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Abstract

Scientific workflows decompose complex scientific applications into smaller subsequent in-
terdependent tasks that can be executed in serial or parallel. Their use has boosted scientific
advancements in various fields such as biology, physics, medicine, and astronomy. However,
scientific workflows are generally complex and have varied structures and characteristics that
can have a significant impact on the result of a scheduling algorithm. Schedule a workflow
consist to assign workflow tasks onto the resources of a computing infrastructure. Nowadays,
the trend in information technology is the usage of Cloud computing environments to perform
scientific workflow applications. However, cloud environments are experiencing a real problem
of energy consumption. Inefficient resources management in cloud data centers has been iden-
tified as one of the main causes. That led to resources underutilisation, huge electricity bills,
and reduction of the return of investment (ROI) for the cloud providers, and also high carbon
dioxide emissions. As for the users, the respect of their defined deadline and budget is very
important. In this thesis, we have proposed consecutively five workflow scheduling algorithms
based on the structural properties of workflows. We have first investigated how to propose
scheduling strategies to minimize both execution cost and execution time, which led to the pro-
posal of two algorithms. Finally, we have investigated how to render our strategies more energy
efficient. That led to the proposition of three scheduling algorithms aiming at minimizing the
energy consumption, the execution cost, and the execution time. The three algorithms take
advantage of the structural properties of the workflow as well as newly introduced scheduling
concepts. At each step of our work, comparative simulations have been conducted between
each of our proposals against state-of-the-art algorithms. Supported by adequate statistical
tests, the analysis of the results reveals the levels of outperformance of our proposals both in
the case of the two bi-objective algorithms than in the case of the three multi-objective ones
aiming in addition at reducing energy consumption. The out-performance of the later ones
in terms of energy-saving is established in 80% of types and workloads of workflows. Overall,
one among the three, namely the Structure-based Multi-objective Workflow Scheduling with
an Optimal instance type (SMWSO), is at least 50% more energy-saving, followed by our two
other algorithms. As for the success rate, even though SMWSO scored overall the highest
success rate, statistical tests revealed that there is no significant difference between our three
algorithms and the baseline algorithm in terms of user satisfaction.

Keywords: Cloud computing, Scientific workflows, Workflow scheduling, Budget, Deadline,
Energy consumption minimization, Heuristics
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Résumé
Les workflows scientifiques décomposent des applications scientifiques complexes en plus pe-
tites tâches subséquentes et interdépendantes qui peuvent être exécutées en série ou en parallèle.
Leur utilisation a boosté les progrès scientifiques dans divers domaines tels que la biologie, la
physique, la médecine et l’astronomie. Cependant, les workflows scientifiques sont généralement
complexes et ont des structures et des caractéristiques variées qui peuvent avoir un impact sig-
nificatif sur le résultat d’un algorithme d’ordonnancement. Ordonnancer un workflow consiste
à affecter ses tâches aux ressources d’une infrastructure informatique. De nos jours, la tendance
dans les technologies de l’information est l’utilisation des environnements de cloud computing
pour l’exécution des workflows scientifiques. Cependant, les environnements cloud connaissent
un réel problème de consommation d’énergie. La gestion inefficace des ressources dans les
centres de données cloud a été identifiée comme l’une des principales causes. Cela a entrâıné
une sous-utilisation des ressources, des factures d’électricité très élevées et une réduction du
retour sur investissement pour les fournisseurs de cloud, ainsi que des émissions de dioxyde de
carbone élevées. Quant aux utilisateurs, le respect de leur délai et budget lors de l’exécution
est très important. Dans cette thèse, nous avons proposé consécutivement cinq algorithmes
d’ordonnancement de workflow basés sur les propriétés structurelles des workflows. Nous avons
d’abord étudié comment proposer des stratégies d’ordonnancement pour minimiser à la fois
le coût d’exécution et le temps d’exécution, ce qui a conduit à la proposition de deux algo-
rithmes. Enfin, nous avons étudié comment rendre nos stratégies plus écoénergétiques. Cela a
conduit à la proposition de trois algorithms d’ordonnancement de workflow visant à minimiser
la consommation d’énergie, le coût d’exécution et le temps d’exécution. Les trois algorithmes
tirent parti des propriétés structurelles des workflows ainsi que de concepts d’ordonnancement
nouvellement introduits. A chaque étape de nos travaux, des simulations comparatives ont
été menées entre nos algorithmes et des algorithmes de pointe. Soutenue par des tests statis-
tiques adéquats, l’analyse des résultats révèle les niveaux de surperformance de nos propositions
aussi bien dans le cas des deux algorithmes bi-objectifs que dans le cas des trois algorithmes
multi-objectifs visant en outre à réduire la consommation d’énergie. La surperformance de ces
derniers en termes d’économie d’énergie est établie dans 80% des types et des charges de travail
des workflows. Dans l’ensemble, l’un des trois, à savoir Structure-based Multi-objective Work-
flow Scheduling with an Optimal instance type (SMWSO), est au moins 50% plus économe en
énergie, suivi de nos deux autres algorithmes. En ce qui concerne le taux de réussite, même si
SMWSO a globalement obtenu le taux de réussite le plus élevé, les tests statistiques ont révélé
qu’il n’y a pas de différence significative entre nos trois algorithmes et celui de la littérature en
termes de satisfaction des utilisateurs.

Mots clés: Cloud computing, Workflows scientifiques, Ordonnancement de workflow, Budget,
Délai, Minimazation de la consommation en Energie, Heuristiques
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General Introduction

C loud computing is the Information Technology (IT) paradigm that has successfully turned
the vision of ”computing utilities” into reality [7, 8]. As predicted by John McCarthy2 in 1961:
”computer time-sharing technology might lead to a future in which computing power and even
specific applications could be sold through the utility business model (like water or electricity).”
Afterwards in 1969 Leonard Kleinrock3 stated that: ”As of now, computer networks are still
in their infancy, but as they grow up and become sophisticated, we will probably see the spread
of ’computer utilities’ which, like present electric and telephone utilities, will service individual
homes and offices across the country”.

Cloud computing aims at offering dynamic and non trivial pool of resources, exploitable on
pay-per-use basis by users from their smartphones, tablets, laptops or personal computers, with
an agreement to satisfy their requirements in terms of Quality of Service (QoS). Its adoption
is ever increasing [9], due to its great flexibility, dynamicity and large variety of offers with
competitive value for money. Nowadays even complex scientific applications (commonly known
as HPC (High Performance Computing) or workflow applications) benefit from these assets
of cloud environments. That trend led to the creation of large-scale data centers worldwide
with thousands of servers by cloud providers. Consequently, there are increasing issues con-
cerning the magnitude of energy consumption (resulting in huge costs of electricity bills) and
contribution to the greenhouse effect due to CO2 emissions [10, 11, 12].

Energy consumption, a real issue in the Cloud

The overall energy consumption of cloud computing was expected to be 1963 billion kWh by
2020, compared to 632 billion kWh in 2007 [11]. Only U.S. data centers consumed of 75 billion
kWh of electricity annually which was equivalent to the output of around 26 medium-sized
coalfired power plants. This energy usage is estimated to reach 140 billion kilowatt-hours
annually, by 2020 [10].

That high energy consumption has been traced from several sources, among which the
servers are the main power consumers [2, 13, 14]. In early 2010, researchers reported that
under-utilization of cloud resources [2, 7, 15, 16] contributes to the high energy consumption in

2John McCarthy was an American computer scientist and cognitive scientist, co-founder of the discipline of
artificial intelligence. https://en.wikipedia.org/wiki/John McCarthy (computer scientist)

3Leonard Kleinrock is one of the chief scientists of the original Advanced Research Projects Agency Network
(ARPANET) project which seeded the Internet.
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General Introduction

cloud data centers, which is caused by the inefficient scheduling allocation of servers resources
[2, 17]. From then, many works have been carried out to improve the energy-efficiency of cloud
environments. From idle servers switching off [13], VMs/workload consolidation [18, 19, 20], to
the Dynamic Voltage and Frequency Scaling (DFVS) [21, 22, 23, 24] techniques.

Recently in 2019, Flexera [25] reported that inefficient and time-consuming processes remain
one issue to handle in order to maximize the ROI of both cloud providers and cloud users.
In regard of that, significant energy saving still can be done through resource management
techniques [17, 26] aiming at increasing the rate of resource usage. Virtual machines (VMs)
consolidation is one of the well-known techniques, which aims at increasing the usage rate of
cloud resources while saving energy consumption [27]. Consolidation of VMs involves migrations
that can be expensive in terms of additional energy consumption, performance loss (hence cost),
and this is not accounted for in some published models [26, 28, 29]. However, the reason of
that avoidance of VMs consolidation by some researchers is the uncertainty nature of cloud
environment which has been addressed by other researchers through the usage of learning
algorithms and neurons networks [27, 30, 31].

Cloud as and opportunity for scientific workflow applica-
tions

The large acquisition or operational costs of dedicated infrastructure for scientific applications
constitutes a barrier to many categories of users. A cheap, fast, and effective alternative was
expected for long by such users. In fact apart greats laboratories, research groups and com-
panies, small and medium scale enterprises, banks, and universities also need to exploit such
environments to enhance their industrial processes, data analytic, business, and scientific dis-
covery. Most computing service users prefer to pay only when they access computing services,
rather than to run on their individual computers when the cost of ownership is high. Nowa-
days, Cloud environments are becoming a promising alternative of dedicated infrastructure for
scientific applications, complex experiments based mainly on the analysis of large-scale data
sets are gradually exploiting the assets of commercial clouds [32, 33, 34, 35, 36, 37, 38].

Almost all scientific areas are nowadays more complex and rely on the analysis of large
scale data sets. It is therefore required to use an automated management process in a scalable
way [39]. Scientific workflows have emerged as a suitable way of describing and structuring
parallel computations and the analysis of large scale data sets [39]. Workflows are viewed by
Scientists as key enablers for reproducibility of experiments involving large-scope computations
[40]. Their successful use enhanced scientific advancements in various fields such as biology,
physics, medicine, and astronomy [39, 40]. Scientific workflows have very complex structures
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General Introduction

that can significantly impact the outcome of scheduling strategies [4, 5]. A workflow may
contain hundreds or thousands of interdependent tasks [4] that are executed under a permanent
dependency constraint where a task can only start its execution if the executions of its parents
are completed. That means, allocated cloud resources can hardly be fully utilized as they might
be inevitable unused gaps between tasks execution. This brings together the double challenge
of complexities of clouds management along with that of the workflow structures. The level
of difficulty of cloud workflow scheduling becomes very high, especially if we consider multiple
user defined QoS parameters (e.g., deadline, budget). It is very important therefore to correctly
determine the types and the number of cloud resources [41] to avoid the energy wastage and
the violation of Service Level Agreement (SLA).

It has been advocated to design scheduling algorithms tailored for scientific workflows in
order to take more advantage of clouds assets and deal with the complexity of both workflow
application and cloud environments [4, 41].

Moreover, the Dynamic Voltage and Frequency Scaling (DVFS) has proved to be a simple
and effective technique for the reduction of energy consumption [42, 24, 23, 22, 43, 21]. The
structural properties of the workflows are generally employed when using DVFS technique.
Some of the important parts of a workflow structure have been widely investigated, for instance
the Critical Path (CP) (with the slack time reclamation/DVFS strategy), the distribution4 tasks
(with task duplication strategy), and the sequential and parallel tasks (with the tasks merging
and slack time reclamation/DVFS strategies).

Research Problems and Objectives

As the structure of the workflow influence greatly the outcome of the scheduling strategy, several
investigations have been done on strategy exploiting the structural properties of workflows.
However, we found no work in the literature that investigates on the width of the workflow
(the distribution of the number of tasks by level of workflow from entry to exit). We thing
that it is important to look at it because of the precedence constraints existing in the workflow,
when dealing with multi-objective scheduling. In fact, it is unlikely to use more VMs than the
largest width of the workflow for its execution. Therefore, It is important to know or determine
the optimal number and the types of VMs to use during the execution of a workflow, to avoid
resource wastage and insure the respect of users as well as cloud providers requirements. In
addition, little or almost no work combines several of the structural properties of workflows to
see what it can achieve.

We advocate that homogeneity can produce better results if the suitable instance type
4tasks having more than one child, see Figure 4.1
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General Introduction

is chosen, or a suitable (sub-)set of instance types are determined for the execution of the
workflow. We further advocate that a suitable number of VMs if determined can help not only
to produce better results in terms of user satisfaction, but also upgrade the maximization of
VM utilization, and therefor the energy efficiency of the system. To the best of our knowledge,
no work, or very few works determine suitable instance types set or an adequate number of
VMs instances with an analytical approach. Some solutions use a naive determination approach
in which it is at the end that one realize which types and the number of VMs have been used,
leading in more cases to a wastage (too many provisioned VMs that are less utilized). Others
are time consuming determination approaches, like greedy determination [44] and paths-based
clustering determination [21, 45]. The paths-based clustering approach is better than the greedy
one, however, its complexity and effectiveness are compromised if the workflow graph is strongly
connected. Moreover, most of the solutions in the literature are effective only for a few types
of workflow, while the types and structures of workflow are very complex and varied [4]. This
is not conform with the recommendation [4, 41] of designing scheduling strategies that are
effective no matter the type of workflow.

Research question

From the above-mentioned context and challenges, the research question of this thesis is the
following:

How to build a workflow scheduling algorithm able to effectively assign the tasks of a work-
flow to cloud resources in order to minimize energy consumption, execution costs, and execution
time, under user-defined budget and deadline no matter the type and the workload of the work-
flow?

Objectives

The main phases of a workflow scheduling algorithm are [3]:

1. Resources provisioning: it consists of selecting and provisioning the compute resources
that will be used to run the workflow tasks.

2. Scheduling or task allocation: it consists of mapping each task onto the best-suited re-
source. Therefore, it can be divided into two stages:

(a) Task selection: it consists of selecting a task among the non yet scheduled tasks of
the workflow. It rely on a tasks prioritization.
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(b) task to VM mapping: it consists of mapping the selected task onto the best-suited
resource.

Our main objective in this thesis is therefore to: propose scheduling strategies aiming at
determining suitable order of tasks execution and suitable number and types of VMs for adequate
task to VM mapping, in order to minimize energy consumption, execution costs, and execution
time, in the respect of user-defined budget and deadline no matter the type and the workload of
the workflow.

To achieve this main objective, we have set ourselves the following specific objectives:

1. Study the structural properties of the workflows, and their influence over the cost, the
makespan, and the energy consumption when workflow tasks are scheduled.

2. Design strategies to determinate suitable instance types (in the large range offered by
loud providers), and adequate number of virtual machines to use in order to achieve the
set (main) objective.

3. Design strategies based on workflow entry tasks, and workflow non-critical tasks along
with DVFS to enhance the reduction of energy consumption, as well as of the execution
cost and time.

Hypotheses

Our thesis works have been oriented by the following hypotheses:

1. Suitable Resources sub-set or Resources homogenization and suitable number of VMs can
significantly improve scheduling outcome;

2. The distribution of the workflow widths and depths along with the user-defined budget
and deadline are major keys for determining suitable instance types and number of VMs;

3. A fast execution of first tasks, using suitable types and number of VMs is a good track
for effective scheduling.

Methodology

To respond to our preoccupation, we have proceeded as follow.

• We have first investigated how to propose scheduling strategies to minimize both execution
cost and execution time.
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• Afterwards, we have introduced the dynamicity in the scheduling process since cloud
environments are dynamic in nature. In addition, we have investigated how to make our
strategies effective no matter the type of the workflow to execute. This has been made
through the analysis of the structural properties of workflows.

• Finally, we have investigated how to render our strategies more energy efficient. Since
the energy is function the power and the time, the reduction of the execution time natu-
rally contributes to energy reduction. However, there are ways to further reduce energy
consumption without necessarily reducing the makespan. We have for instance the appli-
cation of the DVFS technique on non-critical paths of the workflow.

• The evaluation of the performance of our proposed strategies has been made through
comparative simulation against state-of-the-art algorithms.

• In each of the above steps we have conducted some studies on the structural proper-
ties of the workflows, and their influence over the cost, the makespan, and the energy
consumption when workflow tasks are scheduled.

Contributions

The contributions of this thesis follow three main lines of strategies, and content five algorithms
(see Figure 1) described as follows:

* Novelties:

1. Line of strategies 1 : Proposition of a new technique for workflow scheduling in
the cloud called the Implicit Requested Instance Types Range (IRITR),
combined with a trade-off function between execution time and cost. The IRITR
aims at determining a range of VMs instance types that best suits the workflow
execution, in order to avoid overbidding and underbidding that may lead to budget
and deadline violation respectively. This line has three (#3) algorithms:

– (1srt and 2nd) algorithms Two bi-objective heuristics for the minimization of ex-
ecution cost and execution time based on the IRITR evaluation and the optimal
number of VMs (Cost-Time Trade-off efficient Workflow Scheduling (CTTWS)
and Cost-Time Trade-off efficient Workflow Scheduling with Dynamic provision-
ing (CTTWSDP)). The first one is static and naive in terms determination of
number of VMs, while the second is dynamic, with structure inspired limitation
of VMs. Their effectiveness has been proved through comparative simulation
with state-of-the-art algorithms.
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– (3th) algorithm Structure-based Cost-Time trade-off and Energy efficient Workflow
Scheduling (SCTTEWS): extends the later one, and aiming at minimizing the
energy consumption, the execution costs, and the execution time, under user-
defined budget and deadline.

2. Line of strategies 2 : Proposition of a new technique, which, based on structural
properties of workflows and user-defined budget and deadline, determines an ”opti-
mal instance type” of VMs along with an ”optimal number” of VMs for adequate
provisioning. Here all the VMs used are of the same type (”optimal instance type”),
and their number is limited by ”optimal number”. These new concepts have proved
to be very effective in the achievement of the main goal of this thesis. This line has
one (#1) algorithm:

– (4th) algorithm Structure-based Multi-objective Workflow Scheduling with an
Optimal instance type (SMWSO): it aims at minimizing the energy consump-
tion, the execution costs, and the execution time, under user-defined budget and
deadline. It is a real proof of concept, and scored better performance in most
of our experiments than all the other proposed algorithms, and state-of-the-art
algorithms.

3. Line of strategies 3 : similar to the Line 2, but uses Heterogeneous instance types
(exploit all the available types of VMs). This line has one (#1) algorithm:

– (5th) algorithm Structure-based Multi-objective Workflow Scheduling with
Heterogeneous instance types (SMWSH): aiming at minimizing the energy con-
sumption, the execution costs, and the execution time, under user-defined bud-
get and deadline.

* Improvement of two scheduling techniques based on the structural properties of scientific
workflows, namely task duplication and pipelines merging and slacking.

Thesis Organization

This thesis is structured as shown in Figure 2 and described as follows:

• A general introduction which sets the general framework for the thesis. Motivations and
the context of research are explained while highlighting the research goal and objectives.
It also presents the methodology followed to achieve the objectives and the main contri-
butions of the work carried out;
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Structure-based 
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Workflow Scheduling 
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- Dynamic

- Cost/time

- Limited VMs
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- Cost/time    

and Energy

- Limited VMs

  Strategy 1   Strategy 2   Strategy 3

Figure 1: Thesis contributions

• Chapter 1 (Background) presents the cloud computing paradigm, scientific workflow man-
agement systems, workflow scheduling in cloud environments, and finally some examples
of workflow scheduling algorithms;

• Chapter 2 (Cost-Time trade-off efficient workflow scheduling) presents a bi-objective
cost/time scheduling approach based on two concepts, and named Cost-Time Trade-off
efficient Workflow Scheduling (CTTWS). The first concept is a new technique aiming at
determining a set of virtual machines (VMs) instance types for the execution of a given
workflow so as to avoid overbidding and underbidding which could lead to a violation of
the budget and the deadline respectively. The second concept is based on a cost/time
trade-off function in order to select for each task of the workflow the VM instance suitable
for achieving the targeted objective;

• Chapter 3 (Dynamic provisioning based workflow scheduling with budget and deadline
awareness) presents a bi-objective cost/time scheduling approach with dynamic provi-
sioning of VMs and limitation of resources (VMs) to the extent necessary to achieve the
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Chapter 2:
Cost-Time trade-off efficient

workflow scheduling (CTTWS)

Chapter 3:
Dynamic provisioning based

workflow scheduling with bud-
get and deadline awareness

Chapter 4:
Energy-efficient workflow scheduling

strategies based on workflow structures
under Budget and Deadline constraints

Conclusion and Perspectives

Chapter 1:
Background

General Introduction

Figure 2: Thesis Organisation

objectives. The algorithm is named Cost-Time Trade-off efficient Workflow Scheduling
with Dynamic provisioning (CTTWSDP) and extends CTTWS. CTTWSDP enhances
the first concept used by CTTWS and adds a dynamic provisioning strategy of VMs.
The improvement of the first concept has as objective to enhance the effectiveness of the
algorithm no matter the type of the workflow and to maximize resource utilization.

• Chapter 4 (Energy-efficient workflow scheduling strategies based on workflow structures
under Budget and Deadline constraints) firstly presents a study of the influence of some
structural properties of workflows on scheduling in the cloud. Secondly, it proposes the
construction of three multi-objective (minimization of cost, time, and energy consumption
of VMs) heuristics based on the structural properties of workflows. The three algorithms
take advantage of proposed techniques based on the structural properties of workflows
to reduce execution cost, execution time as well as energy consumption. The first one,
the Structure-based Cost-Time trade-off and Energy efficient Workflow Scheduling (SCT-
TEWS) algorithm is an improvement of the CTTWSDP which aims at reducing the en-
ergy consumption in addition to the execution cost and the execution time. The second
one, the Structure-based Multi-objective Workflow Scheduling with an Optimal instance
type (SMWSO) algorithm dynamically determines one suitable instance type among the
available types of VMs, and only uses the VMs of that type. The third one, the Structure-
based Multi-objective Workflow Scheduling with Heterogeneous instance types (SMWSH)
is similar to the SMWSO algorithm but uses Heterogeneous instance types. The SMWSH
algorithm has been designed purposely to highlight the strength of the SCTTEWS and
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SMWSO algorithms. The three proposed algorithms use a limited number of VMs, based
on the determination of an optimal number of VMs.

• The general conclusion (Conclusion and Perspectives) first recalls the context and the
problem addressed in this thesis, then gives a summary of contributions provided within
this thesis, and ends with some perspectives for future work.
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CHAPTER

1
Background

Introduction

C loud computing is the provision of IT resources on-demand via the Internet, with pay-
as-you-go pricing. Instead of buying, owning, and managing physical servers and data centers,
one can access to technology services such as computing power, storage, bandwidth, databases,
and even end-users applications, on an as-needed basis, offered by cloud providers. If cloud
computing is nowadays the most famous paradigm of the Information and Communication
Technology industry (ICT), it has not been created from scratch. In fact, cloud computing
is derived from the Cluster and Grid computing models, combined with utility and economic
concepts [8, 46]. All those paradigms have strived to deliver utility computing vision [8], and it
is the cloud computing paradigm that has successfully turn the vision into reality [7, 8, 47].

We can say that cloud computing has also become or is becoming a ”high computing power
utility”, as researches on workflow management in cloud environments are intensively going
forward to efficiently meet the constantly growing demands of complex scientific experiments
that are based mainly on the analysis of large-scale data sets [32, 33, 34, 35, 37], which sometimes
require high computing power [39]. Scientific workflow applications have emerged as the most
suitable way of handling such complex scientific experiments [39]. Scientific advancements in
various domains like biology, physics, medicine, and astronomy have been enhanced scientific
through the successful use of scientific workflows [39, 40].

However, the attractive assets of cloud environments have not only been a source of gain,
but also a trap. In fact, the ever-growing adoption of cloud encouraged providers to increase the
underlying capacity of their data centers so that they can accommodate the increasing demand
of new customers. Increasing the capacity and building large-scale data centers has caused a
drastic growth in the energy consumption of cloud environments.

This energy consumption leads to the increase of the Total Cost of Ownership (TCO)
of cloud providers, and of course, decreases the Return of Investment (ROI) of the cloud
infrastructure. In addition to that, energy consumption has a significant impact on carbon
dioxide (CO2) emissions, which are estimated to be 2% of global emissions [48, 49]. That high
energy consumption is traceable from several sources, among which the servers are the main
power consumers [14, 13].
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Therefore, paying attention to the energy consumption of cloud resources while managing
uses’ tasks is crucial, without ignoring the antagonist requirements of users in terms of quality
of service (QoS), which generally are, to respect their budget and execution deadline.

This chapter presents the necessary concepts of cloud computing, workflows and workflow
scheduling, for the general understanding of this report.

1.1 Cloud Computing Paradigm

1.1.1 What is cloud computing?

The type and generation of resources (hardware and software) are overgrowing with user de-
mands; so linking a definition with today’s ICT possibilities, as many attempts of cloud com-
puting definition did, may lead to a continuous refinement of the definition. For this reason,
there has recently been work on standardizing the definition of cloud computing, an example
of which is the result of work by Vaquero and al. [50] who have compared more than 20 differ-
ent definitions and have proposed a global definition. In the same direction, for the reason of
standardization, we retain the definition proposed by the National Institute of Standards and
Technology (NIST) [51].

Definition 1.1. Cloud computing according to the NIST [51]. Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction.

Notwithstanding the approaches or technologies used to reach-out to its goal, that definition
unveils the main goal of cloud computing.

Another definition that highlights the utility-oriented nature of cloud computing is given
by Buyya et al. [8].

Definition 1.2. Cloud computing according to Buyya et al. [8]. A cloud is a type of parallel
and distributed system consisting of a collection of interconnected and virtualized computers
that are dynamically provisioned and presented as one or more unified computing resources
based on service-level agreements established through negotiation between the service provider
and consumers.

To reach these goals, several approaches or technologies are used. We can enumerate several
characteristics of cloud computing (among which five essential), three service models, and four
deployment models of the cloud computing technology [51].
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Cloud computing characteristics

The five essential characteristics without which the cloud will no longer be the cloud are the
following [51]:

1. On-demand self-service: A consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring human
interaction with each service provider.

2. Broad network access: Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, tablets, laptops, and workstations).

3. Elastic resource pooling: The provider’s computing resources are pooled to serve multi-
ple consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a sense of
location independence in that the customer generally has no control or knowledge over the
exact location of the provided resources but may be able to specify location at a higher
level of abstraction (e.g., country, state, or datacenter). Examples of resources include
storage, processing, memory, and network bandwidth.

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. To the
consumer, the capabilities available for provisioning often appear to be unlimited and can
be appropriated in any quantity at any time.

5. Measured service: Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage
can be monitored, controlled, and reported, providing transparency for both the provider
and consumer of the utilized service.

Cloud Computing service models

The different models of services of the cloud are a good achievement of the ”utility computing”
objective. Utility computing describes a business model for on-demand delivery of whatsoever
consumers need in return for the required remuneration from the supplier. Consumers pay
providers based on usage (”pay-as-you-go”), similar to the way in which we currently obtain
services from traditional public utility services such as water, electricity, gas, and telephony.
In cloud computing, there are three main service models: Infrastructure-as-a-Service (IaaS),
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Figure 1.1: The cloud computing services models

Platform-as-a-Service (PaaS), and Software-as-a-service (SaaS). Each of these services models
involves a certain level of responsibility for the customer and the supplier as presented in Figure
1.1.

