A comparison of numerical optimizers for logistic regression
Thomas P. Minka
October 22, 2003 (revised Mar 26, 2007)

Abstract

Logistic regression is a workhorse of statistics and is closely related to nsetised in Ma-
chine Learning, including the Perceptron and the Support Vector Machihis note compares
eight different algorithms for computing the maximum a-posteriori paramstenate. A full
derivation of each algorithm is given. In particular, a new derivatiotierhtive Scaling is given
which applies more generally than the conventional one. A new derivatialsasgiven for the
Modified Iterative Scaling algorithm of Collins et al. (2002). Most of theoaitnms operate in the
primal space, but can also work in dual space. All algorithms are comhfraterms of computa-
tional complexity by experiments on large data sets. The fastest algorithn@utitmbe conjugate
gradient ascent and quasi-Newton algorithms, which far outstrip Iter&taling and its variants.

1 Introduction

The logistic regression model is

1
1+ exp(—yw'x)

ply = £1x,w) = o(yw'x) = (1)

It can be used for binary classification or for predicting ¢tleetainty of a binary outcome. See Cox &
Snell (1970) for the use of this model in statistics. Thiserfotcuses only on computational issues re-
lated to maximume-likelihood or more generally maximum a&teoori (MAP) estimation. A common
prior to use with MAP is:

p(w) ~ N(0,AT) (2)

Using A > 0 gives a “regularized” estimate &f which often has superior generalization performance,
especially when the dimensionality is high (Nigam et al999

Given a data setX,y) = [(x1,v1), .-, (Xn,yn)], we want to find the parameter vecter which
maximizes:

lw) =~ 3" log(1 + exp(—pw"x,)) — Sw'w 3)

The gradient of this objective is

g =Vyl(w) = Z(l — o(yw X)) yiXi — AW 4)

i

Gradient descent using (4) resembles the Perceptron mgaatgorithm, except that it will always
converge for a suitable step size, regardless of whethexldlsses are separable.

The Hessian of the objective is

2 A%

which in matrix form can be written

a; = o(w'x)(l—o(w'x)) (6)

H = - XAXT - I (7)

Note that the Hessian does not depend on howxtheare labeled. It is nonpositive definite, which
meand(w) is convex.

For sufficiently large\, the posterior fosw will be approximately Gaussian:
p(wX,y) ~ N(w;w,-H™) (8)

~

w = argmap(w) | [p(yilxi, w) ©)

So the model likelihood can be approximated by
p(y|X) ~ p(y|X, w)p(w)(2m)** |-H| "/ (10)

whered is the dimensionality ofv.

2 Newton’'s method

If we define -

% = X, Wold + 1~ olyw x))y (11)
Q4
Then a Newton step is
Woew = Woq + (XAXT +AI)7! (Z(l — o (W' X)) yix; — /\W> (12)
_ w i)
— (XAXT +)\1)71XA(XTW01C1 + |:(1 U(yzw Xz))y2:|> (13)
Q4

= (XAX"+)I)"'XAz (14)

which is the solution to a weighted least squares problens dfficient implementation of Newton’s
method is called Iteratively Reweighted Least Squaresk#st@(nd?) time per iteration.

2

3 Coordinate ascent

Because the likelihood is convex, we can also optimize eadternately. A coordinate-wise Newton
update is

2w+ 5" (1 — o(y;whx))yix;
wl’rczew — wzld + k Zz(<y2))y k (15)
To implement this efficiently, note that™x; for all ; can be incrementally updated via
(Wnew)TXi — (Wold)TXi + (wl’zew o wzld)$ik (16)

Using this trick, it take$)(n) time to updatev, and thusO(nd) time to update all components of.

