
A comparison of numerical optimizers for logistic regression
Thomas P. Minka

October 22, 2003 (revised Mar 26, 2007)

Abstract

Logistic regression is a workhorse of statistics and is closely related to methods used in Ma-
chine Learning, including the Perceptron and the Support Vector Machine. This note compares
eight different algorithms for computing the maximum a-posteriori parameter estimate. A full
derivation of each algorithm is given. In particular, a new derivation ofIterative Scaling is given
which applies more generally than the conventional one. A new derivation isalso given for the
Modified Iterative Scaling algorithm of Collins et al. (2002). Most of the algorithms operate in the
primal space, but can also work in dual space. All algorithms are compared in terms of computa-
tional complexity by experiments on large data sets. The fastest algorithms turnout to be conjugate
gradient ascent and quasi-Newton algorithms, which far outstrip Iterative Scaling and its variants.

1 Introduction

The logistic regression model is

p(y = ±1|x,w) = σ(ywTx) =
1

1 + exp(−ywTx)
(1)

It can be used for binary classification or for predicting thecertainty of a binary outcome. See Cox &
Snell (1970) for the use of this model in statistics. This note focuses only on computational issues re-
lated to maximum-likelihood or more generally maximum a-posteriori (MAP) estimation. A common
prior to use with MAP is:

p(w) ∼ N (0, λ−1I) (2)

Usingλ > 0 gives a “regularized” estimate ofw which often has superior generalization performance,
especially when the dimensionality is high (Nigam et al., 1999).

Given a data set(X,y) = [(x1, y1), ..., (xN , yN)], we want to find the parameter vectorw which
maximizes:

l(w) = −
n
∑

i=1

log(1 + exp(−yiw
Txi)) −

λ

2
wTw (3)

The gradient of this objective is

g = ∇
w
l(w) =

∑

i

(1 − σ(yiw
Txi))yixi − λw (4)

1

Gradient descent using (4) resembles the Perceptron learning algorithm, except that it will always
converge for a suitable step size, regardless of whether theclasses are separable.

The Hessian of the objective is

H =
d2l(w)

dwdwT
= −

∑

i

σ(wTxi)(1 − σ(wTxi))xix
T
i − λI (5)

which in matrix form can be written

aii = σ(wTxi)(1 − σ(wTxi)) (6)

H = −XAXT − λI (7)

Note that the Hessian does not depend on how thex’s are labeled. It is nonpositive definite, which
meansl(w) is convex.

For sufficiently largeλ, the posterior forw will be approximately Gaussian:

p(w|X,y) ≈ N(w; ŵ,−H−1) (8)

ŵ = argmaxp(w)
∏

i

p(yi|xi,w) (9)

So the model likelihood can be approximated by

p(y|X) ≈ p(y|X, ŵ)p(ŵ)(2π)d/2 |−H|−1/2 (10)

whered is the dimensionality ofw.

2 Newton’s method

If we define

zi = xT
i wold +

(1 − σ(yiw
Txi))yi

aii

(11)

Then a Newton step is

wnew = wold + (XAXT + λI)−1

(

∑

i

(1 − σ(yiw
Txi))yixi − λw

)

(12)

= (XAXT + λI)−1XA(XTwold +

[

(1 − σ(yiw
Txi))yi

aii

]

) (13)

= (XAXT + λI)−1XAz (14)

which is the solution to a weighted least squares problem. This efficient implementation of Newton’s
method is called Iteratively Reweighted Least Squares. It takesO(nd2) time per iteration.

2

3 Coordinate ascent

Because the likelihood is convex, we can also optimize eachwk alternately. A coordinate-wise Newton
update is

wnew
k = wold

k +
−λwold

k +
∑

i(1 − σ(yiw
Txi))yixik

λ +
∑

i aiix2
ik

(15)

To implement this efficiently, note thatwTxi for all i can be incrementally updated via

(wnew)Txi = (wold)Txi + (wnew
k − wold

k)xik (16)

Using this trick, it takesO(n) time to updatewk and thusO(nd) time to update all components ofw.

