths, as it does not adjust for track duration. How-
ever, this was not a significant issue during heuristic eval-
uation in Section 5.2, as most tracks in the evaluation
set are longer and have a limited variance in terms of
length.
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Our baseline heuristic design counts the number of
unique velocity levels and onset-time deviations present
in a MIDI track. For example, consider a MIDI track where
v = [64, 72, 72, 80, 64, 88] represents the MIDI velocity
values, and o = [−5, 0, 5, −5, 10, 0] represents the onset-
time deviations in MIDI ticks. Applying our heuristic, we
first store only the unique values in each list: For v, the
distinct velocity levels are {64, 72, 80, 88}, and for o, the
distinct onset-time deviations are {−5, 0, 5, 10}. By count-
ing these unique values, we identify four distinct veloc-
ity levels and four distinct onset-time deviations for this
MIDI track, with no deviation being treated as a specific
occurrence.

4.2 DISTINCTIVE NOTE VELOCITY/ONSET
DEVIATION RATIO
Distinctive note velocity ratio (DNVR) and distinctive note
onset deviation ratio (DNODR) measure the proportion
(in a percentage) of unique MIDI note velocities and
onset-time deviations in each MIDI track. These metrics
form a set of heuristics for detecting expressive perfor-
mances, classified into four categories: non-expressive
(NE), expressive onset (EO), expressive velocity (EV), and
expressively performed (EP), as shown in Figure 1. The
DNVRmetric counts unique velocity levels to differentiate
between tracks with consistent velocity and those with
expressive velocity variation,while theDNODR calculation
helps identify MIDI tracks that are either perfectly quan-
tized or have minimal microtiming deviations.

Heuristic 1 is proposed to analyze the variation in
velocity levels and onset-time deviations within a MIDI
track. Here, xvelocityholds each track’s velocity values, while
xonset contains onset deviations from a quantized MIDI
grid based on the track’s TPQN. For example, a possi-
ble set of values could be xvelocity = {88,102, . . . } and
xonset = {−3,2,5, . . . }, the latter being represented in
ticks. The functions cvelocity and conset return the count
of unique velocity levels and onset-time deviations per
track, respectively. Next, conset−ratio is divided by the track’s
TPQN to represent the proportion ofmicrotiming positions

within each quarter note. Similarly, cvelocity−ratio is divided
by 127 (the range of possible velocity levels). Finally, each
ratio is converted to a percentage by multiplying by 100.

4.3 MIDI NOTE ONSET MEDIAN METRIC LEVEL
Figure 6 displays the classification of various note onsets
into duple metric levels 0–5. Let us define k as the
parameter that controls the metric level’s depth. The
duple onset metric level (dup) grid divides the beat into
even subdivisions, such as halves or quarters, capturing
rhythms in duple meter. The triplet onset metric level
(trip) grid divides the beat into three equal parts, align-
ing with triplet rhythms commonly found in swing and
compound meters. Notably, since the grey-colored note

onset (ML <
1
128

note metric level) does not belong to

any dup
i
for 0 ≤ i ≤ 5, it is assigned to the extra cat-

egory shown in the bottom row because it is finer than
the maximum metric level where k = 6. For example,
Figure 6 displays the metric level depth. The duple metric
level dup

k
divides each quarter note into 2k equal pulses,

while the triplet metric level trip
k
divides it into

3
2
× 2k

pulses. For our experiments, we choose k = 6. Conse-
quently, themaximummetric levelswe consider aredup

5

and trip
5
, corresponding to the 128th notes. Based on

our observation of data in MIDI tracks, this provides a suf-
ficient level of granularity, given the note durations fre-
quently found in most forms of music.

In Heuristic 2, we propose the MIDI note onsetmedian
metric level (NOMML), another heuristic for detecting
non-expressive and expressively performed MIDI tracks.
This heuristic counts the median metric level of note
onsets. The metric level ml(x) for a note onset x is the
lowest duple or triplet level that aligns with the onset.
Since some pulses overlap between duple and triplet lev-
els, we prioritize duple levels before considering triplets.
For instance, with 120 ticks per quarter note, a note onset
a at tick 60 aligns with pulses on all metric levels dup

i

for i ≥ 1 and trip
j
for j ≥ 2. Here, the lowest matching

levels are dup
1
and trip

2
, so by prioritizing duple levels,

ml(a) = dup
1
. Conversely, a note onset b at tick 40 aligns

only with triplet levels, resulting inml(b) = trip
1
.

