Mobile Encrypted Traffic Classification
Using Deep Learning

Giuseppe Aceto™?, Domenico Ciuonzo?,

Antonio Montieri', Antonio Pescapé!-?

University of Napoli “Federico II” (Italy) and 2NM2 s.r.l. (Italy)
{ giuseppe.aceto, antonio.montieri, pescape} @unina.it, ciuonzo@nm-2.com

Abstract—The massive adoption of hand-held devices has led
to the explosion of mobile traffic volumes traversing home and
enterprise networks, as well as the Internet. Procedures for
inferring (mobile) applications generating such traffic, known as
Traffic Classification (TC), are the enabler for highly-valuable
profiling information while certainly raise important privacy
issues. The design of accurate classifiers is however exacerbated
by the increasing adoption of encrypted protocols (such as TLS),
hindering the applicability of highly-accurate approaches, such
as deep packet inspection. Additionally, the (daily) expanding
set of apps and the moving-target nature of mobile traffic makes
design solutions with usual machine learning, based on manually-
and expert-originated features, outdated. For these reasons, we
suggest Deep Learning (DL) as a viable strategy to design traffic
classifiers based on automatically-extracted features, reflecting
the complex mobile-traffic patterns. To this end, different state-
of-the-art DL techniques from TC are here reproduced, dissected,
and set into a systematic framework for comparison, includ-
ing also a performance evaluation workbench. Based on three
datasets of real human users’ activity, performance of these DL
classifiers is critically investigated, highlighting pitfalls, design
guidelines, and open issues of DL in mobile encrypted TC.

Index Terms—traffic classification; mobile apps; Android apps;
iOS apps; encrypted traffic; deep learning; automatic feature
extraction.

I. INTRODUCTION

Several tools, such as security/quality-of-service enforce-
ment devices and network monitors, operate assuming the
knowledge of the application generating the traffic and thus are
limited (or impaired) when this requirement is not fully satis-
fied. The process of associating network traffic with specific
applications is known as Traffic Classification (TC) and has a
long-established application in several fields [1]. TC is increas-
ingly challenged by the massive diffusion of handheld devices
(as supported by recent evaluations in Internet usage [2]),
which is revolutionizing the nature of traffic traveling over
home and enterprise networks and the Internet. Thereupon,
both the necessity and the difficulty of mobile TC have become
high nowadays, fueled (other than common drivers for TC)
by the potential for valuable profiling information (e.g., to
advertisers, insurance companies, and security agencies), while
also implying privacy downsides (e.g., recognition of context-
sensitive apps, such as health and dating ones, and in case of
bring-your-own-device policies from companies).

TC comes with its own challenges and requirements that
are even exacerbated in a mobile-traffic context, usually char-
acterized by a large number of apps to discriminate from and
an inadequate number of training samples per app, hindering

the achievement of satisfactory performance. Moreover, the
increasing adoption of encrypted protocols (TLS) [3] as well
as NAT and dynamic ports, poses new challenges to accu-
rate classification, defeating established approaches such as
Deep Packet Inspection (DPI) [4] and port-based methods.
Indeed, the presence of Encrypted Traffic (ET) is a severe
limitation that can be bypassed only in closed-world enterprise
scenarios by employing workarounds as man-in-the-middle
proxies [5]. Hence, classifiers based on Machine Learning
(ML) are deemed the most appropriate, especially in this
context, since they suit also ET while not necessarily relying
on port information [6, 7].

However, the successful use of standard ML classifiers re-
lies on obtaining handcrafted (domain-expert driven) features,
which in TC context correspond to statistics extracted from
the sequence of packets [6, 7] or message sizes [8, 9]. Such
process is time-consuming, unsuited to automation, and it is
becoming rapidly outdated when compared to the evolution
and mix of mobile traffic, being a constantly moving target,
and precluding the design of accurate and up-to-date mobile-
traffic classifiers [7, 10] with “traditional” ML approaches. Ac-
cordingly, we believe that Deep Learning (DL), which allows
to train classifiers directly from input data by automatically
learning structured feature representations [11], may be the
stepping stone toward the achievement of high performance
in the dynamic and challenging mobile TC context.

This paper aims at providing a systematic framework for
the comparison of DL techniques declined in the mobile TC
scenario. This originates from a critical analysis of several DL
classifiers recently appeared in TC literature [12, 13, 14, 15,
16] and here reproduced. In detail, the proposed framework
dissects the problem from different viewpoints, such as: (A)
the TC object adopted, (B) the type of input data fed to the
DL classifier, (C') the DL architecture employed, and (D) the
required set of performance measures. As an application ex-
ample of our framework, we report an illustrative comparison,
based on three datasets of real human users’ activity, to assess
the most appealing techniques and highlight open issues for
real-time and accurate mobile TC via DL. To the best of our
knowledge, no similar systematic approach and experimental
investigation have been performed in the mobile scenario to
date. The outcomes of this work underline the deficiencies
of current DL-based traffic classifiers and the need for: (1)
unbiased, informative, and heterogeneous inputs extrapolated
from traffic data, (2) more sophisticated DL architectures, and

(3) a rigorous performance evaluation workbench.

The rest of the paper is organized as follows. Sec. II
discusses current state-of-the-art in ML-based mobile TC
and recent works applying DL architectures to standard TC,
whereas Sec. III describes a general DL framework for mobile
TC, focusing on key aspects to be addressed; the performance
evaluation workbench is then described in Sec. IV, while
experimental results are discussed in Sec. V; finally, Sec. VI
provides take-home messages and highlights open issues.

II. BACKGROUND

TC of mobile apps has seen huge interest by several recent
works, mainly based on ET assumption. This section first
describes the literature on TC applied to mobile context. Then,
it focuses on several efforts for DL applied to Internet TC.