4 Conjugate gradient ascent

The idea of the last section can be generalized to updating inan arbitrary directionu. The Newton
step alongu is

wnew = wold − gTu

uTHu
u (17)

To implement this efficiently, use the expansion

−uTHu = λuTu +
∑

i

aii(u
Txi)

2 (18)

Each update takesO(nd) time, which is more expensive than theO(n) time required for updating
along a coordinate direction. However, this method can be faster if we choose good update directions.
One approach is to use the gradient as the update direction. Even better is to use the so-calledconjugate
gradientrule, which subtracts the previous update direction from the gradient:

u = g − uoldβ (19)

There are various heuristic ways to set the scale factorβ (Bishop, 1995). The method which seems to
work best in practice is the Hestenes-Stiefel formula:

β =
gT(g − gold)

(uold)T(g − gold)
(20)

This formula is derived in the following way. When the surfaceis quadratic with HessianH, we want
the new search direction to be orthogonal with respect toH: uTHuold = 0, which implies

β =
gTHuold

(uold)THuold
(21)

3

On a quadratic surface, the pairs(wold,gold) and(w,g) must satisfy

g − gold = H(w − wold) (22)

But sincew = wold + αuold, we obtain

g − gold = αHuold (23)

Substituting (23) into (21) gives (20).

5 Fixed-Hessian Newton method

Another way to speed up Newton’s method is to approximate thevarying Hessian with a fixed matrix
H̃ that only needs to be inverted once. Böhning (1999) has shown that the convergence of this approach
is guaranteed as long as̃H ≤ H in the sense thatH− H̃ is positive definite. For maximum-likelihood
estimation, he suggests the matrixH̃ = −1

4
XXT, which for MAP generalizes to

H̃ = −1

4
XXT − λI (24)

This matrix must be less thanH because1
4
≥ σ(x)(1−σ(x)) for anyx and therefore1

4
I ≥ A. Because

H̃ does not depend onw, we can precompute its inverse—or even simpler its LU decomposition. The
resulting algorithm is:

Setup Compute the Cholesky decomposition ofH̃.

Iterate wnew = wold − H̃−1g

whereH̃−1g is computed by back-substitution.

This algorithm hasO(nd2) setup cost andO(nd + d2) cost per iteration (O(nd) for computing the
gradient andO(d2) for back-substitution).

A faster-converging algorithm can obtained by ignoring thebound requirement and using line searches.
That is, we takeu = −H̃−1g as a search direction and apply (17). In this way, the approximate Hessian
is scaled automatically—not by a predefined factor of1

4
. Because it performs significantly better, this

is the version used in experiments.

4

6 Quasi-Newton

Instead of holding the approximate Hessian fixed, as in Böhning’s method, we can allow it to vary
in the inverse domain. This is the idea behind the more general quasi-Newton algorithms, DFP and
BFGS. The algorithm starts with̃H−1 = I. At each step we updatewnew = w + ∆w, giving a change
in the gradient,∆g = gnew − g. If the function is quadratic, we must have

∆w = −H−1∆g (25)

The approximate inverse Hessian,H̃−1, is repeatedly updated to satisfy this constraint.

In the BFGS algorithm, the update is (Bishop, 1995)

b = 1 +
∆gTH̃−1∆g

∆wT∆g
(26)

H̃−1
new = H̃−1 +

1

∆wT∆g

(

b∆w∆wT − ∆w∆gTH̃−1 − H̃−1∆g∆wT
)

(27)

You can verify thatH̃−1
new satisfies (25). To updatew, treatu = −H̃−1g as a search direction and

apply (17). This works better than simply setting∆w = u. The cost isO(d2 + nd) per iteration.