Figure 6 Example of each duple onset metric level grid in
different colors using circles and dotted lines for the position of
onsets, where k = 6.

Heuristic 1 Calculation of Distinctive Note Velocity/
Onset Deviation Ratios

1: x ← [x1, ..., xn] ▷ list of velocity or onset deviation
2: cvelocity ← 0 ▷ number of distinctive velocity levels
3: conset ← 0 ▷ number of distinctive onset deviations
4: for i ← 2 to n do ▷ n = number of notes in a
track

5: if xi ∉ x then
6: c ← c + 1 ▷ add 1 to c if there is a new value

7: return cvelocity or conset

8: cvelocity−ratio = cvelocity ÷ 127 × 100
9: conset−ratio = conset ÷ TPQN × 100
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Given a list of note onset times (o), Heuristic 2 calcu-
lates the median metric level. The list c is used to store
the metric levels for each note onset, so after executing
lines 4–17, we have c = [ml(o1), ...,ml(on)]. For exam-
ple, we have a list of metric levels for note onsets: c =[2,3,4,6,3,7,8,3,4]. To calculate the median, we first
sort c as follows: c = [2,3,3,3,4,4,6,7,8]. Since the list
contains nine values, the median is the middle element,
which is the fifth value in the sorted list. Thus, themedian
metric level for c is 4.

In lines 4–9, the lowest duple metric level is deter-
mined for each note onset oi. The condition in line 10 is
met only when oi does not belong to any duple metric
level. Here, ||c|| denotes the current length of c. If oi does
not match a duple level, lines 11–15 determine the low-
est triplet metric level. When oi does not belong to any
duple or triplet level, it is assigned to an extra category
containing both dup

i
and trip

i
for any i ≥ k (lines 16–17).

To calculate the median metric level, each level is
assigned a unique numerical value. Duple and triplet
metric levels are interleaved to ensure a meaningful
median: duple levels are represented by even num-
bers (dup

i = 2i) and triplet levels by odd numbers
(trip

i = 2i + 1).

performed (EP) tracks. A machine learning regressor aids
in identifying this threshold, evaluated using metrics
such as classification accuracy and the P4 metric (Sitarz,
2022).

The selection of the P4 metric (Equation 1; true posi-
tives [TP], true negatives [TN], false positives [FP], and
false negatives [FN]) over the F1 metric is motivated by
the small sample size of ground truths available for non-
expressive and expressive tracks in our binary classifica-
tion task.

The curated set for threshold selection and evalua-
tion is split into 80% training for the threshold selection
(Section 5.1) and 20% testing for the evaluation (Section
5.2) to prevent data leakage. Heuristics for expressive
music performance detection, described in Section 4, are
assessed for classification accuracy on this testing set.

5.1 THRESHOLD SELECTION OF HEURISTICS FOR
EXPRESSIVE MUSIC PERFORMANCE DETECTION
The threshold denotes the optimal value delineating the
boundary between NE and EP tracks. A significant chal-
lenge in identifying the threshold stems from the limited
availability of dependable ground-truth instances for NE
and EP tracks.

The curation process involves manually inspecting
tracks for velocity and microtiming variations to achieve
a 100% confidence level in ground truths. Subsets failing
to meet this level are strictly excluded from considera-
tion. We selected 361 NE and 361 EP tracks and assigned
binary labels 0 for NE and 1 for EP tracks. Our curated set
consists of:

1. Non-expressive (361 instances): ASAP (Foscarin et al.,
2020) score tracks.

2. Expressively performed (361 instances): ASAP
performance tracks, Vienna 4 × 22 Piano Corpus
(Goebl, 1999), Saarland Music Data (Müller et al.,
2011), Groove MIDI (Gillick et al., 2019), and
Batik-plays-Mozart Corpus (Hu and Widmer, 2023).

For the curated set, we intentionally balanced the num-
ber of instances across classes to avoid bias. In imbal-
anced datasets, classification accuracy can be mislead-
ingly high—especially in a two-class setup—where a
classifier could achieve high accuracy by predominantly
predicting the majority class if one class has significantly
more instances (e.g., 10 times more). This bias reduces
the model’s ability to generalize and perform well on
unseen data, especially if both classes are important.
As a result, the classification accuracy, precision, and
recall metrics can become unreliable, making it difficult
to assess the true effectiveness of the heuristics, particu-
larly in detecting or distinguishing the minority class.