• Software-as-a-service (SaaS): The SaaS is offering dedicated software and applications to
cloud end users that are accessible on the Internet via a browser that are ready to be
consumed.

As examples we have: Gmail, Google docs and Facebook.

• Platform-as-a-Service (PaaS): The PaaS is providing the platform and the necessary
Information technology (IT) environment for developers to implement and deploy their
various services and applications on the Internet. The provider supplies and manages the
underlying infrastructure.

As examples we have: Google AppEngine, Microsoft Azure, IBM Cloud, Hadoop and
Aneka.

• Infrastructure-as-a-Service (IaaS): IaaS is delivering virtualized resources called
Virtual Machines (VMs) (storage, networking, servers, and other computing resources)
to cloud customers. The IaaS is the principal service that benefits Workflow Management
Systems (WfMSs).

The topmost example of IaaS providers is Amazon Web Services (AWS) 1, which pro-
1https://aws.amazon.com
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Figure 1.2: Types of clouds.

vides facilities for creating VMs, organizing them together into a cluster, and deploying
applications and systems upon.

Types of clouds

It is possible to differentiate four types of clouds (see Figure 1.2), also known as Cloud Com-
puting deployment models:

• Public cloud: The cloud infrastructure is provisioned for open use by the general pub-
lic. It may be owned, managed, and operated by a business, academic, or government
organization, or some combination of them. It exists on the premises of the cloud provider.

• Private cloud: The cloud infrastructure is provisioned for exclusive use by a single organi-
zation comprising multiple consumers (e.g., business units). It may be owned, managed,
and operated by the organization, a third party, or some combination of them, and it
may exist on or off premises 2.

• Hybrid or heterogeneous clouds: The cloud is a combination of the two previous solutions
and most likely identifies a private cloud that has been augmented with resources or
services hosted in a public cloud.

• Community cloud: the cloud is characterized by a multi-administrative domain involving
different deployment models (public, private, and hybrid), and it is specifically designed
to address the needs of a specific industry.

2On-Premise defined: a solution hosted in-house and usually supported by a third-party. Off-Premise defined:
a solution hosted by a third-party and usually supported by a different third-party.
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1.1.2 Virtualization

The term virtualization is generally used to mean hardware virtualization, which plays a central
role in cloud computing for the efficient delivery of Infrastructure-as-a-Service (IaaS) solutions
as well as the other service models. Virtualization is a technology that hides physical hardware
complexity and provides virtual resources for high-level applications. However, the concept of
virtualization has not seen the day with the advent of cloud computing. In fact, virtualization
technologies have a long trail in the history of computer science and have been available in
many flavors by providing virtual environments at the operating system level, the programming
language level, and the application level. Moreover, virtualization technologies provide a virtual
environment for not only executing applications but also for storage, memory, and networking
[1]. Its adoption has been spread like a bushfire in recent years with the development of the
cloud more than it has been from its inception. Its renewed interest is due to the confluence of
several phenomena [1]:

• Increased performance and computing capacity: Nowadays, the average end-user desktop
PCis powerful enough to meet almost all the needs of everyday computing, with extra
capacity thatis rarely used. Almost all these PCs have resources enough to host a virtual
machine manager and execute a virtual machine with by far acceptable performance.

• Underutilized hardware and software resources: Hardware and software under-utilization
is occurring due to (1) increased performance and computing capacity, and (2) the effect
of limited or sporadic use of resources. Computers today are so powerful that in most
cases only a fraction of their capacity is used by an application or the system.

• Lack of space: The continuous need for additional capacity, whether storage or compute
power,makes data centers grow quickly. Companies such as Google and Microsoft expand
their infrastructures by building data centers as large as football fields that are able to
host thousands of nodes. This condition, along with hardware under-utilization, has
led to the diffusion of a technique called server consolidation 3 for which virtualization
technologies are fundamental.

• Greening initiatives: Recently, companies are increasingly looking for ways to reduce the
amount of energy they consume and to reduce their carbon footprint. Data centers are
one of the major power consumers; they contribute consistently to the impact that a
company has on the environment. Maintaining a data center operation not only involves
keeping servers on, but a great deal of energy is also consumed in keeping them cool.

3Server consolidation is a technique for aggregating multiple services and applications originally deployed on
different servers on one physical server. Server consolidation allows us to reduce the power consumption of a
data center and resolve hardware under-utilization
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Infrastructures for cooling have a significant impact on the carbon footprint of a data
center. Hence, reducing the number of servers through server consolidation will definitely
reduce the impact of cooling and power consumption of a data center. Virtualization
technologies can provide an efficient way of consolidating servers

• Rise of administrative costs: Power consumption and cooling costs have now become
higher than the cost of IT equipment. Moreover, the increased demand for additional
capacity, which translates into more servers in a data center, is also responsible for a
significant increment in administrative costs. Computers–in particular, servers–do not
operate all on their own, but they require care and feeding from system administrators.

These are the main causes of the diffusion of hardware virtualization solutions as well as the
other kinds of virtualization. Historically [1], the first step towards the consistent adoption of
virtualization technologies was made with the widespread of virtual machine-based program-
ming languages: In 1995 Sun released Java, which has soon become the most famous and
popular programming language among developers. The ability to integrate small Java applica-
tions called applets made Java a very successful platform, and with the beginning of the new
millennium, Java played a significant role in the application server market segment, proving
that the existing technology was ready to support the execution of managed code for enterprise-
class applications. Followed by Microsoft in 2002 which proposed the .NET Framework, as an
alternative to Java technology. In 2006, two of the three ”official languages” used for devel-
opment at Google, Java, and Python, were based on the virtual machine model. This trend
of shifting toward virtualization from a programming language perspective demonstrated an
important fact: The technology was ready to support virtualized solutions without a significant
performance overhead. This paved the way to another and more radical form of virtualization
that now has become a fundamental requisite for any data center management infrastructure.

Types of Virtualization and Characteristics of virtualized environments

Hardware virtualization in cloud environments There are many approaches adopted in
the implementation of virtualization technology. Two important approaches are Full Virtual-
ization and Paravirtualization. In the later one, VMs do not simulate the underlying hardware,
and this uses a special API that a modified guest OS must use. Examples include Xen and
VMWare ESX server. The full virtualization uses a special kind of software called a hypervisor.
The hypervisor interacts directly with the physical server’s hardware resources, such as the
CPU and storage space, and acts as a platform for the virtual server’s OSs. It helps to keep
each virtual server completely independent and unaware of the other virtual servers running
on the physical machine. Each guest server or the virtual machine (VM) is able to run its own
OS (see Figures 1.3 and 1.4).
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Figure 1.3: The virtualization reference model [1]

Figure 1.4: Hardware virtualization in cloud environments

A virtual hardware is used to provide compute power on demand offered as virtual ma-
chine instances [1]. The physical and virtual resources (CPU, memory) are mapped by the
hypervisor between the virtual hardware and the hosts. The pricing model of virtual machine
instances is generally defined in terms of dollars per hour, where the hourly cost is related to
the characteristics of the virtual hardware.

Other types of virtualization in cloud environments Apart from hardware virtualiza-
tion, there are also storage and network virtualization (see Figure 1.3).

• Virtual storage: As a physical machine has storage and memory, similarly virtual hard-
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ware has, virtual storage and virtual memory. A virtual storage is delivered in the form
of raw disk space or object storer complementing a virtual hardware offering that requires
persistent storage. Virtual hardware is therefore a more high-level abstraction for storing
entities rather than files.

• Virtual network: As physical machines communicate via a physical network, similarly
virtual hardware also does so over a virtual network. This is the virtual networking, that
identifies the collection of services that manage the networking among virtual instances
and their connectivity to the Internet or private networks. Logical virtual networks are
created from the underlying physical network. The physical networking components such
as the router, switch, or network interface card could be virtualized by the hypervisor to
create logical equivalent components [1, 52].

Characteristics of virtualized environments

Some of the main characteristics of virtualized environments are:

• The increased security: Virtualization allows an increased security. The ability to control
the execution of a guest in acompletely transparent manner opens new possibilities for
delivering a secure, controlled execution environment. All the operations of the guest
are generally performed against the virtual machine, which then translates and applies
them to the host. This level of indirection allows the virtual machine manager to control
and filter the activity of the guest, thus preventing some harmful operations from being
performed.

• The isolation: Virtualization allows providing guests–whether they are operating systems,
applications, or other entities–with a completely separate environment in which they are
executed, even though they are in reality executed in shared physical hosts.

• The portability: Generally, application depend open the presence of some tools and li-
braries for their execution. Virtualization allows the usage of a virtual machine image (see
Figure 1.3) that can be plain operating systems or can have software installed on them,
such as databases, application servers, or other applications needed for the execution of
users application. This grant a portability property to the virtualization technology.

1.1.3 Quality of Service (QoS)

The Quality of Service (QoS) in a cloud computing environments is expressed with more or less
high-level parameters. Compliance with these levels of values for the various parameters is the
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subject of a contract between a cloud user and its cloud service provider and is called a Service
Level Agreement (SLA).

These different QoS parameters within a cloud can be classified into four categories [53]:
Performance, Dependability, Security & Data, and Cost. Among the numerous existing param-
eters, we will just present those considered in the evaluation of our work, an exhaustive list can
be found in [53].

• Performance category:

Definition 1.3. Execution Time. The Execution time depends on the complexity of
the request to be executed (in number of instructions) and on the capacity of the virtual
machine in which it is processed.

Definition 1.4. Response Time. The response time is the time elapsed between sending
a user request and when it receives the response from the service. It is the time required
to make a service available to a user and can serve to measure the efficiency of a service.

• Dependability category:

Definition 1.5. Reliability according to Endo et al. [54]. The Reliability can be defined
as the ability of an item to perform its required functions for a stated time and under
operational conditions.

Definition 1.6. Reliability according to Zhang and Chakrabarty [55]. The Reliability of
the system is the probability of execution of task without any failure.

Additionally, reliability of computing node is of prime concern specially for computation
intensive application [21].

• Cost category:

Definition 1.7. Service Cost. The service cost is defined by the cloud provider relatively
to the type of service purchased by the user and the duration of the service. In the case
of the leasing of virtual machines, the common billing model is hourly-based. That is,
for each partial hour consumed will be rounded up to a full hour, such that 1 hour and
1 minute (61 min.) will be considered as 2 hours (120 min.) of utilization. The service
cost will then be obtained by multiplying the total number of hours per the unit hour cost
of the VM.

Definition 1.8. Energy Cost or Energy consumption. The energy cost of an equipment,
expressed in kilowatt-hour (kWh), represents the energy necessary to operate it over a
given period of time. It is a function of the power (in Watt) delivered by this equipment
(physical machine for example) and the duration of use (in Hours).
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The kilowatt-hour (kWh) is a composite unit of energy equal to one kilowatt (kW) of
power sustained for one hour.

1.1.4 Issue of High Energy Consumption in the Cloud

As stated in the introductory part of this chapter, energy consumption is a central issue in cloud
computing environments. As described by Moore’s law [56], the increasing of the capacity of
data centers has been possible through the efficient system design and increasing density of
the component. This has continuously increased the performance per watt ratio, yet the total
power consumed by computer systems has hardly decreased. For example, in 2006 the cost of
power consumption by data centers in the United States was 4.5 billion US dollar, and doubled
in 2011 [19, 57]. It is therefore crucial to know the main reasons for that issue power/energy
consumption in the cloud.

Sources of high energy consumption

There is no doubt that energy consumption also depends on cooling equipment and power
delivery infrastructure (since they are continuously supplying power to equipment). however,
half of the data centers energy is wasted mostly due to the inefficient allocation of servers
resources [2, 17]. Efficiency handling can be done at various level of a computing systems [2]
(see Figure 1.5).

Though it is difficult to have precise information about the resources usage of Cloud
providers, many researches give the tendency of cloud resources utilization. There is a real
under-utilization issue of cloud infrastructures [58, 15, 16]. About 52% of cloud resources are
currently highly underutilized [58], many been hardly use or totally sitting unused. Researchers
on Google traces reveal that the cluster is only 20% – 40% utilized [15].

In regard of the large under-utilization of resources in data centers, significant energy saving
can be done through resource management techniques [15, 26] aiming at increasing the rate of
resource usage. VMs consolidation is one of the largely proposed technique that increasing the
rate while saving energy consumption.

Energy consumption reduction approaches

As it can be inferred from Figure 1.5, there is three main levels from which one can reduce the
energy consumption of the system (physical machine level, virtual machine level, application
level) through efficient management. While the application level is of the responsibility of the
PaaS user, the two others have to be handle by the provider.
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Figure 1.5: Energy consumption incurred at divers levels in computing systems [2]

Among the existing energy reduction approaches we have the following:

• Switching idle servers off: this technique consists to shut down servers when there are
not in use. It can significantly reduce server consumption, as it ensures near-zero energy
consumption by turning servers off. However, previous works that took this approach had
difficulties to assure service-level agreement due to the lack of a reliable tool for predicting
future demand to assist the turning off/on decision-making process [13].

• VMs/workload consolidation: In cloud environments, the ability to migrate VMs at run-
time from one physical host to another enables the technique of energy-efficient dynamic
VM consolidation. That technique increases the workload of some host at the expense of
others, which can then be turned off using the first technique. That technique has been
extensively investigated by Beloglazov et al. [27, 57, 20].

• The Dynamic Voltage and Frequency Scaling (DVFS): [59] this technique con-
sists of dynamically changing the frequency of the CPUs of physical machines according
to their usage rates. The goal is to decrease the supply voltage (thus the clock frequency)
of the CPU in order to consume less power.

A reduction in frequency and voltage inevitably results in a decreasing of the CPU power
due to the nature of today’s CMOS (Complementary Metal Oxide Semiconductor) circuits
[60, 61]. This can be illustrated by Figure 1.6. In such a circuit, the dissipated power
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Figure 1.6: Illustration of the energy consumption reduction via the DVFS technique.

of a CPU is made up of two parts [62]: static and dynamic; the dynamic part been the
dominant one and estimated according to equation (1.1) [6, 62, 63, 64].

Pdynamic = a× C × V 2 × f (1.1)

where a is the number of switches per clock cycle, C the effective charged capacitance, V
the supply voltage and f its corresponding frequency. We then have V and f belonging
to the ranges [V min, V max] and [fmin, fmax] respectively, where V min and fmin are the
values in the idle state of the CPU.

According to equation (1.1), a linear reduction in voltage V implies a quadratic power
reduction provided by the component. However, a decrease in the voltage V also implies a
reduction in the switching speed of the transistors making up the CMOS, which inevitably
leads to a decrease in the theoretically possible maximum frequency of the processor. CPU
idle and operational states are known as C-states and P-states [6], and the switching time
between the P-states couple frequency/voltage (see Table 1.1) is very fast and around ten
milliseconds [65].

Most modern CPUs including mobile, desktop, and server systems support DVFS.

Table 1.1: P-States for the Intel Pentium M Processor at 1.6GHz [6]

P-State Frequency Voltage Estimated power
P0 1.6 GHz 1.484 V ∼ 25 Watts
P1 1.4 GHz 1.420 V ∼ 17 Watts
P2 1.2 GHz 1.276 V ∼ 13 Watts
P3 1.0 GHz 1.164 V ∼ 10 Watts
P4 800 MHz 1.036 V ∼ 8 Watts
P5 600 MHz 0.956 V ∼ 6 Watts
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1.2. Workflows Management System (WfMS)

1.2 Workflows Management System (WfMS)

The general concept of workflow had a long journey in the business world before the advent
of scientific workflow. A whole industry of tools and technologies dedicated to workflow man-
agement has been developed and marketed to meet the needs of commercial enterprises. The
Workflow Management Coalition 4 (WfMC), founded in August 1993, is a non-profit, interna-
tional organization of workflow vendors, users, analysts, and university/research groups, has
developed a large set of reference models, documents, and standards.

1.2.1 Concepts Definition

Independently to the domaine, WfMC defines the concept of workflow as follows.

Definition 1.9. Workflow according to the WfMC (1996). Workflow is the automation of
business process, in whole or part during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural rules.

The particularity of scientific workflows is that they tend to change more frequently and
may involve very voluminous data translations. Almost all scientific areas are nowadays more
complex and rely on the analysis of large scale data sets; it is therefore required to use an
automated management process in a scalable way [39]. Scientific workflows decompose complex
scientific applications into smaller subsequent interdependent tasks that can be executed in
serial or parallel according to its structure. Scientific advancements in various fields such as
biology, physics, medicine, and astronomy [39, 40] have been boosted via successful use of
scientific workflows. Scientific workflows are generally modelled as a Directed Acyclic Graph
(DAG).

1.2.2 Workflows Management System architecture

The notion of Workflows Management System (WfMS) in grid and in cloud environments is
largely described by the authors of [3, 66, 67, 68, 69].

The execution of workflows in cloud environments is done via a Cloud Workflow Manage-
ment System (CWfMS). Figure 1.7 presents a reference architecture common to most CWfMS
implementations, meanwhile, some specificity or simplification can be done from one system to
another [3].

4https://www.wfmc.org/
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Figure 1.7: Reference architecture of a Workflow Management System [3]

• User Interface: via the user interface, users can create, edit, submit, and monitor their
applications.

• Workflow Engine: The workflow engine is the core of the system. Its responsibility is
to manage the whole execution process of the workflow. The workflow is first parsed
(according to its format, eg. XML) by the workflow parser, which afterward creates the
workflow tasks according to their interdependencies. The scheduler works along with the
resource provisioning modules to plan the execution of the workflow tasks. The resource
provisioning module’s aim is to select and provision the cloud resources, allowing to the
scheduling component to apply mapping policies between tasks and available resources,
both processes based on the QoS requirements and scheduling objectives.

• Administration and Monitoring tools: The administration and monitoring tool is com-
posed of modules working together to enable dynamic and permanent surveillance of
workflow tasks, as well as the management and the performance of leased VMs.

• Cloud Information Services (CIS): the CIS provides to the workflow engine information
about different cloud providers, the resources they offer including their characteristics and
prices, location, and any other information required by the engine to make the resource
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1.2. Workflows Management System (WfMS)

selection and mapping decisions.

• Cloud Provider APIs: These APIs enable the integration of applications with cloud ser-
vices, as for instance the on-demand provisioning/de-provisioning of VMs, the monitoring
of resource usage within a specific VM, access to storage services to save and retrieve data,
transferring data in or out of their facilities, and configuring security and network settings,
among others.

The main challenge in workflow management is the scheduling of workflow tasks [3, 66, 39]
which is a well-known NP-complete problem [70].

1.2.3 Real world examples of scientific workflows

Here we present five well-known real-world workflows from different scientific areas. There are:
Montage workflow, CyberShake workflow, Epigenomics workflow, Inspiral/Ligo workflow, and
Sipht workflow [4].

(a) Montage workflow: the Montage workflow is generated based on the concept of as-
tronomy. The Montage application from the astronomy field is used to generate custom
mosaics of the sky based on a set of input images. The workflow calculates the geometry
of the output mosaic on the sky and re-projects the flux in the input images. Finally, a
background radiation model is generated based on the input images to achieve common
flux scales and background levels across the mosaic. The normalized images are used to
generate the final mosaic. Most of its tasks are characterized by being I/O intensive while
not requiring much CPU processing capacity.

(b) CyberShake workflow: the CyberShake workflow is used by the Southern California
Earthquake Center (SCEC)5 to characterize earthquake hazards by generating synthetic
seismograms. CyberShake relies on scientific workflows to provide the reliability, robust-
ness, and automation needed to reach the necessary computational scale. CyberShake
can be classified as a data-intensive workflow with large memory and CPU requirements.

(c) Epigenomics workflow: the Epigenomics workflow was developed by the University
of Southern California (USC) Epigenome Center6 and the Pegasus Team7. The Epige-

5The SCEC is a research center which studies why and how earthquakes occur, evaluate their effects, and
help societies prepare to survive and recover. https://www.scec.org/

6The USC Epigenome Center conducts genome-scale epigenetic and genetic data production and
analysis, technology development, and cutting-edge epigenomic and population-based genomic research.
http://epigenome.usc.edu.

7The Pegasus project encompasses a set of technologies that help workflow-based applications execute in a
number of different environments including desktops, campus clusters, grids, and clouds. Pegasus bridges the
scientific domain and the execution environment by automatically mapping high-level workflow descriptions
onto distributed resources. https://pegasus.isi.edu/
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Figure 1.8: Scientific workflows structure sample used in our experiments [4] : (a) Montage, (b)
CyberShake, (c) Epigenomics, (d) Inspiral and (e) Sipht.

nomics workflow is generated based on the concept of bioinformatics which automates
the execution of various genome-sequence operations. Most of the tasks of the workflow
require high CPU utilization and low I/O utilization.

(d) Inspiral/Ligo workflow: The Laser Interferometer Gravitational-Wave Observatory
(LIGO) workflow is used to detect network of gravitational-wave with observatories in
Livingston and Hanford [71]. LIGO workflow is used to detect gravitational waves in
physics. LIGO is composed mostly of CPU intensive tasks with high memory require-
ments.

(e) Sipht workflow: SIPHT means sRNA Identification Protocol using High-throughput
Technology. SIPHIT workflow is generated by the researcher of Harvard University based
on small untranslated RNAs (sRNAs) that control several processes of a bacteria such as
secretion or virulence [72]. The main purpose of such type of workflow is to endocde the
genes of all bacterial replicas, stored in National Center for Biotechnology Information
(NCBI) database8. Most of SIPHT tasks have low CPU and high memory utilization.

Samples structures of these workflows can be seen in Figure 1.8, their complete description
and characterization are given by Juve et al. [4].

It appears that workflows structures are very varied and complex. Therefore, a scheduling
algorithm should not ignore or consider only one particular workflow structure but adapt to
the different possible structures [4, 41].

1.3 Workflow Scheduling in Cloud

8The National Center for Biotechnology Information advances science and health by providing access to
biomedical and genomic information. https://www.ncbi.nlm.nih.gov/
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1.3.1 Workflow scheduling taxonomy

We briefly present here some taxonomies of workflow scheduling, important for the understand-
ing of this thesis; exhaustive description are proposed in [3, 66]. In Figures 1.9 and 1.10, the
notions in bold are those characterizing the different contributions in this thesis.

Application model taxonomy

This taxonomy describes the ability of an algorithm to schedule either a single or multiple work-
flows, that is the multiplicity of workflow handled (see Figure 1.9). Single workflow algorithms
are designed to optimize the schedule of a single workflow. Multiple workflows and workflow
ensembles are similar categories and correspond to the scheduling of many scientific workflows.
The difference is that in workflow ensembles, the workflow instances are interrelated because
their combined execution produces a desired output.

Application Model Workflow Multiplicity

Multiple Workflows

Workflow Ensembles

Single Workflow

Figure 1.9: Application model taxonomy

Scheduling model taxonomy

In this section, we identify some characteristics of workflow scheduling that are relevant for our
work (see Figure 1.10). We have the Task-VM mapping dynamicity, the resource provisioning
strategy, the scheduling objectives, and optimisation strategy [3, 66].

Task-VM mapping dynamicity: workflow scheduling algorithms can be classified as either
static or dynamic. Static ones are algorithms in which the task to VM mapping is produced
in advance and executed once. The tasks of the workflow are assigned in the pre-defined set of
VM instances based current state information about the resources in the servers. And possible
variation of the performance of the computing resources in the servers are not considered. At
the contrary, the dynamic algorithms make task to VM assignment decisions at runtime based
on the current state of the system and the workflow execution. In addition to these two classes,
we identify a third hybrid one, in which algorithms combine both approaches [3].
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Figure 1.10: Scheduling model taxonomy

Resource provisioning strategy: Similarly to the task to VM mapping, algorithms may
adopt a static or dynamic resource provisioning approach. In the static resource provisioning,
the VM pool configuration is considered ready before the execution of the workflow. In the
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dynamic provisioning, on the other hand, the VM pool configuration is made or refine at
runtime, selecting which VMs to create, which VMs to keep active, which ones to lease, and
which ones to release as the workflow execution progresses.

Scheduling objectives: examples of scheduling objectives are:

1. the minimization of the execution cost or the respect of user-defined budget: for the user,
reducing execution cost is of a capital importance. User sometimes have a cap on the
amount of money spent on resources (i.e. budget). Minimizing execution cost and taking
into account user-defined budget in a scheduling strategy is crucial.

2. the minimization of the execution time or the respect of user-defined deadline: as in the
case of the execution cost, execution time and deadline are of a capital importance for
cloud users. Therefore, scheduling strategies must strive to reducing the makespan while
mapping workflow tasks on cloud resources and be aware of user-defined deadline.

3. the maximization of the workload aiming at maximizing the amount of work done, that
is, the number of workflows executed;

4. the maximization of VM utilisation: idle time slots in provisioned VMs are deemed as a
waste of money as they were paid for but not utilised and as a result, algorithms try to
avoid them in their schedules. Minimising idle time slots and maximising the utilisation
of resources helps reducing execution cost as well as energy consumption, engraving profit
to providers.

5. the minimization of energy consumption: The current industries, organizations, and gov-
ernments are really concern about the reduction of energy and to reduce the carbon
footprint. For cloud computing providers, energy consumption reduction is a key to up-
grade their return of investment (ROI). Energy efficient scheduling on the servers is one
of the challenging problems in a dynamic environment such as cloud domain for reducing
the energy consumption.

6. the maximization of the reliability of the system: scheduling algorithms considering relia-
bility as part of their objectives must put mechanisms in place to ensure that the workflow
execution is completed within the users’ QoS constraints even if resource or task failures
occur. Or simply minimize possible failure during workflow execution.

Optimisation strategy: the optimisation strategies considered here are heuristic and meta-
heuristic. Heuristic algorithms deal with particular problems and are designed to find an
approximate solution in an acceptable time frame. For instance, a heuristic approach uses
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the knowledge about the characteristics of the cloud as well as the workflow application in
order to find a schedule that meets the user’s QoS requirements. The main advantage of
heuristic based scheduling algorithms is their efficiency in terms of performance. They are also
easier to implement and more predictable than meta-heuristic based methods. Whereas, meta-
heuristic algorithms are high-level and problem-independent algorithms which have a set of
rules or strategies to find a globally optimal solution to a given problem. Unlike heuristic-based
algorithms, meta-heuristic approaches are generally more computationally intensive and take
longer to run. However, they also tend to find more desirable schedules as they explore different
solutions using a guided search. Using meta-heuristics to solve the workflow scheduling problem
in cloud environments involves challenges such as modelling a theoretically unbound number of
resources due to the uncertainty nature of inherent to the cloud. It is also important when using
meta-heuristics to define operations to avoid exploring invalid solutions (e.g. data dependency
violations) to facilitate convergence, and pruning the search space by using heuristics based on
the cloud resource model [3].