Mobile Encrypted TC

Stober et al. [17] propose a device fingerprinting scheme
by learning their traffic patterns through background activities.
Statistical features of 3G traffic are extracted from bursts of
data and fed to a Support Vector Classifier (SVC) and K-
Nearest Neighbors. Results show that using ~ 15 minutes (6
hours) of traffic testing (training) leads to an accuracy > 90%.
Wang et al. [18] design a system for classifying app usage
(13 i0S apps from 8 distinct categories) over 802.11 ET.
A Random Forest (RF) classifier is trained/tested with the
set of features obtained by running the apps for 5 minutes.
The need for an accurate ground-truth labeling is also raised,
highlighted by some counterintuitive per-app performance,
varying the training time. AppScanner is proposed in [7] as
a framework for fingerprinting and identification of mobile
apps. Network traces are collected by automatically running
110 most popular apps from Google Play Store and are pre-
processed to remove background traffic and extract features
from sets of packets (defined through timing criteria and
destination IP address/port), and then used to train an SVC
and an RF. Experimental results report 99% average accu-
racy in app identification, and up to 86.9% in classifying
them, outperforming state-of-the-art alternatives devised for
the (conceptually-)similar website fingerprinting task [19].
These latter methods are also employed by Alan and Kaur
[20] to investigate if Android apps can be identified from
their launch-time traffic using only the first 64 payload sizes.
Results show that apps can be identified with 88% accuracy
when training and testing is performed on the same device,
while a significant drop up to 26% for the best classifier is
observed when the OS/vendor is different. Recently, in [10]
a novel classifier fusion approach is devised for capitalizing
state-of-the-art classifiers for mobile TC. Based on a dataset
of real users’ activity collected by a mobile solutions provider,
it is shown that classification performance can be improved,
by means of combination techniques, up to +9.5% of recall
with respect to the best state-of-the-art classifier.

DL Applied to Standard TC

A first approach for DL-based TC is introduced in [12],
focusing on clear traffic and considering artificial neural

networks and Stacked Autoencoders (SAE). The dataset em-
ployed is made of 300k pre-processed records (after removal
of HTTP traffic) and numerical results (referred to best-
performing SAE) pertain to either protocol identification or
anomalous protocol detection, with 58 different typologies
considered. In the former case, both precision and recall
achieve > 90% on the top 25 popular protocols. In the latter
case, the SAE is tested on flows unrecognizable via DPI
(> 17% of the whole dataset), reporting that in 6716 out of
10k cases its class prediction probability is > 80%.

Wang et al. [13] propose a novel malware TC method based
on 2D Convolutional Neural Networks (CNNs), using two
different choices of raw “traffic images” (named “ALL” and
“L7”). Performance is evaluated on a self-generated dataset
(of ~ 752k instances) and organized into two parts: ten
types of malware traffic from public websites and ten types
of normal traffic. The 2D-CNN described is employed for
two different scenarios: malware/normal (binary) classification
and traffic-type classification (20 classes). Results show that
biflow-based TC is more accurate than its flow-based coun-
terpart, with “ALL” input being more informative than “L7”.
Then, employing “Biflow + ALL” combination, the authors
achieve > 89% per-class precision, recall, and F-measure. The
work in [14] builds upon [13] but adopts a 1D-CNN (due
to its appeal in handling time-series) for TC and compares
it with the 2D-CNN earlier designed in [13]. Experimental
results pertain to a selection from the “ISCX VPN-nonVPN”
dataset [21], including 6 types of regular ET and 6 types of
(VPN-)encapsulated traffic. The authors consider four setups:
(?) VPN/nonVPN (binary) classification, (iz) encrypted TC
(6 classes), (i2z) TC of VPN-encapsulated data (6 classes),
and (tv) encrypted TC (12 classes). The proposed 1D-CNN
model is shown to perform best in the “Biflow + ALL” form,
consistently with [13]. The proposed configuration-optimized
1D-CNN always achieves higher accuracy than the 2D-CNN
in [13], up to +2.51% (being both however > 80%) for the
four considered setups, and outperforms the C4.5 classifier
of [21] for 11 out of 12 metrics.

Lotfollahi et al. [15] propose Deep Packet, a DL-based
traffic classifier, able to work at packet-level with encrypted
payload as input data and employing either SAE or 1D-
CNN. These DL models are evaluated on the “ISCX VPN-
nonVPN” dataset [21] focusing on two different tasks: ap-
plication identification (17 classes, disregarding VPN/nonVPN
condition), and traffic characterization (12 activities). Both 1D-
CNN and SAE achieve an average F-measure of 95% and 97%,
respectively, in the two tasks. Also, Deep Packet is shown
to outperform state-of-the-art classifiers, based on handcrafted
features, known to achieve the highest performance on the
considered dataset.

Finally, in [16], a number of DL architectures for encrypted
TC, based on hybrid combinations of Long Short-Term Mem-
ory (LSTM) and 2D-CNN layers and traffic input in the
form of traffic time-series/images, are proposed and compared
to standard CNN and LSTM. Performance is evaluated on
the “RedIRIS” dataset, captured on the Spanish academic

backbone network, made of ~ 266k (TCP/UDP) biflows
and collectively belonging to 108 distinct services. The best-
performing model is a combination of 2D-CNN and LSTM
layers (named “CNN+RNN-2A”), attaining an accuracy (resp.
F-measure) of 96.32% (resp. 95.74%). In this case, it is shown
that inter-arrival time information slightly degrades perfor-
mance, but also that 5+ 15 packets are typically sufficient for
excellent detection results (for other DL architectures too).

III. TRAFFIC CLASSIFICATION

This section dissects the state-of-the-art of DL in TC, by
focusing on the following viewpoints: (A) the traffic view (i.e.
the type of traffic aggregate), (B) the type of input data fed to
the DL architecture, and (C) the DL architecture employed.

It is worth pointing out that all the DL classifiers proposed
for TC have been carefully analyzed and reproduced, e.g. by
setting the hyper-parameter values suggested in their respective
works or performing a basic tuning procedure when the latter
are not reported. Specifically, we leveraged DL models pro-
vided by Keras (Python) API running on top of TensorFlow to
implement and test the approaches described in the following.