Heuristic 2 Calculation of Note Onset Median Metric
Level

1: c ← [ ] ▷ List of metric levels
2: o ← [o1, ..., on] ▷ List of note onsets (in ticks)
3: TPQN ▷ Ticks per quarter notes of MIDI File
4: for i ← 1 to n do ▷ line(4–9): Handle duple onsets
5: for j ← 0 to k − 1 do

6: p ← TPQN
2 j

▷ periodicity of duple grid

7: if oi (mod p) ≡ 0 then
8: c.append(2 j) ▷multiples of periodicity
9: break

10: if ||c|| < i then ▷ line(10–15): Handle triplet
11: for j ← 0 to k − 1 do

12: p ← 2 ∗TPQN
3 ∗2 j

▷ periodicity of triplet

13: if oi (mod p) ≡ 0 then
14: c.append(2 j + 1) ▷multiples of p
15: break
16: if ||c|| < i then ▷ Handle onsets beyond grid
17: c.append(2k) ▷ k = metric level’s depth

18: returnmedian(c)

5 THRESHOLD AND EVALUATION OF
HEURISTICS FOR EXPRESSIVE MUSIC
PERFORMANCE DETECTION

Optimal threshold selection involves a structured
approach to determine the best threshold for distin-
guishing between non-expressive (NE) and expressively

P4 = 4 · TP · TN
4 · TP · TN + (TP + TN) · (FP + FN) (1)
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To tackle this, balancing the dataset enables a more
reliable option for evaluating the classification task, even
for baseline heuristics. We partially excluded Groove
MIDI and ASAP subsets from the curated set, as if
we had included them entirely, the curated set initially
would contain roughly 10 times more expressively per-
formed instances than non-expressive ones. A total of
361 instances were selected, as this was the maxi-
mum number of non-expressive instances with available
ground truth data.

We employ logistic regression (LR; Kleinbaum et al.,
2002) alongside leave-one-out cross-validation (LOOCV;
Wong, 2015) to determine thresholds using ground
truths of NE and EP classes. LR estimates each class
probability for binary classification between NE and EP
class tracks. LOOCV assesses model performance itera-
tively by training on all but one data point and testing on
the excluded point, ensuring comprehensive evaluation.
This is particularly beneficial for small datasets to avoid
reliance on specific train–test splits. During this task, the
machine learning regressor is solely used for threshold
identification rather than classification. The high accu-
racy of the machine learning regressor facilitates opti-
mal threshold identification without arbitrary threshold
selection.

After completing the machine learning classifier’s
training phase, efforts are directed toward identifying
the classifier’s optimal boundary point to maximize the
P4 metric. However, relying solely on the P4 metric for
threshold selection proves inadequate, as it may not
comprehensively capture all pertinent aspects of the
underlying scenarios.

Wemanually examine the training set to establish per-
centile boundaries for distinguishing NE and EP classes
based on ground truth data. Specifically, we identify the
maximum P4 metric within the 80% training set. Using
this boundary range, we determine the optimal thresh-
old index in a feature array that maximizes the P4metric,
which is then used to extract the corresponding thresh-
old for our heuristic. This feature array contains all feature
values for each heuristic. The optimal threshold index,
selected on the basis of our machine learning regression
model and P4 score, identifies the optimal threshold from
the feature array. For example, the optimal threshold
for the NOMML heuristic is found at level 12, corre-
sponding to the 63.85th percentile, yielding a P4 score
of 0.9952, with similar information available for other
heuristics in Table 3. Detailed steps for selecting optimal
thresholds for each heuristic are provided in Supplemen-
tary File: Appendix B.

It is important to note that the analysis in this section
is speculative, relying on observations from Tables 4 and
5 without direct supporting evidence at this stage. Later
in the evaluation (Section 5.2), we provide corresponding
results that substantiate these preliminary insights.

Heuristic Threshold P4

Distinct velocity 52 0.7727

Distinct onset 42 0.7225

DNVR 40.965% 0.7727

DNODR 4.175% 0.9529

NOMML Level 12 0.9952

Table 3 Optimal threshold selection results based on the 80%
training set, showing the optimal threshold value for each
heuristic where the P4 value is maximized.

Class Distinct− Onset & Distinct− Velocity

NE (62.5%) D− O < 42 & D− V < 52

EO (7.2%) D− O ≥ 42 & D− V < 52

EV (27.4%) D− O < 42 & D− V ≥ 52

EP (2.9%) D− O ≥ 42 & D− V ≥ 52

Table 4 Detection results (%) for expressive performance in
each MIDI track class within the GigaMIDI dataset.