A variant of this algorithm is the so-called “limited-memory” BFGS (Bishop, 1995), wherẽH−1 is not
stored but assumed to beI before each update. This gives the search direction

b = 1 +
∆gT∆g

∆wT∆g
(28)

ag =
∆wTg

∆wT∆g
(29)

aw =
∆gTg

∆wT∆g
− bag (30)

u = −g + aw∆w + ag∆g (31)

This algorithm is similar to the conjugate gradient algorithm—and has similar performance.

5

7 Iterative Scaling

Iterative scaling is a lower bound method for finding the likelihood maximum. At each step, we
construct a simple lower bound to the likelihood and then move to the maximum of this bound. Iterative
scaling produces a lower bound which is additive in the parameterswk, which means we have the
option to update one or all of them at each step. The algorithmrequires that all feature values are
positive:xik > 0. Defines = maxi

∑

k xik. Unlike most derivations of iterative scaling, we will not
require

∑

k xik = 1.

Iterative scaling is based on the following two bounds:

− log(x) ≥ 1 − x

x0

− log(x0) for anyx0 (32)

− exp(−
∑

k

qkwk) ≥ −
∑

k

qk exp(−wk) − (1 −
∑

k

qk) (33)

for anyqk > 0 satisfying
∑

k

qk ≤ 1

The second bound comes from Jensen’s inequality applied to the functione−x:

exp(−
∑

k

qkwk) ≤
∑

k

qk exp(−wk) (34)

if
∑

k

qk = 1 (35)

Now let some of thewk = 0 to get

exp(−
∑

k

qkwk) ≤
∑

k

qk exp(−wk) + (1 −
∑

k

qk) (36)

if
∑

k

qk ≤ 1 (37)

Start by writing the likelihood in an asymmetric way:

p(y|X,w) =
∏

i|yi=1

exp(wTxi)

1 + exp(wTxi)

∏

i|yi=−1

1

1 + exp(wTxi)
(38)

Applying the first bound at the current parameter valuesw0, we obtain that the log-likelihood function

6

is bounded by

log p(y|X,w) =
∑

i|yi=1

wTxi −
∑

i

log(1 + exp(wTxi)) (39)

≥ log p(y|X,w0) +
∑

i|yi=1

(w − w0)
Txi +

∑

i

(1 − 1 + exp(wTxi)

1 + exp(wT
0 xi)

) (40)

= log p(y|X,w0) +
∑

i|yi=1

(w − w0)
Txi +

∑

i

σ(wT
0 xi)(1 − exp((w − w0)

Txi)) (41)

Maximizing this bound overw is still too hard. So we apply the second bound, withqk = xik/s,
remembering thatxik > 0:

− exp((w − w0)
Txi) = − exp(

∑

k

(wk − w0k)xik) (42)

≥ −
∑

k

xik

s
exp((wk − w0k)s) − (1 −

∑

k

xik

s
) (43)

Note thats was chosen to ensure
∑

k qk ≤ 1. Thanks to this bound, the algorithm reduces to a one-
dimensional maximization for eachwk of

g(wk) =
∑

i|yi=1

(wk − w0k)xik −
∑

i

σ(wT
0 xi)

∑

k

xik

s
exp((wk − w0k)s) (44)

Zero the gradient with respect towk:

dg(wk)

dwk

=
∑

i|yi=1

xik −
∑

i

σ(wT
0 xi)xik exp((wk − w0k)s) = 0 (45)

exp((wk − w0k)s) =

∑

i|yi=1 xik
∑

i σ(wT
0 xi)xik

(46)

wk = w0k +
1

s
log

∑

i|yi=1 xik
∑

i σ(wT
0 xi)xik

(47)

This is one possible iterative scaling update. Note that we could have written a different asymmetric
likelihood:

p(y|X,w) =
∏

i|yi=1

1

1 + exp(−wTxi)

∏

i|yi=−1

exp(−wTxi)

1 + exp(−wTxi)
(48)

which would have led to the update

exp((wk − w0k)s) =

∑

i(1 − σ(wT
0 xi))xik

∑

i|yi=−1 xik

(49)

7

So the fair thing to do is combine the two updates:

exp((wk − w0k)s) =

∑

i|yi=1 xik
∑

i|yi=−1 xik

∑

i(1 − σ(wT
0 xi))xik

∑

i σ(wT
0 xi)xik

(50)

This is the iterative scaling update used in practice (Nigamet al., 1999; Collins et al., 2002), and
it converges faster than either of the two asymmetric updates. Note that the first term is constant
throughout the iteration and can be precomputed. The running time isO(nd) per iteration.