4 Conjugate gradient ascent

The idea of the last section can be generalized to updatiag iarbitrary directionrn. The Newton
step alongu is

new old gu
_ _ 17
w W uTHuu @
To implement this efficiently, use the expansion
—u'Hu = \utu+ Z a;i(u'x;)? (18)

Each update take®(nd) time, which is more expensive than th¥n) time required for updating
along a coordinate direction. However, this method can stefaf we choose good update directions.
One approach is to use the gradient as the update directven. lietter is to use the so-calleochjugate
gradientrule, which subtracts the previous update direction froengtadient:

u=g-u'p (19)
There are various heuristic ways to set the scale fac{&ishop, 1995). The method which seems to
work best in practice is the Hestenes-Stiefel formula:
g 8 (B—g")
(uold)T(g _ gold)
This formula is derived in the following way. When the surfacgquadratic with HessiaH, we want
the new search direction to be orthogonal with respetitm™Hu?? = 0, which implies

(20)

gTHuold
(uold)THuold

f= (21)

3

On a quadratic surface, the paiss®?, g°'¢) and(w, g) must satisfy
g — gold — H(W o Wold) (22)
But sincew = w¢ + qu°, we obtain
g — gold — OéHUOld (23)

Substituting (23) into (21) gives (20).

5 Fixed-Hessian Newton method

Another way to speed up Newton’s method is to approximatedngng Hessian with a fixed matrix
H that only needs to be inverted oncedthing (1999) has shown that the convergence of this approac
is guaranteed as long & < H in the sense thdf — H is positive definite. For maximum-likelihood
estimation, he suggests the mafHx= —iXXT, which for MAP generalizes to

~ 1
H = —ZXXT — I (24)
This matrix must be less thdf becausé > o(z)(1—o(z)) for anyz and thereforéI > A. Because

H does not depend o, we can precompute its inverse—or even simpler its LU dea@sitipn. The
resulting algorithm is:

Setup Compute the Cholesky decompositiontf

lterate w™* = wo — H!g
whereH!g is computed by back-substitution.

This algorithm hagD(nd?) setup cost and)(nd + d?) cost per iteration@®(nd) for computing the
gradient andD(d?) for back-substitution).

A faster-converging algorithm can obtained by ignoringliband requirement and using line searches.
Thatis, we take1 = —H'g as a search direction and apply (17). In this way, the appraté Hessian

is scaled automatically—not by a predefined factot oBecause it performs significantly better, this
is the version used in experiments.

6 Quasi-Newton

Instead of holding the approximate Hessian fixed, asdhriing’s method, we can allow it to vary
in the inverse domainThis is the idea behind the more general quasi-Newton igtgs, DFP and
BFGS. The algorithm starts witH ! = I. At each step we update™* = w + Aw, giving a change
in the gradientAg = g™ — g. If the function is quadratic, we must have

Aw = —H 'Ag (25)
The approximate inverse Hessidii; !, is repeatedly updated to satisfy this constraint.

In the BFGS algorithm, the update is (Bishop, 1995)

AgTH 'Ag
b = 14— 26
T TAWTAg (26)
3 5 1 3 3
. | T Ter-1 _ fr-1 T
H, o= H' oo (bAwAw AwAgTH™! — H'AgAw) 27)
You can verify thatH ! = satisfies (25). To update, treatu = —H~'g as a search direction and

apply (17). This works better than simply settihgv = u. The cost i) (d? + nd) per iteration.

A variant of this algorithm is the so-called “limited-membdBFGS (Bishop, 1995), wherH ! is not
stored but assumed to béefore each update. This gives the search direction

AgTAg
b = 1+ AwTAg (28)
Awlg
b = AwTAg (29)
Ag'g
Gw = T Ag ba, (30)
u = —g+ a,Aw +a,Ag (31)

This algorithm is similar to the conjugate gradient algorit—and has similar performance.

7 lterative Scaling

Iterative scaling is a lower bound method for finding the litkeod maximum. At each step, we
construct a simple lower bound to the likelihood and then@tovthe maximum of this bound. Iterative
scaling produces a lower bound which is additive in the patansw,, which means we have the
option to update one or all of them at each step. The algoritomires that all feature values are
positive: z;; > 0. Defines = max;), z;;. Unlike most derivations of iterative scaling, we will not

require) , z;, = 1.

