
B. Model Selection and Hyperparameter Settings for Optimal Threshold Selection of Heuristics
for Expressive Music Performance Detection

B.1 Machine Learning (ML) Model Selection
Following a series of comparative experiments involving logistic regression, decision trees, and random
forests—each implemented using the scikit-learn library—logistic regression was chosen as the most suitable
machine learning algorithm for determining optimal thresholds to differentiate between non-expressive and ex-
pressive MIDI tracks. This selection was made based on the ground truth data we manually collected, which
informed the model’s performance evaluation and final decision.

The choice of a machine learning model for identifying optimal thresholds between two classes, such as
non-expressive and expressively-performed MIDI tracks, requires careful consideration of the data’s specific char-
acteristics and the analysis goals. Logistic regression is often favoured when the relationship between the input
features and the target class is approximately linear. This model provides a clear, interpretable framework for
classification by modelling the probability that a given input belongs to one of the two classes. The output of
logistic regression is a continuous probability score between 0 and 1, which allows for straightforward determina-
tion and adjustment of the decision threshold. This simplicity and directness make logistic regression particularly
appealing when the primary objective is to identify a reliable and easily interpretable threshold.

However, logistic regression has limitations, particularly when the true relationship between the features and
the outcome is non-linear or complex. In such cases, decision trees and random forests offer more flexibility.
Decision trees can capture non-linear interactions between features by partitioning the feature space into distinct
regions associated with a specific class. Random forests, as ensembles of decision trees, enhance this flexibility
by averaging the predictions of multiple trees, thereby reducing variance and improving generalization. These
models can model complex relationships that logistic regression might miss, making them more suitable for
datasets where the linear assumption of logistic regression does not hold.

Regarding threshold determination, logistic regression has a distinct advantage due to its probabilistic output.
The model naturally provides a probability estimate for each instance, and a threshold can be easily applied to
classify instances into one of the two classes. This straightforward approach to threshold selection is one of the
key reasons logistic regression is often chosen for tasks requiring clear and interpretable decision boundaries. In
contrast, decision trees and random forests do not inherently produce probability scores similarly. While they can
be adapted to generate probabilities by considering the distribution of classes within the leaf nodes for decision
trees or across the trees in the forest for random forests, this process is more complex and can make threshold
selection less intuitive.

In our computational experiment, the logistic regression machine learning model, combined with manual
threshold inspection for validation, was found to be sufficient for identifying the optimal threshold for each
heuristic. This approach was particularly effective given the simplicity of the task, which involved a single feature
for each of the three key metrics—Distinctive Note Velocity Ratio (DNVR), Distinctive Note Onset Deviation Ratio
(DNODR), and Note Onset Median Metric Level (NOMML)—and the classification of data into two categories:
non-expressive and expressive tracks. The problem at hand, being a straightforward binary classification task
using a supervised learning algorithm, aligned well with the capabilities of logistic regression, thereby rendering
it an appropriate choice for our optimal threshold selection.

B.2 Hyperparameter Settings and Training Details
The process of training a logistic regression model using the leave-one-out cross-validation (LOOCV) method
requires a methodical approach to ensure robust model performance. Leave-one-out cross-validation is a special
case of k-fold cross-validation where the number of folds equals the number of instances in the dataset. In
this method, the model is trained on all data points except one, which is used as the validation set, and this
process is repeated for each data point. The advantage of LOOCV lies in its ability to maximize the use of
available data for training while providing a nearly unbiased estimate of model performance. However, due to its
computational intensity, especially with large datasets, careful consideration is given to the selection and tuning
of hyperparameters to optimize the model’s performance. In our case, we trained our models with 722 instances
using LOOCV, a relatively small amount of data available with the ground truth of non-expressive and expressive
tracks due to the scarcity of such ground truth available for expressive music performance detection.