8 Modified Iterative Scaling

We can get a different iterative scaling algorithm by applying the same bounds to the symmetric like-
lihood:

p(y|X,w) =
∏

i

1

1 + exp(−yiwTxi)
(51)

Applying the first bound (32) at the current parameter valuesw0, we obtain that the log-likelihood
function is bounded by

log p(y|X,w) = −
∑

i

log(1 + exp(−yiw
Txi)) (52)

≥ log p(y|X,w0) +
∑

i

(1 − 1 + exp(−yiw
Txi)

1 + exp(−yiw
T
0 xi)

) (53)

= log p(y|X,w0) +
∑

i

(1 − σ(yiw
T
0 xi))(1 − exp(−yi(w − w0)

Txi)) (54)

Maximizing this bound overw is still too hard. So we apply the second bound (33) withqk = xik/s,
remembering thatxik > 0:

− exp(−yi(w − w0)
Txi) ≥ −

∑

k

xik

s
exp(−yis(wk − w0k)) − (1 −

∑

k

xik

s
) (55)

The algorithm reduces to a one-dimensional maximization for eachwk of

g(wk) = −
∑

i

(1 − σ(yiw
T
0 xi))

∑

k

xik

s
exp(−yis(wk − w0k)) (56)

The gradient with respect towk is

dg(wk)

dwk

=
∑

i

(1 − σ(yiw
T
0 xi))yixik exp(−yis(wk − w0k)) = 0 (57)

8

Multiply both sides byexp(−s(wk − w0k)) and solve forwk to get

exp(2s(wk − w0k)) =

∑

i|yi=1 (1 − σ(yiw
T
0 xi))xik

∑

i|yi=−1 (1 − σ(yiw
T
0 xi))xik

(58)

To allow negative feature valuesxik, defines = maxi

∑

k |xik| and useqk = |xik|/s to get

g(wk) = −
∑

i

(1 − σ(yiw
T
0 xi))

∑

k

|xik|
s

exp(−yisign(xik)s(wk − w0k)) (59)

dg(wk)

dwk

=
∑

i

(1 − σ(yiw
T
0 xi))yixik exp(−yisign(xik)s(wk − w0k)) = 0 (60)

exp(2s(wk − w0k)) =

∑

i|yixik>0 (1 − σ(yiw
T
0 xi))|xik|

∑

i|yixik<0 (1 − σ(yiw
T
0 xi))|xik|

(61)

This update rule was also given by Collins et al. (2002), usinga boosting argument. This algorithm
will be called Modified Iterative Scaling. The cost isO(nd) per iteration.

9 Dual optimization

The idea behind dual optimization is to replace the originalmaximization problem with a minimiza-
tion problem on a completely different function which happens to share the same stationary points.
To accomplish this bit of magic, you introduce a set of tightupperbounds onl(w) which are param-
eterized byα. The bounds should be simple enough, e.g. quadratic, that the maximum overw can
be computed analytically for each bound. Then the solution to the original problem is given by the
upper bound whose maximum overw has thesmallestvalue. Finding this upper bound corresponds
to a minimization overα, and that is the dual problem.