Iterative scaling is based on the following two bounds:

—log(x) > 1-— r log (o) for anyzg (32)
Zo
—exp(= Y gswr) = =Y aqpexp(—wi) — (1) a) (33)
k k k

IN

for anyg, > 0 satisfying _ g 1
k

The second bound comes from Jensen’s inequality applideetiuhctione==:

exp(— Y qrwp) < > quexp(—wy) (34)
k k
if > g = 1 (35)
k
Now let some of they, = 0 to get
exp(= Y aqrwr) < D grexp(—wi) + (1=)) (36)
k k k
ity g < 1 (37)
k

Start by writing the likelihood in an asymmetric way:

pvXow) = T 520] 1 (38)

T, T,
Pt 1+ exp(wTx; 1 1+ exp(wTx;)

Applying the first bound at the current parameter vakigswe obtain that the log-likelihood function

is bounded by

logp(yX,w) = Y w'x;— Zlog 1+ exp(w'x;)) (39)

ilyi=1

Z logp(Y|X7W0) + Z (W WO Xz + Z

ily;=

= logp(y|X, wo) + Z (w —wo) " x; + Z o(wo ;) (1 — exp((w — wo)'x;)) (41)

”) (40)

Maximizing this bound ovew is still too hard. So we apply the second bound, with= z;/s,
remembering that;, > 0:

—exp((w —wo)l'x;) = — exp(Z(wk — Wok) Tik) (42)

> - Z — exp wk wok Z % (43)

S
k

Note thats was chosen to ensubde;, ¢, < 1. Thanks to this bound, the algorithm reduces to a one-
dimensional maximization for eaab, of

g(wg) = Z (wg, — Wok)Tik — Z o(wy ;) Z % exp((wy — wo)S) (44)
ily;=1 i k

Zero the gradient with respect tq,:

Z Tite — Z o(wy ;) xg, exp((wr — wer)s) =0 (45)

dwk ilyi=
Zi =1 Lik
exp((wy — wor)s) = Zal(wax-)x-k (46)
; o 4Li)Lg
1 ilys = X
W, = Wor + — log Z\yz 1 Tk 47

Zi U(W(?l’i)%k

This is one possible iterative scaling update. Note that eeddchave written a different asymmetric
likelihood:

yX.w) =[] 1 [fovtws (48)
Py, w) = 1+ exp(—w'x;) 1+ exp(—w'x;)

ilyi=1

lyi=

which would have led to the update

— o(wFXe. .
exp((wk N ka)S) _ Zi(lzzllya_(lojzk))$zk (49)

So the fair thing to do is combine the two updates:

Zilyizl ik Y, (1 — o(wyx;)) Tk
Zi|y¢=*1 Tik D o (W X;)Zik
This is the iterative scaling update used in practice (Nigamal., 1999; Collins et al., 2002), and

it converges faster than either of the two asymmetric ugdatéote that the first term is constant
throughout the iteration and can be precomputed. The rgrtimire isO(nd) per iteration.

(50)

exp((wy — wor)s) =

8 Modified Iterative Scaling

We can get a different iterative scaling algorithm by appdyihe same bounds to the symmetric like-

lihood:
1

1 + exp(—y;wTx;)

pyIX.w) =[] (51)
Applying the first bound (32) at the current parameter vakgswe obtain that the log-likelihood
function is bounded by

log p(y|X, w) = —Zlog(Hexp(—yinxi)) (52)

1+ exp(—y;wrx;
> logp(y|X, wo) + > (1 - ()

1+ exp(—y,wix,)

) (53)

= logp(y[X, wo) + Z(l — o (yiwo) (1 — exp(—yi(w — wo) 'x;)) (54)

)

Maximizing this bound ovew is still too hard. So we apply the second bound (33) with= z;; /s,
remembering that;, > 0:

—explpw = W) 2 =30 Fexp(pis(u —wod) (1= 3058) (69)
The algorithm reduces to a one-dimensional maximizatioreéehw, of
T
o) = = 300 - o)) 32 exp(—pis(u — o) (56)
The gradient with respect to,, is
dg(wwr) = Z(l — o (yswp))ysa exp(—yis(wrp — wor)) = 0 (57)
dwy,

%

Multiply both sides byexp(—s(wy — woy)) and solve forwy, to get

Zi\yizl (1— U(yingi))xik

exp(2s(wg — wog)) = (58)
T e (L= o(gwia))aa
To allow negative feature values,, defines = max; >, |x;;| and usey, = |z;|/s to get
€ .
slun) = — 30— oluwde)) Y- 2 (- yisign(a)s(un — wne)) 69
) k

dg(w)

il(w:) = Z(l — o(yswy ;))ysza exp(—ysign(zg)s(wy — wor)) =0 (60)

Zilyi$1k>0 (1- 0(%""0sz‘))|$@‘1€|

exp(2s(wg — wer)) = Z“ymk@ (1 —o(ywlz;))|zaul (61)

This update rule was also given by Collins et al. (2002), usitgposting argument. This algorithm
will be called Modified Iterative Scaling. The costi¥nd) per iteration.