1.3.2 Overview of workflow scheduling algorithms

Given that utility computing describes a business model for on-demand delivery of whatsoever
consumers need in return for the required remuneration from the supplier, and agreement must
be done between the customer and the supplier. That agreement is called Service Level Agree-
ment (SLA). Once the SLA contract is concluded, both parties must respect their commitments,
in order to avoid penalties. The requirements of both parties are described in the section 1.3.1.
And the requirements considered in this thesis are minimization of execution cost and time as
far as user concern, and minimization of energy consumption far as supplier concern.

Therefore, a scheduling algorithm which the goal is to assign the tasks of the workflow to
cloud resources (here VMs), must strive to do it in the respect of both users’ and providers’
requirements.

Many researchers have proposed different approaches based on heuristics or meta-heuristics
to solve the problem of single workflow scheduling in distributed systems. We are not doing
an exhaustive state of the art here, but we are mainly interested in the algorithms recently
proposed and which are currently widespread in cloud computing.

Several approaches exist in the literature to address multi-objective workflow scheduling
using meta-heuristic techniques like bio-inspired and nature-inspired algorithms. One popular
way of solution for NP-complete problems is the usage of meta-heuristic techniques like bio-
inspired and nature-inspired algorithms. Meta-heuristic algorithms are high-level and problem-
independent algorithms. For instance Ndam Njoya et al. [73] used an evolutionary-based
approach to address the problem of target coverage in wireless sensor networks.
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To solve the workflow scheduling problem, several bio-inspired and nature-inspired algo-
rithms were proposed:

Chen and Zhang [74] proposed a meta-scheduler that uses Ant Colony Optimization (ACO)
to satisfy user QoS constraints. Hu et al. [75] proposed the Immune Particle Swarm Optimiza-
tion (IPSO) algorithm, an extension of PSO which can diminish the local extreme and avoid
the prematurity convergence present in the PSO algorithm. IPSO addresses the problem of
multi-objective optimization in dynamic and heterogeneous grid environments by the usage of
an objective function based on the satisfaction rate. Chuang et al. [76] proposed C-PSO, a
variant of PSO that is inspired by the catfish effect observed by Norwegian fishermen when cat-
fishes were introduced into a holding tank of sardines. Pandey et al. [77] for the first time used
Particle Swarm Optimization (PSO) for workflow scheduling on cloud resources, with the objec-
tive to minimize makespan and cost (composed of computation cost and the data transmission
cost). Rodriguez and Buyya [78] developed a meta-heuristic optimization technique based on
the Particle Swarm Optimization (PSO) to minimize the overall workflow execution cost while
meeting the deadline constraint in clouds. Their approach considers the fundamental features
of IaaS providers such as the dynamic provisioning and heterogeneity of unlimited computing
resources as well as VM performance variation. Elsherbiny et al. [79] proposed IWDC, an al-
gorithm extending the natural-based Intelligent Water Drops (IWD) algorithm that optimizes
the scheduling of workflow on the cloud. Through simulations, the authors showed that IWDC
has noticeable enhancements in the performance and cost in most situations over well-known
scheduling algorithms, namely MIN-MIN, MAX-MIN, round-robin, FCFS, and MCT, and over
PSO and C-PSO. Verma and Kaushal [80] proposed a non-dominance sort based Hybrid Par-
ticle Swarm Optimization (HPSO) algorithm to handle the workflow scheduling problem with
multiple conflicting objective functions on IaaS clouds. Ismayilov et al. [30] proposed a novel
prediction-based dynamic multi-objective evolutionary algorithm, called NN-DNSGA-II algo-
rithm, that incorporates an artificial neural network with the non-dominated sorting genetic
algorithm (NSGA-II algorithm). Their model considers the resource failures and changes in
the number of objectives as main sources of dynamism.

Even though meta-heuristic strategies produce acceptable results, they are usually time-
consuming algorithms due to their relatively long iterative process [81]. Furthermore, the
dynamicity of cloud services is a real issue because of the uncertainty during the processing,
which may incur more time consumption if meta-heuristic strategies are considered.

Makespan/Deadline aware heuristic algorithms

For the heuristics, one of the most widespread techniques is the list based scheduling, and
the most famous and widely used list-based scheduling algorithm is the Heterogeneous Earliest
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Finish Time (HEFT) proposed by Topcuoglu et al. [82]. HEFT aims to minimize the makespan
of workflow execution in heterogeneous environments. It firstly sorts the tasks of the workflow
into a scheduling list and then assigns each task to the resource which can finish it earliest in the
order of the list. The determination of the finish time takes into account the already mapped
tasks to each VM and find (with insertion base) the first time slot that can accommodate the
task according to the precedence constraints in the workflow.

Makespan/Deadline and Cost/Budget aware heuristic algorithms

Poola et al. [83] present a robust and fault-tolerant scheduling algorithm with resource al-
location policies, namely Robustness-Cost-Time (RCT) and Robustness-Time-Cost (RTC).
Their algorithm tries to maximize robustness and minimize costs and the total elapsed time
(makespan). Their policies maximize the robustness proportionality to the user-defined bud-
get with a reasonable increase in the processing cost. Zheng and Sakellariou [84] proposed a
Budget and Deadline Constrained (BDC) scheduling algorithm named BHEFT, which is an
improvement of HEFT. BHEFT aims to find a feasible plan for the execution of the workflow
allowing providers to decide whether they can agree with the user under his defined deadline
and budget, in order to avoid SLA violation. BHEFT is only suitable for Grid since it works
under reservation and billing of a fixed number of resources. Verma and Kaushal [85] proposed
a cloud-oriented algorithm, namely, Budget and Deadline constrained Heterogeneous Earliest
Finish Time (BDHEFT), which is also an extension of HEFT. For each task, BDHEFT gen-
erates a BDC schedule plan using the six variables: Spare Workflow Budget (SWB), Spare
Workflow Deadline (SWD), Current Task Budget (CTB), Current Task Deadline (CTD), Bud-
get Adjustment Factor (BAF) and Deadline Adjustment Factor (DAF). Three of those variables,
namely SWB, CTB, and BAF been inspired by BHEFT [84]. The BDHEFT algorithm proved
to be more effective than BHEFT under the same deadline and budget constraints. Abazari
et al. [86] proposed the multi-objective workflow scheduling (MOWS) algorithm aiming at
increasing the security and minimizing the makespan. They considered task interaction issues
as a security threat and designed a new systematic method to reduce completion time while
ensuring task security demands by introducing the task security sensitivity measurement to
quantify tasks security requirements.

Vahid Arabnejad et al. [81] proposed Budget Deadline Aware Scheduling (BDAS). BDAS
partitions workflow tasks over the different levels, such that each level is seen a bag of tasks
(BoT) containing a set of independent tasks, and distributes the user-defined deadline and
budget among the levels. While the deadline of each level is calculated before the task selection
phase, they used the ”All in” Budget Distribution for the budget in which the sub-budget spend
by one layer is first resolved before the determination of the budget to use in the next level.
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For task selection, the Earliest Start Time (EST) is used as a priority among tasks in each
level, such that all the tasks of a level are scheduled before those of the next level. For each
task, BDAS performs instance selection using a cost-time trade-off function (CTTF) to select
the instance with the highest CTTF.

Unlike the just mentioned heuristics [81, 83, 84, 85], their are other recent workflow schedul-
ing algorithms with dynamic provisioning:

Vahid Arabnejad et al. proposed two scheduling algorithms [87] with dynamic provisioning
aiming at reducing the cost of computation with a deadline constraint. The two algorithms,
namely Proportional Deadline Constrained (PDC) and Deadline Constrained Critical Path
(DCCP), are the extended version of two of their previous work. Like BDAS, PDC and DCCP
use a preprocessing step for tasks partitioning in which the tasks are partitioned into different
levels based on their respective dependencies. Afterwards, the user-defined deadline δ is shared
among the different levels, and each level gets its own level-deadline which is also assigned to all
the tasks at the level. Then, the PDC algorithm uses a task selection based on a prioritization
with eight possible policies (Upward Rank, Downward Rank, Sum Rank, Minimum Execution
Time, Maximum Execution Time, Random, Earliest Completion Time and Earliest Deadline
First). It finally uses a trade-off function for the selection of the VM of each task. The DCCP
algorithm meanwhile determines the constrained critical path (CCP) (presented in [88]) in the
workflow based on HEFT upward rank and downward rank. DCCP ends with the Instance
Selection phase in which it identifies the most appropriate instance to execute each CCP, all
the tasks in a CCP been executed in the same VM. Both PDC and DCCP take into account
the dynamic provisioning of VM according to specific situations.

Singh et al. [45] proposed the Partition Problem based Dynamic Provisioning and Schedul-
ing (PPDPS) algorithm to minimize the execution cost in the respect of the deadline. PPDPS
consists of two main phases, firstly the determination of the VM speed, and secondly the dy-
namic provisioning and Task-to-VM mapping. In the first phase, they divide the tasks into
Bag of Tasks (bots) and assign sub-deadline to each bot, and with the k-means clustering tech-
nique applied over the set of lengths of all the paths in the workflow they determine a set of
instances type (Rd) to use for the provisioning. In the second phase, each time none of the
already leased VMs is able to match to mapping condition they launch the VM provisioning.
The VM provisioning begins with the fastest instance, and alternatively, an instance of VMs
having higher speed (from the middle of set Rd) and slower speed (from the beginning of set
Rd) is chosen. The Task-to-VM mapping is done by BoT.

Faragardi et al. [44] proposed a resource provisioning mechanism and a workflow scheduling
algorithm based on HEFT, named Greedy Resource Provisioning and modified HEFT (GRP-
HEFT). The greedy resource provisioning mechanism lists the instance types according to their
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efficiency ratio (its capacity divided by its cost) and takes the most efficient instances con-
strained by the user defined-budget. The best configuration of instances type with the number
of VMs of each type to create is employed on the modified HEFT to obtain the scheduling plan.

Zhu et al. [89] proposed a deadline constrained workflow scheduling algorithm (called DyDL)
aiming at optimizing the cost of workflow execution with deadline constraint. They introduced
for the first time the multi-resource packing to the workflow scheduling in clouds, which has
the ability to reduce both the monetary cost and the running time by eliminating idles time
slots of VM. Pan et al. [90] proposed the Critical-Path-Duration-Estimation based (CPDE) VM
Selection strategy aiming at minimizing the execution Cost in respect of the user deadline. They
considered the IaaS cloud platform with fluctuating VM performance and used an ARIMA time
series model as the underlying prediction method for processing time-fluctuating performance.

Energy aware heuristic algorithms

Among the algorithms proposing energy-efficient techniques we have:

Kimura et al. [42] that proposed a slacking algorithm that uses the non-critical path to ex-
tends the task execution time by reclaiming slack time to save energy. Huang et al. [91] present
an enhanced Energy-Efficient Scheduling (EES) algorithm which reduces energy consumption
while meeting the performance-based requirements.

Then, Durillo et al. [92] proposed an extended version of the HEFT algorithm denoted multi-
objective heterogeneous earliest finish time (MOHEFT) aiming at providing suitable trade-offs
between makespan and energy consumption.

Furthermore, Huang et al. [91] also proposed two algorithms extending the HEFT algorithm
by introducing the energy awareness, called the Enhancing Heterogeneous Earliest Finish Time
(EHEFT) and the Enhancing Critical Path on a Processor (ECPOP), and addressed the time
and energy-efficient workflow scheduling. Tang et al. [23] introduce the DVFS enabled Effi-
cient energy Workflow Task Scheduling (DEWTS) algorithm to obtain more energy reduction.
However, the last two algorithms reserve a set of VM instances for the whole makespan.

Then, Li et al. [22] proposed cost and energy-aware scheduling (CEAS) algorithm to min-
imize the execution cost of workflow and reduce the energy consumption while meeting the
deadline constraint in the cloud environment. CEAS first uses a VM selection algorithm that
applies the concept of cost-utility to map tasks to their optimal virtual machine (VM) types
by the sub-makespan constraint. Afterwards, it employs two tasks merging methods to reduce
execution cost and energy consumption. In order to reuse the idle VM instances which have
been leased, it further proposed a VM reuse policy. And finally, it utilized a scheme of slack
time reclamation to save energy on leased VMs.
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More recently, Ritu Garg et al. [21] proposed the Reliability and Energy Efficient Workflow
scheduling (REEWS) algorithm. The aim of their proposal is to minimize the energy consump-
tion and maximize the reliability of the workflow execution in the respect of the user-specified
QoS/deadline constraint. The REEWS algorithm consists of four main steps: the prioritization
of the tasks; the tasks clustering; (user-defined) deadline distribution among the workflow tasks
and the mapping of cluster tasks to processors at suitable voltage/frequency levels in order to
maximize the overall reliability of the system and minimize of energy consumption.

Singh et al. [93] proposed a meta-heuristic called energy efficient workflow scheduling
(EEWS) algorithm, aiming at minimize makespan and energy consumption. EEWS is inspired
from hybrid chemical reaction optimization (HCRO) algorithm, and adds a new operator called
on-wall pseudo-effective collision to exploit the benefits of swap mutation, and consider dynamic
voltage scaling (DVS) along with a novel proposed measure to calculate the amount of energy
that can be conserved.

Neha Garg et al. [18] proposed the energy and resource efficient workflow scheduling (ERES)
algorithm, which aims at minimizing energy consumption, maximizing resource utilization, and
minimizing workflow makespan. The ERES algorithm uses VM migration to deploy/un-deploy
the VMs based on the workflow task’s requirements and a double threshold policy to perceive
the server’ status (overloaded/underloaded or normal). ERES also makes use of the DVFS
technique.

Conclusion

Even though meta-heuristic strategies produce acceptable results, they are usually time-consuming
algorithms due to their relatively long iterative process [3, 81]. Furthermore, the dynamicity of
cloud services is a real issue because of the uncertainty during the processing, which may incur
more time consumption if meta-heuristic strategies are considered.

It was recently found that few heuristic-based workflow scheduling algorithms consider both
deadline and budget constraints at the same time in cloud [81], how much more with energy
consumption minimization.

The efforts for improving energy efficiency in IT infrastructures has been a major concern
these last years. Even though there are multiples causes of energy consumption, like for instance
the usage of cooling equipment and power delivery infrastructure, half of the data centers energy
is wasted mostly due to the inefficient management of servers resources [2, 17]. It has been
proved that the intelligent management of computing resources can significantly boost the
reduction of energy consumption of a system without performance requirements degradation.
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Chapter 1 : Background

Some energy consumption reduction techniques have been presented. Namely, the switching
off of idle servers, the VMs/workload consolidation, and the DVFS.

The Dynamic Voltage and Frequency Scaling (DVFS) is the technique employed in this
thesis. The DVFS has been made possible in news computer architectures by enabling the soft-
ware level to control CPU power consumption through the management of the CPU ”gearbox”,
and has as effect the dynamic variation of the power, and therefore of the energy consumption.
It is therefore important to know when and how to take advantage of these technique when
scheduling workflow tasks because of their great complexity.

In regard to the above-mentioned complexity of both cloud environment and workflows
structures, it is essential to design scheduling algorithms tailored for scientific workflows in order
to take more advantage of clouds assets [4, 41]. Although the cloud has several advantages, like
for instance its flexibility and elasticity, inefficient usage of resources and high computing costs
may result if inadequate scheduling and provisioning decisions are made [94].

In this chapter, we have laid the foundation for the general understanding of this report, by
presenting the necessary concepts of cloud computing, workflows and workflow scheduling.

The aim of this thesis is the proposition of heuristics for an energy-efficient workflow schedul-
ing in IaaS Clouds, with the minimization of execution cost and time, constrained by the
user-defined budget and deadline.

Due to our incremental methodology, the contributions of this thesis are presented in the
following three chapters: a cost-time efficient strategy with static provisioning, then a cost-time
efficient strategy with dynamic provisioning, and finally three energy and cost-time efficient
strategies with dynamic provisioning.
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CHAPTER

2
Cost-time trade-off efficient
workflow scheduling (CTTWS)

Several workflow scheduling works aim at optimizing the makespan and the budget. However,
more investigations are needed for appropriate resources choosing in the large set of instance
types offered in cloud environments. This chapter presents a new scheduling algorithm called
Cost-Time Trade-off efficient Workflow Scheduling (CTTWS), which consists of four main
steps: task selection, Implicit Requested Instance Types Range (IRITR) evaluation, spare budget
evaluation, and VM selection. The IRITR evaluation is a novel scheduling concept, which aims
at determining a range of VMs instance types that best suits the workflow execution, in order to
avoid overbidding and underbidding that may lead to budget and deadline violation respectively.
Comparative simulations results against a state-of-the-art algorithm, supported by a Student’s T-
test, proved that CTTWS can produce better success rates to meet users’ deadlines and budgets
up-to 38.4% according to the variety of available instance types. This confirms that paying
attention to the type of resources is vital.

Introduction

Although the cloud has several advantages, like for instance its flexibility and elasticity,
inefficient usage of resources and high computing costs may result if inadequate scheduling and
provisioning decisions are made. For example, it is very important to determine the types and
the number of appropriate resources and ensure good workload management in order to avoid
energy wastage and Service Level Agreement (SLA) violation when running workflow tasks.

In an unknown and diversified market, the assistance of a good sales consultant is important
to tailor the quality of purchases to the customer needs and budget. In a cloud, this problem
of optimizing the budget-quality ratio becomes the problem of optimizing the execution time
and the computing cost according to the user-defined budget and deadline, and the role of a
good sales consultant is played by a good scheduling algorithm.

In this chapter, we propose a new workflow scheduling algorithm that aims at optimizing
execution time and processing cost, the Cost-Time Trade-off efficient Workflow Scheduling
(CTTWS). The CTTWS scheduling algorithm uses a novel concept, the Implicit Requested

This chapter is derived from: J. E. Ndamlabin Mboula, V. C. Kamla, and C. Tayou Djamegni: Cost-
time trade-off efficient workflow scheduling in cloud. Simulation Modelling Practice and Theory 103 (2020):
102107. Elsevier.
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Instance Types Range (IRITR) evaluation, to determine a range of VMs instance types that
best suits the workflow execution, in order to avoid overbidding as well as underbidding that
may lead to budget and deadline violation respectively. Thereby, root tasks are executed on
relatively fast instances that speed up execution, with the ability to be reused, and no task uses
a slower instance than those in the IRITR. Our algorithm also uses new trade-off factors between
time and cost to determine the most viable schedule, and uses this to get the most appropriate
type of VM instance to provision. In this work, our trade-off function and its related issues,
namely task selection and sparse budget evaluation, are based on a fine granularity approach,
compared to their counterparts in the Budget Deadline Aware Scheduling(BDAS) algorithm
[81], one of the most recent published work related to our goal and conditions, that rely on a
big granularity approach.

2.1 Modelling of the workflow scheduling problem

In this section we present the cloud resource model, the workflow model, and the problem
formulation.

2.1.1 Cloud computing model

Our study is limited to a single data center of a public cloud provider. The cloud data center
model is similar to the one offered by Amazon EC2 [95]. We assume that the data cen-
ter is equipped with a set of K types of heterogeneous VM instances, denoted by VMIT=
{vmit1, vmit2, ..., vmitk, ..., vmitK}, having various processing costs, performances and config-
urations. Each instance type vmitk is defined by its computing performance pk in millions
instructions per second (MIPS), its processing cost per billing period ck and communication
bandwidth bk. An instance with a higher computing performance is . For sake of simplicity,
we assume that the communication bandwidth between the instances is uniformly distributed,
and denoted by β.

At any moment we consider that P VMs (VMS = {vm1, vm2, ..., , vmp, ..., vmP}), each
been of a single instance type listed in VMIT, are leased as subscription-based services in a
pay-per-use model and are charged per billing period of length τ . A billing period is one hour
per VM usage for most IaaS providers; each partial hour consumed being rounded up to a full
hour, such that 1 hour and 1 minute (61 min.) will be considered as 2 hours (120 min.) of
utilization. As it is often the case [96, 97], we assume that all the vmitk ∈VMIT are ordered
according to their characteristics, such that the order of magnitude of the prices varies accord-
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2.1. Modelling of the workflow scheduling problem

ing to the order of the computing performances as stated in equations (2.1) and (2.2).

p1 < p2 < ... < pk < ... < pK , (2.1)

c1 < c2 < ... < ck < ... < cK , (2.2)

2.1.2 Workflow model

Workflow as a Directed Acyclic Graph (DAG)

The most commonly used model for scientific application is workflow represented as a Directed
Acyclic Graph (DAG). A DAG is a graph G(WT,E) where WT = {t1, t2, ..., tn} is the set of
the tasks of the workflow (the weight of task ti, in terms of millions of instructions, is denoted
by Zi), and E = {ei,j = (ti, tj)|1 ≤ i, j ≤ n, i 6= j} a the set of edges representing the existing
data and control dependencies between tasks. Thus ei,j ∈ E if there is a precedence constraint
between ti and tj ∈ WT , such that the execution of tj can start only after ti finishes its execu-
tion and sends data (of size sij in Megabytes (MB)) to tj. Task ti is a parent of tj and tj a child
of ti. A task is ready to start its execution when all of its parents have been executed and all
its required data have been provided. Any task with no parent is an entry task and any task
with no child is an exit task. The set of the parents (resp. children) of the task tj is denoted
pred(ti) (resp. succ(ti)). The Critical Path (CP) of a DAG is defined as its longest path.

A workflow can have one or more entry tasks (tasks without parent), and one or more
exit tasks (tasks without child). Entry tasks and exit tasks are denoted as tentry and texit

respectively.

Definitions

In this section, we define the execution time and the processing cost of a submitted workflow,
consisting of a total of n tasks, stemming from the workflow model and cloud computing model.

Given a task ti, its execution time on a resource of instance type vmitk is denoted by
ET (i, k) and defined as

ET (i, k) = Zi
pk
, (2.3)

and the data transfer time from ti to tj ∈ succ(ti) denoted by TT (i, j) is defined as
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Figure 2.1: Example of mapping of DAG tasks onto VMs, with idle time slots due to data transfer

TT (i, j) =


0 , if ti and tj are mapped of the same VM
sij
β

, otherwise
(2.4)

The execution cost of task ti on a resource of instance type vmitk is denoted by EC(i, k)
and defined as

EC(i, k) =
⌈
ET (i, k)

τ

⌉
× ck, (2.5)

where τ is the length of a billing period.

Assuming that a number of tasks (ti, i ∈ I) are mapped onto the same VM instance vmp,
supposed to be of instance type vmitk, the cumulative execution cost will be evaluated as follow:

EC(I, k) =
⌈∑

i∈I{ET (i, k)}+ TITSp
τ

⌉
× ck, (2.6)

where TITSp (Transfer Idle Time Slots) is the sum of the idle time slots due to data transfer
awaited by the VM vmp. The example presented in Figure 2.1 gives an illustration of TITS for
the mapping of a DAG of seven tasks onto two VMs. The red rectangles are TITS.

We denote the Earliest Start Time and Earliest Finish Time of task ti as EST (ti) and
EFT (ti) respectively. They are defined as
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EST (ti) =


0 , if ti = tentry,

max {EFT (tj) + TT (j, i)} , otherwise
tj∈pred(ti)

(2.7)

and

EFT (ti) = EST (ti) + ET (i,K), (2.8)

where ET (i,K) is the minimum possible ET of task ti over all possible VM instance types,
according to the relation (2.1).

In like manner, we also consider the Actual Start Time and the Actual Finish Time of a
task ti mapped onto a VM vmk

p of instance type vmitk. They are denoted by AST (ti, vmk
p) and

AFT (ti, vmk
p) respectively. Their values may be different from those of EST (ti) and EFT (ti),

due to the heterogeneity of VMs and the fact that functions EST and EFT provide the minimum
possible value over all possible mapping of tasks onto VMs. The workflow completion time (also
called makespan), denoted by MG, is defined as the Actual Finish Time of the exit task texit.
The minimum makespan, denoted by minMG, is defined as the Earliest Finish Time of texit.
Thus, minMG = EFT (texit).

Finally, the total cost of executing a workflow is the sum of the execution cost of all the
tasks when effectively mapped onto VMs, and defined as:

CostG =
∑
ti∈G

EC(i,map(i)), (2.9)

where map(i) denotes the VM on which task ti is mapped, 1 ≤ p ≤ P, 1 ≤ k ≤ K.

2.1.3 Problem formulation

In this chapter, the VMs provisioning strategy is the static one. It is considered that P resources
of different instance types are available. Given these P provisioned resources, the workflow
scheduling aims at determining the optimal execution order of tasks and task mapping onto
VMs with respect to user and workflow constraints. Here, user constraints are the user-defined
deadline δ, assumed to be great or equal to the minimum makespan (δ ≥ minMG), and the
user-defined budget B, assumed to be great or equal to the total cost provided by equation
(2.9). The workflow constraints are made of task weights and data dependencies between them.
We assume that workflows are submitted to the cloud by users.

The question to deal with is: how to build a workflow scheduling algorithm able to reduce
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execution cost and execution time in the respect of the user-defined budget and deadline?

The problem can be formulated as a mathematical optimization problem:


Reduce(MG)
Reduce(CostG)

Subject to MG ≤ δ and CostG ≤ B

(2.10)

2.2 The Proposed Scheduling Algorithm: CTTWS

In this section, we present our proposed solution for the workflow scheduling problem, the
Cost-Time Trade-off effective Workflow Scheduling (CTTWS), which aims at optimizing both
processing costs and times. Our scheduling algorithm has four main steps summarized in Table
2.1. The steps are not necessarily logically ordered in the table.

Table 2.1: The four main steps of CTTWS algorithm

Step Description
2.2.1 Spare Budget

Evaluation
Due to the cloud billing period model, mapping
a new task can leave the current overall cost un-
changed. Thus, only the additional cost induced by
the mapping of a new task is reduced from the cur-
rent spare budget.

2.2.2 Implicit Re-
quested In-
stance Types
Range (IRITR)
evaluation

By the usage of the minimum makespan minMG and
the user-defined budget (B) and deadline (δ), we de-
termine the VMs instance types range that best suits
the workflow execution throughout.

2.2.3 Task Selection Each task is selected in the ready list based on its
priority (EST Asc) for execution

2.2.4 VM Selection In this phase, we introduce a new Cost-Time trade-
off policy. We find the best VM in regard of the
IRITR, the combination of the cost and time, and
the structure of the workflow.

2.2.1 Spare Budget Evaluation

Due to the cloud billing period model, mapping a new task can leave the current overall cost
unchanged. Thus, only the additional cost (also called extra cost) induced by the mapping of
a new task onto a VM is reduced from the current spare budget. The spare budget is defined
as the amount of money remains after mapping a task onto a VM. The starting spare budget
is equal to the user-defined budget. When a new task is mapped onto a VM, the extra cost
is subtracted from the current spare budget. Note that, the extra cost is zero if the new task
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is scheduled in the current period. A new billing period is started if the execution of the new
task can not take place in the current period.

Our spare budget management strategy is based on fine-grained updates, as an update is
done when mapping a single task onto a VM, unlike the one introduced in BDAS [81] which
is based on big-grained updates. BDAS updates the spare budget after mapping all the tasks
of the same level onto VMs, assuming that the workflow is partitioned into levels composed of
non-dependent tasks.