Jaakkola & Haussler (1999) introduced the first dual algorithm for logistic regression, based on meth-
ods used for the Support Vector Machine. The algorithm comesfrom the following linear upper bound:

log σ(x) ≤ αx − H(α) α ∈ [0, 1] (62)

whereH(α) = −α log α − (1 − α) log(1 − α) (63)

Applying this bound throughoutl(w) gives an upper bound which is quadratic inw:

l(w) =
∑

i

log σ(yiw
Txi) −

λ

2
wTw (64)

≤ l(w,α) (65)

wherel(w,α) =
∑

i

αiyiw
Txi − H(αi) −

λ

2
wTw (66)

9

Now fold in the maximum overw to get the dual problem:

w(α) = λ−1
∑

i

αiyixi (67)

J(α) = max
w

l(w,α) (68)

=
1

2λ

∑

ij

αiαjyiyjx
T
j xi −

∑

i

H(αi) (69)

Some things to note about the dual problem:

1. The dimensionality ofw is d, but the dimensionality ofα is n. Therefore the dual problem is
simpler than the original when the data dimensionality is high (d > n).

2. The dual problem only involves inner products between data points. These inner products can
be replaced by a Mercer kernelK(xi,xj) to give a kernelized logistic regression algorithm
(Jaakkola & Haussler, 1999). The regularization parameterλ can be absorbed intoK.

At this point, we can apply a variety of algorithms to optimizeα. For example, we could use Newton’s
method. The derivatives ofJ are

dJ(α)

dαi

= λ−1yi

∑

j

αjyjx
T
j xi + log

αi

1 − αi

(70)

= yiw(α)Txi + log
αi

1 − αi

(71)

d2J(α)

dα2
i

= λ−1xT
i xi +

1

αi(1 − αi)
(72)

d2J(α)

dαidαj

= λ−1yiyjx
T
j xi (73)

Unfortunately, Newton’s method on the fullα vector requires inverting then × n Hessian matrix

H = λ−1diag(y)XTXdiag(y) + diag

(

1

αi(1 − αi)

)

(74)

Jaakkola & Haussler (1999) recommend instead to update oneαi at a time, but don’t say exactly how.
One approach is coordinate-wise Newton:

gi = yiw(α)Txi + log
αi

1 − αi

(75)

αnew
i = αi −

gi

λ−1xT
i xi + 1

αi(1−αi)

(76)

If this update would takeαi outside the region[0, 1], then we stop it at the endpoint.

10

The algorithm is efficient whend > n. Assuming no kernel is used, computing the full set of inner
productsxT

i xj takesO(n2d) time, and each iteration (updating allαi’s) takesO(n2) time.

Instead of cycling through allα’s, Keerthi et al. (2002) suggest a priority scheme: always update the
αi whose gradient has the largest magnitude. This significantly speeds up the algorithm, because it
focuses on the data points near the boundary. To implement this efficiently, the gradients should be
incrementally updated. Assumingαi has changed, the new gradient forαj is:

gnew
j = gold

j + λ−1(αnew
i − αold

i)yiyjx
T
j xi + δ(i − j)(log

αnew
i

1 − αnew
i

− log
αold

i

1 − αold
i

) (77)

This dual method technically cannot compute an MLE since it requires a proper prior (λ > 0). One
workaround is to makeλ very small. However, the convergence rate depends stronglyon λ—many
iterations are required ifλ is small. So the best scheme for an MLE would be to start with largeλ and
gradually anneal it to zero.

Other algorithms have recently been proposed which also utilize Mercer kernels within logistic re-
gression (Roth, 2001). However, these are not dual algorithms. They rewrite the original objective
l(w) in terms of inner products between data points, and then substitute K. The problem remains a
maximization overl, not a minimization ofJ .

10 Results

The missing factor in the above analysis is the number of iterations needed by each algorithm. This
section compares the algorithms empirically on real and simulated data. All algorithms are started at
w = 0 and performance is measured according to the log-likelihood value achieved. (The results are
not substantially affected by using a random starting pointinstead ofw = 0.) Cost is measured by
total floating-point operations (FLOPS) using the routinesin the Lightspeed Matlab toolbox (Minka,
2002). This is more meaningful than comparing the number of iterations or clock time.