The training environment for our experiments was configured on a MacBook Pro, equipped with an Apple M2
CPU and 16GB of RAM, without the use of external GPUs. Our analysis, which included evaluation using the P4
metric alongside basic metrics such as classification accuracy, precision, and recall, did not indicate any significant
impact on performance attributable to the computational setup. Furthermore, we share three logistic regression
models in .pkl format, each trained on a specific heuristic, accessible via GitHub. These models correspond to the
following heuristics: baseline heuristics, Distinctive Note Velocity Ratio (DNVR), trained in less than 10 minutes;



Distinctive Note Onset Deviation Ratio (DNODR), trained within 10 minutes; and Note Onset Median Metric
Level (NOMML), trained in 3 minutes with our MacBook Pro.

For hyperparameter tuning, we employed the scikit-learn library for logistic regression, a widely recognized
tool in the machine learning community for its efficiency and versatility. We utilized the GridSearchCV function
within this framework, which facilitates an exhaustive search over a specified parameter grid. This approach
identifies the most effective hyperparameters for the logistic regression model. GridSearchCV systematically
explores combinations of specified hyperparameter values and evaluates model performance based on cross-
validation scores, in this case, derived from the LOOCV process.

The hyperparameters tuned during this process include the regularization strength (denoted as C), which
controls the trade-off between achieving a low training error and a low testing error, as well as the choice of
regularization method (L1 or L2). By conducting an exhaustive search over these parameters, we aimed to
identify the configuration that minimizes the validation error across all iterations of the LOOCV. This rigorous
tuning process is crucial, as these hyperparameters can significantly affect logistic regression’s performance,
particularly in the presence of imbalanced data or feature correlations. The result is a logistic regression model
that is finely tuned to perform optimally under the specific conditions of our dataset and evaluation framework.

The following parameters and model configuration were determined through hyperparameter tuning using
leave-one-out cross-validation and GridSearchCV using the scikit-learn library for the logistic regression model.
Notably, these optimal hyperparameters were consistently identified across all three models corresponding to
each heuristic.

• Hyperparameter for the logistic regression models: C=0.046415888336127774
• Logistic regression setting details using the scikit-learn Python ML library:

LogisticRegression(random_state=0, C=0.046415888336127774, max_iter=10000, tol=0.1)
This configuration represents the optimal hyperparameters identified through comprehensive parameter ex-

ploration using GridSearchCV and LOOCV, thereby ensuring the logistic regression model’s robust performance.

B.3 Procedure of Optimal Threshold Selection
Our curated evaluation set comprises 361 non-expressive (NE) tracks labelled 0 and 361 expressively-performed
(EP) tracks labelled 1. We have five features for training each: baseline heuristics (the number of distinct
velocity levels and onset time deviations), DNVR, DNODR, and NOMML (more sophisticated heuristic) feature
values. To train the logistic regression models for selecting optimal thresholds for our heuristics, 80% of this
curated evaluation set was allocated as the training set. The remaining 20% was reserved as the testing set,
which was subsequently used to validate the model’s performance during the evaluation phase, so the testing set
is not involved with the optimal threshold selection process to prevent potential data leakage.

To determine the optimal threshold for expressive music performance detection using logistic regression with
a focus on the P4 metric, the following steps were undertaken:

• Step (1): Prepare the logistic regression algorithm using GridSearchCV to identify optimal hyperparameter
settings, followed by leave-one-out cross-validation to maximize the P4 metric. This ensures that the model
is fine-tuned for the specific task of classifying non-expressive and expressively-performed MIDI tracks.

• Step (2): Train the logistic regression model on the training set, incorporating the relevant features and
ground truth labels, using the pre-determined optimal hyperparameters.

• Step (3): Apply leave-one-out cross-validation on the validation set (within the training set) to obtain
predicted probabilities for the positive class, i.e., expressively-performed MIDI tracks.

• Step (4): Validate the performance of the classifier at various threshold values, focusing on optimizing the
P4 metric, which is particularly suited for imbalanced and small sample size datasets.