2.2.2 Implicit Requested Instance Types Range (IRITR) evaluation

The computing power of different types of resources is generally proportional to their price, as
in Amazon EC2 [96]. As users and cloud providers know, the cost of processing plays a very
important role. It is based on the billing model, the planning algorithm, and the workflow
structure. In an unknown and diverse market, if we do not have a good sales consultant, it will
be difficult to optimize the quality of purchases against the budget. In a cloud, this problem of
optimizing the budget-quality ratio becomes the problem of optimizing both cost and makespan
with respect to both budget and deadline. This last problem is solved here by avoiding both
overbidding and underbidding of resources during the execution of the workflow. To solve this
avoidance problem, we introduce a new metric, the Implicit Requested Instance Types Range
(IRITR), which represents a range of instance types that the budget can afford based on the
makespan, deadline, and workflow structure. The IRITR construction process is described in
the following.

• The Minimum and Maximum Remaining Number of Billing Period (MinRNBP , MaxRNBP )
are defined respectively by

MinRNBP =
⌈
remMG

τ

⌉
× remNbTasks; (2.11)

and

MaxRNBP =
⌈
remδG
τ

⌉
× remNbTasks; (2.12)

• The Minimum and Maximum Implicit Requested Instance Type Cost (MinIRITC,
MaxIRITC) are defined respectively by

MinIRITC = remBG

MaxRNBP
; (2.13)

and
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MaxIRITC = remBG

MinRNBP
(2.14)

where remMG is the remaining makespan, remδG the remaining deadline, δ the deadline
and remBG the remaining budget, and remNbTasks the number of tasks not yet mapped onto
a VM.

After the computation of equations (2.11), (2.12), (2.13) and (2.14), we determine the slow-
est (cheapestIRIT ) and the fastest (expensiveIRIT ) VMs instance types whose the costs are
betweenMinIRITC andMaxIRITC, and we set the range as IRITR = [cheapestIRIT, expensiveIRIT ].

During the execution of a workflow, the remaining makespan and deadline at a any time t
are respectively remMG = MG − t and remδG = δ− t. Since the makespan is unknown during
the execution of the workflow, it is approximated by minMG and the remaining makespan is ap-
proximated as follows: remMG ' minMG− t. IRITR could be constructed either at any time
a task has to be mapped onto a VM (also called VM selection) or only at the beginning of the
mapping process. In order to minimize the load of the mapping process, we choose the second.
In this case, remMG ' minMG − AST (tfirst) ' minMG and remδG = δ − AST (tfirst) = δG

as AST (tfirst) = 0.

It may happen that the user-defined deadline is smaller than the minimum makespan, i.e.
δG < minMG, and this implies that remδG < remMG, which in turn implies thatMinIRITC >

MaxIRITC. This means that the left bound of the IRITR interval is greater than its right
bound. Hence a contradiction. This situation occur mainly for data or I/O intensive workflow,
due to the expression of the EFT. To handle this, the values of remδG and remMG are reset to
non-contradictory values: remMG = 0.75×remδG and remδG remains unchanged. According to
the limited number of VMs used, there will be VM reuse along the line. Hence, this readjustment
may always leads to a success.

Another robustness management must be handle if no instance type belongs to the IRITR.
In that case, it is only one instance type that is chosen. Either cheapestIRIT , if all the existing
instances are cheaper, or expensiveIRIT , if all the existing instances are more expensive.

2.2.3 Task Selection

Tasks are ordered in a list, called ready list, according to their Earliest Start Time (EST) such
that all the root tasks receive the highest priority.

In our task selection strategy, a task is ready for execution once its parents have been
executed and its awaited input data received. Whereas, in BDAS [81], tasks are executed level
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by level, meaning that a task is ready for execution once all tasks in the prior level have been
scheduled. This may slow down the execution of the workflow as a task for which all parents
in the previous levels have finished their execution is forced to wait on non-dependencies.

2.2.4 VM Selection

Once the workflow tasks have been ordered according to their ESTs, they are ready to be
mapped onto the available VMs, one after the other. Generally, faster resources are more
expensive compared to slower ones. Therefore, there is often an exploitable trade-off [81]
between execution time and the cost of resources. The trade-off between cost and time is
handled according to the trade-off function defined as follows. Given a task ti and a VM vmp,
we have

CTTF p
i = Costpi + Timepi ; (2.15)

where Costpi is the cost part and Timepi the time part, and they are evaluated according to
equations (2.16) and (2.17) respectively.

Cost

The cost part of our trade-off function is defined as the ratio between the spare budget obtained
if the task ti is mapped onto the VM vmp and the smallest possible spare budget that one can
get at the current time:

Costpi = spareBt − EC(i, p)added
spareBt − EC(i)min

; (2.16)

where spareBt is the spare budget at the current time t as described in the sub-section
2.2.1, EC(i)min the minimum cost of performing task ti among all VMs with respect to their
actual load (as given in equation (2.5)), and EC(i, p)added is the additional execution cost if
task ti is mapped onto VM vmp (also according to equation (2.5)). The value of EC(i, p) is
zero if VM vmp is already provisioned and task ti can be executed during the current paid
billing interval, since each instance is billed on a time slot until it is complete. The lower the
added cost(EC(i, p)added), the higher the cost part (Costpi ), and the better the budget savings.
Thus, formula (2.5) estimates the degree of budget savings of task ti on VM vmp.
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Time

The time part of the trade-off function is defined as the inverse of the Actual Finish Time
(AFT (ti, vmp)) of task ti on VM vmp. So, the lower the AFT , the higher the Timepi is. Thus,
formula (2.17) estimates the degree of time savings of task ti on VM vmp. This is exploited to
locate the VM that can perform task ti as fast as possible based on the current loads and the
performances of the available VMs. The AFT (ti, vmp) is is determined by finding the first idle
time slot capable of holding the task ti on VM vmp like in [82].

Timepi = 1
AFT (ti, vmp)

; (2.17)

Equation (2.17) avoids the early convergence of Timepi to zero, which is a cause of erroneous
selection of a suitable VM [81]. When the deadline is distributed per task level, the way of
constructing the time part proposed in [81] often produces a negative time-part value, which
in turn produces a wrong result when the deadline is tight, although it would still have been
possible to find-out a good mapping.

VM Selection algorithm

The VM selection algorithm pseudo-code is depicted in Algorithm 1.

Algorithm 1 VM Selection Algorithm
Input: The ordered list of the tasks readyList, and the list of VMs VMS
Output: All the tasks are mapped to to their suitable VMs
1: for ti ∈ readyList do
2: if ti has already been mapped to a VM then
3: continue; //continue to the next task since this task has been mapped through one of its parents
4: end if
5: for vmp ∈ VMS do
6: Calculate the CTTF p

i

7: bestV M ← vmp if vmp fulfils the following conditions:
8: (C1) vmp have the highest CTTF p

i

9: (C2 1) If ti is a root task, the VM vmp must be of instance type expensiveIRIT
10: (C2 2) If ti is not a root task, the VM vmp must be of an instance type belong to IRITR
11: end for
12: Map ti to bestV M
13: if ti has exactly one parent and one child then
14: tnext ← child(ti)
15: while tnext adds zero cost on bestV M , and has exactly one parent do
16: Map tnext to bestV M
17: tnext ← child(tnext)
18: end while
19: end if
20: spareBt ← spareBt − EC(i, p)added

21: end for
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2.2.5 The CTTWS algorithm

Here, we present the CTTWS algorithm. It consists of four main steps as mentioned above.
The CTTWS algorithm strives to enable the cloud scheduler to spend less money to complete
the workflow without exceeding the deadline. The CTTWS algorithm pseudo-code is depicted
in Algorithm 2.

We have noticed that the evaluation of the Implicit Requested Instance Types Range (IR-
ITR) is a good track for the scheduling plan, while the simple use of EST prioritization among
workflow tasks avoids scheduling overhead within the paths of the workflow. Since we didn’t
adopt a level-based deadline/budget distribution, careful management of costs, and deadlines
along the line was required because the workflow structure may contain parallel tasks that may
have close deadlines. Therefore, our VM selection algorithm policy and our trade-off function
are able to reduce both the monetary cost and the deadline.

Algorithm 2 CTTWS Algorithm
Input: The DAG, and the list of VMs VMS
Output: All the tasks are scheduled to their suitable VMs

1: Order the tasks readyList in Asc EST
2: [cheapestIRIT, expensiveIRIT ]← IRITR Evaluation
3: Call the VM Selection Algorithm
4: for ti ∈ readyList do
5: Schedule task ti to its mapped vmp

6: end for

2.2.6 Time Complexity

To determine the time complexity of both BDAS and CTTWS algorithms, scheduling phases
that must be considered are task selection and VM selection. In fact, it is the phases which
contain the deepest nesting of loops, with the parameters of magnitude relating to the problem
(n the number of tasks, and P the number of VMs). For the task selection, given a workflow
containing n tasks, we need O(n2) time for the determination of their EST. Afterward, sorting
the tasks takes O(nlogn) time complexity, which gives an overall of O(n2) for the task selection.
For each ready task, to select the suitable VM all the VMs should be examined. Which gives
a time complexity of O(n× P ) for VM selection, where P is the number of VMs. However, in
the case of CTTWS that happens when workflow tasks are very connected since the tasks in
the same pipeline are mapped to the same VM at ones.

Hence both algorithms have a time complexity order of O(n × (n + P )). However, since
we have P < n, we conclude that BDAS and CTTWS algorithms have a polynomial time
complexity of O(n2).
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2.3 Performance evaluation

In this section, we present the experiment setup and analyse the simulation results.

We have used the Pegasus workflow generator [5] during experimentation to create the struc-
ture of the five real-world scientific workflows (Montage, CyberShake, Epigenomics, SIPHT, and
LIGO), in different workloads (the number of tasks of the workflow): 50, 100, 200, 500 and
1000 tasks.

We implemented CTTWS and BDAS, one of the most recent published algorithms [81]
related to our field of study, and compared their performances on WorkflowSim simulator [98],
an extension of CloudSim [99] for investigating workflows.

2.3.1 Experiment setup

For the simulations we consider the system as a single data center having ten different instance
types that are based on the US-east (Ohio) Amazon region [95], collected in July 2019, and
which the characteristics are presented in Table 2.2.

Table 2.2: Instance types based on Amazon EC2

Type vCPU ECU Memory(GB) Cost($)/Hour
m3.medium 1 3 3.75 0.067

m4.large 2 6.5 8 0.10
m4.xlarge 4 13 16 0.20
m4.2xlarge 8 26 32 0.40
m4.4xlarge 16 53.5 64 0.80
m5.8xlarge 32 131 128 1.536
m4.10xlarge 40 124.5 160 2.00
m5.12xlarge 48 173 192 2.304
m4.16xlarge 64 188 256 3.20
m5.24xlarge 96 345 384 4.608

We have configured the simulation environment as follows. The bandwidth between in-
stances is fixed to 20 MBps, the value of the vCPU of each instance is considered as its process-
ing capacity in Million Instruction Per Second (MIPS) as seen in [41]. The charging model has
being configured to reflect the Amazon EC2 instances charge that is an hourly interval from
the time of provisioning. The virtualization system used is Xen. The VMs have been created
such that the number of VMs per instance type is the same.

2.3.2 Performance metrics

We compare the performances of CTTWS and BDAS [81], one of the most recent and relevant
scheduling algorithms in our field study, based on the following well-known performance metrics:
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Cost Ratio (CR), Time Ratio (TR) and Success Rate (SR).

• Cost Ratio (CR): The CR metric is used to compare the achieved costs of scheduling
algorithms. The CR of a scheduling algorithm is calculated by dividing the overall cost
(expressed in equation 2.9) by the user-defined budget (B). A CR value greater than
1 indicates a cost larger than the budget, which counts as a failure to meet the defined
budget. CR value of less than 1 indicates that the scheduled workflow meets the budget.

CR = CostG
B

; (2.18)

• Time Ratio (TR): In a similar way, the TR metric is used to compare the achieved
times of scheduling algorithms. The TR of a scheduling algorithm is defined as the ratio
between the overall makespan and the user-defined deadline (δ). A TR value greater than
1 indicates a makespan larger than the deadline, which counts as a failure to meet the
defined deadline. TR value of less than 1 indicates that the scheduled workflow meets the
deadline.

TR = MG

δ
; (2.19)

• Success Rate (SR): The SR metric is used to compare the achieved successes of scheduling
algorithms. The SR of a scheduling algorithm is defined as the ratio between the number
of ran simulations that successfully met both deadline and budget constraints (denoted
by NB success), and the total number of experiments (denoted by NBExp) :

SR = NBsuccess

NBExp

; (2.20)

When both the CR and TR values are less than one, that means both the overall execution
time and cost meet respectively the user-defined budget and the user-defined deadline.
This situation is considered a success.

2.4 Simulation Results and Analysis with Student’s T-
Test

We conducted two different types of complementary experiments. The first type is based on a
variation of the deadline value, the budget value, and the number of VMs, while the second is
based on the variation of the instance types among the ones described in Table 2.2.
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Chapter 2 : Cost-time trade-off efficient workflow scheduling (CTTWS)

2.4.1 Experiment Type 1

In this experiment type we calculated for each workflow type the fastest schedule (FS) as a
baseline schedule and the lowest budget (LB) as in [81]:

FS =
∑
ti∈CP

ET (i,K), (2.21)

where ET (i,K) is the execution time of task ti on the fastest instance according to equation
(2.3). FS can be viewed as the sum of the minimum execution times of the tasks belonging to
the Critical Path (CP).

LB =
∑
ti∈G

EC(i, 1), (2.22)

where EC(i, 1) the execution cost of task ti on the cheapest instance according to equation
(2.5). LB is the lowest possible cost required for executing a workflow, irrespective of the
completion time.

Then by using equations (2.21) and (2.22), we set variation ranges for user-defined budget
and deadline from tight to moderate to relaxed as follow:

deadline = α ∗ FS, α ∈ [4, 8, 12, 16], (2.23)

budget = β ∗ LB, β ∈ [4, 8, 12, 16], (2.24)

For each of the five workflow structures, we consider five different sizes (50, 100, 200, 500,
and 1000 tasks), resulting in a total of 5 × 5 = 25 workflows. We performed 20 experiments
per workflow with the same deadline, budget, and VMs. This corresponds to 5 × 20 = 100
experiments per workflow structure. The variation of deadline and budget factors yields 16
different cases per workflow structure. By considering both deadline and budget variations
and three set sizes (1000, 5000, and 10000) of VMs, the number of experiments per workflow
structure is 100 × 16 × 3 = 4800. Therefore, the overall number of experiments is 5 × 4800 =
24000.

For this experiment type the comparative studies were conducted by analyzing both box
plots for cost ratio and time ratio (cost and time efficiency), and bar plots for success rate as
respectively defined in equations (2.18), (2.19) and (2.20). Because the results per number of
VMs were almost similar we just studied the cost and time efficiency for the experiments with
1000 VMs. Box plots are used to show the degree of dispersion of both the cost and time ratios.
Box plots are a standardized way of displaying the distribution of data based on the following:
the minimum, the first quartile (also called the 25th percentile), the median (also called the
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Figure 2.2: Different parts of a box plot.

middle value), third quartile (also called the 75th percentile), the interquartile range (which
spans from the 25th to the 75th quartile), the maximum and potential outliers. A percentile is
a value in a data distribution below which a given percentage of values falls. For example, the
25th percentile (also known as the first quartile) is the value below which 25th of the values fall.
If the values of 75% of the data distribution are lower than 1.6, then 1.6 is the 75th percentile.
At the 50th percentile or the median, 50% of the values are less than or equal to (resp. are
greater than or equal to) that value. Figure 2.2 describes the structure of a box plot1. The dot
within the interquartile range denotes the mean of the data distribution.

Performance for MONTAGE workflow for Experiment type 1

The results obtained for MONTAGE workflow are presented in Figure 2.3, for both cost and
time efficiency, and in Figure 2.3c, for success rate. For both cost and time efficiency, CTTWS
has better performance than BDAS, by achieving smaller cost and time ratios. Apart when
the budget factor, β, is 4 or 8, in which case BDAS has more than 75% of experiments with
a good time ratio (TR ≤ 1) (Figure 2.3b), in all the experiments, BDAS fails in terms of cost
efficiency because it does not meet the user-defined budget (CR > 1) (Figure 2.3a). Moreover,
for CTTWS, more than 75% of the schedules meet the deadline (TR ≤ 1) for each value of
the budget factor (β), and more than 50% of the schedules meet the budget (CR ≤ 1) (Figure
2.3a) for each value of the deadline factor (α).

In terms of average success rate, BDAS has an average of 0.0% while CTTWS records an
average of 29.9% (Figure 2.3c).

1https://www.leansigmacorporation.com/box-plot-with-minitab/
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(c) Success rate (%) for MONTAGE workflow with 1000, 5000 and 10000 VMs.

Figure 2.3: Cost efficiency, time efficiency, and success rate (%) of CTTWS vs BDAS for MONTAGE
workflow.

Performance for CYBERSHAKE workflow for Experiment type 1

The results obtained for CYBERSHAKE workflow are presented in Figure 2.4, for both cost
and time efficiency, and in Figure 2.4c, for success rate. For CYBERSHAKE workflow, CTTWS
has a good Cost Ratio (Figure 2.4a), and fails to achieve the deadline for less than 25% of the
cases for which the budget factor β is 4 or 8 (Figure 2.4b). BDAS exceeds the budget in more
than 50% of cases (Figure 2.4a).

The average success rate is 14.3% for BDAS and 93.4% for CTTWS.

Performance for EPIGENOMICS workflow for Experiment type 1

The results obtained for EPIGENOMICS workflow are presented in Figure 2.5, for both cost
and time efficiency, and in Figure 2.5c, for success rate. Even for EPIGENOMICS, CTTWS
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(c) Success rate (%) for CYBERSHAKE workflow with 1000, 5000 and 10000 VMs.

Figure 2.4: Cost efficiency, time efficiency, and success rate (%) of CTTWS vs BDAS for CYBER-
SHAKE workflow.

outperforms BDAS in terms of cost efficiency (Figure 2.5a) and time efficiency (Figure 2.5b),
and therefore in terms of success rate (Figure 2.5c). However, for both algorithms, more than
75% of the schedules meet the deadline (TR ≤ 1) for each value of the budget factor (β) (Figure
2.5b), and almost 50% of the schedules meet the budget (CR ≤ 1) (Figure 2.5a) for each value
of the deadline factor (α).

In terms of average success rate, BDAS has an average of 26.1% while CTTWS records an
average of 71.5%.

Performance for SIPHT workflow for Experiment type 1

The results obtained for SIPHT workflow are presented in Figure 2.6, for both cost and time
efficiency, and in Figure 2.6c, for success rate. For SIPHT workflow, both algorithms achieve
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(c) Success rate (%) for EPIGENOMICS workflow with 1000, 5000 and 10000 VMs.

Figure 2.5: Cost efficiency, time efficiency, and success rate (%) of CTTWS vs BDAS for EPIGE-
NOMICS workflow.

the execution in at most half of the deadline (Figure 2.6b) in almost all the cases, whereas
BDAS has better budget management than CTTWS. However, as we can see in Figure 2.6a,
although CTTWS fails to meet the budget, the values of the ratio of its cost are slightly greater
than 1, meaning that the failure is a bit close to success.

The average success rate is 6.1% for CTTWS and 57.4% for BDAS.

Performance for LIGO workflow for Experiment type 1

In the case of LIGO workflow, except for a tiny percentage when α = 8, BDAS always exceeds
the budget (Figure 2.7a). However, BDAS have more than 75% of completion time in the
deadline (Figure 2.7b); but still leading to almost 100% failure due to budget. Whereas,
CTTWS realised more than 50% of planning in the budget (Figure 2.7a), and more than 75%
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(c) Success rate (%) for SIPHT workflow with 1000, 5000 and 10000 VMs.

Figure 2.6: Cost efficiency, time efficiency, and success rate (%) of CTTWS vs BDAS for SIPHT
workflow.

of completion time in the deadline (Figure 2.7b).

The results obtained for LIGO workflow are presented in Figure 2.7 for both cost and time
efficiency, and in Figure 2.7c, for success rate.

The average success rate is 37.7% for CTTWS and almost 0.2% for BDAS.

Performance summary for Experiment type 1

In summary, CTTWS has a global average of SR that is up-to 32.5% higher than the one
of BDAS as depicted in Table 2.3; and both algorithms meet deadlines better than budget
requirements, which corroborates with what is observed in [81]. Also, it appears that the
number of available VMs (at least from a certain threshold) doesn’t have a significant impact
on the performance of both algorithms. However, the performance observed here for BDAS
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(c) Success rate (%) for LIGO workflow with 1000, 5000 and 10000 VMs.

Figure 2.7: Cost efficiency, time efficiency, and success rate (%) of CTTWS vs BDAS for LIGO
workflow.

algorithm seems to contrast with what is presented in [81]. This is due to the large range of
instance types used in this thesis. The second type of experiment will provide more detailed
explanations for that issue.

Even though CTTWS has an average success always better than the one of BDAS, the
standard deviation of the success rate (see Table 2.3) of BDAS is always smaller than the one
of CTTWS. Therefore, it is not enough to conclude that CTTWS is significantly better than
BDAS.

We have conducted statistical analysis to find out if our proposal is significantly more
efficient in terms of SR (i.e. customer satisfaction) than BDAS. The Microsoft Excel add-in
Analysis ToolPak2 [100] has been used for all our statistical tests. Since here we have two

2https://www.excel-easy.com/data-analysis/analysis-toolpak.html
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Table 2.3: Success rate summary for the five scientific workflows and the five workloads with 1000,
5000 and 10000 provisioned VMs. CTTWS can have a total average of SR that is up-to 32.5% higher
than the one of BDAS

1000 VMs 5000 VMs 10000 VMs
Workflow CTTWS BDAS CTTWS BDAS CTTWS BDAS
MONTAGE 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MONTAGE 100 18.0% 0.0% 12.0% 0.0% 15.0% 0.0%
MONTAGE 200 23.0% 0.0% 23.0% 0.0% 23.0% 0.0%
MONTAGE 500 60.0% 0.0% 67.0% 0.0% 69.0% 0.0%
MONTAGE 1000 89.0% 0.0% 25.0% 0.0% 25.0% 0.0%
EPIGENOMICS 50 75.0% 14.0% 74.0% 22.0% 73.0% 20.0%
EPIGENOMICS 100 77.0% 21.0% 77.0% 29.0% 75.0% 27.0%
EPIGENOMICS 200 73.0% 30.0% 71.0% 28.0% 69.0% 35.0%
EPIGENOMICS 500 73.0% 3.0% 69.0% 46.0% 64.0% 44.0%
EPIGENOMICS 1000 72.0% 0.0% 69.0% 33.0% 61.0% 40.0%
CYBERSHAKE 50 81.0% 9.0% 81.0% 9.0% 78.0% 7.0%
CYBERSHAKE 100 96.0% 3.0% 97.0% 4.0% 96.0% 4.0%
CYBERSHAKE 200 100.0% 47.0% 100.0% 41.0% 100.0% 53.0%
CYBERSHAKE 500 99.0% 3.0% 99.0% 0.0% 99.0% 0.0%
CYBERSHAKE 1000 95.0% 32.0% 90.0% 3.0% 90.0% 0.0%
SIPHT 50 0.0% 31.0% 0.0% 34.0% 0.0% 33.0%
SIPHT 100 0.0% 68.0% 0.0% 67.0% 0.0% 68.0%
SIPHT 200 0.0% 71.0% 0.0% 73.0% 0.0% 73.0%
SIPHT 500 25.0% 62.0% 0.0% 63.0% 0.0% 63.0%
SIPHT 1000 66.0% 58.0% 0.0% 46.0% 0.0% 51.0%
LIGO 50 13.0% 0.0% 14.0% 0.0% 20.0% 0.0%
LIGO 100 21.0% 0.0% 25.0% 0.0% 25.0% 0.0%
LIGO 200 33.0% 0.0% 30.0% 0.0% 28.0% 0.0%
LIGO 500 53.0% 1.0% 44.0% 0.0% 51.0% 0.0%
LIGO 1000 23.0% 0.0% 20.0% 0.0% 15.0% 0.0%
Mean 50.6% 18.1% 43.5% 20.0% 43.0% 20.7%
Standard deviation (SD) 35.58% 24.58% 36.75% 24.29% 36.05% 25.53%

algorithms to compare, we have conducted Student’s test3 between the success rate of CTTWS
algorithm and BDAS algorithm for the different workflows and the different workloads. We
have considered two different hypotheses to compare the proposed algorithm (CTTWS) with
BDAS.

• First hypothesis (H0): There is no difference between the proposed and the comparing
algorithm.

• Second hypothesis (H1) : There is a difference between the proposed and the comparing
algorithm.

As commonly accepted [101, 102], we consider a significance level of p < 0.05 for our t test
(which corresponds to a confidence interval of 95%). According to the provided data in Table

3https://www.excel-easy.com/examples/t-test.html
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2.4, a notable difference between the proposed algorithm and other baseline algorithm exists
since the p-value in all cases is lower than 0.05. The null hypothesis (H0) is therefore rejected.
Thus, this test proves the fact that differences between the proposed CTTWS algorithm and
BDAS algorithm is significant in terms success rate. We can then conclude that there is a
significant contribution in terms of customer satisfaction, since additionally, CTTWS scored
higher average of success rate than BDAS in all situations.

Table 2.4: Student’s test result comparing the SR of the proposed CTTWS algorithm with the one of
BDAS (for the five scientific workflows and the five workloads with 1000, 5000 and 10000 provisioned
VMs)

1000 VMs 5000 VMs 10000 VMs
Algorithm CTTWS BDAS CTTWS BDAS CTTWS BDAS
Mean 50.6% 18.1% 43.5% 20.0% 43.0% 20.7%
SD 35.58% 24.58% 36.75% 24.29% 36.05% 25.53%
t-value 3.755200214 2.664736131 2.526163014
p-value 0.000515571 0.010884737 0.015294934

2.4.2 Experiment Type 2

In this experiment type we have considered four different set of instance types among the ones
presented in Table 2.2:

1. From m3.medium to m5.8xlarge (M3 M −M5 8XL): the six slowest instances;

2. From m4.4xlarge to m5.24xlarge (M4 4XL−M5 24XL): the six fastest instances;

3. From m4.xlarge to m5.12xlarge (M4 XL−M5 12XL): the six instances of the middle;

4. From m3.medium to m5.24xlarge (M3 M −M5 24XL): all the ten instances.

We fixed α = 16 and β = 16, and still conducted 100 experiments for each workflow structure
(20 for each of the five sizes). The purpose of these experiments is to determine how well our
algorithm is able to evaluate the instance types range in a large list, for good scheduling. In
fact, cloud providers often offer a list of different types of instances, which poses the problem
of choosing appropriate types of instances leading to a good scheduling.