The first experiment repeats the setup of Collins et al. (2002). For a given dimensionalityd, feature
vectors are drawn from a standard normal:x ∼ N (0, Id). A true parameter vector is chosen randomly
on the surface of thed-dimensional sphere with radius

√
2. Finally, the feature vectors are classified

randomly according to the logistic model. Using this scaling of w, about 16% of the data will be
mislabeled. Each of the algorithms is then run to find the MLE for w (which is not necessarily the true
w). In this experiment, Iterative Scaling cannot be run sincesome feature values are negative (but see
the next experiment).

Figure 1 shows the result for a typical dataset with(d = 100, n = 300). It really matters which
algorithm you use: the difference in cost between the best (CG) and worst (MIS) algorithms is more
than two orders of magnitude. Interestingly, while BFGS asymptotically performs like Newton, in

11

10
6

10
7

10
8

10
9

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

FLOPS

D
iff

er
en

ce
 fr

om
 o

pt
im

al
 lo

g−
lik

el
ih

oo
d

Newton

Coord

CG

BFGS

FixedH

MIS

Figure 1: Cost vs. performance of six logistic regression algorithms. The dataset had 300 points in 100
dimensions. “CG” is conjugate gradient (section 4), “Coord” is coordinate-wise Newton, “FixedH” is
Fixed-Hessian, and “MIS” is modified iterative scaling. CG also has the lowest actual time in Matlab.

early iterations it seems to behave like Fixed-Hessian. Therelative performance of all algorithms
remains the same for smallerd, and varies little across repeated draws of the dataset. On bigger
problems, such as(d = 500, n = 1500), the differences simply get bigger. The cost difference
between CG and MIS is more than three orders of magnitude.

The previous experiment had independently distributed features. The next experiment uses highly
correlated features. A dataset is first generated accordingto the previous experiment and then modified
by addingc to all feature valuesxik. This introduces correlation in the sense thatXXT has significant
off-diagonal elements. To make the labels consistent with this shift, an extra featurexi0 is added with
value1 and classification weightw0 = −c

∑d
i=1 wi. This ensures thatwTxi is unchanged by the shift.

Two cases are run:c = 1 andc = 10. In the latter case, the features are all positive, so Iterative Scaling
can be used.

Figures 2 and 3 show the results. As expected, the coordinate-wise algorithms perform poorly, and the
Hessian-based algorithms perform best. For this data it is easy to decorrelate by subtracting the mean
of each feature, but in other cases the correlation may be more subtle.

12

10
6

10
7

10
8

10
9

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

FLOPS

D
iff

er
en

ce
 fr

om
 o

pt
im

al
 lo

g−
lik

el
ih

oo
d

Newton

Coord

CG
BFGS

FixedH

MIS

Figure 2: Cost vs. performance of logistic regression algorithms on weakly correlated data. The
dataset had 300 points in 100 dimensions.

10
6

10
7

10
8

10
9

10
−4

10
−3

10
−2

10
−1

10
0

FLOPS

D
iff

er
en

ce
 fr

om
 o

pt
im

al
 lo

g−
lik

el
ih

oo
d

Newton

Coord

CG

BFGS

FixedH

MIS

IS

Figure 3: Cost vs. performance of logistic regression algorithms on strongly correlated data. The
dataset had 300 points in 100 dimensions.

13

The third experiment simulates a document classification problem. It is designed to be as favorable as
possible to Iterative Scaling. A multinomial classifier has

p(y = 1|x,p,q) =

∏

k pxik

k
∏

k pxik

k +
∏

k qxik

k

= σ(
∑

k

xik log
pk

qk

) (78)

σ(x) =
1

1 + exp(−x)
(79)

which can be translated into a logistic regression problem.For the experiment, feature vectors are
drawn from a uniform Dirichlet distribution:xi ∼ D(1, ..., 1), which meansxik > 0 and

∑

k xik =
1. A true parameter vector is drawn according tolog pk

qk

, wherep andq have a uniform Dirichlet
distribution. Finally, the feature vectors are classified randomly according to the logistic model.