• Step (5): Identify the index of the optimal threshold value within the threshold array that maximizes the
P4 metric, ensuring that the model effectively distinguishes between the two classes.

• Step (6): Use this index to extract the corresponding optimal value from the feature array, translating the
identified threshold into actionable feature values.

• Step (7): Lastly, we conduct a manual inspection to ensure that the selected thresholds are consistent with
the distribution of feature values within the dataset. We then determine the optimal percentiles for these
thresholds based on the feature value distribution.

Details of Steps (4), (5), and (6): Initially, predicted probabilities for the positive class are obtained using
the predict_proba method of the logistic regression model. Next, the precision-recall curve is computed using
the precision_recall_curve function, and this curve is plotted as a function of different threshold values. The
P4 metric is then maximized to identify the optimal threshold, given its effectiveness in handling imbalanced
and small sample size datasets by prioritizing the accurate classification of the minority class. By adjusting
the threshold value, the trade-off between precision and recall can be controlled—higher thresholds increase



precision but reduce recall, whereas lower thresholds have the opposite effect.
The precision and recall analysis are related to the P4 metric in that both are used to evaluate model perfor-

mance, especially in imbalanced and small sample size datasets. Precision and recall measure the accuracy of
positive predictions and the model’s ability to identify all positive cases, respectively. The P4 metric builds on this
by optimizing for the correct classification of the minority class, making it particularly useful when the dataset is
imbalanced and handing small sample size data. While precision and recall help select optimal thresholds, the
P4 metric provides a more tailored validation for scenarios where the minority class is of primary concern.

Following the precision and recall analysis, we convert the identified threshold value into the corresponding
feature value. For instance, to translate a P4 metric threshold value (0.9952) into the corresponding Note Onset
Median Metric Level (NOMML), the index of the threshold value is determined within the threshold array derived
from the precision-recall curve analysis, ensuring that the P4 metric is maximized. This index is then used to
extract the corresponding feature value from the NOMML list. As a result, the threshold is set at the corresponding
percentile within our curated set used during the optimal threshold selection, establishing the boundary between
non-expressive and expressively-performed ground truth data. Finally, we perform a manual review to verify that
the selected thresholds align with the distribution of feature values within the dataset. Following this, we identify
the optimal percentiles for these thresholds by analyzing the distribution of the feature values.


	Introduction
	Background
	Symbolic Music Data
	Music Expression and Performance Representations of MIDI
	Non-expressive and expressively-performed MIDI tracks
	Music expression and performance datasets


	GigaMIDI Data Collection
	Overview of GigaMIDI Dataset
	Collection and Preprocessing of GigaMIDI Dataset
	Descriptive Statistics of the GigaMIDI Dataset
	MIDI Instrument Group
	Number of MIDI Notes and Ticks Per Quarter Note
	Musical Style


	Heuristics for MIDI-based Expressive Music Performance Detection
	Baseline Heuristic: Distinct Number of Velocity Levels and Onset Time Deviations
	Distinctive Note Velocity/Onset Deviation Ratio (DNVR/DNODR)
	MIDI Note Onset Median Metric Level (NOMML)

	Threshold and Evaluation of Heuristics for Expressive Music Performance Detection
	Threshold Selection of Heuristics for Expressive Music Performance Detection
	Evaluation of Heuristics for Expressive Performance Detection

	Limitations
	Conclusion and Future Work
	Data Accessibility and Ethical Statements
	Acknowledgements
	Competing Interests
	Authors' Contributions
	Additional figures
	Descriptive statistics of the GigaMIDI Dataset
	Distribution for the number of distinct MIDI note velocity levels and onset time deviations.

	Model Selection and Hyperparameter Settings for Optimal Threshold Selection of Heuristics for Expressive Music Performance Detection
	Machine Learning (ML) Model Selection
	Hyperparameter Settings and Training Details
	Procedure of Optimal Threshold Selection