The analysis is based on the number of distinct velocity levels
(D-V = distinct velocity) and onset-time deviations (D-O = dis-
tinct onset). Categories include non-expressive (NE), expres-
sive onset (EO), expressive velocity (EV), and expressively per-
formed (EP).

Class conset−ratio(O−R) & cvelocity−ratio(V−R)

NE (52.3%) cO−R < 4.175% & cV−R < 40.965%

EO (9.1%) cO−R ≥ 4.175% & cV−R < 40.965%

EV (24.2%) cO−R < 4.175% & cV−R ≥ 40.965%

EP (14.4%) cO−R ≥ 4.175% & cV−R ≥ 40.965%

Table 5 Results (%) of expressive performance detection for
each MIDI track class in GigaMIDI based on the calculation of
conset−ratio (DNODR), and cvelocity−ratio (DNVR).

Tables 4 and 5 display the distribution of the GigaMIDI
dataset across four distinct classes (Figure 1), using
optimal thresholds derived from our baseline heuris-
tics (distinct velocity levels and onset-time deviations)
and DNVR/DNODR heuristics. With the baseline heuris-
tics (Table 4), class distribution accuracy is limited owing
to the prevalence of short-length drum and melody
loop tracks in GigaMIDI, which baseline heuristics do
not account for. In contrast, results using DNVR/DNODR
heuristics (Table 5) show improved class identification,
especially for EP and NE tracks, as these heuristics con-
sider MIDI track length, accommodating short loops with
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Figure 7 Distribution of MIDI tracks according to (a) NOMML (level between 0 and 12, where k = 6) for MIDI tracks in GigaMIDI. The
NOMML heuristic investigates duple and triplet onsets, including onsets that cannot be categorized as duple- or triplet-based MIDI
grids, and (b) instruments for expressively performed tracks in the GigaMIDI dataset.

around 100 notes. Although DNVR/DNODR heuristics pro-
vide more accurate distributions, both are less robust
than the distribution of the NOMML heuristic, as shown in
Figure 7(a).

Figure 7(a) illustrates the distribution of NOMML for
MIDI tracks in the GigaMIDI dataset. The analysis reveals
that the majority of MIDI tracks fall within three distinct
bins (bins: 0, 2, and 12), encompassing a cumulative per-
centage of 86.1%. This discernible pattern resembles a
bimodal distribution, distinguishing between NE and EP
class tracks.

Figure 7(a) shows 69% of MIDI tracks in GigaMIDI
are NE class and 31% of GigaMIDI are EP class tracks
(NOMML: 12). Our curated version of GigaMIDI utilizing
NOMML level 12 as a threshold is provided. This curated
version consists of 869,513 files (81.59% single-track and
18.41% multi-track files) or 1,655,649 tracks (28.18%
drum and 71.82% non-drum tracks). The distribution of
MIDI instruments in the curated version is displayed in
Figure 7(b), indicating that piano and drum tracks are the
predominant components.

5.2 EVALUATION OF HEURISTICS FOR
EXPRESSIVE PERFORMANCE DETECTION
In our evaluation results (Table 6), the NOMML heuristic
clearly outperforms other heuristics, achieving the high-
est accuracy at 100%. Additionally, onset-based heuris-
tics generally show better accuracy than velocity-based
ones. This suggests that distinguishing velocity levels
poses a greater challenge. For instance, in the ASAP sub-
set, non-expressive score tracks—encoding traditional
dynamics through velocity—display fluctuations rather
than a fixed velocity level, whereas these tracks are
aligned to a quantized grid, making onset-based detec-
tion more straightforward. However, we recognize that

Detection heuristics Classification accuracy Ranking

Distinct velocity 77.9% 4

Distinct onset 77.9% 4

DNVR 83.4% 3

DNODR 98.2% 2

NOMML 100% 1

Table 6 Classification accuracy of each heuristic for expressive
performance detection.

accuracy alone does not provide a complete understand-
ing, prompting further investigation.

To further investigate, we also report TP, TN, FP, FN, and
CN as metrics (shown in Table 7) for assessing the reli-
ability of our heuristics using the optimal thresholds in
expressive performance detection, where “true” denotes
expressive instances and “false” signifies non-expressive
instances. Thus, investigating the capacity to achieve a

higher correct-negative (CN = TN
TN + FN

) rate holds sig-

nificance in this context, as it assesses the reliable dis-
criminatory power against NE instances, as well as EP
instances. As a result, NOMML achieves a 100% CN rate,
and other heuristics perform reasonably well.