Performance summary for Experiment type 2

The results of the experiments presented in Figures 2.8a, 2.8c, 2.8b, 2.8d and 2.8e show clearly
the impact of the available set of instances over the performance of BDAS and CTTWS algo-
rithms.
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2.5. Quality improvement analysis of the CTTWS algorithm

When we carefully observe the results of the last set of instances (M3 M −M5 24XL) for
BDAS algorithm, we notice that the success rate obtained is largely smaller that the ones of
the three first sets of instances. In the Figure 2.8 it corresponds to the rightmost histogram.
The success rate values of BDAS in that rightmost histogram of Figure 2.8 are similar to the
ones obtained in the first type of experiments. This means that BDAS has some difficulty to
make an adequate choice of VMs when the set of instance types is large and varied.

That is mainly due to the fact that, even though BDAS uses a trade-off function, sometimes
because of the subtraction in both cost and time part of this function, we fall into a negative
value which produces wrong results, whereas it would still have been possible to find-out a good
mapping. This is given by box plots of the first type of experiments, and particularly by the
upper outliers observed in most of the cases. However, CTTWS is free of these disadvantages
because it uses a finer spare budget evaluation for the cost part, and the inverse of the finish
time for the time part.

Another explanation is the usage of the IRITR in the CTTWS algorithm which has the
ability to reduce the set of instance type to a suitable range of instance types. In fact, since the
last set of instance types contains all the instance types, it become difficult for BDAS to chose
good instance. Whereas, in the experiments with a small set of instance (which correspond to
the three set of instance of in Table 2.5) BDAS has good success rate.

The results of these experiment prove the effectiveness of our algorithm as summarized in
Table 2.5. In particular, it highlights the importance of the Implicit Requested Instance Types
Range (IRITR) evaluation in a scheduling plan.

Table 2.5: Success rate summary for the five scientific workflows and the different set of instance types.
CTTWS can have a total average of SR that is up-to 38.4% higher than the one of BDAS according
to the available set of instance types.

M3 M - M5 8XL M4 4XL - M5 24XL M4 XL - M5 12XL M3 M - M5 24XL
Workflow CTTWS BDAS CTTWS BDAS CTTWS BDAS CTTWS BDAS
MONTAGE 100% 75% 74% 67% 98% 100% 55% 0%
CYBERSHAKE 100% 100% 100% 100% 100% 100% 100% 54%
EPIGENOMICS 100% 100% 100% 100% 100% 100% 100% 28%
SIPHT 100% 100% 100% 100% 100% 100% 40% 87%
LIGO 85% 80% 85% 94% 85% 90% 66% 0%
Mean 97.00% 91.00% 91.80% 92.20% 96.60% 98.00% 72.20% 33.80%

2.5 Quality improvement analysis of the CTTWS algo-
rithm

The conceptual differences between CTTWS and BDAS can be summarized in four points.
First, the task selection strategy used in CTTWS is based on a fine-grained approach, and as a
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(a) Success rate (%) for MONTAGE Workflow with different set of instance types.
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(b) Success rate (%) for CYBERSHAKE Workflow with different set of instance types.
M3_M − M5_8XL M4_4XL − M5_24XL M4_4L − M5_12XL M3_M − M5_24XL
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(c) Success rate (%) for EPIGENOMICS Workflow with different set of instance types.
M3_M − M5_8XL M4_4XL − M5_24XL M4_4L − M5_12XL M3_M − M5_24XL
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(d) Success rate (%) for SIPHT Workflow with different set of instance types.
M3_M − M5_8XL M4_4XL − M5_24XL M4_4L − M5_12XL M3_M − M5_24XL
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(e) Success rate (%) for LIGO Workflow with different set of instance types.

Figure 2.8: Success rate (%) of CTTWS vs BDAS for five workflows with different set of instance
types.
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2.5. Quality improvement analysis of the CTTWS algorithm

consequence, a task is ready for execution when its parents have been executed, while the one
used in BDAS is based on a big-grained approach, and as a consequence, it may force a task
to wait on non-dependencies. Second, the spare budget management strategy used in CTTWS
is based on fine-grained updates while the one used in BDAS is based on big-grained updates.
Third, the trade-off function used in CTTWS is based on the weight of the current task, its
added cost, and the current spare budget, while the one used in BDAS is based on the weight
of the current task and the deadline and the budget of its level. Thus, the CTTWS trade-off
function is based on a fine-grained approach as only one task is used, the current task, while
its BDAS counterpart is based on a big-grained approach as it involves a task level. Fourth,
the new scheduling tool introduced in the CTTWS algorithm, the IRITR evaluation.

In order to highlight the level of relevance of the conceptual differences, we conducted a
sensitivity analysis. To this end, we remove the IRITR evaluation from the CTTWS algorithm,
which corresponds to ignoring lines 9 and 10 of the algorithm 1 and line 2 of the algorithm 2.
We conducted the experiments of type 2 on the resulting algorithm, named CTTWS without
IRITR and denoted by CTTWS-W-IRITR.

The results of the experiments summarized in Table 2.6 show clearly the impact of the IRITR
in the scheduling when the set of instance types is large. CTTWS outperforms CTTWS-W-
IRITR up-to 10.2% of SR average for the larger set of instance types M3 M − M5 24XL.
CTTWS and CTTWS-W-IRITR score respectively 89.40% and 87.20% of total SR average.

However, when we carefully observe the detailed results of Figures 2.9a, 2.9c, 2.9b, 2.9d and
2.9e, we realize that the type and the size of the workflow have an impact over the effectiveness
of CTTWS, since CTTWS-W-IRITR sometimes gets the better SR. Thus, It would have been
better not to use the IRITR evaluation in some situations.

For the conceptual aspects of the trade-off function and its related issues, task selection, and
budget management, we need only to compare the results obtained by BDAS and CTTWS-W-
IRITR for the experiments of type 2, presented in Tables 2.5 and 2.6. BDAS and CTTWS-W-
IRITR score respectively 78.75% and 87.20% of the total SR average, meaning that CTTWS-
W-IRITR outperforms BDAS by 8.45%. Thus, exploiting a fine granularity approach in the
trade-off function and its associated issues gives better results than the big granularity approach.
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(a) Sensitivity of the IRITR over the SR (%) for MONTAGE Workflow.
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(b) Sensitivity of the IRITR over the SR (%) for CYBERSHAKE Workflow.
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(c) Sensitivity of the IRITR over the SR (%) for EPIGENOMICS Workflow.
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(d) Sensitivity of the IRITR over the SR (%) for SIPHT Workflow.
M3_M − M5_8XL M4_4XL − M5_24XL M4_4L − M5_12XL M3_M − M5_24XL
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(e) Sensitivity of the IRITR over the SR (%) for LIGO Workflow.

Figure 2.9: Success rate (%) of CTTWS vs CTTWS-W-IRITR for the five workflows with different
set of instance types.
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Chapter 2 : Cost-time trade-off efficient workflow scheduling (CTTWS)

Conclusion

In this chapter, we have presented our first proposal, the Cost-Time Trade-off efficient Workflow
Scheduling (CTTWS) algorithm in commercial cloud environments. The CTTWS algorithm
aims at minimizing both execution cost and execution time, in the respect of user-defined
budget and deadline.

Intensives experiments have been conducted considering five type workflows and five work-
load, associated to twelve combinations of deadline and budget. The results of the experiments
supported by a Student’s T-Test, proved that CTTWS can produce better success rates to
meet users’ deadlines and budgets up-to 38.4% higher than the one of BDAS according to the
variety of available instance types. CTTWS is more effective when the range of instance types is
increasing. Thus, paying attention to the types of resources, their number, and the granularity
of the set of tasks exploited in the different scheduling steps is very important. In addition,
CTTWS is simple, with low complexity and overhead.

The innovations brought by the CTTWS, which have been highlighted as the main assets
of the algorithm are the IRITR evaluation, the fine-grained spare budget evaluation, and the
fined-grained VM selection.

However, the CTTWS algorithm considers static VMs provisioning, while resources are
actually dynamically provisioned in Cloud environments. In addition to that, we have realized
that the algorithm has poor performance when it comes to the SIPHT workflow. This is mainly
due to the great number of tasks at the entry of the workflow. That means that the number of
VMs has not been handle appropriately.
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CHAPTER

3
Dynamic provisioning based
workflow scheduling with
budget and deadline awareness

Since execution cost minimization and completion time minimization are contradictory ob-
jectives, addressing such issue through trade-off function approaches have proved to be an
efficient way. However, our Cost-Time Trade-off efficient Workflow Scheduling (CTTWS)
algorithm presented in the chapter 2, though efficient, has some shortcomings. Namely the
Static provisioning and the inability to perform effectively notwithstanding the types of work-
flow. Therefore, in this chapter, we proposed another algorithm called: Cost-Time Trade-off
efficient Workflow Scheduling with Dynamic provisioning (CTTWSDP). The CTTWSDP algo-
rithm relies on a dynamic VMs provisioning with a limited number of leased VMs. In addition,
an improved Implicit Requested Instance Types Range (IRITR) evaluation is proposed. The
results of simulations prove the effectiveness of the proposal en highlight the level of improve-
ment of CTTWSDP over CTTWS. Moreover, our algorithm achieves at overall a 17.09% –
44.80% higher success rate when compared to three state-of-the-art algorithms. Furthermore,
ANOVA test along with pairwise tests using Tukey-Kramer have been conducted, revealing that
CTTWSDP is significantly more effective than two of the baseline algorithm, while for the third
one the out-performance of CTTWSDP is not statistically significant. An analysis of the stan-
dard deviation of the success rate proves that CTTWSDP is more stable in its performance no
matter the type and the workload of workflow. With a standard deviation of 2.42, smaller than
those of other algorithms from 13.35 to 35.69.

Introduction

W e have proposed in the previous chapter the Cost-Time Trade-off efficient Workflow
Scheduling (CTTWS) algorithm which produces effective result compared to a state-of-the-
art algorithm. However, some ways of improvement have been unveiled. their are the lack
of dynamicity in the provisioning process, and the inefficiency when it come to some type of
workflow.

In this chapter, we proposed an improved version of the CTTWS algorithm called: Cost-

This chapter is derived from: J. E. Ndamlabin Mboula, V. C. Kamla, and C. Tayou Djamegni: Dynamic
provisioning with structure inspired selection and limitation of VMs based cost-time efficient workflow scheduling
in the cloud. Cluster Computing 24(2021): 2697-2721, Springer.
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Chapter 3 : Dynamic provisioning based workflow scheduling with budget
and deadline awareness

Time Trade-off efficient Workflow Scheduling with Dynamic provisioning (CTTWSDP). In
addition to the dynamic VMs provisioning that is limited in number of leased VMs, the CT-
TWSDP algorithm improves the Implicit Requested Instance Types Range (IRITR) evaluation.

The proposal is compared to three state-of-the-art algorithms. Namely, the Deadline Con-
strained Critical Path (DCCP) algorithm [87], the Partition Problem based Dynamic Provi-
sioning and Scheduling (PPDPS) algorithm [45] and the Greedy Resource Provisioning and
modified HEFT (GRP-HEFT) [44]. Comparative simulation results proved the effectiveness of
our proposal.

The remaining of this chapter is as follows. We first present the modeling of the workflow
scheduling problem. Secondly, we present the details of the proposed algorithm. Thirdly, we
describe the performance evaluation. Fourthly, we analyse the simulation results, and finally,
we end the chapter by a conclusion.

3.1 Modeling of the workflow scheduling problem

In this section we present the cloud resource model, the workflow model, and the problem
formulation.

3.1.1 Cloud computing model

The main difference between the cloud model considered in this chapter and the one of chapter
2 lies in the resource provisioning strategy. Here we assume that the VMs are dynamically
provisioned according to the need, and can be of any of the instance types. We assume that
at any moment a number of P VMs are available (VMS = {vm1, vm2, ..., , vmp, ..., vmP}). The
VMs are leased as subscription-based in a pay-per-use model and are charged per billing period
of length τ . A billing period is one hour per VM usage for most IaaS providers. The dynamic
provisioning involves taking into account the creation and launching time of VMs which is
called provisioning delay.

Apart from the above-mentioned difference, all the aspects presented in section 2.1.1 remain
unchanged.

3.1.2 Workflow model

The workflow model considered in this chapter is the same as that of chapter 2. The description
of a scientific workflow represented as a DAG is given in section 2.1.2.
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3.2. The Proposed Scheduling Algorithm

3.1.3 Problem formulation

In this chapter, the assumption is that the VMs are dynamically provisioned as scheduling
progress according to the need. A workflow scheduling algorithm aims at determining an
execution order of the workflow tasks, and the VM onto which to assign each task. The
execution order of workflow tasks and the mapping of tasks onto VMs must be done in order
to respect the user requirements, the workflow constraints as well as the provider requirement.
The user requirements are the user-defined deadline δ and the user-defined budget B. The
workflow constraints are made of task weights and data dependencies between them; that is,
a task cannot start its execution before its parents and the reception of the data needed for
its execution. While the provider requirement considered here is the maximization of resources
(VMs) usage, that means using less possible VMs to satisfy the user.

The question to deal with is: how to build a workflow scheduling algorithm able to dy-
namically provision VMs for tasks execution in order to reduce the overall execution cost and
execution time in the respect of the user-defined budget and deadline?

The problem can be formulated as a mathematical optimization problem:


Reduce(MG)
Reduce(CostG)

Subject to MG ≤ δ and CostG ≤ B

(3.1)

3.2 The Proposed Scheduling Algorithm

In this section, we present our proposed solution for the workflow scheduling problem, the Cost-
Time Trade-off efficient Workflow Scheduling with Dynamic provisioning (CTTWSDP), which
aims at optimizing both processing costs and times. The CTTWSDP scheduling algorithm
maintains the four main steps of the CTTWS algorithm that are summarized in Table 2.1.
Namely Spare Budget Evaluation, (Improvement) Implicit Requested Instance Types Range
(IRITR) evaluation, Task Selection and VM Selection.

3.2.1 Spare Budget Evaluation

Starting spare budget is equal to the user-defined budget, the spare budget is recomputed after
the mapping of each task of the workflow. The execution cost incurred by the schedule of
the task is deducted from the spare. The principle is the same as in the case of the CTTWS
algorithm.
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3.2.2 Improvement of the Implicit Requested Instance Types Range
(IRITR) evaluation

The computing power of different types of resources is generally proportional to their price,
as in Amazon EC2 [96]. As users and cloud providers know, the cost of processing plays a
very important role. It is based on the billing model, the planning algorithm and the workflow
structure. In an unknown and diverse market, if we do not have a good sales consultant,
it will be difficult to optimize the quality of purchases against the budget. In a cloud, this
problem of optimizing the budget-quality ratio becomes the problem of optimizing both cost
and makespan with respect to both budget and deadline. This last problem is solved here by
avoiding both overbidding and underbidding of resources during the execution of the workflow.
To solve this avoidance problem, we introduce a new metric, the Implicit Requested Instance
Types Range (IRITR), which represents a range of instance types that the budget can afford
based on makespan, deadline and the workflow structure.

In this chapter, we propose an improved version of the IRITR evaluation. Apart from the
usage of a dynamic provisioning strategy against the static one used in our previous chapter,
the improvement of the IRITR evaluation constitutes a major difference.

The improved IRITR construction process is described in the following.

• The Minimum and Maximum Remaining Number of Billing Period (MinRNBP , MaxRNBP )
are defined respectively by

MinRNBP =
⌈
remMG

τ

⌉
×AvgWWf ; (3.2)

and

MaxRNBP =
⌈
remδG
τ

⌉
×AvgWWf ; (3.3)

• The Minimum and Maximum Implicit Requested Instance Type Cost (MinIRITC,
MaxIRITC) are defined respectively by

MinIRITC = remBG

MaxRNBP
; (3.4)

and

MaxIRITC = remBG

MinRNBP
(3.5)
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where remMG is the remaining makespan, remδG the remaining deadline, δ the deadline
and remBG the remaining budget, and AvgWWf the average width of the workflow which is
described in the following.

Figure 3.1b presents an illustrative explanation of the improved IRITR evaluation.

Level Number Level Width

1

2

3

4

5

6

7

8

9

4

6

1

1

4

1

1

1

1

(a) Workflow widths distribution (AvgWW f = 2)

VmP

Vm1

MG  (estimated makespan)

δG (deadline)

τ τ τ

τ τ

P = AvgWWf

┌δG/τ┐= 3

┌MG/τ┐= 2

MinRNBP = 2 x AvgWWf MaxRNBP = 3 x AvgWWf

MinIRITC = BG / MaxRNBP MaxIRITC = BG / MinRNBP

(b) Improved IRITR explanation

Figure 3.1: Improved IRITR illustration

Figure 3.1a shows the structure of a Montage workflow with twenty tasks and their depen-
dencies. In this figure, the left column shows level numbers calculated by equation (3.6),
while the right column is the number of tasks in each level that we call the level width
(levelWidth(l)). In the example of Figure 3.1a, the largest width is 6 which corresponds
to the level 2 (levelWidth(2) = 6), and the average width of the workflow AvgWWf = 2.

LN(tj) = 1 + max
ti∈pred(tj)

{LN(ti)}, (3.6)

From equations (3.2), (3.3), (3.4) and (3.5), we determine the slowest (cheapestIRIT ) and
the fastest (expensiveIRIT ) VMs instance types whose the costs are between MinIRITC and
MaxIRITC, and we set the range as IRITR = {vmitk|MinIRITC ≤ ck ≤ MaxIRITC} =
[cheapestIRIT, expensiveIRIT ].

During the execution of a workflow, the remaining makespan and deadline at a any time t
are respectively remMG = MG − t and remδG = δ− t. Since the makespan is unknown during
the execution of the workflow, it is approximated by minMG and the remaining makespan is
approximated as follows: remMG ' minMG − t. The IRITR could be constructed either
at any time a task has to be mapped onto a VM (also called VM selection) or only at the
beginning of the mapping process. In order to minimize the load of the mapping process, we
choose the second. In this case, remMG ' minMG − AST (tfirst) ' minMG and remδG =
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δ − AST (tfirst) = δG as AST (tfirst) = 0.

The same robustness management is considered here, as in chapter 2.

The main difference between the improved IRITR evaluation presented here and the one in
chapter 2 lies on the usage of average width, ”AvgWWf”, in the formulas of the improved version
(see equations (3.2) and (3.3)) instead of the number of unmapped tasks , ”remNbTasks”, as
it is done in chapter 2.

3.2.3 Task Selection

Tasks are ordered in a list, called ready list, according to their Earliest Start Time (EST) so
that all the root tasks receive the highest priority. The Earliest Start Time has been defined
in section 2.1.2 by the equation (2.7).

3.2.4 VM Selection

Once the workflow tasks have been ordered according to their EST , they are ready to be
mapped onto the available VMs, one after the other. The trade-off between cost and time is
handled according to the trade-off function described for the CTTWS algorithm in the section
2.2.4.

Dynamic VM Provisioning algorithm

It seems unsuitable to use more VMs than the largest width of the workflow for its execution.
But at the same time how many VMs is suitable for the execution of the workflow? According to
the level of parallelism of the workflow due to its structure, we use the average width AvgWWf

(described in section 3.2.2) of the workflow as limit of the number of VMs to provision for the
execution.

A new VM is provisioned in preference to the best among the available VMs, if both of the
following conditions are met:

• the ready time of the best VM is greater than the Min ready time of the current task
(bestReadyTime > minReadyTimei);

• the number of already provisioned VMs < AvgWWf .

The pseudo-code of the dynamic VM Provisioning algorithm is depicted in Algorithm 3.
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Algorithm 3 Dynamic VM Provisioning Algorithm
Input: ti
Output: ti is mapped to the suitable VM (bestV M)
1: if ti has already been mapped to a VM then
2: return;/*do nothing since this task has been mapped through one of its parents. It is the case of tasks

in the same pipeline. */
3: end if
4: for vmp ∈ VMS do
5: Calculate the CTTF p

i

6: bestV M ← vmp if vmp fulfils the following conditions:
7: (C1) vmp have the highest CTTF p

i

8: (C2 1) If ti is a root task, the VM vmp must be of instance type expensiveIRIT
9: (C2 2) If ti is not a root task, the VM vmp must be of an instance type belonging to IRITR

10: end for
/*dynamic provisioning*/

11: if bestReadyT ime > minReadyT imei and length(VMS) < optNbVMs then
12: for vmitk ∈ VMIT do
13: Calculate the CTTF k

i

14: bestV MInstance← vmitk if vmitk fulfils the following conditions:
15: (C1) vmitk have the highest CTTF k

i

16: (C2 1) If ti is a root task, vmitk must be equal to expensiveIRIT
17: (C2 2) If ti is not a root task, vmitk must belong to IRITR
18: end for
19: bestV M ← vmProvisioning(bestV MInstance)
20: end if
21: Map ti to bestV M
22: tparent ← ti
23: tnext ← child(tparent)[0]
24: while tparent has exactly one child && tnext has exactly one parent && tnext adds zero cost on

bestV M do
25: Map tnext to bestV M
26: tparent ← tnext

27: tnext ← child(tnext)[0]
28: end while
29: spareBt ← spareBt − EC(i, p)added

3.2.5 The CTTWSDP algorithms

Here, we present the Cost-Time Trade-off efficient Workflow Scheduling with Dynamic pro-
visioning (CTTWSDP) algorithm. The CTTWSDP algorithm consists of four main steps as
mentioned above and strives to enable the cloud scheduler to spend less money to complete a
workflow without exceeding the deadline.

The pseudo-code of the CTTWSDP algorithm is depicted in Algorithm 4.

3.2.6 An illustrative example

To illustrate how our proposed CTTWSDP algorithm works, we consider the workflow of Figure
3.2 and the resources of Table 2.2. We also consider the parameters of Table 3.1.
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Algorithm 4 CTTWSDP Algorithm
Input: The DAG of tasks
Output: All the tasks are scheduled to their suitable VMs

1: Order the tasks readyList in Asc EST
2: [cheapestIRIT, expensiveIRIT ]← IRITR Evaluation
3: for ti ∈ readyList do
4: Call the Dynamic VM Provisioning Algorithm on ti
5: Schedule task ti to its mapped VM vmp

6: end for

Figure 3.2: Illustrative example: Montage workflow with 20 tasks (Zi is the length of the task ti
in MI, and si,j the size of the data (in MB) from ti to tj .

Table 3.1: CTTWSDP algorithm illustrative example: parameters

DF BF FS (in sec.) LB (in $) δG (in sec.) BG (in $)
16 4 847.71 1.541 13552 6.16
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IRITR evaluation

Let us evaluate the MinRNBP and the MaxRNBP :

MinRNBP =
⌈
remMG

τ

⌉
× AvgWWf , MaxRNBP =

⌈
remδG
τ

⌉
× AvgWWf ,

=
⌈
minMG

τ

⌉
× 2, =

⌈
δG
τ

⌉
× 2,

=
⌈
EFT (t20)

τ

⌉
× 2, =

⌈13552
3600

⌉
× 2,

=
⌈6309

3600

⌉
× 2, = 8

= 4

Therefore, the MinIRITC and the MaxIRITC are:

MinIRITC = remBG

MaxRNBP
, and MaxIRITC = remBG

MinRNBP
,

= BG

MaxRNBP
, = BG

MinRNBP
,

= 6.16
8 , = 6.16

4 ,

= 0.77 = 1.54

We then have IRITR = {vmit5, vmit6} (ie. m4.4xlarge and m5.8xlarge from Table 2.2).

Tasks prioritization

The workflow tasks are ordered in a list, called ready list, according to their Earliest Start
Time (EST). Table 3.2 present the priority determination between the tasks. The ordered list
is therefore orderedList = {t1, t2, t3, t4, t7, t8, t5, t6, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20}

VM selection for each task

Ones the tasks have been ordered and the IRITR evaluated, we can proceed to the VM selection.
Table 3.3 presents the WM selection process for the twenty tasks. The tasks t1, t2, t3, and t4

are ready at time zero because they are root tasks. As root task, t1 is mapped onto the fastest
instance of the IRITR, which is vmit6. A VM (vm6

1) is therefore provisioned. As for t2,
due to its min ready time (zero), it can’t wait the end of t1. A new instance of type vmit6
(vm6

2) is created for its execution. Since the limit of the number of VMs is reached, no more
provisioning will be possible (See Algorithm 3. The condition of line 11 will always be false.).
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Table 3.2: CTTWSDP algorithm illustrative example: tasks prioritization

Levels Priorities

1
ti t1 t2 t3 t4
EST(ti) 0 0 0 0
Pr(ti) 1 2 3 4

2
ti t5 t6 t7 t8 t9 t10
EST(ti) 352.2 352.2 358.09 358.09 346.89 346.89
Pr(ti) 7 8 5 6 9 10

3, 4
ti t11 t12
EST(ti) 670.95 988.18
Pr(ti) 11 12

5
ti t13 t14 t15 t16
EST(ti) 1012.24 1012.24 1012.24 1012.24
Pr(ti) 13 14 15 16

6, 7, 8, 9
ti t17 t18 t19 t20
EST(ti) 1334.98 4185.58 5357.21 6527.13
Pr(ti) 17 18 19 20

The VM selection steps will rely on the evaluation of the CTTF . The cost part in this case
will always be the same for all the VMs, because the added cost is always zero. Therefore, it
is the early AFT of the task that will be determinant. Apart from the cases of pipelines, the
VM with the highest CTTF is determined for the current task. In the cases of the pipeline,
the parent task is used to map the rest of the tasks in the pipeline (See Algorithm 3, lines 22
to 28). We have for example {t11, t12}, and {t17, t18, t19, t20}.
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3.2.7 Time Complexity

For the same raisin than in the case of CTTWS, to determine the time complexity of CTTWSDP
algorithm, the phases that must be considered are: task selection and VM selection. For the
task selection, given a workflow containing n tasks, we need O(n2) time for the determination
of their EST. Sorting the tasks takes O(nlogn) time complexity, which gives an overall of O(n2)
for the task selection. For each ready task, to select the suitable VM all the VMs should be
examined. Which gives a time complexity of O(n×P ) for VM selection, where P is the number
of VMs. Which gives a time complexity of O(n× (n+ P )).

However, since the number of VMs is limited to the average width of the workflow, we have
P < n. Therefore CTTWSDP algorithm has a polynomial time complexity of O(n2).

The complexity of the other algorithms, DCCP [87], PPDPS [45], and GRP-HEFT [44]
have been determined and presented in the related publications. While PPDPS has a time
complexity of O(n2), DCCP and GRP-HEFT have respectively O(n2 × P ) and O(n2 ×K). K
is the number of used instance types and P the number of provisioned VMs instances, with
K ≤ P and P ≤ n. While K is significantly small, P grows significantly with n. For instance,
in the case of Montage 1000 the DCCP algorithm effectively uses 518 VMs, that is almost 2×n.
Therefore, we can conclude that DCCP and GRP-HEFT have respectively O(n3) and O(n2)
time complexity order.

A complexity comparison between the studied algorithms is presented in Table 3.4.

Table 3.4: Complexity comparison. Where n is the number of tasks of the workflow, K the number of
used instance types and P the number of provisioned VMs instances.

Algorithms DCCP PPDPS GRP-HEFT CTTWSDP
Complexity O(n3) O(n2) O(n2) O(n2)

3.3 Performance evaluation

For the simulations we consider the system as a single datacenter having ten different instance
types that are based on the US-east (Ohio) Amazon region [95], collected in July 2019, and
which the characteristics are presented in Table 2.2 (see section 2.3).