A. Traffic View

Different traffic objects have been considered in the TC
literature. The definition of a specific traffic object determines
how raw traffic is segmented into multiple discrete traffic
units [1]. It is worth noticing that all the works approaching the
TC using DL [12, 13, 14, 16] considered either flows or biflows
as the relevant objects of classification, with the sole exception
of [15]. More specifically, a flow is defined as all the packets
having the same 5-tuple (i.e. source IP, source port, destination
IP, destination port, and transport-level protocol) taking into
account their directions. Differently, a biflow includes both
directions of traffic sharing a given tuple (i.e. the source and
the destination are interchangeable).

Finally, in [15] the relevant object of classification is the
single packet (i.e. the classification procedure is performed at
packet level), corresponding to the finest granularity for a TC
problem (and virtually representing the hardest setup for the
corresponding classification task).

B. Types of Input Data

The type of data being fed to the surveyed DL architectures
may be roughly categorized within three types:

I the first N bytes of payload of TC object [13, 14, 18];
Il the first NV bytes of raw data pertaining to the PCAP file
related to the TC object [13, 14];
II informative data fields of first V,, packets [16].

In the first case, the data being fed to the DL architecture is
represented by payload only, with input data in binary format.
In all these works, the payload is arranged in a byte-wise
fashion and normalized (by 255) so as to constrain it within
[0,1]. The choice is always justified as a means to reduce
the input size for the DL architecture. On the other hand, the
layer and size of the payload being chosen depend on the
specific work. For example, in [12] these correspond to the

first 1000 bytes of TCP payload. A similar choice is made
in [13, 14] for the input labeled as “L7”, where 784 bytes
from the application layer in TCP/IP model are considered.
Differently, in [15] the authors consider the first 1500 payload
bytes at layer 2, i.e. the IP header and the first 1480 bytes of
each IP payload which results in a 1500 bytes input vector.!

The second type of input data attempts to gather infor-
mation from all protocol layers (denoted with “ALL” layers
in [13, 14]) as in some relevant cases the data from levels lower
than layer 7 also contain some useful traffic information (such
as transport-layer ports or flags), as pointed out in [13, 14].
Then, since the considered data are typically captured at data-
link layer, the payload from frames of layer 2 is extracted.
However, the traffic provided in this case is always in the form
of PCAP files, containing information that could introduce a
bias in the classification results.? Specifically, in [13, 14] only
the first 784 bytes of each TC object are employed.

Finally, the third type of input data is represented by se-
lected protocol fields (not pertaining to the explicit inspection
of encrypted payload) of the first NV, packets. For example,
in [16] the authors consider only the first 20 packets exchanged
into a TC object (a biflow), and, for each packet, the following
6 fields are extracted (thus a 20 x 6 matrix is obtained for
each TC object): source and destination ports, number of bytes
in transport layer payload, TCP window size’, inter-arrival
time, and packet direction (€ {0,1}). We highlight that the
sequence of packets/messages directions has been also recently
employed in DL-based website fingerprinting [22].

Finally, we conclude the discussion mentioning that in all
the above cases, there may be instances longer or shorter
than the considered fixed-length data inputs. In such cases,
longer instances are truncated to the designed length of bytes
or packets, in the case of first/second or third type of data,
respectively, whereas in the case of shorter instances, padding
with zeros is always applied in all the discussed works.

C. DL Classification Algorithms

Here we review the DL architectures employed for TC. To
this end, we define the i*" input of the training set (made
of M samples) as x(;) while the corresponding label with
£(;y. All the considered DL classifiers are trained to minimize
the categorical cross-entropy [11], achieved by standard local
optimizers (e.g. SGD, Adam, etc.) via back-propagation.

SAE: The SAE relies on the basic AutoEncoder (AE)
concept, employed for (unsupervised) feature learning, and
whose objective is to (ideally) set the output y; =~ x(;,
Vi=1,..., M, by learning a compressed data representation.
Specifically, the first AE block (i.e. the encoder h = o(Wax+

! Additionally, the author apply also a pre-processing step to cope with
unequal transport-layer header lengths (e.g. TCP and UDP), by injecting zeros
at the end of the UDP-datagram headers to make them equal with TCP-
segment headers in length.

2Note that, by extracting “ALL Layers”, input includes PCAP metadata
besides raw packet data (from MAC layer, included). In detail, PCAP global
header is of 24 bytes and each packet is also prepended with a header of 16
bytes, including a timestamp at ps granularity and info on the packet size.

3The TCP window size is set to zero for UDP packets.

b)) reduces the dimension of data by providing a compressed
representation (via the hidden layer h, made of a number of
neurons), whereas the second block tries to reconstruct the
data from the low-dimensional representation obtained by the
encoder (i.e. the decoder y = (W h + b)).

In practice, to obtain improved performance, a more com-
plex (hierarchical) architecture, named Stacked AE (SAE),
is proposed [11]. This scheme employs unsupervised greedy
layer-wise pre-training which stacks up several AEs so that
the lower-dimensional representation obtained from ;" AE
is used as the input of (j + 1) AE, that is 20D = ()
(i.e. each layer of network is trained by keeping the weights of
lower layers frozen). After greedy training of all AE layers, the
classification task requires a final softmax layer to be added.
Then, supervised fine-tuning (i.e. a refinement of all layers’
weights) of the whole network is performed (i.e. exploiting
T(1), -5 T(M) along with f(l), R ,é(M)).

A relevant application of SAE to TC is given in [15],
consisting of five stacked layers (with {400, 300, 200, 100, 50}
neurons, respectively, all employing Rectified Linear Units
(ReLUs)). Also, to mitigate over-fitting, after each layer the
dropout technique with 25% drop-probability is applied [11].