Figures 4 and 5 show the results for one random dataset of eachsize. Iterative Scaling performs better
than Modified Iterative Scaling and somewhat better than Coordinate-wise Newton, but it is still orders
of magnitude behind the leaders.

10
5

10
6

10
7

10
8

10
9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

FLOPS

D
iff

er
en

ce
 fr

om
 o

pt
im

al
 lo

g−
lik

el
ih

oo
d

Newton
Coord

CG

BFGS

FixedH MISIS

Figure 4: Cost vs. performance of logistic regression algorithms on positive data. The dataset had 300
points in 100 dimensions.

14

10
7

10
8

10
9

10
10

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

FLOPS

D
iff

er
en

ce
 fr

om
 o

pt
im

al
 lo

g−
lik

el
ih

oo
d

Newton

Coord

CG
BFGS

FixedH

MISIS

Figure 5: Cost vs. performance of logistic regression algorithms on positive data. The dataset had
1500 points in 500 dimensions.

15

To test the dual algorithm, we setλ = 0.01 on this dataset. Note thatλ > 0 generally makes the
problem easier, since the surface becomes more quadratic. Figures 6 and 7 show that the dual algorithm
(with priority scheme) has quite rapid convergence rate, but for a reasonable level of error such as10−5,
CG and BFGS are still faster.

10
6

10
7

10
8

10
9

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

FLOPS

D
iff

er
en

ce
 fr

om
 o

pt
im

al
 lo

g−
lik

el
ih

oo
d

Newton

Coord

CG

BFGS

FixedH

Dual

Figure 6: Cost vs. performance of logistic regression algorithms on positive data withλ = 0.01. The
dataset had 300 points in 100 dimensions.

16

10
7

10
8

10
9

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

FLOPS

D
iff

er
en

ce
 fr

om
 o

pt
im

al
 lo

g−
lik

el
ih

oo
d

Newton

CG

BFGS

FixedH

Dual

Figure 7: Cost vs. performance of logistic regression algorithms on positive data withλ = 0.01. The
dataset had 1500 points in 500 dimensions.

17

11 Conclusions

The algorithms can be roughly divided into a Hessian-based group (BFGS, FixedH, Newton) and non-
Hessian-based group (CG, Dual, Coord, IS, MIS). In the Hessian-based group, BFGS and FixedH
dominate Newton. In the non-Hessian-based group, CG and Dualdominate all others. If the data has
strong correlation, then one should use a Hessian-based algorithm. The dimensionality of the data
seems to have little impact on the relative performance of the algorithms. All algorithms benefit from
using Newton-type line searches.

References

Bishop, C. (1995).Neural networks for pattern recognition. Oxford: Clarendon Press.

Böhning, D. (1999). The lower bound method in probit regression. Computational Statistics and
Data Analysis, 30, 13–17.

Collins, M., Schapire, R. E., & Singer, Y. (2002). Logistic regression, AdaBoost and Bregman
distances.Machine Learning, 48, 253–285.
http://www.cs.princeton.edu/˜schapire/papers/breg-dist.ps.gz .

Cox, D. R., & Snell, E. J. (1970).The analysis of binary data. Chapman and Hall.

Jaakkola, T., & Haussler, D. (1999). Probabilistic kernel regression models.Seventh International
Workshop on Artificial Intelligence and Statistics.
http://www.ai.mit.edu/˜tommi/papers.html .

Keerthi, S., Duan, K., Shevade, S., & Poo, A. (2002). A fast dual algorithm for kernel logistic
regression.ICML (pp. 299–306).

Minka, T. (2002). Lightspeed matlab toolbox.
research.microsoft.com/˜minka/software/lightspeed/ .

Nigam, K., Lafferty, J., & McCallum, A. (1999). Using MaximumEntropy for text classification.
IJCAI’99 Workshop on Information Filtering. http://www.cs.cmu.edu/˜mccallum/ .

Roth, V. (2001). Probabilistic discriminative kernel classifiers for multi-class problems.Pattern
Recognition–DAGM’01(pp. 246–253). Springer. LNCS 2191.

18