We set-up the simulation environment as follows. The bandwidth between instances is fixed
to 20 MBps, the value of the vCPU of each instance is considered as its processing capacity
in Million Instruction Per Second (MIPS) as seen in [41]. The charging model has being
configured to reflect the Amazon EC2 instances charge that is an hourly interval from the time
of provisioning. Since the algorithms use the dynamic provisioning of VMs, the provisioning
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hoc test

delay of each VM was set to 100 s based on the study by Mao et al. [103].

3.3.1 Performance Metrics

We compare the performances of the different algorithms based on the following well-known
performance metrics that are already define in chapter 2 and section 2.3.2: Cost Ratio (CR),
Time Ratio (TR) and Success Rate (SR).

• Cost Ratio (CR): The CR of a scheduling algorithm is overall execution cost divided by
the user-defined budget (B), and determined by equation (2.18) .

• Time Ratio (TR): In a similar way, the TR metric is defined as the ratio between the
overall makespan and the user-defined deadline (δ), and determined by equation (2.19).

• Success Rate (SR): The SR of a scheduling algorithm is defined as the ratio between the
number of ran simulations that successfully met both deadline and budget constraints
(denoted by NB success), and the total number of experiments (denoted by NBExp). It
is determined by equation (2.20).

3.4 Simulation Results and Analysis with ANOVA plus
Tukey-Kramer post hoc test

3.4.1 Performance for MONTAGE workflow

The results obtained for MONTAGE workflow are presented in Figure 3.3, for both cost and
time efficiency, and in Figure 3.3c, for success rate. For time efficiency, CTTWSDP has better
performance than the other algorithms; apart from a tiny number of outliers, CTTWSDP is
always in the deadline (Figure 3.3b). PPDPS has more than 50% of schedules in the deadline,
DCCP has a little bit less than 50% in the deadline, while GRP-HEFT is almost always out of
the deadline. For cost efficiency (Figure 3.3a), DCCP and CTTWSDP have approximatively
the same performance and are almost always in the budget, and they are better than the
other. GRP-HEFT has a little bit less than 75% of schedules in the budget, while PPDPS has
more than 50% of schedules in the budget. We realize that nor the variation of the Deadline
Factor, neither the one of the Budget Factor have a significant impact on the performance of
the algorithms.

In terms of average success rate for MONTAGE workflow, CTTWSDP, PPDPS, DCCP and
GRP-HEFT algorithms recorded respectively 99.83%, 53.42%, 52.46% and 4.17% (Figure 3.3c).
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Figure 3.3: Cost efficiency, time efficiency, and success rate (%) of CTTWSDP vs DCCP, PPDPS and
GRP-HEFT for MONTAGE workflow.

The low SR of GRP-HEFT, and event of DCCP, is due to the inability to be in the deadline for
most of the cases. Furthermore, we observe that the workload of MONTAGE workflow has an
impact over DCCP and GRP-HEFT algorithms, while CTTWSDP and PPDPS have a stable
behaviour regardless of the variation of the workload.

3.4.2 Performance for CYBERSHAKE workflow

The results obtained for CYBERSHAKE workflow are presented in Figure 3.4, for both cost
and time efficiency, and in Figure 3.4c, for success rate. While for cost efficiency all the
algorithms are almost 100% of schedules in the budget (Figure 3.4a), for time efficiency, unless
DCCP algorithm which has about 75% of schedules in the deadline, the other algorithms are
more than 75% always in the deadline (Figure 3.4b). We realize that for CYBERSHAKE, the
variation of both the Deadline Factor and the Budget Factor have an impact on the performance
of the CTTWSDP algorithm, its effectiveness grows with in the same order (Figure 3.4b).

In terms of average success rate for CYBERSHAKE workflow, CTTWSDP, PPDPS, DCCP

Ph.D. Thesis: Energy-efficient Workflow Scheduling
with Budget and Deadline constraints in a Cloud Datacenter

79 J.E. Ndamlabin Mboula
2021, The University of Ngaoundere



3.4. Simulation Results and Analysis with ANOVA plus Tukey-Kramer post
hoc test

0.0

0.5

1.0

1.5

2.0

4 8 12 16
Deadline.Factor

C
os

t.R
at

io

Algoritms DCCP PPDPS GRP−HEFT CTTWSDP

(a) Cost Efficiency (Deadline Factor vs. Cost Ratio)

0.0

0.5

1.0

1.5

2.0

4 8 12 16
Budget.Factor

T
im

e.
R

at
io

Algoritms DCCP PPDPS GRP−HEFT CTTWSDP

(b) Time Efficiency (Budget Factor vs. Time Ratio)

0

25

50

75

100

Cyb_50 Cyb_100 Cyb_200 Cyb_500 Cyb_1000

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e 
(%

)

Algoritms DCCP PPDPS GRP−HEFT CTTWSDP

(c) Success rate (%) for CYBERSHAKE workflow.

Figure 3.4: Cost efficiency, time efficiency, and success rate (%) of CTTWSDP vs DCCP, PPDPS and
GRP-HEFT for CYBERSHAKE workflow.

and GRP-HEFT algorithms recorded respectively 94.21%, 95.50%, 48.50% and 82.79% (Figure
3.4c).

3.4.3 Performance for EPIGENOMICS workflow

The results obtained for EPIGENOMICS workflow are presented in Figure 3.5, for both cost
and time efficiency, and in Figure 3.5c, for success rate. For time efficiency, unless GRP-HEFT
algorithm which is out of the deadline for most of the schedules, the other algorithms are
more than 75% always in the deadline (Figure 3.5b). For cost efficiency (Figure 3.5a), unless
GRP-HEFT algorithm which has a little more than 50% of schedules in the budget, the other
algorithms are almost 100% of schedules in the budget. As in the case of MONTAGE, we realize
that nor the variation of the Deadline Factor, neither of the Budget Factor have a significant
impact on the performance of the algorithms.

In terms of average success rate for EPIGENOMICS workflow, CTTWSDP, PPDPS, DCCP
and GRP-HEFT algorithms recorded respectively 97.96%, 90.96%, 86.33% and 10.17% (Figure
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(c) Success rate (%) for EPIGENOMICS workflow.

Figure 3.5: Cost efficiency, time efficiency, and success rate (%) of CTTWSDP vs DCCP, PPDPS and
GRP-HEFT for EPIGENOMICS workflow.

3.5c). The low SR of GRP-HEFT is due to the inability to be in the deadline for most of the
cases.

3.4.4 Performance for SIPHT workflow

The results obtained for SIPHT workflow are presented in Figure 3.6, for both cost and time
efficiency, and in Figure 3.6c, for success rate. While for cost efficiency all the algorithms realize
very good performance (Figure 3.4a), for time efficiency, PPDPS algorithm has less than 50% of
schedules in the deadline, DCCP has about 75% of schedules in the deadline, and CTTWSDP
and GRP-HEFT have towards 100% of schedules in the deadline (Figure 3.4b).

In terms of average success rate for SIPHT workflow, CTTWSDP, PPDPS, DCCP and
GRP-HEFT algorithms recorded respectively 93.17%, 47.33%, 83.50% and 100% (Figure 3.6c).
We inferred by looking at Figure 3.6c Furthermore, we observe that the workload of SIPHT
workflow has an impact over PPDPS algorithms, while CTTWSDP, DCCP and GRP-HEFT
have a stable behaviour regardless of the variation of the workload.
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3.4. Simulation Results and Analysis with ANOVA plus Tukey-Kramer post
hoc test
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Figure 3.6: Cost efficiency, time efficiency, and success rate (%) of CTTWSDP vs DCCP, PPDPS and
GRP-HEFT for SIPHT workflow.

3.4.5 Performance for LIGO workflow

The results obtained for LIGO workflow are presented in Figure 3.7, for both cost and time
efficiency, and in Figure 3.7c, for success rate. While for cost efficiency all the algorithms have
very good performance (Figure 3.7a), in the case of time efficiency, GRP-HEFT algorithm has
less than 50% of schedules in the deadline, DCCP has about 75% of schedules in the deadline,
and CTTWSDP and PPDPS have almost 100% of schedules in the deadline (Figure 3.7b).

In terms of average success rate for LIGO workflow, CTTWSDP, PPDPS, DCCP and GRP-
HEFT algorithms recorded respectively 86.63%, 99.12%, 60.17% and 50.00% (Figure 3.7c).

3.4.6 Performance summary

Table 3.5 presents the total SR of each algorithm. In summary, CTTWSDP has a global
average of SR that is between 17.09% – 44.80% higher than the other algorithms as depicted
in Table 3.5.
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(c) Success rate (%) for LIGO workflow.

Figure 3.7: Cost efficiency, time efficiency, and success rate (%) of CTTWSDP vs DCCP, PPDPS and
GRP-HEFT for LIGO workflow.

From the Table 3.5 we see that CTTWSDP has a overall mean of SR greater than the
one of the other algorithms. However, to know if that difference is significant from each of the
three other algorithms in terms of SR (i.e. customer satisfaction), we have conducted statistical
analysis. Since we have more than two algorithms to compare, we have conducted ANOVA
test1 [93, 104] to see if their is a significant difference between CTTWSDP algorithm and the
three other algorithms. We consider two alternatives hypotheses for comparison.

• First hypothesis (H0): There is no difference between the proposed CTTWSDP algorithm
and the three other algorithms.

• Second hypothesis (H1) : There is a difference between the proposed CTTWSDP algo-
rithm and the three other algorithms.

A confidence interval (CI) of 95% has been used for the test. Table 3.6 presents the result of
the ANOVA test. As we can see in Table 3.6b, we have F statistical > F critical (and moreover

1https://www.excel-easy.com/examples/anova.html
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3.4. Simulation Results and Analysis with ANOVA plus Tukey-Kramer post
hoc test

Table 3.5: Success rate summary for the five scientific workflows realized by the four dynamics al-
gorithms. The total average of SR for CTTWSDP is between 17.09% – 44.80% higher than other
algorithms.

Workflow CTTWSDP PPDPS DCCP GRP-HEFT
MONTAGE 50 99.58% 48.54% 4.17% 0.00%
MONTAGE 100 99.58% 56.04% 37.29% 1.67%
MONTAGE 200 100% 51.88% 57.50% 4.17%
MONTAGE 500 100% 55.63% 80.00% 12.50%
MONTAGE 1000 100% 55.00% 83.33% 2.50%
CYBERSHAKE 50 99.79% 87.92% 38.33% 85.83%
CYBERSHAKE 100 98.96% 90.21% 41.67% 96.67%
CYBERSHAKE 200 93.75% 99.79% 55.83% 86.25%
CYBERSHAKE 500 95.42% 100% 55.83% 87.29%
CYBERSHAKE 1000 83.13% 99.58% 50.83% 57.92%
EPIGENOMICS 50 97.92% 78.54% 85.83% 15.83%
EPIGENOMICS 100 92.71% 93.33% 89.17% 11.67%
EPIGENOMICS 200 99.17% 99.17% 75.00% 10.83%
EPIGENOMICS 500 100% 94.38% 100% 10.83%
EPIGENOMICS 1000 100% 89.38% 81.67% 1.67%
SIPHT 50 78.33% 21.67% 85.00% 100.00%
SIPHT 100 97.50% 17.92% 79.17% 100.00%
SIPHT 200 96.46% 30.42% 85.83% 100.00%
SIPHT 500 97.08% 79.58% 85.00% 100.00%
SIPHT 1000 96.46% 87.08% 82.50% 100.00%
LIGO 50 84.79% 96.25% 88.33% 83.33%
LIGO 100 85.63% 99.79% 90.00% 63.33%
LIGO 200 86.25% 100% 71.67% 49.17%
LIGO 500 93.96% 99.79% 32.50% 44.17%
LIGO 1000 82.50% 99.79% 18.33% 13.33%
Mean 94.36% 77.27% 66.19% 49.56%
Standard deviation 2.42 21.98 15.77 38.11

p-value < 0.05). Thus, we can reject the null hypothesis and conclude that we have sufficient
evidence to say that at least one of the SR of an algorithm is different from the others.

To determine exactly which algorithm is significantly better than the others in terms SR,
we have performed a Tukey-Kramer test [105]. From the ANOVA test and using the Critical
Values of the Studentized Range2 (0.05 level), we have determined [105] the Q value and the Q
critical value (respectively 3.6976 and 20.50) for the Tukey-Kramer test. Table 3.7 presents the
results of the Tukey-Kramer test between the SR achieve by the four algorithms CTTWSDP,
PPDPS, DCCP, and GRP-HEFT.

From the result of Table 3.7, CTTWSDP significantly outperform GRP-HEFT and DCCP
algorithms, while the test reveals that there is no significant difference with PPDPS.

2http://davidmlane.com/hyperstat/sr table.html
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Chapter 3 : Dynamic provisioning based workflow scheduling with budget
and deadline awareness
Table 3.6: ANOVA test result comparing the SR of the proposed CTTWSDP algorithm with the three
other algorithms (PPDPS, DCCP, and GRP-HEFT)

Group Count Sum Average Variance
CTTWSDP 25 2358.97 94.36 45.32
PPDPS 25 1931.68 77.27 715.61
DCCP 25 1654.78 66.19 645.18
GRP-HEFT 25 1238.96 49.56 1668.00

(a) Summary of input
Source of Variation SS df MS F statistical P-value F critical
Between Groups 26623.23 3 8874.41 11.55 1.57E-06 2.70
Within Groups 73778.91 96 768.53
Total 100402.15 99

(b) ANOVA test result

Table 3.7: Tukey-Kramer test for Pairwise of algorithms comparing the SR of the proposed CTTWSDP
algorithm with the three other algorithms (PPDPS, DCCP, and GRP-HEFT)

Parameter Value
Q.05 3.6976
Q critical value 20.50

(a) Parameters of the test
Comparison Mean Diff Abs. Mean Diff Is Significant?

(Abs. Mean Diff ≥ Q critical value?)
CTTWSDP vs PPDPS 17.0916 17.0916 NO
CTTWSDP vs DCCP 28.1676 28.1676 YES
CTTWSDP vs GRP-HEFT 44.8004 44.8004 YES
PPDPS vs DCCP 11.076 11.076 NO
PPDPS vs GRP-HEFT 27.7088 27.7088 YES
DCCP vs GRP-HEFT 16.6328 16.6328 NO

(b) Tukey-Kramer test for Pairwise of algorithms

Furthermore, the following remarks have to be mentioned:

• The performance of CTTWSDP contrasts greatly with both GRP-HEFT and DCCP
because of their high rate of failure due to deadline violation which can be inferred by
looking at Figures 3.3b, 3.5b, 3.4b and 3.7b. However, DCCP performs better than
GRP-HEFT.

• The structure of the workflow has a significant impact on the performance of GRP-HEFT,
PPDPS, and DCCP algorithms. On the other hand, the CTTWSDP algorithm has good
behavior regardless of the structure of the workflow as well as the workload.

• Overall, the CTTWSDP algorithm is more effective than the other algorithms no matter
the type of workflow and the workload, as proved by the above statistical tests.

• The workload of SIPHT and LIGO workflows have a significant impact on the performance
of PPDPS and GRP-HEFT algorithms respectively.
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3.5. Quality improvement analysis of the CTTWSDP algorithm

• The relatively low success rate of the GRP-HEFT and DCCP algorithms are mostly due
to the violation of the user-defined deadline.

3.5 Quality improvement analysis of the CTTWSDP al-
gorithm

In this section we are analysing the quality improvement incurred by the IRITR evaluation.
Since the IRITR aims at determining a suitable range of instance types, we are varying the set
of instance type available for the experiment.

We are considering four different sub-sets of instance types of those presented in Table 2.2:

1. From m3.medium to m5.8xlarge (M3 M −M5 8XL): the six slowest instances;

2. From m4.4xlarge to m5.24xlarge (M4 4XL−M5 24XL): the six fastest instances;

3. From m4.xlarge to m5.12xlarge (M4 XL−M5 12XL): the six instances of the middle;

4. From m3.medium to m5.24xlarge (M3 M −M5 24XL): all the ten instances.

We fixed α = 16 and β = 16, and still conducted 100 experiments for each workflow structure
(20 for each of the five sizes). The purpose of these experiments is to determine how well our
algorithm is able to evaluate the instance types range in a large list, for good scheduling, since
cloud providers often offer a large list of different types of instances.

In order to highlight the level of relevance of the conceptual strength of the IRITR evalua-
tion, we conducted a sensitivity analysis. To this end, we removed the IRITR evaluation from
the CTTWSDP algorithm, which corresponds to ignoring lines 9 and 10 of algorithm 3 and
line 2 of algorithm 4. We conducted the experiments both on the resulting algorithm, named
CTTWSDP without IRITR and denoted by CTTWSDP-W-IRITR, and on CTTWSDP.

The results of the experiments summarized in Table 3.8 show clearly the impact of the
IRITR in the scheduling when the set of instances type is large, or simply when there are too
slower (cheaper) instances or too fast (expansive) instances, which correspond to the first and
the two last sets of instances. CTTWSDP outperforms CTTWSDP-W-IRITR in terms of SR
average of 4.93% to 28.80%. CTTWSDP and CTTWSDP-W-IRITR score respectively 96.47%
and 77.50% of total SR average.

For CTTWS algorithm, there were cases in which the algorithm version without IRITR
evaluation (CTTWS-W-IRITR) realized better SR than CTTWS. Also, the difference of SR
average was at most of 10.2% between CTTWS and CTTWS-W-IRITR. That is not the case in
this improved version. This clearly highlights the conceptual strength of the IRITR evaluation
presented in this chapter.
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Table 3.8: Success rate summary for the five scientific workflows and the different set of instance types. CTTWSDP can have a total average of SR
that is higher than the one of CTTWSDP-W-IRITR from 4.93% to 28.80% according to the available set of instance types.

M3 M - M5 8XL M4 4XL - M5 24XL M4 XL - M5 12XL M3 M - M5 24XL
Workflow CTTWSDP CTTWSDP-W-IRITR CTTWSDP CTTWSDP-W-IRITR CTTWSDP CTTWSDP-W-IRITR CTTWSDP CTTWSDP-W-IRITR

MONTAGE 86.67% 33.33% 100% 99.33% 100% 40.00% 100% 40.00%
CYBERSHAKE 100% 51.33% 100% 97.33% 100% 80.67% 98.67% 40.00%
EPIGENOMICS 100% 99.33% 100% 96.00% 100% 99.33% 100% 97.33%
SIPHT 96.00% 79.33% 95.33% 79.33% 95.33% 82.67% 95.33% 74.67%
LIGO 83.33% 83.33% 92.67% 91.33% 91.33% 92.67% 94.67% 92.67%
Mean 93.20% 69.33% 97.60% 92.67% 97.33% 79.07% 97.73% 68.93%
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Moreover, the limitation of the number of VMs to lease has clearly improved the performance
of the algorithms. In fact, the performance of the CTTWS algorithm for SIPHT workflow was
very poor, almost 0% in all the cases. That is not the case in this version (see Figures 3.6 and
Table 3.5).

Conclusion

In this chapter, we have proposed a cost/time effective scheduling algorithm in the cloud, named
Cost-Time Trade-off efficient Workflow Scheduling with Dynamic provisioning (CTTWSDP),
which is an improved version of the CTTWS algorithm presented in the chapter 2. The CT-
TWSDP algorithm strives to minimize both execution cost makespan under user-defined budget
and deadline constraint, with a stable behaviour regardless of the structure and the workload
of the workflow. The main improvement are the introduction of a dynamic VMs provisioning
strategy with the limitation of the number of VMs to lease, and the enhancement of the Implicit
Requested Instance Types Range (IRITR) evaluation by introducing the average width of the
workflow structure in the formulas.

The limitation of the number of VMs and the enhancement of the IRITR greatly contributed
to the effectiveness of CTTWSDP. For instance, in our previous chapter, the performance of
the CTTWS algorithm for SIPHT workflow is very poor. Almost 0% of SR in all the cases due
to the big number of tasks at the root of SIPHT, which is not the case for CTTWSDP.

The results of the experiments show that CTTWSDP produces a global average of success
rate that is between 17.09% and 44.80% higher than state-of-the-art algorithms. In addition,
the standard deviation of success rate across the different types and workloads of workflow
obtained by CTTWSDP is smaller than the ones obtained by the other algorithms from 13.35
to 35.69; proving that CTTWSDP is more stable in its performance no matter the type and the
workload of workflow. Furthermore, ANOVA test along with pairwise tests using Tukey-Kramer
have been conducted. At overall, the result of the statistical tests reveals that CTTWSDP
is significantly more effective than two of the baseline algorithms, namely GRP-HEFT and
DCCP, while for PPDPS the out-performance of CTTWSDP is not statistically significant.
The selection of a sub-set of instances via the IRITR technique helped producing better results.
Furthermore, suitable number of VMs determined by the average width of the workflow helped
producing better results. Both techniques have been designed by exploiting the structural
properties of workflow and user requirements. Therefore, our hypotheses have been clearly
validated by the contributions presented in this chapter.

In the next chapter, in addition to the minimization of the execution cost and time, we deal
with the minimization of energy consumption.

Ph.D. Thesis: Energy-efficient Workflow Scheduling
with Budget and Deadline constraints in a Cloud Datacenter

88 J.E. Ndamlabin Mboula
2021, The University of Ngaoundere



CHAPTER

4

Energy-efficient workflow
scheduling strategies based on
workflow structures under
Budget and Deadline
constraints

One new trend in Information technology is the usage of Cloud computing environments
to perform scientific workflow applications. Workflow scheduling is the main issue in workflow
management and known as an NP-complete problem. Scientific workflows are generally complex
and have different characteristics. The structure of a workflow can have a significant impact
on the result of a scheduling algorithm. Therefore, a scheduling algorithm should not ignore
or consider only one particular workflow structure but adapt to different possible structures.
Apart from the user-defined deadline and budget, energy consumption is a major concern in the
cloud. In this chapter, we design and evaluate three workflow scheduling algorithms that take
advantage of the structural properties of the workflow. A new scheduling algorithm, namely,
Structure-based Multi-objective Workflow Scheduling with an Optimal instance type (SMWSO)
is presented, which introduces new concepts. The optimal number of VMs evaluation along with
the optimal instance type evaluation, helping to deal with the issue of resource heterogeneity,
and to avoid resource wastage by limiting the number of VMs to provision while giving relatively
good performances. A version with heterogeneous instance types (denoted SMWSH) is proposed
in order to highlight the strength of the just mentioned concepts. The third algorithm called
Structure-based Cost-Time trade-off and Energy efficient Workflow Scheduling (SCTTEWS)
algorithm is an incrementation of our CTTWSDP algorithm, which handles the minimization
of energy consumption in addition to the minimization of the execution cost and time. Compar-
ative experimentation have been done through simulations against the state-of-the-art algorithm
REEWS. The analysis of the results supported by ANOVA along with pairwise tests using Tukey-
Kramer proves the out-performance of our proposals in terms of energy-saving compared to the
REEWS algorithm in 80% of workflow/workload scenarios. Among others, SMWSO, SMWSH
and SCTTEWS scored almost equally the highest energy-saving for the different workflow and
workload. However, SMWSO save more than 50% overall energy compared to other algorithms,
followed by SMWSH, and then SCTTEWS. As for the success rate, even though SMWSO scored
at overall the highest success rate, statistical tests proved that there is no significant difference
between the four algorithms in terms of user satisfaction. The results revealed the ability of
SMWSO to deal effectively with the heterogeneous nature of cloud environments, and the com-
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plex structures of workflows.

Introduction

Scientific workflows have very complex structures [5, 4] that can significantly impact the out-
come of a scheduling strategies. Some of the important parts of a workflow structure have been
widely investigated, for instance the Critical Path (CP) (with the slack time reclamation/DVFS
strategy), the distribution1 tasks (with task duplication strategy), and the sequential and par-
allel tasks (with the tasks merging and slack time reclamation/DVFS strategies).

However, little or almost no work combines all these strategies to see what it can achieve. In
addition, the width of the workflow (the distribution of the number of tasks by level of workflow
from entry to exit) is almost not studied, while important because of the precedence constraints
existing in the workflow. In fact, it is unlikely to use more VMs than the largest width of the
workflow for its execution. It is then important to know or determine the optimal number and
the types of VMs to use during the execution of a workflow. To the best of our knowledge, there
is no work focused on determining suitable instance types set or a number of VMs instances
in advance with an analytical approach. Some solutions use a naive determination approach
in which it is at the end that one realize which types and the number of VMs have been
used, leading in more cases to a wastage (too many provisioned VMs that are less utilized).
Others are time consuming determination approaches, like greedy determination [44] and paths-
based clustering determination [21][45]. The paths-based clustering approach is better than the
greedy one, however, its complexity and effectiveness are compromised if the workflow graph is
strongly connected. Moreover, most of the solutions in the literature are effective only for a few
types of workflow, while the types and structures of workflow are very complex and varied [4].
This is not conform with the recommendation [4][41] of designing scheduling strategies that are
effective no matter the type of workflow.

We advocate that homogeneity can produce better result if the good instance is chosen for
the workflow execution, as it has been some how proved in the two last chapters. We further
advocate that a suitable number of VMs if determined, can help not only to produce bet-
ter results, but also upgrade the VM utilization Maximization and the Energy Consumption
Minimization as well as the Workload Maximization. To respond to our just mentioned propo-
sitions, we designe and present in this chapter three scheduling algorithms, Structure-based
Cost-Time trade-off and Energy efficient Workflow Scheduling (SCTTEWS), Structure-based
Multi-objective Workflow Scheduling with an Optimal instance type (SMWSO), and Structure-

1tasks having more than one child, see Figure 4.1
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Chapter 4 : Energy-efficient workflow scheduling strategies based on
workflow structures under Budget and Deadline constraints

based Multi-objective Workflow Scheduling with Heterogeneous instance types (SMWSH).

In the following sections, after the recall of the problem and some investigation on the
influence of the structures of the workflows, we present our three heuristics, and finally we
present the performances analysis of our three proposals against Reliability and Energy Efficient
Workflow scheduling (REEWS), a recent state-of-the-art algorithm [21]. The choice of REEWS
is because it uses a clustering technique to determine the number of VMs to be used and the
DVFS to minimize energy consumption.

4.1 Modelling of the workflow scheduling problem

In this section we present the cloud resource model, the power and energy models, the workflow
model, and the problem formulation.

4.1.1 Cloud computing model

The cloud computing model presented in chapter 3, section 3.1.1, is the same used in this
chapter. Since energy consumption is considered in this chapter, the next sub-section presents
the power and energy evaluation.

4.1.2 Power and Energy models

In terms of energy consumption among system components, processors consume typically the
largest portion [20, 106]. Hence, we will focus on energy consumption of processors. A processor
consumes energy either idle or while running a task. The power consumed by a processor pk
during its runtime, noted P k, is expressed by equation (4.1) [20, 107].

P k(uk(t)) = P k
idle + (P k

max − P k
idle)× uk(t), (4.1)

where P k
idle and P k

max are the power consumed by the processor when idle and at 100%
utilization respectively, whereas uk(t) is the utilization rate of the processor, which is a function
of the time. Therefore, the total energy consumption of a processor pk over a period of time
[t0, t1] can be defined as an integral of the power consumption function over the same period
as expressed in equation (4.2).