CNN: The Convolutional Neural Networks (CNNs) are
widely-used DL models, inspired by visual mechanism of
living organisms, achieving feature learning via several con-
volutional layers. Each of them comprises a set of translation-
invariant filters with a limited extent (the “receptive field”)
which are convolved with the input with the aim of extracting
features of a certain input region. CNN layers can be conceived
in either 1D or 2D form, depending on the specific input
nature. The key idea in CNN is based on chaining several con-
volutional layers, to extract increasingly complex and abstract
features automatically. Another important CNN component
are the pooling layers, typically found in-between successive
convolutional layers and whose function is to perform down-
sampling (max- and average-pooling are the most common) of
intermediate representations, aiming at complexity reduction
and overfitting mitigation. The higher CNN layers are usually
a few final fully-connected (compressing, similar to AE encod-
ing stages) layers, with the first taking as input the (flattened)
set of features associated to all regions and the last having an
essential softmax activation for the classification task.

For example, the architecture in [14] is made of rwo 1D
convolutional layers (with 32 and 64 filters, respectively), each
followed by a 1D max-pooling, and terminated with two fully-
connected layers. A similar CNN architecture is presented in
[13], i.e. by replacing 1D with 2D (pooling/convolutional)
layers and interpreting the input as an equivalent “traffic
image”. A 2D-CNN is also considered in [16], where batch
normalization [11] is also applied after each max-pooling
layer. On the other hand, in [15] a 1D-CNN consisting of
two 1D convolutional layers (with 200 and 80 filters, respec-
tively), followed by a 1D average-pooling layer, is considered.
The CNN is terminated with seven fully-connected layers
(with {600, 500,400, 300, 200, 100, 50} neurons) having Re-
LUs. Also, to avoid over-fitting, 25% dropout after pooling

layer and early stopping technique are adopted [11].

LSTM: A Long Short-Term Memory (LSTM) represents a
popular variant of Recurrent Neural Networks (RNNs, having
connections between units which form a directed cycle, thus
exhibiting a dynamic temporal behavior), capable of modeling
“long-term dependencies” and being easier to train [11]. An
architecture made of LSTM units is called an LSTM network.
An LSTM unit is responsible for “remembering” values (in
the form of a state vector h[t]) over arbitrary time intervals
and is composed of a cell (clt]), an inpur gate (i[t]), an output
gate (o[t]), and a forget gate (f[t]), while having as input a
time-series of vectors of length T' (for each instance), here
denoted as x[1],...,x[T] (i.e. each training instance of an
LSTM is a matrix representing the temporal evolution of a
vector of inputs). The key equations of an LSTM unit are those
governing the evolution of the three gates, having the same
form oy (W x[t]+U h[t—1]+b), i.e. they are updated based
on both the current input x[t] and the previous state h[t — 1].
Once the gates are updated, the cell and state update equations
are c[t] = flt]oc[t —1]+i[t]oo (W, z[t]+ U, hlt —1]+b,)
and h[t] = o[t]oop(c]t]), where “o” denotes the element-wise
product.* The final hidden state h[T'] corresponds to the output
of LSTM unit. A simple LSTM network for classification is
usually terminated with a few fully-connected layers, with last
having a softmax activation. On the other hand, when several
LSTM layers are stacked, their outputs (except for the last one)
are finer-grained and correspond to the state time-evolution
h[1],..., h[T), forming the input to the higher LSTM layer.>

For example in [16] a simple LSTM ending with two fully-
connected layers of 100 and 108 nodes (the latter being
the number of services to discriminate from) is considered.
Interestingly, a stack of LSTM layers is also proposed in [16]
in the context of hybrid architectures, as described henceforth.

Hybrid DL Architectures: The discussed elementary learn-
ing layers can be jointly employed within a single DL archi-
tecture. For example, architectures based on the combination
of 2D convolutional and LSTM layers may be conceived [16],
where the output tensor of the convolutional layer is reshaped
into a matrix that can act as the input of an LSTM unit.

IV. PERFORMANCE EVALUATION OF DL CLASSIFIERS

First, our comparison include the following common per-
formance measures [1]: overall accuracy, precision, and recall.
Since the latter two are defined on a per-app (per-class) basis,
we employ their arithmetically averaged (viz. macro) versions
and consider the F-measure F = (2 - prec - rec)/(prec + rec),
so as to account for both of them concisely. Moreover,
the concept of Top-K accuracy (recently used in website
fingerprinting, see e.g. [23]) is employed, defining a correct
classification event if the true app is within the top K predicted
labels (K is a free paraxmeter).6 Furthermore, we also consider

“Both the activations o¢(-) and o, (-) are usually hyperbolic tangents,
whereas o4 (-) is usually a sigmoid.

SWe highlight that for successive LSTM layers, the temporal-dimension of
data input does not change, whereas the vector-size of the successive inputs
does, being function of the size of the hidden state.

50f course K = 1 coincides with the standard accuracy.

the confusion matrices of DL classifiers with the aim of
identifying the most frequent misclassification patterns.

To provide a complete performance picture, classifiers are
also tested when they are enriched with a “reject option”
(i.e. the classification is performed only if the highest class
prediction probability exceeds a threshold and “unsure”
classifications are then censored), whose adoption has been
justified in the mobile context [7], as there is no inherent
requirement to label all unknown flows, since there remains
high chance to identify apps from their more distinctive ones,
as they typically send multiple flows when used. Hence, tuning
~ can be effective to improve classification performance while
incurring negligible drawback, i.e. a decreased ratio of classi-
fied instances. For completeness, as a preliminary investigation
of the computational complexity of DL-architectures training
phase, we report their per-epoch run-time [11].

Finally, for each considered analysis, our evaluation is based
on a (stratified) ten-fold cross-validation, representing a stable
performance evaluation setup. For completeness, we report
both the mean and the variance of each performance measure
as a result of the evaluation on the ten different folds.

V. EXPERIMENTAL RESULTS

The present section investigates and compares performance
of considered DL classifiers, according to Sec. IV, based on
the three mobile traffic datasets described next.