9 Dual optimization

The idea behind dual optimization is to replace the origmakimization problem with a minimiza-
tion problem on a completely different function which happdo share the same stationary points.
To accomplish this bit of magic, you introduce a set of tighperbounds ori(w) which are param-
eterized bya. The bounds should be simple enough, e.g. quadratic, thanh#ximum oves can

be computed analytically for each bound. Then the solutothé original problem is given by the
upper bound whose maximum owverhas thesmallestvalue. Finding this upper bound corresponds
to a minimization overx, and that is the dual problem.

Jaakkola & Haussler (1999) introduced the first dual algaritor logistic regression, based on meth-
ods used for the Support Vector Machine. The algorithm cdnees the following linear upper bound:

logo(z) < ax— H(a) a € [0,1] (62)
whereH (o) = —aloga — (1 —a)log(l — «) (63)

Applying this bound throughout{w) gives an upper bound which is quadratioan
A T

(w) = ;bg o(ywrx;) — SWw (64)
< l(w,a) (65)
wherel(w, a) = Z yiw x; — H(oy) — %WTW (66)

9

Now fold in the maximum ovew to get the dual problem:

w(a) = A7 Z QG YiX; (67)
J(a) = max lz(w, o) (68)

Some things to note about the dual problem:

1. The dimensionality ofv is d, but the dimensionality ofx is n. Therefore the dual problem is
simpler than the original when the data dimensionality ghHi > n).

2. The dual problem only involves inner products betweea gaints. These inner products can
be replaced by a Mercer kernél(x;,x;) to give a kernelized logistic regression algorithm
(Jaakkola & Haussler, 1999). The regularization parametam be absorbed int.

At this point, we can apply a variety of algorithms to optiméz. For example, we could use Newton'’s
method. The derivatives of are

dJ(a)

(%)

do ALy ; oY% x; + log o (70)
= yiw(a) x; + log] fi ' (71)
d*J () 1
= MixIx 4+ ——— 72
da? XXt a; (1 —) (72)
d*J ()
= M lyyixTx, 73
dOéidOéj 4 y]X] x ()

Unfortunately, Newton’s method on the full vector requires inverting the x n Hessian matrix

H =)\ !diag(y) X" Xdiag(y) + diag (ﬁ) (74)

Jaakkola & Haussler (1999) recommend instead to updaterpaiea time, but don’t say exactly how.
One approach is coordinate-wise Newton:

(0
g = yw(a)'x; +log T— o (75)
new __ gi
S T i 7o
1 a;(1—ay

If this update would take; outside the regioiff), 1], then we stop it at the endpoint.

10

The algorithm is efficient whed > n. Assuming no kernel is used, computing the full set of inner
productsx; x; takesO(n?d) time, and each iteration (updating alf's) takesO(n?) time.

Instead of cycling through atl’s, Keerthi et al. (2002) suggest a priority scheme: alwgysate the
a; whose gradient has the largest magnitude. This significapieds up the algorithm, because it
focuses on the data points near the boundary. To implemenéfticiently, the gradients should be
incrementally updated. Assuming has changed, the new gradient foris:

new old

new o - new o . . 7 Q;
g] — gjld + A 1<ai _ Oélld)yzijijl + 5(Z — j)(log W — lOg m) (77)

This dual method technically cannot compute an MLE sincedquires a proper priot\(> 0). One
workaround is to make very small. However, the convergence rate depends strargh—many
iterations are required X is small. So the best scheme for an MLE would be to start withela and
gradually anneal it to zero.