6 LIMITATIONS

In navigating the use of MIDI datasets for research and
creative explorations, it is imperative to consider the eth-
ical implications inherent in dataset bias (Born, 2020).
Bias in MIDI datasets often mirrors prevailing practices in
Western digital music production, where certain instru-
ments, particularly the piano and drums, as illustrated
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Heuristic (%) TP TN FP FN CN

Distinct
velocity

35.4 42.5 21.2 0.9 98.0

Distinct onset 24.8 53.1 10.6 11.5 82.2

DNVR 35.4 48.0 21.2 0.9 98.2

DNODR 34.5 63.7 0 1.77 97.3

NOMML 36.3 63.7 0 0 100

Table 7 True positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) based on the threshold set by P4
for heuristics, including correct negatives (CN) (in percentages).

in Figure 7(b), dominate. This predominance is largely
influenced by the widespread availability and use of
MIDI-compatible instruments and controllers for these
instruments. The piano is a primary compositional tool
and a ubiquitous MIDI controller and keyboard, facilitat-
ing input for a wide range of virtual instruments and
synthesizers. Similarly, drums, whether through drum
machines or MIDI drum pads, enjoy widespread use for
rhythm programming and beat production. This preva-
lence arises from their intuitive interface and versatil-
ity within digital audio workstations. This may explain
why the distribution of MIDI instruments in MIDI datasets
is often skewed toward piano and drums, with limited
representation of other instruments, particularly those
requiringmore nuanced interpretation or those less com-
monly played via MIDI controllers or instruments.

Moreover, the MIDI standard, while effective for
encoding basic musical information, is limited in repre-
senting the complexities of Western music’s time sig-
natures and meters. It lacks an inherent framework to
encode hierarchical metric structures, such as strong and
weak beats, and struggles with the dynamic flexibility of
metric changes. Additionally, its reliance on fixed tempo-
ral grids often oversimplifies expressive rhythmic nuances
such as rubato, leading to a loss of criticalmusical details.
These constraints necessitate supplementary metadata
or advanced techniques to accurately capture the tem-
poral intricacies of Western music.

Furthermore, a constraint emerges from the inad-
equate accessibility of ground truth data that clearly
demarcates the differentiation between non-expressive
and expressiveMIDI tracks across all MIDI instruments for
expressive performance detection. Presently, such data
predominantly originate from piano and drum instru-
ments in the GigaMIDI dataset.

7 CONCLUSION AND FUTURE WORK

Analyzing MIDI data may benefit symbolic music gener-
ation, computational musicology, and music data min-
ing. TheGigaMIDI datasetmay contribute toMIR research
by providing consolidated access to extensive MIDI

data for analysis. Metadata analyses, data source ref-
erences, and findings on expressive music performance
detection may enhance nuanced inquiries and foster
progress in expressive music performance analysis and
generation.

Our novel heuristics for discerning between non-
expressive and expressively performed MIDI tracks
exhibit notable efficacy in the presented dataset. The
note onset median metric level (NOMML) heuristic
demonstrates a classification accuracy of 100%, under-
scoring its discriminative capacity for expressive music
performance detection.

Future work on the GigaMIDI dataset could signifi-
cantly advance symbolic music research by using MIR
techniques to identify and categorize musical styles sys-
tematically across all MIDI files. Currently, only about
one-fifth of the dataset includes stylemetadata; expand-
ing this would improve its comprehensiveness. Track-
level, rather than file-level, style categorization would
better capture the mix of styles in genres such as rock,
jazz, and pop. Additionally, adding metadata for non-
Western music, such as Asian classical or Latin/African
styles, would reduceWestern bias and offer amore inclu-
sive resource for global music research, supporting cross-
cultural studies.

8 DATA ACCESSIBILITY AND ETHICAL
STATEMENTS

The GigaMIDI dataset consists of MIDI files acquired via
the aggregation of previously available datasets and web
scraping from publicly available online sources. Each sub-
set is accompanied by source links, copyright information
when available, and acknowledgments. File names are
anonymized using MD5 hash encryption. We acknowl-
edge the work from the previous dataset papers (Bosch
et al., 2016; Callender et al., 2020; Choi et al., 2022; Cres-
tel et al., 2018; Donahue et al., 2018; Ens and Pasquier,
2021; Foscarin et al., 2020; Gillick et al., 2019; Goebl,
1999; Hawthorne et al., 2019; Hu and Widmer, 2023;
Hung et al., 2021; Hyun et al., 2022; Kong et al., 2022;
Li et al., 2018; Liu et al., 2022; Ma et al., 2022; Miron
et al., 2016; Müller et al., 2011; Plut et al., 2022; Raffel,
2016; Ryu et al., 2024; Sarmento et al., 2021; Szelogowski
et al., 2022; Wang et al., 2020; Zhang et al., 2022) that
we aggregated and analyzed as part of the GigaMIDI
subsets.