A. Datasets Description

The three datasets considered in this work have been all
collected by human users. Also, the ground truth has been
obtained by labeling each trace with the generating app (since
they have been run separately, thus limiting the presence of
background traffic) and, for the sake of a consistent compar-
ison among all DL-based TC works published so far (except
for [15]), we have chosen to operate at the biflow level.

The first two datasets are from an international mobile
solutions provider and are generated from a total of 49 apps
(resp. 45) on Android (resp. iOS) devices (i.e. multi-class
datasets).” These traces have been collected within Sept. 2014
- Jan. 2017 and provided already anonymized and cleaned
from background traffic. Mobile traffic has been generated
by different human-users employing various devices, without
specific constraints on the operating system / app version,
being the latter a worst case for mobile TC [20]. Further details
can be found in [10]. Globally, after biflow segmentation, we
obtained about 77.5k (resp. 44.0k) labeled biflows.

The third dataset has been collected in our laboratory
(ARCLAB) at the University of Naples “Federico II"”, during
the time frame May-Nov. 2017. More specifically, the cap-
tures pertain to either Facebook (FB) or Facebook Messenger
(FBM) traffic data (i.e. a binary dataset), and run on a Xiaomi
Mi5 with Android OS 6.0.1 (CyanogenMod 13.0 distribution).
Such dataset has been collected to analyze the capabilities
of DL classifiers to discriminate from almost “overlapped”

"Due to NDA with the provider we can not report its name, details of its
network, detailed information on the data set, nor release the data set.

apps’ fingerprints, e.g. with the objective of billing differ-
entiation. More than 100 users have been involved in its
construction and required to perform different activities for
both the apps (to explore their diversity), also in conjunction
with login/registration/logged-use cases.® Each traffic-capture
session had a duration of 5 -+ 10 minutes, and more than 1000
traffic traces have been collected. As a whole, the dataset is
made up of ~ 27.5k biflows, with 10.5k (resp. 17.0k) biflows
generated by FBM (resp. FB) app, with a 38%/62% share.

It is worth noting that depending on the particular clas-
sification approach and input data considered, preprocessing
operations could have been carried out on the datasets, varying
the actual number of biflows.

B. Classification Results

In this section, we provide a systematic comparison of
the considered DL architectures so as to draw out impor-
tant guidelines. For the sake of completeness, two baseline
approaches are included in our analysis: (¢) the flow-based
RF developed in [7], taking as input 40 carefully handcrafted
features, representing the current state-of-the-art mobile-traffic
classifier, but applicable only in the case of “post-mortem” TC,
and (72) a Multi-Layer Perceptron with only one hidden layer
(with 100 nodes), here denoted as MLP-1, trained on the same
inputs as DL architectures, so as to underline the performance
achievable by shallow learning in the considered scenario.

In the following, we will refer to the input data correspond-
ing to the first N bytes of payload (resp. raw) data as “L7-N”
(resp. “ALL-N”) [12, 13, 14] and to the 20 x 6 matrix extracted
from each biflow following [16] as “MAT” (see Sec. 1II-B).”

First, in Tab. I we report the results of state-of-the art
DL-based (and baseline) approaches fed with inputs (and
features) extracted from multi-class Android and iOS datasets,
and binary FM/FBM dataset. We highlight that performance
with diamond () markers represent results for biased inputs
(cf. Sec. III-B), therefore they should not be considered as
meaningful elements of comparison. From the inspection of
results it is apparent that, referring to multi-class dataset, DL
approaches are able to provide improved performance with re-
spect to shallow classifiers with analogous unbiased inputs, i.e.
MLP-1 (L7-1000/L7-784/MAT), and even outperform flow-
based state-of-the-art RF. Indeed, in Android setup, 86.01%
accuracy and 78.97% F-measure are achieved by 1D-CNN
(L7-784), as opposed to 83.79% and 74.12% by the RE. A
similar reasoning applies to iOS case, where the 1D-CNN (L7-
784) (resp. LSTM) performs the best in terms of accuracy
(resp. F-measure). Finally, referring to the binary dataset
FB/FBM, only a 2D-CNN (L7-784) is able to outperform
the shallow classifiers MLP-1 (L7-1000/L7-784) in terms of
both accuracy and F-measure. Nonetheless, neither the best DL
classifier in the binary dataset is able to achieve performance

8Precisely, FB use comprises friends adding/deleting, dashboard messages
posting, likes/reactions adding to posts/comments, etc., whereas FBM use
includes private messages sending/receiving, file sharing, (video-)calls, etc.

9We will not consider, for brevity, the input data corresponding to payload
at layer 2 [15], as similar conclusions can be drawn from the case “ALL-N".

Table I: Accuracy and F-measure [%] comparison of DL-based and baseline traffic classifiers. Results refer both to the multi-
class and binary datasets and are in the format avg. (£ std.) obtained over 10-folds. Results with diamond () are from biased
inputs. Starred (*) results refer to inputs including TCP/UDP ports. Best-performing DL-based classifiers are highlighted.