Other algorithms have recently been proposed which ald$iaeutviercer kernels within logistic re-
gression (Roth, 2001). However, these are not dual algosithfiney rewrite the original objective
I(w) in terms of inner products between data points, and thertitutesX'. The problem remains a
maximization over, not a minimization of/.

10 Results

The missing factor in the above analysis is the number odtitens needed by each algorithm. This
section compares the algorithms empirically on real andilsited data. All algorithms are started at
w = 0 and performance is measured according to the log-likeih@ue achieved. (The results are
not substantially affected by using a random starting pioistead ofw = 0.) Cost is measured by
total floating-point operations (FLOPS) using the routiimethe Lightspeed Matlab toolbox (Minka,
2002). This is more meaningful than comparing the numbeteoiions or clock time.

The first experiment repeats the setup of Collins et al. (20B8) a given dimensionality, feature
vectors are drawn from a standard normak- N'(0,1,). A true parameter vector is chosen randomly
on the surface of thé-dimensional sphere with radiug2. Finally, the feature vectors are classified
randomly according to the logistic model. Using this salof w, about 16% of the data will be
mislabeled. Each of the algorithms is then run to find the MbE# (which is not necessarily the true
w). In this experiment, Iterative Scaling cannot be run ssmme feature values are negative (but see
the next experiment).

Figure 1 shows the result for a typical dataset with= 100,n = 300). It really matters which
algorithm you use: the difference in cost between the bes) @@ worst (MIS) algorithms is more
than two orders of magnitude. Interestingly, while BFGS gstytically performs like Newton, in

11

MIS

CG

Difference from optimal log-likelihood

10 |

-10 . N | . R | . . . L

10° 10 10° 10°

FLOPS

10

Figure 1: Cost vs. performance of six logistic regressioonligms. The dataset had 300 points in 100
dimensions. “CG” is conjugate gradient (section 4), “Coosltoordinate-wise Newton, “FixedH” is
Fixed-Hessian, and “MIS” is modified iterative scaling. CGaahas the lowest actual time in Matlab.

early iterations it seems to behave like Fixed-Hessian. rEhegive performance of all algorithms
remains the same for smallér and varies little across repeated draws of the dataset. igyeh
problems, such a&l = 500,n = 1500), the differences simply get bigger. The cost difference
between CG and MIS is more than three orders of magnitude.

The previous experiment had independently distributetlifea. The next experiment uses highly
correlated features. A dataset is first generated accotditig previous experiment and then modified
by addingc to all feature values;;,. This introduces correlation in the sense tRX " has significant
off-diagonal elements. To make the labels consistent withghift, an extra feature,, is added with
valuel and classification weighty, = —c Zle w;. This ensures thatTx; is unchanged by the shift.
Two cases are run: = 1 andc = 10. In the latter case, the features are all positive, so ter&caling
can be used.

Figures 2 and 3 show the results. As expected, the cooreimatealgorithms perform poorly, and the
Hessian-based algorithms perform best. For this data &3y ® decorrelate by subtracting the mean
of each feature, but in other cases the correlation may be sutle.

12

\ MIS q
Newton

FixedH

4

o

o

o
£
3
=

o
S10t + g
g
=3 Coord

[}

£

o
-6

910° |- g
e BFGS

] cG

()
£
[a)

10° | g

10’10 N N N N N P A N N

10° 10’ 10° 10°
FLOPS

Figure 2: Cost vs. performance of logistic regression allgors on weakly correlated data. The
dataset had 300 points in 100 dimensions.

10" E

. MIS

[
N

=
o
T

CG

!
~

=
o
T

Difference from optimal log-likelihood

w

FixedH

N
o\
T

10~ N | N |
10

10

Figure 3: Cost vs. performance of logistic regression algors on strongly correlated data. The
dataset had 300 points in 100 dimensions.

13

The third experiment simulates a document classificatioblpm. It is designed to be as favorable as
possible to Iterative Scaling. A multinomial classifier has

Hkpiik Pk
=1 P = T; Tin ik log — /8
ply = 1x,p,q) IS U(Zk:wk 05 ") (78)
1
) = Treew) 7o)

which can be translated into a logistic regression probl&or the experiment, feature vectors are
drawn from a uniform Dirichlet distributionx; ~ D(1,...,1), which means;, > 0 and), x;;, =

1. A true parameter vector is drawn accordingldg ’;—: wherep and q have a uniform Dirichlet
distribution. Finally, the feature vectors are classifizadomly according to the logistic model.