Ek =
∫ t0

t1
P k(uk(t))dt (4.2)
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4.1. Modelling of the workflow scheduling problem

Then the overall energy consumption (Etotal) on all the P VMs is simply the sum of all the
energy consumption.

4.1.3 Workflow model

Workflow as a Directed Acyclic Graph (DAG)

The workflow model presented in chapter 2, section 2.1.2, is the same considered in this chapter.
Scientific workflows are still represented as DAGs.

Definitions

In addition to the definitions related to the workflow provided in section 2.1.2, we give the
following.

The communication to computation ratio (CCR) of a workflow is the ratio of its average
communication cost to its average computational cost on the targeted system [43] and is given
by:

CCRG =
∑
ti∈WT TT (i, j)∑
ti∈WT ET (i, k)

, tj ∈ Succ(ti); 1 <= k <= K (4.3)

The CCR can be used as an indicator of the type of the workflow among the following:
communication-intensive (data-intensive) when CCR is greater, or computationally intensive
(CPU intensive) when CCR is smaller.

Zhang and Chakrabarty [55] define the reliability of the system as the probability of exe-
cuting workflow tasks without any failure. Two type of faults can occur during the execution
of an application due to crashing of hardware, flaws in software, high temperature attained by
the machine, etc. We have permanent and transient faults. The probability of occurrence of
transient faults is much more than that of permanent faults [55]. Zhang and Chakrabarty [55]
model transient faults following Poisson distribution as follow:

λ(fr,op) = λ0 × F (fr,op)

= λ0 × 10
d ∗ (1− fr,op)

fr,min

(4.4)

where fr,op denotes the operating frequency, fr,min the lowest frequency, λ0 the initial fault
rate at maximum voltage/frequency, F (fr,op) a strictly decreasing function of frequency and
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d (> 0) a constant. Fault rate is maximum (minimum reliability) at lowest frequency fr,min

(which is most suitable frequency for energy conservation).

The reliability of the system which is the probability of execution of task ti without any
failure is determined as follow:

Relti(fr,op) = e
−λ(fr,op)∗

ET (i, k)
fr,op (4.5)

For the n tasks of the workflow we have:

RelG =
n∏
i=1

Relti(fr,op) (4.6)

4.1.4 Problem Formulation

The role of a workflow scheduler is to determine an execution order of the workflow tasks, and
the VM onto which to assign each task. That mapping of tasks onto VMs have to satisfy some
requirements of the user and the cloud provider.

In this chapter, the targeted objectives of the workflow scheduler are the reduction of the
overall execution cost and execution time, as well as the energy consumption of the system.
The constraint remain the user-defined deadline δ and the user-defined budget B.

The question to deal with is: how to build a workflow scheduling algorithm, able to dy-
namically provision VMs for tasks execution in order to reduce the overall execution cost and
execution time as well as the energy consumption of the system, in the respect of the user-defined
budget and deadline?

The problem can be formulated as a mathematical optimization problem:


Minimize(Etotal)
Reduce(MG)
Reduce(CostG)

Subject to MG ≤ δ and CostG ≤ B

(4.7)

4.2 Workflow structure influence

Intuitively, in the last chapter, we have employed the average width of the workflow as a suitable
number of VMs to use for the execution of the workflow. However, due to the big complexity
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and diversity of the structures of workflows, we conducted some experiments to investigate the
influence of workflows structure over the scheduling performance.

The Figure 4.1 presents the basic structures of a workflow [5].

Figure 4.1: Basic workflow structures [5].

4.2.1 Workflow width

Analysis of the optimal number of VMs for the execution of a workflow: Figure
4.2 shows the structure of a Montage workflow with twenty tasks and their dependencies. In
this figure, the left column shows level numbers calculated by equation (4.8), while the right
column is the number of tasks in each level that we call the level width (levelWidth(l)). In
this example the largest width is 6 which corresponds to the level 2 (levelWidth(2) = 6).

LN(tj) = 1 + max
ti∈pred(tj)

{LN(ti)}, (4.8)

Level Number Level Width

1

2

3

4

5

6

7

8

9

4

6

1

1

4

1

1

1

1

Figure 4.2: Workflow width distribution.

Obviously, it is unlikely to use more VMs than the largest width of the workflow for its
execution. But at the same time how many VMs is suitable for the execution of the workflow?
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To analyse that we conducted some experiments using HEFT algorithm [82], in which we
have varied the number of VMs supplied and the instance type among the ones of Table 2.2.
The experiment setup was the same as the one described in section 2.3. In each experiment,
all the VMs was of a same instance type taken among the ten instance types of the Table 2.2.
The experiments was conducted using Montage, CyberShake, Epigenomics, Sipht and LIGO
(Inspiral) workflows. For each of the workflows, five different workloads with respectively 50,
100, 200, 500 and 1000 tasks were considered. Since the analysis results were the same for all
the workflows and for the five different workloads, we just presented here the workload of 1000
tasks per workflow (see Figure 4.3 in this section, and Figures A.1, A.2, A.3, A.4 in the section
A.1).

(a) Cost per number of VMs leased

(b) Makespan per number of VMs leased

(c) Energy per number of VMs leased

Figure 4.3: Cost, Makespan and Energy per number of VMs leased for Montage 1000.

By analysing the results of the experiment we found a relation that can provide an optimal
number of VMs (ONVM) regardless the instance type of VM, that produces a good compromise
among the cost, the makespan and the energy consumption. Assuming the distribution of width
of the different levels of the workflow, that number is given by the equation (4.9).

ONVM(wf) =
{

AvgWW f , if AvgWW f ≤ StdDWW f ,

min {AvgWW f + StdDWW f ,MaxWW f} , otherwise
(4.9)

Where MaxWWf is the maximum, AvgWWf the average and StdDWWf the standard de-
viation of the levels’ width of the workflow.
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4.3 Structure based techniques

In this section we propose some optimisation techniques based on the structural properties
of the workflows, that are used in our three multi-objective heuristics. Among the proposed
scheduling techniques, the common ones used in these three algorithms are:

• The Entry Task Duplication Policy;

• The Pipeline Merging and Slacking;

• The optimal number of VMs determination which is used for th limitation of VMs leasing.

The specific technique used within the SMWSO algorithm is the determination of the Opti-
mal instance type employed for resources homogeneity. In the case of the SCTTEWS algorithm,
the specific techniques are:

• The (improved) Implicit Requested Instance Types Range (IRITR) evaluation;

• The weighted trade-off factors used in the trade-off function.

Each of these techniques is used in one of the main phases of a workflow scheduling algorithm
that are [3]:

1. Resources provisioning: it consists of selecting and provisioning the compute resources
that will be used to run the workflow tasks.

2. Scheduling or task allocation: it consists of mapping each task onto the best-suited re-
source. Therefore, it can be divided into two stages:

(a) Task selection: it consists of selecting a task among the non yet scheduled tasks of
the workflow. It rely on a tasks prioritization.

(b) task to VM mapping: it consists of mapping the selected task onto the best-suited
resource.

4.3.1 Choice of the number of VMs

Choice of the number of VMs to use

The optimal number of VMs (optNbVMs) to use for the execution of the workflow by the
equation 4.9, and must not be exceeded during the scheduling process. That formula considers
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the width distribution of the different levels of the workflow. During our investigation, we
noticed that some algorithms (like HEFT [82] for instance) employ more VMs than the possible
path of the workflow for the execution. That led us to the research of an optimal number of
VMs to used which is dynamically determined according to the structure of the workflow.

It seems unsuitable to use more VMs than the largest width of the workflow for its execution.
But at the same time, it is good to know the suitable number of VMs to use for the execution
of the workflow?

For the example of Figure 4.2, the determination of the optimal number of VMs is presented
in Table 4.1.

Table 4.1: Example of determination of optimal number of VMs based on Figure 4.2.

Width distribution Max Avg Std Dev. optimal Nb of VMs
4; 6; 1; 1; 4; 1; 1; 1; 1 6 2.22 1.81 2.22 + 1.81 ' 4

4.3.2 Task priority

The order of execution of workflow tasks is very important in a scheduling strategy. Any
ordering strategy used for workflow tasks most take into account the precedence constraints
between the tasks. One of the most used ordering strategy is the up-rang of Topcuoglu et al.
[82], which has been improved by Wang et al. [108]. In our case, the tasks are ordered in a list,
called ready list. Our task priority strategy is an improvement of the modified ranku proposed
by Wang et al. [108] and is given by equation (4.10).

ranku(ti) =


σexit , if ti = texit

σi + outd(ti) +OCCW (ti) + max {ranku(tj)} , otherwise
tj∈Succ(ti)

(4.10)

where σi is the standard deviation of the computation time of the task ti on the available
pool of processors. The task with the highest ranku is more prioritised.

We are using just the standard deviation instead of multiplying it with the average compu-
tation time as it is done in [108]. Furthermore, we are using the average communication cost
weight (OCCW (ti)) instead of the OCCW, and in addition we are using the out-degree of the
task which will grant more priority to tasks having more children.
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4.3.3 Entry Task Duplication Policy

The aim of the Task Duplication is to reduce the execution time of the workflow by eliminating
data transfer time from the entry task [63, 108], and therefore, reduce the makespan and
eventually the execution cost of the workflow. It more suitable for data intensive workflow.
Task duplication can have an impact over the makespan, the cost and the energy consumption.
To the best of our knowledge, the entry task duplication selection policies found in the literature
does not take into account the case where there are several root tasks in the structure of the
workflow. While it help reducing the makespan, it may raise a significant increase of the
execution cost and even the energy consumption if the entry task is CPU intensive. It is then
necessary to limit the number of duplication and use an accurate duplication policy. In our
case, more than one root tasks can be duplicated according to the following policy (see Figure
4.4):

t1

t2

e1,2

t3 t4

e1,3 e1,4

VM1 t1 t2

VM2 t3

VM3 t4

e1,4

e1,3

Task Duplication

t’1= clone (t1)

t’’1= clone (t1)

t’1

t2

e1,2

t3 t4

e1,3 e1,4

VM1 t1 t2

VM2 t3

VM3 t4

t1 t’’1

t’1

t’’1

... ... ... ... ... ...

Figure 4.4: Entry Task Duplication

1. There may be task duplication only if totalRepDue = min(optNbVMs, levelWidth(2))−
levelWidth(1) > 0;

2. Under the condition (1.), an entry task ti can be duplicated if it is the only parent of
more than one child (nbSingleParentChildreni > 1). That is, no duplication for children
having several parents;

3. Assuming the nbSingleParentChildreni children ordered according to their priority, pro-
ceed to a task duplication of the nbSingleParentChildreni − 1 first children (tj) as long
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it is possible:

(a) Duplicate ti to the VM vmp (vmp ∈ VMS, vmp <> map(i)) with the lowest execu-
tion cost and which fulfills the condition of equation (4.11)

ET (i, vmp) < ET (i,map(i)) + TT (i, j) (4.11)

(b) If a such VM vmp exists, map tj to vmp (map(j) = vmp)

(c) If not, provision a new VM vmp′ of type optInstType, map tj to vmp′ (map(j) =
vmp′ )

4. Assign the first unmapped child (among nbSingleParentChildreni children) to map(i);

We will investigate the duplication on behalf of children having several parents in our future
work.

4.3.4 Pipeline Merging and Slacking

The pipelines Merging and Slacking is a scheduling technique that aim at maximizing resources
utilization, reducing energy consumption, and reducing execution cost eventually, through a
smart management of sequential and parallel tasks.

A pipeline is a succession of tasks having exactly one parent and one child (see Figure 4.1).
We consider as parallel tasks, unlike the literature [109, 97], a set of pipelines or process tasks
coming from the same parent (which is a distribution task) and leading to the same child (which
is an aggregation task).

Our Pipeline Merging and Slacking process is in two phases (see Figure 4.5). The first phase
is to identify parallel pipelines and merge some pipelines in the group, and the second is to
apply slack time reclamation to the tasks of some pipelines in each group.

Parallel pipelines grouping and merging: If the current task ti is a distribution task (ei.
outd(ti) > 1):

1. Determine whether there are pipelines beginning from one of its children;

2. Construct groups of parallel pipelines;

3. In each group of parallel pipelines:

(a) Determine the longest pipeline (the one having the highest sum of computation
length (pipeGpLmax));
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(b) Constitute sub-groups of pipelines in which the sum of computation length is less or
equal to the length of the longest pipeline (pipeGpSumL ≤ pipeGpLmax);

The pipelines in the same sub-group could then be mapped to the same VM instance without
delaying the execution time, rather, it is possible to have slack times to reclaim.

l3

l2

l1

Pipelines Merging

L2 + l3 <= l1

l2+l3

l1

Figure 4.5: Pipelines Merging

Pipeline Slacking: The process of the Pipeline Slacking is as follow (see Figure 4.6): if the
current task ti is at the head of a pipeline :

1. Determine the slack time: slackT ime = pipeGpLmax − pipeGpSumL;

2. Determine the CPU utilization rate: cpuUtilization = pipeGpLmax/(pipeGpLmax+slackT ime);

3. Set the CPU utilization rate of ti to cpuUtilization using the DVFS technique;

4. For all the other tasks of the current pipeline (subsequent children of ti), and all the tasks
of the pipelines in the same sub-group:

(a) Map the task to map(i);

(b) Set the CPU utilization rate of the task to cpuUtilization using the DVFS technique;

The Pipeline Merging and Slacking technique helps in the reduction of the makespan, the
energy consumption, and also the execution cost.

4.4 Structure-based Cost-Time trade-off and Energy ef-
ficient Workflow Scheduling (SCTTEWS)

Here we propose an algorithm that extends the CTTWSDP algorithm by handling the mini-
mization of energy consumption in addition to the minimization of the execution cost and time.
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l3

l2

l1
Pipeline Slacking

L2 < l1
l3 < l1

DVFS

L’2=L2+(l1-l2) = l1
l’3=l3+(l1-l3) = l1

l1

l1

l1

Figure 4.6: Pipelines Slacking

It combines on the one hand the IRITR evaluation along with the trade-off function, and in
the second hand, some structure-based techniques presented in section 4.3.

Moreover, an improvement of the trade-off function is made by adding weight to the two
trade-off factors of the function. Those weights are determined according to the structure of
the workflow.

4.4.1 VM Selection

Once the workflow tasks have been ordered according to their EST , they are ready to be
mapped onto the available VMs, one after the other.

In this algorithm, the trade-off factors are weighted unlike in CTTWSDP algorithm pre-
sented in chapter 3.

Given a task ti and a VM vmp, the trade-off between cost and time is handled according to
the trade-off function as follows.

CTTF p
i = costW × Costpi + timeW × Timepi ; (4.12)

where Costpi is the cost part and Timepi the time part, and they are evaluated according
to equations (2.16) and (2.17) respectively (as presented in the section 2.2.4). The values of
costW and timeW are given respectively by the equations (4.13) and (4.14).

costW =
∑
ti∈WT TT (i, j)∑

ti∈WT{ET (i, k) + TT (i, j)}
, tj ∈ Succ(ti); k ∈ IRITR (4.13)
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timeW =
∑
ti∈WT ET (i, k)∑

ti∈WT{ET (i, k) + TT (i, j)}
, tj ∈ Succ(ti); k ∈ IRITR (4.14)

Dynamic VM Provisioning algorithm

It seems unsuitable to use more VMs than the largest width of the workflow for its execution.
But at the same time how many VMs is suitable for the execution of the workflow? According to
the level of parallelism of the workflow due to its structure, we use the average width AvgWWf

(described in section 3.2.2) of the workflow as limit of the number of VMs to provision for the
execution.

A new VM is provisioned in preference to the best among the available VMs, if both of the
following conditions are met:

• the ready time of the best VM is greater than the Min ready time of the current task
(bestReadyTime > minReadyTimei);

• the number of already provision VMs < optNbVMs.

The pseudo-code of the dynamic VM Provisioning algorithm is depicted in Algorithm 5.

4.4.2 The SCTTEWS algorithm

The pseudo-code of the SCTTEWS algorithm is depicted in Algorithm 6.

4.5 Structure-based Multi-objective Workflow Schedul-
ing with an Optimal instance type (SMWSO)

In this section, we present our second multi-objective heuristic, named Structure-based Multi-
objective Workflow Scheduling with an Optimal instance type (SMWSO). The SMWSO al-
gorithm aims at optimizing processing costs, makespan and energy consumption, with the
awareness of the user-defined budget and deadline. It dynamically determine one suitable in-
stance type among the available types of VMs proposed and uses VMs of that type only. It
consists of five main steps that are:

• The determination of the optimal instance type and the optimal number of VMs as defined
in section 4.3.1;
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Algorithm 5 Dynamic VM Provisioning Algorithm
Input: ti
Output: ti is mapped to the suitable VM (bestV M)
1: if ti has already been mapped to a VM then
2: spareBt ← spareBt − EC(i, p)added

3: return;/*do nothing since this task has been mapped through one of its parents*/
4: end if
5: for vmp ∈ VMS do
6: Calculate the CTTF p

i

7: bestV M ← vmp if vmp fulfills the following conditions:
8: (C1) vmp have the highest CTTF p

i

9: (C2 1) If ti is a root task, the VM vmp must be of instance type expensiveIRIT
10: (C2 2) If ti is not a root task, the VM vmp must be of an instance type belong to IRITR
11: end for

/*dynamic provisioning*/

12: if bestReadyT ime > minReadyT imei and length(VMS) < optNbVMs then
13: for vmitk ∈ VMIT do
14: Calculate the CTTF k

i

15: bestV MInstance← vmitk if vmitk fulfills the following conditions:
16: (C1) vmp have the highest CTTF k

i

17: (C2 1) If ti is a root task, vmitk must be equal to expensiveIRIT
18: (C2 2) If ti is not a root task, vmitk must belong to IRITR
19: end for
20: bestV M ← vmProvisioning(bestV MInstance)
21: end if
22: return bestV M
23: spareBt ← spareBt − EC(i, p)added

Algorithm 6 SCTTEWS Algorithm
Input: The DAG of tasks
Output: All the tasks are scheduled to their suitable VMs

1: Order the tasks in Asc EST into the readyList
2: Determine the optimal number of VMs (optNbVMs) as described in Section

4.3.1
3: [cheapestIRIT, expensiveIRIT ]← IRITR Evaluation
4: for ti ∈ readyList do
5: Map ti to the suitable VM according to the VM selection of the Section 4.4.1

/*If the number of the already provision VMs is equal to optNbV Ms, we provision no more and we chose the best among the available VMs*/

6: Apply entry task duplication over ti if needed as described in Section 4.3.3
7: Apply pipeline merging and slacking over ti if needed as described in Section

4.3.4
8: end for
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• The task prioritization: the workflow tasks are ordered according the their descendant
ranku. The ranku is defined in section 4.3.2;

• The VM selection and reuse;

• The entry task duplication as defined in section 4.3.3;

• The parallels pipelines merging and slacking as defined in section 4.3.4.

4.5.1 Determination of the optimal Instance type

It is established that instances heterogeneity can easily leads to more energy wastage, due to
the workload unbalance of instances. For example, Stavrinides and Karatza [107] studied the
impact of the workload and their results reveal that the workload variability has a significant
impact on the energy consumption of the system. We also investigated and found that if no
careful VM selection is made, using different instances for the execution of a workflow leads to
more energy wastage than when one suitable instance is chosen.

Since the determination of our optimal number of VMs (optNbVMs) is relevant regardless
the type of instance type (as presented in section 4.2.1), we can then chose the instance type
(optInstType) which gives better results.

The effectiveness of this operation is highly dependent on the estimation of the makespan.
Our makespan estimation when using only VMs of instance type vmitk (denoted as estimateMk

G)
is made according to equation (4.15). An illustration of that estimation is given by Figure 4.7.

estimateMk
G =

∑
ti∈WT{ET (i, k) + maxtj∈Succ(ti){TT (i, j)}}

optNbVMs
(4.15)

TT (i, j) is the transfer time of data from task ti to task tj (defined in section 2.1.2).

t1

ET(1,k) max{TT(1,j)}

ti

ET(i,k) max{TT(i,j)}

tn

ET(n,k)

... ...

OptNbVMs x estimateMk
g

estimateMk
g estimateMk

g estimateMk
g estimateMk

g
...

Vm1 Vm2 Vm3 Vm_OptNbVMs

Figure 4.7: Makespan estimation when using an unique instance type vmitk
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Since their is a parallelism according to the workflow structure, optInstType is chosen as
the fastest instance type (k) which has an estimated makespan that respects the deadline with
an execution cost lest than a slice of the budget corresponding to a path (B/optNbVMs). That
means, the instance k which respects the conditions (4.16) and (4.17).

estimateMk
G ≤ δ (4.16)

destimateMk
G/τe × ck ≤ (B/optNbVMs) (4.17)

That is the fastest instance type which can respect both the deadline and the budget of
the user, according to our makespan estimation and based on the optimal number of VMs
(optNbVMs).

4.5.2 VM Selection and reuse

A task ti can be mapped to a VM during the Entry Task Duplication Policy phase (see Section
4.3.3) or during the Pipeline Merging and Slacking phase (see Section 4.3.4). Therefore, when
a task is selected due to its priority, it is just ignored in this phase, and then executed to the
already mapped VM at due time.

When a task ti is not yet mapped to a VM, the VM selection strategy is a modified version
of the one used in HEFT [82]; ie the VM with the smallest actual finish time determined by
finding the first idle time slot capable of holding the task. We determine among the already
provisioned VMs, the one having the smallest actual finish time. If the corresponding start
time is late on the earliest start time of the task, we proceed to the provisioning of a new VM
(of type optInstType), taking into account the supply time. If the number of already provision
VMs is up-to optNbVMs, we use the VM having the smallest AFT among the available VMs.

4.5.3 The SMWSO algorithm

The SMWSO algorithm uses homogeneous instances according to the determination of the
optimal instance type optInstType.

The pseudo-code of SMWSO is depicted in Algorithm 7.
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Algorithm 7 SMWSO Algorithm
Input: The DAG of tasks
Output: All the tasks are scheduled to their suitable VMs

1: Starting from the texit, compute ranku for all tasks by using equation (4.10)
2: Sort the tasks list (readyList) in decreasing order of ranku
3: Determine the optimal number of VMs (optNbVMs) and the optimal instance

type (optInstType) as described in Section 4.3.1
4: for ti ∈ readyList do
5: Map ti to the suitable VM according to the VM selection of the Section 4.5.2

/*If the number of the already provision VMs is up-to optNbV Ms, we provision no more and we use the VM having the smallest AFT*/

6: Apply entry task duplication over ti if needed as described in Section 4.3.3
7: Apply pipeline merging and slacking over ti if needed as described in Section

4.3.4
8: end for

4.6 Structure-based Multi-objective Workflow Schedul-
ing with Heterogeneous instance types (SMWSH)

In this section, we present our third multi-objective heuristic, named Structure-based Multi-
objective Workflow Scheduling with Heterogeneous instance types (SMWSH). Unlike SMWSO,
SMWSH uses heterogeneous instance types in the scheduling process. SMWSH also consists of
six main steps that are:

• The determination of the optimal instance type and the optimal number of VMs as defined
in section 4.3.1;

• The task prioritization: the workflow tasks are ordered according the their descendant
ranku. The ranku is defined in section 4.3.2;

• The deadline distribution;

• The VM selection and reuse;

• The entry task duplication as defined in section 4.3.3;

• The parallels pipelines merging and slacking as defined in section 4.3.4,

4.6.1 Deadline distribution

Since minMG is the minimum possible makespan of the workflow G, we can assume that
the user defined deadline is always greater than minMG (δ ≥ minMG). Let be EST opt(ti)
(respectively EFT opt(ti)) the Earliest Start Time (respectively Earliest Finish Time) of task ti
when executed on optInstType. We define the sub-deadline δi of each task ti as follow:
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δ
′

i = EFT opt(ti)× δ
minMG

, (4.18)

δi = δ
′

i + spareδi, (4.19)

where spareδi is obtain by distributing the eventual spare time (δ − maxti∈WT{δ
′
i}) to all

the task proportionally to their length compared to that of the CP.

4.6.2 VM Selection and reuse

A task ti can be mapped to a VM during the Entry Task Duplication Policy phase (see Section
4.3.3) or during the Pipeline Merging and Slacking phase (see Section 4.3.4). Therefore, when
a task is selected due to its priority, it is just ignored in this phase, and then executed to the
already mapped VM at due time.

The first provisioned VM is of instance type optInstType. When a task ti is not yet mapped
to a VM, the VM selection strategy is a modified version of the one used in HEFT [82]; ie the
VM with the smallest actual finish time determined by finding the first idle time slot capable
of holding the task. We determine among the already provisioned VMs, the one having the
smallest actual finish time under the sub-deadline of the task (δi). If such VM is not found,
or the corresponding start time is late on the earliest start time of the task, we proceed to the
provisioning of a new VM, taking into account the supply time. The instance type used for the
provisioning is determined in the same manner than the VM; ie the instance that can end faster
under the sub-deadline (δi). If the number of already provision VMs is up-to optNbVMs, we
use the VM having the smallest EFT among the available VMs.

4.6.3 The SMWSH algorithm

The SMWSH algorithm begins with a VM of instance type optInstType. But unlike SMWSO,
SMWSH handles VM selection, Entry Task Duplication Policy and Pipeline Merging and Slack-
ing as follow:

1. VM selection: if the corresponding start time of the VM having the best EFT is late on
the earliest start time of the task, it determines the fastest among the VMs instance that
can execute the task in the deadline;

2. Entry Task Duplication Policy: in the sub-step 3c of the task duplication policy, since
the VMs are heterogeneous, it determines an instance type that can fulfills the condition
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of equation (4.11) and provision a VM of that type.

3. Pipeline Merging and Slacking: here also because the VMs are heterogeneous, the spare
time slacking takes into account the speed of the related VMs;

The pseudo-code of SMWSH is depicted in Algorithm 8.

Algorithm 8 SMWSH Algorithm
Input: The DAG of tasks
Output: All the tasks are scheduled to their suitable VMs

1: Starting from the texit, compute ranku for all tasks by using equation (4.10)
2: Sort the tasks list (readyList) in decreasing order of ranku
3: Determine the optimal number of VMs (optNbVMs) and the optimal instance

type (optInstType) as described in Section 4.3.1
4: Provision one VM of type optInstType
5: for ti ∈ readyList do
6: Map ti to the suitable VM according to the VM selection of the Section 4.6.2

/*If the number of the already provision VMs is up-to optNbV Ms, we provision no more and we use the VM having the smallest AFT*/

7: Apply entry task duplication over ti if needed as described in Section 4.3.3
8: Apply pipeline merging and slacking over ti if needed as described in Section

4.3.4
9: end for

4.7 The Time Complexity of the studied algorithms

For the same raisin than in the case of CTTWS, to determine the time complexity of both
SMWSO and SMWSH algorithms, the phases that must be considered are still the same: task
selection and VM selection. For the task selection, given a workflow containing n tasks, we
need O(n2) time for the determination of their Ranku. Sorting the tasks takes O(nlogn) time
complexity, hence the overall complexity for the task selection is O(n2). And for the mapping,
to select the suitable VM of each ready task all the VMs should be examined. Which gives a
time complexity of O(n × P ) for VM selection, where P is the number of VMs. That gives a
time complexity of both SMWSO and SMWSH algorithms is O(n× (n+ P )).