Android

iOS FB/FBM

Architecture

Accuracy

F-Measure

Accuracy

F-Measure

Accuracy

F-Measure

SAE [15] (L7-1000)

2D-CNN [13] (L7-784)
2D-CNN [13] (ALL-784)¢
ID-CNN [14] (L7-784)
ID-CNN [14] (ALL-784)¢
2D-CNN [16] (MAT)*

LSTM [16] (MAT)*

LSTM + 2D-CNN [16] (MAT)*

39.19 (£ 13.71)
85.89 (£ 0.50)
95.68 (£ 0.40)
86.01 (£ 0.55)
96.50 (£ 0.23)
82.68 (£ 0.62)
81.64 (£ 0.60)
84.25 (£ 0.49)

27.08 (& 12.30)
79.19 (+ 1.36)
92.14 (& 0.81)
78.97 (& 1.21)
93.26 (£ 0.86)
71.40 (£ 1.23)
69.80 (£ 1.33)
72.75 (£ 0.94)

33.74 (£ 7.55)
83.09 (£ 1.36)
96.13 (£ 0.33)
83.74 (£ 0.57)
96.10 (£ 0.27)
81.27 (£ 1.08)
83.69 (& 1.16)
82.51 (& 0.60)

20.81 (£ 6.63)
74.76 (£ 1.65)
93.38 (& 0.54)
75.32 (& 1.09)
92.67 (& 0.57)
74.04 (£ 1.69)
77.04 (£ 1.70)
7474 (£ 0.97)

68.80 (& 0.81)
75.41 (+ 1.79)
76.19 (£ 1.47)
73.91 (& 2.02)
76.79 (+ 1.53)
71.60 (& 0.95)
71.85 (& 1.04)
72.42 (& 0.70)

66.13 (£ 1.24)
72.10 (£ 1.07)
73.55 (& 1.47)
70.72 (£ 4.62)
74.24 (% 2.36)
69.14 (+ 1.20)
69.11 (£ 1.20)
69.22 (£ 0.99)

MLP-1 (L7-1000)
MLP-1 (L7-784)
MLP-1 (ALL-784)°
MLP-1 (MAT)*

77.87 (£ 0.56)
78.41 (£ 0.48)
96.35 (£ 0.43)
72.13 (£ 0.54)

68.27 (£ 1.57)
69.73 (£ 1.10)
93.93 (£ 0.76)
57.22 (£ 1.09)

80.11 (£ 1.08)
80.84 (£ 1.01)
97.26 (£ 0.44)
66.58 (£ 0.52)

72.20 (£ 1.31)
72.16 (£ 1.84)
9521 (£ 0.81)
55.95 (& 1.02)

74.05 (£ 1.05)
73.60 (£ 1.14)
76.16 (£ 0.85)
69.94 (£ 0.58)

71.42 (£ 0.91)
71.72 (£ 0.78)
74.09 (£ 0.89)
65.72 (£ 1.04)

RF [7] (flow-based)

83.79 (£ 0.44)

74.12 (£ 1.63)

81.11 (£ 0.72)

70.86 (£ 0.99)

81.64 (£ 0.94)

79.41 (£ 1.05)

Table II: Top-K accuracy [%] comparison of DL-based and baseline traffic classifiers. Results refer to the multi-class datasets

and are in the format avg. (% std.) obtained over 10-folds. Starred results refer to inputs including TCP/UDP ports.

Architecture

Android

iOS

K=1

K=3

K=5

K=1

K=3

K=5

2D-CNN [13] (L7-784)
ID-CNN [14] (L7-784)
2D-CNN [16] (MAT)*

LSTM [16] (MAT)*

LSTM + 2D-CNN [16] (MAT)*

85.89 (£ 0.50)
86.01 (£ 0.55)
82.68 (£ 0.62)
81.64 (£ 0.60)
84.25 (& 0.49)

91.68 (£ 0.35)
91.78 (£ 0.30)
91.50 (£ 0.32)
92.01 (£ 0.44)
91.80 (£ 0.27)

93.64 (& 0.36)
93.73 (& 0.20)
94.28 (& 0.24)
95.00 (& 0.28)
9431 (£ 0.21)

83.09 (£ 1.36)
83.74 (£ 0.57)
81.27 (£ 1.08)
83.69 (£ 1.16)
82.51 (& 0.60)

91.04 (£ 0.65)
91.47 (£ 0.67)
92.50 (& 0.52)
94.77 (£ 0.37)
92.57 (& 0.37)

93.43 (£ 0.63)
93.64 (£ 0.58)
95.41 (£ 0.36)
97.04 (£ 0.25)
95.44 (£ 0.25)

MLP-1 (L7-1000)
MLP-1 (L7-784)
MLP-1 (MAT)*

77.87 (& 0.56)
78.41 (& 0.48)
72.13 (& 0.54)

86.20 (£ 0.41)
86.81 (£ 0.35)
85.46 (£ 0.35)

89.41 (£ 0.39)
89.87 (£ 0.31)
90.10 (£ 0.43)

80.11 (£ 1.08)
80.84 (£ 1.01)
66.58 (£ 0.52)

88.44 (£ 0.69)
89.29 (£ 0.61)
83.95 (& 0.60)

91.27 (£ 0.49)
92.01 (£ 0.52)
89.75 (£ 0.47)

RF [7] (flow-based)

83.79 (£ 0.44)

91.25 (£ 0.24)

93.74 (£ 0.29)

81.11 (£ 0.72)

90.91 (£ 0.56)

93.85 (£ 0.37)

comparable with flow-based RF. This may attributed to the
need of a more informative type of input, having a higher
discriminative power in the case of very similar apps, like FB
and FBM. Focusing on the DL approaches with “MAT” input,
it should be noted that the performance refers to an input com-
prising TCP/UDP source and destination ports (see [16] for
details). Further investigations, led without considering these
latter fields, have revealed different trends between multi-class
and binary datasets. In details, a drop in performance up to
—16.28% (resp. —19.46%) in accuracy (resp. F-measure) is
shown for multi-class datasets (the worst drop affects LSTM
in the iOS case) when TCP/UDP ports are not considered as
inputs. On the other hand, FB/FBM classification task turns
out to be port-independent showing also an accuracy (resp.
F-measure) gain of +1.29% (resp. +1.40%).

Further investigating the performance of DL-based classi-
fiers, in Tab. IT we report their Top-K accuracy (K € {1,3,5})
on the multi-class dataset. From now on we exclude, for
brevity, the results achieved by DL classifiers based on biased
inputs. By looking at these fine-grained results, it is apparent
that although 1D-CNN (L7-784) reports the highest accuracy,
LSTM presents a better “global behavior”. Indeed, in Android
and 10S scenarios, the latter classifier is able to reach 92.01%

and 94.77% (resp. 95.00% and 97.04%) accuracy when the
Top-3 (resp. Top-5) predicted apps are considered.