This dataset has been collected, utilized, and dis-
tributed under the Fair Dealing provisions for research
and private study outlined in the Canadian Copyright Act
(Government of Canada, 2024). Fair Dealing permits the
limited use of copyright-protected material without the
risk of infringement and without having to seek the per-
mission of copyright owners. It is intended to provide a
balance between the rights of creators and the rights of
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users. As per instructions of the Copyright Office of Simon
Fraser University,12 two protective measures have been
put in place that are deemed sufficient given the nature
of the data (accessible online):

1. We explicitly state that this dataset has been
collected, used, and distributed under the Fair
Dealing provisions for research and private study
outlined in the Canadian Copyright Act.

2. On the Hugging Face Hub, we advertise that the data
are available for research purposes only and collect
the user’s legal name and email as proof of
agreement before granting access.

We thus decline any responsibility for misuse.
The Findable, Accessible, Interoperable, Reusable

(FAIR) principles (Jacobsen et al., 2020) serve as a frame-
work to ensure that data are well-managed, easily dis-
coverable, and usable for a broad range of purposes in
research. These principles are particularly important in
the context of data management to facilitate open sci-
ence, collaboration, and reproducibility.

• Findable: Data should be easily discoverable by both
humans and machines. This is typically achieved
through proper metadata, traceable source links, and
searchable resources. Applying this to MIDI data,
each subset of MIDI files collected from public
domain sources is accompanied by clear and
consistent metadata via our GitHub and Hugging Face
Hub webpages. For example, organizing the source
links of each data subset, as done with the GigaMIDI
dataset, ensures that each source can be easily
traced and referenced, improving discoverability.

• Accessible: Once found, data should be easily
retrievable using standard protocols. Accessibility
does not necessarily imply open access, but it does
mean that data should be available under
well-defined conditions. For the GigaMIDI dataset,
hosting the data on platforms such as Hugging Face
Hub improves accessibility, as these platforms provide
efficient data retrieval mechanisms, especially for
large-scale datasets. Ensuring that MIDI data are
accessible for public use while respecting any
applicable licenses supports wider research and
analysis in music computing.

• Interoperable: Data should be structured in such a
way that it can be integrated with other datasets and
used by various applications. MIDI data, being a
widely accepted format in music research, are
inherently interoperable, especially when
standardized metadata and file formats are used. By
ensuring that the GigaMIDI dataset complies with
widely adopted standards and supports integration
with state-of-the-art libraries in symbolic music
processing, such as Symusic and MidiTok, the dataset

enhances its utility for music researchers and
practitioners working across different platforms and
systems.

• Reusable: Data should be well-documented and
licensed to be reused in future research. Reusability is
ensured through proper metadata, clear licenses, and
documentation of provenance. In the case of
GigaMIDI, aggregating all subsets from public domain
sources and linking them to the original sources
strengthens the reproducibility and traceability of the
data. This practice allows future researchers to not
only use the dataset but also verify and expand upon
it by referring to the original data sources.

Developing ethical and responsible AI systems for music
requires adherence to core principles of fairness, trans-
parency, and accountability. The creation of the GigaMIDI
dataset reflects a commitment to these values, empha-
sizing the promotion of ethical practices in data usage
and accessibility. Our work aligns with prominent initia-
tives promoting ethical approaches to AI in music, such
as AI for Music Initiatives,13 which advocates for princi-
ples guiding the ethical creation of music with AI, sup-
ported by the Metacreation Lab for Creative AI14 and the
Centre for Digital Music,15 which provide critical guidelines
for the responsible development and deployment of AI
systems in music. Similarly, the Fairly Trained initiative16

highlights the importance of ethical standards in data
curation and model training, principles that are integral
to the design of the GigaMIDI dataset. These frameworks
have shaped the methodologies used in this study, from
dataset creation and validation to algorithmic design and
systemevaluation. By engagingwith these initiatives, this
research not only contributes to advancing AI in music
but also reinforces the ethical use of data for the benefit
of the broader music computing and MIR communities.
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