Figures 4 and 5 show the results for one random dataset ofsegaehterative Scaling performs better
than Modified Iterative Scaling and somewhat better than dinate-wise Newton, but it is still orders
of magnitude behind the leaders.

T T T T T T T

-2

10

10k

-4

10°F

Difference from optimal log-likelihood
=)
T

10 'k

-7

10_85 ‘ ““““6 ‘ ““““7 ‘ “H‘H‘S ‘ ““““9
10 10 10 10 10

FLOPS

Figure 4: Cost vs. performance of logistic regression allyors on positive data. The dataset had 300
points in 100 dimensions.

14

100 p— T L A R | T T T T T T 3

107 3

[y
OI
N
T

=
OI

w
LALL) B

|
&

o

Difference from optimal log-likelihood
= =
O‘ o
T T

=
O‘

)
AL m e

10”7 3

-8

10

FLOPS

Figure 5: Cost vs. performance of logistic regression algors on positive data. The dataset had
1500 points in 500 dimensions.

15

To test the dual algorithm, we sat= 0.01 on this dataset. Note that > 0 generally makes the
problem easier, since the surface becomes more quadrafices 6 and 7 show that the dual algorithm
(with priority scheme) has quite rapid convergence ratefdsa reasonable level of error suchlas®,
CG and BFGS are still faster.

107 ¢

=
OI
o
T

1
)

FixedH

=
o
T

|
~

Difference from optimal log-likelihood
)
T

=
© |
©
T

-10 . L Ll

10 10 10 10
FLOPS

10

Figure 6: Cost vs. performance of logistic regression algors on positive data with = 0.01. The
dataset had 300 points in 100 dimensions.

16

Difference from optimal log-likelihood

FixedH | \Newton

Ll L
10° 10
FLOPS

9

Figure 7: Cost vs. performance of logistic regression allyors on positive data with = 0.01. The
dataset had 1500 points in 500 dimensions.

17

11 Conclusions

The algorithms can be roughly divided into a Hessian-basedi(BFGS, FixedH, Newton) and non-
Hessian-based group (CG, Dual, Coord, IS, MIS). In the Hedsésed group, BFGS and FixedH
dominate Newton. In the non-Hessian-based group, CG anddoamaihate all others. If the data has
strong correlation, then one should use a Hessian-basedthig. The dimensionality of the data
seems to have little impact on the relative performance®gthorithms. All algorithms benefit from

using Newton-type line searches.

References

Bishop, C. (1995)Neural networks for pattern recognitio®xford: Clarendon Press.

Bohning, D. (1999). The lower bound method in probit reg@ssComputational Statistics and
Data Analysis30, 13-17.

Collins, M., Schapire, R. E., & Singer, Y. (2002). Logistic regsion, AdaBoost and Bregman
distancesMachine Learning48, 253-285.
http://www.cs.princeton.edu/"schapire/papers/breg-dist.ps.gz

Cox, D. R., & Snell, E. J. (1970)The analysis of binary dataChapman and Hall.

Jaakkola, T., & Haussler, D. (1999). Probabilistic kermgression modelsSeventh International
Workshop on Atrtificial Intelligence and Statistics
http://www.ai.mit.edu/"tommi/papers.html

Keerthi, S., Duan, K., Shevade, S., & Poo, A. (2002). A fastl@lgorithm for kernel logistic
regressionlCML (pp. 299-306).

Minka, T. (2002). Lightspeed matlab toolbox.
research.microsoft.com/"minka/software/lightspeed/

Nigam, K., Lafferty, J., & McCallum, A. (1999). Using MaximuBntropy for text classification.
IJCAI'99 Workshop on Information Filteringhttp://www.cs.cmu.edu/"mccallum/

Roth, V. (2001). Probabilistic discriminative kernel clifiess for multi-class problemsattern
Recognition—-DAGM’01pp. 246—253). Springer. LNCS 2191.

18