As a complementary analysis, Fig. 1 shows the F-measure
and ratio of classified samples of both the best DL approach
and shallow classifier on each of the three datasets vs. the
censoring threshold ~. By looking at the results, all the
methods globally benefit from increasing ~y at the price of a
decreasing ratio of classified instances. Note that the accuracy—
not shown for brevity—presents analogous trends with .
However, only in the multi-class dataset scenario, it is evident
a relevant performance improvement with a negligible ratio of
unclassified samples, whereas in the binary dataset this trend
appears to be sharper and less advantageous (although the best
DL classifier tends to be “less wrong” than its shallow counter-
part). Specifically, by rejecting the classification of only 10%
of instances, in the case of Android and iOS datasets, 1D-CNN
(L7-784) and LSTM are able to achieve > 84% F-measure.
Sadly, in the FB/FBM case, the same target F-measure requires
> 40% biflows to be censored. This result underlines the
inability of DL framework to tackle an “overlapped-apps”
classification task with the present input/architecture choices.

Then, Fig. 2 shows the confusion matrices of best-
performing DL-approaches in the three datasets, so as to

H
(=] o
S ¢g

o

Percentage
Percentage

~
o

60

» -

Shallow F-measure
Shallow CR --a--

F-measure
R —=—

F-measure
CR

Sh

©
=)

o
=)

N

Percentage
o

N
=)

-

F-measure Shallow F-measure
R —&— Shallow CR --#--

allow F-measure
Shallow CR --#--

.
01T 02 03 04 05 06 07 08 09 30

0 01 02 03 04 05 06 07 08 09

Y
(a) 1D-CNN [14] (L7-784).

0I 02 03 04 05 06 07 08 09

N

(b) LSTM [16] (MAT).

Y
(c) 2D-CNN [13] (L7-784).

Figure 1: F-Measure and ratio of classified samples (CR) [%] vs. censoring threshold ~ of the best DL-based classifier for the
(a) Android, (b) iOS, and (c) FB/FBM datasets. Average on 10-folds and corresponding 30 confidence interval are shown.

100

100

34
] 10 %]
D31 n = = 029+ I
Ezs L - n |] (_“257 o]
925 H K 1 9
[To1l "
522 [] = :| >
S 19 ©174
-l g 1< L
134 [] K 134
101 [] [] | 94

FBM 45.88

J

o
L]

Actual Class

-
o

|
i

4 7 1013161929578 31 343740434649
Predicted Class
(a) 1D-CNN [14] (L7-784).

1 5 9 13 17 21 25 29 33 37 41 45
Predicted Class
(b) LSTM [16] (MAT).

F FBM

B
Predicted Class
(c) 2D-CNN [13] (L7-784).

Figure 2: Confusion matrices of the best DL-based classifier for the (a) Android, (b) iOS, and (c) FB/FBM datasets. Log scale

is used to evidence small errors (except for FB/FBM dataset)

investigate possible relevant error-patterns. While the 1D-CNN
(L7-784) and LSTM achieve almost-uniform error patterns, in
the Android and iOS cases, respectively, it is apparent that
2D-CNN (L7-784) operating on the binary dataset entails a
prediction imbalance toward FB app, as a consequence of
the higher number of samples in the dataset. This aspect
contributes to the unsatisfactory performance of DL-based
classifiers when compared to shallow classifiers and RF, as
reported in Tab. I.

Finally, we mention that the average run-time per epoch
of the three best DL classifiers equals 136.2 (£+0.8)s, 22.7
(£0.6)s and 65.2 (£0.9)s for 1D-CNN (L7-784), LSTM,
and 2D-CNN (L7-784), respectively, with the corresponding
overall training times equal to 5310.9 (£184.4)s, 2043.8
(£53.1)s and 3909.3 (£52.2)s.

VI. TAKE-HOME MESSAGES AND OPEN ISSUES

We tackled classification of mobile traffic via DL archi-
tectures, providing a framework for comprehensive evaluation
and comparison, by dissecting existing DL works in standard
TC. This thorough analysis has allowed to emerge a list of
guidelines and sparks, and highlight all the caveats which per-
tain to network traffic analysis domain, so as to avoid pitfalls in
the design and evaluation of (mobile) traffic classifiers and pro-
vide a step forward toward real-world implementations [24].
These are summarized hereinafter as spotlight messages.

Choice of TC object: The present analysis, for brevity and
consistency with surveyed DL-based traffic classifiers, only

. Class labels—not shown for brevity—are the same as in [10].

considered biflow-based TC. However, recent mobile literature
has shown the appeal of TC objects accounting for the bursty
nature of traffic, see e.g. [7]. Although appealing, a definition
of reasonable (and effective) input data in the latter case is not
straightforward and deserves further attention in our opinion.

Unbiased and informative input: Mobile TC presents its
own peculiarities, which hinder the straightforward application
of DL classifiers originated from other domains (e.g., im-
age/speech processing), as clearly shown in this work. Indeed,
a DL classifier fed with all the data contained in a packet
likely leads to misleading performance results. One relevant
case is [13, 14], adopting the “ALL layers” input, and thus
overlooking the presence of PCAP metadata. Similarly, the
input proposed in [16] includes port numbers, yielding DL
statistical port-based architectures.'® A key outcome of this
study was to skim informative and unbiased information from
traffic data to be used as DL classifiers’ input.

Choice of DL traffic classifier: Results in Sec. V-B, based on
SAE, CNN, LSTM, and hybrid architectures, highlighted that
there is no “killer” DL architecture for mobile TC. Indeed,
the most the DL model fits the nature of the input data,
the better it is expected to perform. One relevant example
is the comparison of 1D- and 2D-CNN with payload data
which is, by definition, one-dimensional. Similar reasoning
applies to DL classifiers based on “MAT” input [16], where
the presence of LSTM layers reflects the time-series nature

10 Also, whether destination port may be useful in some “static” contexts,
this is never the case for the source port.

of the packet fields considered. Thus, given the heterogeneous
information available from traffic data, the need for advanced
hybrid DL architectures arises. Moreover, although a key issue
of DL is the high requirement on training data (to allow
the “surfacing” of deep representations), in the supervised
context of mobile TC, the aspect of the purity of labeled
samples employed for training (i.e. the ground-truth quality) is
equally important, with (coarse) trace-level labeling probably
not representing the “purest” strategy (i.e. including some non-
app instances). Equally important, although DL architectures
relieve the designer from the feature design issue, they come
with many hyper-parameters to be tuned (such as the opti-
mizer, the number of layers/hidden nodes, the regularizers,
etc.). Hence, a grid search on these parameters (although
prone to automation) may be as tedious as manually extracting
discriminative features. Nonetheless, it is common experience
that high performance can be achieved only if (sufficiently)
“informative” data is fed to the DL classifier.

Comprehensive performance evaluation framework: The
presence of several DL architectures highlights the need for
a rigorous performance evaluation framework in (mobile) TC.
This work provided a first attempt of its formalization. Recent
literature has ascertained that a naive accuracy comparison is
not sufficient, and measures reflecting a per-app behavior (F-
measure, confusion matrices, etc.) are increasingly considered
[7, 10]. Going further, we investigated DL architectures output
at a finer detail by means of Top-K accuracy and performance
analysis with a reject option, being essential in highly multi-
instance and multi-class classification tasks, respectively, such
as the mobile one. Finally, for completeness, the framework
also included a baseline “shallow” network to clearly assess
DL performance gain, and analyzed the computational com-
plexity of classifiers’ training phase.'!

REFERENCES

[1] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and
future directions in traffic classification,” IEEE Network,
vol. 26, no. 1, pp. 35-40, 2012.

[2] N. Heuveldop et al., “Ericsson mobility report,” Ericsson

AB, Technol. Emerg. Business, Stockholm, Sweden, Tech.

Rep. EAB-17, vol. 5964, 2017.

A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez,

S. Sundaresan, J. Amann, and P. Gill, “Studying TLS

usage in Android apps,” in ACM CoNEXT’17.

G. Aceto, A. Dainotti, W. De Donato, and A. Pescape,

“PortLoad: taking the best of two worlds in traffic

classification,” in IEEE INFOCOM’10.

H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M.

Mao, “Samples: Self adaptive mining of persistent lexical

snippets for classifying mobile application traffic,” in

ACM MobiCom’15.

[6] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon,
Q. Zhang, X. Zhang, D. Xu, and J. Qian, “Eavesdropping

(3]

(4]

(5]

ndeed, while test complexity is directly associated to the classifier at
run-time, training complexity equally represents a key aspect in mobile TC,
where periodical re-training is required due to apps and/or OS updates.

(7]

(8]

[9]

[10]

on fine-grained user activities within smartphone apps
over encrypted network traffic,” in USENIX WOOT’16.
V. E. Taylor, R. Spolaor, M. Conti, and I. Martinovic,
“Appscanner: Automatic fingerprinting of smartphone
apps from encrypted network traffic,” in IEEE Eu-
roS&P’16.

A. Hajjar, J. Khalife, and J. Diaz-Verdejo, ‘“Network
traffic application identification based on message size
analysis,” Elsevier JNCA, vol. 58, pp. 130-143, 2015.
C.-N. Lu, C.-Y. Huang, Y.-D. Lin, and Y.-C. Lai, “High
performance traffic classification based on message size
sequence and distribution,” Elsevier JNCA, vol. 76, 2016.
G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape,
“Multi-classification approaches for classifying mobile
app traffic,” Elsevier JNCA, vol. 103, pp. 131-145, 2018.
I. Goodfellow, Y. Bengio, and A. Courville, Deep learn-
ing. MIT press, 2016.

Z. Wang, “The Applications of Deep Learning on Traffic
Identification.” Black Hat USA, Las Vegas, 2010.

W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Mal-
ware traffic classification using CNN for representation
learning,” in IEEE ICOIN’17.

W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang,
“End-to-end encrypted traffic classification with one-
dimensional CNNs,” in IEEE ISI’17.

M. Lotfollahi, R. Shirali, M. J. Siavoshani, and
M. Saberian, “Deep packet: A novel approach for en-
crypted traffic classification using DL,” arXiv, 2017.

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and
J. Lloret, “Network traffic classifier with convolutional
and recurrent neural networks for Internet of Things,”
IEEE Access, vol. 5, pp. 18 042-18 050, 2017.

T. Stober, M. Frank, J. Schmitt, and I. Martinovic, “Who
do you sync you are? smartphone fingerprinting via
application behaviour,” in ACM WISEC’13.

Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know
what you did on your smartphone: Inferring app usage
over encrypted data traffic,” in IEEE CNS’15.

D. Herrmann, R. Wendolsky, and H. Federrath, “Website
fingerprinting: attacking popular privacy enhancing tech-
nologies with the multinomial Naive-Bayes classifier,” in
ACM CCSW’09.

H. F. Alan and J. Kaur, “Can Android applications be
identified using only TCP/IP headers of their launch time
traffic?” in ACM WiSec’16.

G. D. Gil, A. H. Lashkari, M. Mamun, and A. A. Ghor-
bani, “Characterization of encrypted and VPN traffic
using time-related features,” in SciTePress ICISSP’16.
V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem,
and W. Joosen, “Automated feature extraction for website
fingerprinting through Deep Learning,” arXiv, 2017.

S. E. Oh, S. Sunkam, and N. Hopper, “Traffic analysis
with deep learning,” arXiv, 2017.

W. De Donato, A. Pescape, and A. Dainotti, “TIE: an
open platform for traffic classification,” IEEE Network,
vol. 28, no. 2, pp. 5664, 2014.