However, since the number of VMs is limited to the optimal number of VMs, we have
P = optNbVMs < n. Therefore SMWSO and SMWSH algorithms has a polynomial time
complexity of O(n2).

The time complexity of DCCP and PPDPS algorithms are presented respectively in [87]
and [45], and are respectively equal to O(n2 × P ) and O(n2).

The SCTTEWS algorithm has the same time complexity than the CTTWSDP algorithm
which is equal to O(n2).
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The REEWS algorithm also has a time complexity order of O(n2), by using similar pro-
cesses as the PPDPS algorithm in addition to the DVFS technique which does not upgrade its
complexity.

The determination of time complexity of DCCP and PPDPS algorithms have been resolved
in chapter 3 and are respectively O(n3) and O(n2).

A complexity comparison between the studied algorithms is summarised in Table 4.2.

Table 4.2: Complexity comparison. Where n is the number of tasks of the workflow, K the number of
used instances type and P the number of provisioned VMs instance.

Algorithms DCCP PPDPS REEWS SMWSO SMWSH SCTTEWS
Complexity O(n3) O(n2) O(n2) O(n2) O(n2) O(n2)

4.8 Performance evaluation

In this section, we present the experiment’s setup and analyze the simulation results.

We have used the Pegasus workflow generator [5] during experimentations to create the
structure of the five real-world scientific workflows (Montage, CyberShake, Epigenomics, SIPHT,
and LIGO), in different workload (the number of tasks of the workflow): 50, 100, 200, 500 and
1000 tasks.

To evaluate the performances of our three heuristics, we have implemented them as well
as a state-of-the-art heuristic algorithm [21] called Reliability and Energy Efficient Workflow
scheduling (REEWS). REEWS aims at minimizing energy consumption and maximizing the
reliability of the system in the respect of the user-specified deadline. Unlike our proposals, the
REEWS algorithm relies on static provisioning of VMs. It has been difficult for us to find a
single workflow scheduling heuristic, aiming at minimizing energy consumption which uses a dy-
namic VMs provisioning strategy. Therefore, in order to compare our three algorithms against
REEWS, we have designed their static VMs provisioning versions. We have implemented our
three heuristic (dynamics and statics versions) as well as REEWS algorithm [21]. The choice
of REEWS is due to the fact that it uses a (clustering) technique of determination of number
of VMs to use, and the DVFS. The simulations have been done in CloudSim [99].

Also, to examine if there is a drawback in our three multi-objective algorithms in terms of
success rate, we have compared them to our bi-objective algorithm Cost-Time Trade-off efficient
Workflow Scheduling with Dynamic provisioning (CTTWSDP) through ANOVA test. In fact,
in the precedent chapter, we have established that CTTWSDP is at least as efficient in terms
of success rate than the three bi-objectives state-of-the-art heuristic algorithms considered in
our work (see section 3.4.6).
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4.8.1 Experiment Setup

For the simulations we consider the system as a single data center having ten different instance
types that are based on the US-east (Ohio) Amazon region [95], collected in July 2019, and
which the characteristics are presented in Table 4.3. The last two columns concerning the power
were taken from the CloudSim framework [99] modified by Guerout et al. [24].

Table 4.3: Instance types based on Amazon EC2

No Type vCPU Memory(GB) Cost($)/Hour Power (W)
Min Max

0 m3.medium 1 3.75 0.067 140 228
1 m4.large 2 8 0.10 146 238
2 m4.xlarge 4 16 0.20 153 249
3 m4.2xlarge 8 32 0.40 159 260
4 m4.4xlarge 16 64 0.80 167 272
5 m5.8xlarge 32 128 1.536 174 282
6 m4.10xlarge 40 160 2.00 182 294
7 m5.12xlarge 48 192 2.304 188 305
8 m4.16xlarge 64 256 3.20 196 316
9 m5.24xlarge 96 384 4.608 204 330

We have configured the simulation environment as follows. The bandwidth between in-
stances is fixed to 20 MBps, the value of the vCPU of each instance is considered as its pro-
cessing capacity in Million Instruction Per Second (MIPS) as in [41], and the charging model
is hourly based. For the dynamic provisioning of VMs, the provisioning delay of each VM was
set to 100 s based on the study by Mao et al. [103]. The virtualization system used is Xen.
In the case of experiment with static provisioning, we have created 10000 VMs such that the
number of VMs per instance type is the same. Finally, we suppose that the DVFS is enabled
on the different resource.

4.8.2 Performance Metrics

The following metrics were employed for the evaluation of the performance of our proposed
scheduling algorithms:

• Cost Ratio (CR): The CR of a scheduling algorithm is overall execution cost divided by
the user-defined budget (B), and determined by equation (2.18) in chapter 2 and section
2.3.2.

• Time Ratio (TR): In a similar way, the TR metric is defined as the ratio between the
overall makespan and the user-defined deadline (δ), and determined by equation (2.19)
in chapter 2 and section 2.3.2.
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• Success Rate (SR): The SR of a scheduling algorithm is defined as the ratio between the
number of ran simulations that successfully met both deadline and budget constraints
(denoted by NB success), and the total number of experiments (denoted by NBExp). It
is determined by equation (2.20) in chapter 2 and section 2.3.2.

• Energy consumption: The energy in kilowatt-hours (kWh) consumed by the used VMs
during the observed time period;

• Number of VMs: The number of VMs effectively used by each scheduling policy for the
execution of the workflow. This metric is used to level of resource usage maximization. In
fact using much VMs for the the execution of a workflow while it would have been possible
to use less and still satisfy the user constraint is not good, since one of the objective of
cloud provider been the maximization of resource utilization.

4.9 Simulation Results and Analysis with ANOVA plus
Tukey-Kramer post hoc test

in this section we present and analyse the results of the simulation. We first analyse the results
for each of the five scientific workflows used in our experiments. Afterwards, we propose a
summarized analysis of the results.

Since the comparison is made against dynamic as well as static VMs provisioning algo-
rithms, we present the results in two categories for each scientific workflow. Comparison be-
tween the dynamic provisioning algorithms, followed by the one between the static provisioning
algorithms. The comparison of the dynamic version is against our proposal of chapter 3, the
Cost-Time Trade-off efficient Workflow Scheduling with Dynamic provisioning (CTTWSDP)
algorithm. While the static ones are compared against REEWS, which aims at minimizing
energy consumption and maximizing the reliability in the respect of the user-defined deadline.

The results are presented via diverse graphs, which show the performance of the different
algorithms in terms of CR, TR, SR, and energy consumption. However, in order to do objectives
analysis of the results of have conducted statistical tests (ANOVA with Tukey-Kramer post hoc
test). Since the energy consumption is highly dependent from the workflow type and from the
workload, the statistical tests have been conducted by workflow and workload. During the
simulation, they were a variation of four budget factors (4, 8, 12, 16) and four deadline factors
(4, 8, 12, 16). Therefore, for each workload of each workflow, we have 16 different experiments.
The summarised statistical tests are given in section 4.9.6 for both SR and energy efficiency.
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4.9. Simulation Results and Analysis with ANOVA plus Tukey-Kramer post
hoc test
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(c) Success rate (%) compared to REEWS for MONTAGE workflow.

Figure 4.8: Cost efficiency, time efficiency, and success rate (%) of SCTTEWS, SMWSO and SMWSH
vs REEWS for MONTAGE workflow.

4.9.1 Performance for MONTAGE workflow

Figure 4.8 presents the results obtained for MONTAGE workflow by REEWS and the static
provisioning version of SCTTEWS, SMWSO and SMWSH. In terms of time efficiency (see
Figure 4.8b), while our three algorithms, SCTTEWS, SMWSO and SMWSH always have 100%
of schedules in the deadline, REEWS has less than 75% of schedules in the deadline. However,
In terms of cost efficiency (see Figure 4.8a), SMWSH has about 60% of schedules in the budget
while SCTTEWS, SMWSO and REEWS have 100% of schedules in the budget.

In terms of average success rate, while SCTTEWS and SMWSO realized 100%, REEWS
and SMWSH recorded respectively 80.00% and 62.50% (see Figure 4.8c).

We noticed a significant influence of the workload of MONTAGE workflow over REEWS.
When the number of tasks increases, the performance of REEWS decreases. This influence is
found in SMWSH, but in reverse. When the number of tasks increases, the performance of
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Figure 4.9: Energy consumption and Reliability of SCTTEWS, SMWSO and SMWSH vs REEWS for
MONTAGE workflow.

SMWSH also increases.

From Figures 4.9a and 4.9b, we observe that the energy consumption of REEWS for MON-
TAGE workflow is largely greater than the ones of SCTTEWS, SMWSO, and SMWSH, as the
number of tasks increases. In terms of reliability, all the four algorithms have a value closer to
one, which means that they produce the highest reliability. That increase in energy consump-
tion observed on REEWS is traceable to the increase of deadline missed due to the workload.
In fact, Figure 4.8c reveals a decrease of the success rate of REEWS due to the workload, and
Figures 4.8a and 4.8b reveal that REEWS only fails because of deadline violation.

The statistical tests give an evidence that their is a significant different between the energy
consumption of the different algorithms. In Table 4.4, all the ANOVA tests lead to the rejection
of the null hypothesis (since all the p-value of the tests are smaller than 0.05). The five Tukey-
Kramer post hoc tests (for the five workload of MONTAGE), which compare the mean of
energy consumption between each pairwise combination of algorithms show that REEWS is
always the less energy-efficient. For the workloads 50 and 100, SMWSH and SCTTEWS are
the most energy-efficient, followed by SMWSO. Whereas, for the workloads 200, 500, and
1000, SMWSH, SCTTEWS, and SMWSO are similarly more energy-efficient than REEWS.
That means, our proposals are more energy-efficient than REEWS for MONTAGE workflow
no matter the workload.
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Table 4.4: ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS
for MONTAGE 50, 100, 200, 500 and 10000

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 72.16 4.51 8.41E-31 Between Groups 349.15 3 116.39 156.30 2.59E-28 2.76 SMWSO vs SCTTEWS 1.68 1.68 0.81 YES
SCTTEWS 16 45.2 2.82 0.26 Within Groups 44.68 60 0.74 SMWSO vs SMWSH 2.25 2.25 0.81 YES
SMWSH 16 36.16 2.26 8.41E-31 Total 393.85 63 SMWSO vs REEWS -3.73 3.73 0.81 YES
REEWS 16 131.88 8.24 2.72 SCTTEWS vs SMWSH 0.56 0.56 0.81 NO

SCTTEWS vs REEWS -5.42 5.42 0.81 YES
SMWSH vs REEWS -5.98 5.98 0.81 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 3 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(a) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for MONTAGE 50

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 159.04 9.94 0 Between Groups 3113.47 3 1037.83 101.14 1.96E-23 2.76 SMWSO vs SCTTEWS 3.98 3.98 2.99 YES
SCTTEWS 16 95.38 5.96 0.07 Within Groups 615.72 60 10.26 SMWSO vs SMWSH 4.43 4.43 2.99 YES
SMWSH 16 88.16 5.51 8.41E-31 Total 3729.18 63 SMWSO vs REEWS -12.80 12.80 2.99 YES
REEWS 16 363.92 22.745 40.97 SCTTEWS vs SMWSH 0.45 0.45 2.99 NO

SCTTEWS vs REEWS -16.78 16.78 2.99 YES
SMWSH vs REEWS -17.23 17.23 2.99 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 3 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(b) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for MONTAGE 100

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 373.12 23.32 1.35E-29 Between Groups 47388.03 3 15796.01 127.07 5.91E-26 2.76 SMWSO vs SCTTEWS 8.03 8.03 10.42 NO
SCTTEWS 16 244.65 15.29 0.07 Within Groups 7458.61 60 124.31 SMWSO vs SMWSH 8.45 8.45 10.42 NO
SMWSH 16 237.92 14.87 1.35E-29 Total 54846.64 63 SMWSO vs REEWS -56.86 56.86 10.42 YES
REEWS 16 1282.96 80.18 497.17 SCTTEWS vs SMWSH 0.42 0.42 10.42 NO

SCTTEWS vs REEWS -64.89 64.89 10.42 YES
SMWSH vs REEWS -65.31 65.31 10.42 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(c) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for MONTAGE 200

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 1456.32 91.02 0 Between Groups 3021620.40 3 1007206.8 82.83 2.62E-21 2.76 SMWSO vs SCTTEWS 20.37 20.37 103.02 NO
SCTTEWS 16 1130.42 70.65 0.09 Within Groups 729600.13 60 12160.00 SMWSO vs SMWSH 20.64 20.64 103.02 NO
SMWSH 16 1126.02 70.38 2.5E-05 Total 3751220.53 63 SMWSO vs REEWS -487.75 487.75 103.02 YES
REEWS 16 9260.4 578.77 48639.91 SCTTEWS vs SMWSH 0.275 0.275 103.02 NO

SCTTEWS vs REEWS -508.12 508.12 103.02 YES
SMWSH vs REEWS -508.40 508.40 103.02 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(d) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for MONTAGE 500

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 4160.32 260.02 0 Between Groups 34149038.12 3 11383012.71 102.61 1.36E-23 2.76 SMWSO vs SCTTEWS 10.33 10.33 311.17 NO
SCTTEWS 16 3994.99 249.69 2007.02 Within Groups 6655892.89 60 110931.55 SMWSO vs SMWSH 35.93 35.93 311.17 NO
SMWSH 16 3585.49 224.09 0.13 Total 40804931.01 63 SMWSO vs REEWS -1671.24 1671.24 311.17 YES
REEWS 16 30900.25 1931.26 441719.03 SCTTEWS vs SMWSH 25.59 25.59 311.17 NO

SCTTEWS vs REEWS -1681.58 1681.58 311.17 YES
SMWSH vs REEWS -1707.17 1707.17 311.17 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(e) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for MONTAGE 1000
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4.9.2 Performance for CYBERSHAKE workflow

For CYBERSHAKE workflow, all the four algorithms SCTTEWS, SMWSO, SMWSH, and
REEWS have a good time efficiency (see Figure 4.10b). However, in terms of cost efficiency
only REEWS realises 100% of schedules in the budget, whereas SCTTEWS, SMWSO and
SMWSH have 25% of schedules out of the budget (see Figure 4.10b).

In terms of average success rate, REEWS recorded 100% whereas SCTTEWS, SMWSO and
SMWSH realized respectively 95.00%, 78.75% and 85.00%.

REEWS is more energy-efficient than SCTTEWS, SMWSO, and SMWSH for CYBER-
SHAKE workflow (see Figure 4.11a). In terms of reliability, all the four algorithms have the
highest reliability.

In the case of CYBERSHAKE also, the statistical tests give an evidence that their is a sig-
nificant different between the energy consumption of the different algorithms. All the ANOVA
tests still lead to the rejection of the null hypothesis (see Table A.1, all the p-value of the tests
are smaller than 0.05). The Tukey-Kramer post hoc tests (for the five workload of CYBER-
SHAKE) reveal that SMWSO is always the less energy-efficient. For the workload 50 REEWS
and SMWSH are the most energy-efficient, followed by SCTTEWS. For the workloads 100, 200,
and 500, REEWS, SMWSH, and SCTTEWS are similarly more energy-efficient than SMWSO.
Finaly in the case of the workloads 1000, SMWSH is the most energy-efficient, followed by
SMWSO and SCTTEWS.

4.9.3 Performance for EPIGENOMICS workflow

For EPIGENOMICS workflow, all the four algorithms SCTTEWS, SMWSO, SMWSH, and
REEWS have 100% of schedules in the budget (see Figure 4.10a). However, in terms of cost
efficiency only SMWSO and REEWS realise 100% of schedules in the deadline, whereas SCT-
TEWS and SMWSH have few schedules out of the deadline (see Figure 4.10b).

In terms of average success rate, SMWSO and REEWS recorded 100% whereas SCTTEWS
and SMWSH realized respectively 90.00% and 95.00%.

SMWSO is more energy-efficient than REEWS, SCTTEWS, and SMWSH for EPIGE-
NOMICS workflow (see Figure 4.13a). In terms of reliability, SMWSO, SCTTEWS, and
SMWSH are highly reliable, and slightly more reliable than REEWS. We notice that for the
workload of 1000 tasks, SCTTEWS and SMWSH lead to greater energy consumption compared
to SMWSO and REEWS. This was not the case for the smaller workload.

The statistical tests for in the case of EPIGENOMICS also give an evidence that their
is a significant different between the energy consumption of the different algorithms. All the
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4.9. Simulation Results and Analysis with ANOVA plus Tukey-Kramer post
hoc test
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(c) Success rate (%) compared to REEWS for CYBERSHAKE workflow.

Figure 4.10: Cost efficiency, time efficiency, and success rate (%) of SCTTEWS, SMWSO and SMWSH
vs REEWS for CYBERSHAKE workflow.
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Figure 4.11: Energy consumption and Reliability of SCTTEWS, SMWSO and SMWSH vs REEWS
for CYBERSHAKE workflow.
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(c) Success rate (%) compared to REEWS for EPIGENOMICS workflow.

Figure 4.12: Cost efficiency, time efficiency, and success rate (%) of SCTTEWS, SMWSO and SMWSH
vs REEWS for EPIGENOMICS workflow.
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Figure 4.13: Energy consumption and Reliability of SCTTEWS, SMWSO and SMWSH vs REEWS
for EPIGENOMICS workflow.
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(c) Success rate (%) compared to REEWS for SIPHT workflow.

Figure 4.14: Cost efficiency, time efficiency, and success rate (%) of SCTTEWS, SMWSO and SMWSH
vs REEWS for SIPHT workflow.

ANOVA tests still lead to the rejection of the null hypothesis (see Table A.2, all the p-value
of the tests are smaller than 0.05). The Tukey-Kramer post hoc tests (for the five workload of
EPIGENOMICS) reveal the following. For workload 50, SMWSO and SCTTEWS are the most
energy-efficient, followed by SMWSH, REEWS been the less energy-efficient. For the workloads
100, 200, and 500, SMWSO, SMWSH, and SCTTEWS are similarly more energy-efficient than
REEWS. Finally, in the case of the workloads 1000, SMWSO is the most energy-efficient,
followed by REEWS, afterward by SMWSH, SCTTEWS been the less energy-efficient.

4.9.4 Performance for SIPHT workflow

For SIPHT workflow, all the four algorithms SCTTEWS, SMWSO, SMWSH, and REEWS
have 100% of schedules in both the budget and the deadline (see Figures 4.14a and 4.14b).

Therefore, SCTTEWS, SMWSO, SMWSH, and REEWS have 100% of average success rate.

Ph.D. Thesis: Energy-efficient Workflow Scheduling
with Budget and Deadline constraints in a Cloud Datacenter

118 J.E. Ndamlabin Mboula
2021, The University of Ngaoundere



Chapter 4 : Energy-efficient workflow scheduling strategies based on
workflow structures under Budget and Deadline constraints

0

3000

6000

9000

Sipht_50 Sipht_100 Sipht_200 Sipht_500 Sipht_1000

E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

W
h)

Algoritms REEWS SMWSO SMWSH SCTTEWS

(a) Energy consumption of SCTTEWS, SMWSO and
SMWSH vs REEWS for SIPHT workflow.

0.00

0.25

0.50

0.75

1.00

Sipht_50 Sipht_100 Sipht_200 Sipht_500 Sipht_1000

R
el

ia
bi

lit
y

Algoritms REEWS SMWSO SMWSH SCTTEWS
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Figure 4.15: Energy consumption and Reliability of SCTTEWS, SMWSO and SMWSH vs REEWS
for SIPHT workflow.

REEWS is less energy-efficient than SCTTEWS, SMWSO, and SMWSH for SIPHT work-
flow (see Figure 4.15a). All the four algorithms are highly reliable. The workload of SIPHT
also has significant impact on the energy-efficiency of REEWS.

In the case of SIPHT also, the ANOVA tests proved that their is a significant different
between the energy consumption of the different algorithms (see Table A.3, all the p-value of
the tests are smaller than 0.05). The Tukey-Kramer post hoc tests (for the five workload of
SIPHT) reveal that REEWS is always the less energy-efficient. For the workload 50 SMWSO
is the most energy-efficient, followed by SCTTEWS and SMWSH. For the workloads 100, 200,
500 and 1000, SMWSO, SCTTEWS, and SMWSH are similarly more energy-efficient than
REEWS.

4.9.5 Performance for LIGO workflow

For LIGO workflow, SMWSH has 100% of schedules in both the budget and the deadline (see
Figures 4.16a and 4.16b). SCTTEWS, SMWSO and REEWS have few schedules out of the
deadline and 100% of schedules in the budget.

The average of success rate of SMWSH is 100%, whereas SCTTEWS, SMWSO and REEWS
have of respectively 95.00%, 95.00% and 85.00%.

REEWS is less energy-efficient than SCTTEWS, SMWSO, and SMWSH for LIGO workflow
(see Figure 4.15a). All the four algorithms are highly reliable, apart in the case of the workload
500 and 1000 that REEWS is slightly less reliable than the other. The workload of LIGO also
has significant impact on the energy-efficiency of REEWS.
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(c) Success rate (%) compared to REEWS for LIGO workflow.

Figure 4.16: Cost efficiency, time efficiency, and success rate (%) of SCTTEWS, SMWSO and SMWSH
vs REEWS for LIGO workflow.
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Figure 4.17: Energy consumption and Reliability of SCTTEWS, SMWSO and SMWSH vs REEWS
for LIGO workflow.
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All the ANOVA tests still lead to the rejection of the null hypothesis (see Table A.4, all
the p-value of the tests are smaller than 0.05), and therefore prove that their is a significant
different between the energy consumption of the different algorithms. The Tukey-Kramer post
hoc tests (for the five workload of LIGO) reveal that REEWS is always the less energy-efficient.
For the workload 50, 100, and 200, SMWSO, SCTTEWS and SMWSH are similarly more
energy-efficient than SMWSO. For the workloads 500, SCTTEWS and SMWSH are the most
energy-efficient, followed by SMWSH. Whereas, for the workloads 1000, SMWSO is the most
energy-efficient, followed by SCTTEWS and SMWSH.

4.9.6 Performance summary and discussions

In this subsection, we present a summary of the simulation results in terms of success rate and
in terms of energy efficiency, and provide some analysis.

In terms of success rate

First of all we analyse the success rate obtained for the dynamic provisioning algorithms. Table
4.5 presents the total SR of the four dynamics algorithms CTTWSDP, SCTTEWS, SMWSO
and SMWSH. CTTWSDP is our bi-objective algorithm proposed in the previous chapter.

From the Table 4.5, we see that CTTWSDP, SCTTEWS, SMWSO and SMWSH algorithms
recorded respectively 94.36%, 97.00%, 99.00% and 96.00% in terms mean of SR. However,
to know if that difference in terms of SR (i.e. customer satisfaction) is significant, we have
conducted ANOVA test2 [93, 104].

Table 4.6 presents the result of the ANOVA test. As we can see in Table 4.6b, we have F
statistical < F critical (also p-value > 0.05). Thus, we have sufficient evidence to say that all
the four algorithms CTTWSDP, SCTTEWS, SMWSO, and SMWSH have similar performance
in terms of success rate. Therefore, there is no drawback incurred in our three energy-efficient
algorithms in terms of success rate (i.e. customer satisfaction) while we tried to satisfied the
provider.

As for the four static algorithms REEWS, SCTTEWS, SMWSO, and SMWSH, Table 4.7
presents the summary of the average success rate realized by each. REEWS, SCTTEWS,
SMWSO and SMWSH algorithms recorded respectively 93.00%, 92.75%, 98.00% and 88.50%
in terms mean of SR. Even though SMWSO has higher success rate than the other with the
smallest standard deviation (2.44 ), a statistical test is still needed. We did an ANOVA test to
know if that difference in terms of SR (i.e. customer satisfaction) is significant.

2https://www.excel-easy.com/examples/anova.html
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Table 4.5: Success rate summary realized by the four dynamics algorithms CTTWSDP, SCTTEWS,
SMWSO and SMWSH.

Workflow CTTWSDP SCTTEWS SMWSO SMWSH
MONTAGE 50 99.58% 100% 100% 100%
MONTAGE 100 99.58% 100% 100% 100%
MONTAGE 200 100% 100% 100% 100%
MONTAGE 500 100% 100% 100% 100%
MONTAGE 1000 100% 100% 100% 100%
CYBERSHAKE 50 99.79% 100% 100% 100%
CYBERSHAKE 100 98.96% 75.00% 75.00% 75.00%
CYBERSHAKE 200 93.75% 75.00% 100% 75.00%
CYBERSHAKE 500 95.42% 100% 100% 75.00%
CYBERSHAKE 1000 83.13% 75.00% 100% 75.00%
EPIGENOMICS 50 97.92% 100% 100% 100%
EPIGENOMICS 100 92.71% 100% 100% 100%
EPIGENOMICS 200 99.17% 100% 100% 100%
EPIGENOMICS 500 100% 100% 100% 100%
EPIGENOMICS 1000 100% 100% 100% 100%
SIPHT 50 78.33% 100% 100% 100%
SIPHT 100 97.50% 100% 100% 100%
SIPHT 200 96.46% 100% 100% 100%
SIPHT 500 97.08% 100% 100% 100%
SIPHT 1000 96.46% 100% 100% 100%
LIGO 50 84.79% 100% 100% 100%
LIGO 100 85.63% 100% 100% 100%
LIGO 200 86.25% 100% 100% 100%
LIGO 500 93.96% 100% 100% 100%
LIGO 1000 82.50% 100% 100% 100%
Mean 94.36% 97.00% 99.00% 96.00%

Table 4.6: ANOVA test result comparing the SR of the four dynamics algorithms CTTWSDP, SCT-
TEWS, SMWSO and SMWSH

Group Count Sum Average Variance
CTTWSDP 25 2358.97 94.36 45.32
SCTTEWS 25 2425 97 68.75
SMWSO 25 2475 99 25
SMWSO 25 2400 96 87.50

(a) Summary of input
Source of Variation SS df MS F statistical P-value F critical
Between Groups 282.56 3 94.19 1.66 0.18 2.70
Within Groups 5437.76 96 56.64
Total 5720.32 99

(b) ANOVA test result
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Table 4.7: Success rate summary realized by the four static algorithms REEWS, SCTTEWS, SMWSO
and SMWSH.

Workflow REEWS SCTTEWS SMWSO SMWSH
MONTAGE 50 100% 100% 100% 50%
MONTAGE 100 100% 100% 100% 50%
MONTAGE 200 75% 100% 100% 50%
MONTAGE 500 75% 100% 100% 75%
MONTAGE 1000 50% 100% 100% 88%
CYBERSHAKE 50 100% 94% 100% 100%
CYBERSHAKE 100 100% 75% 75% 75%
CYBERSHAKE 200 100% 75% 100% 75%
CYBERSHAKE 500 100% 75% 100% 75%
CYBERSHAKE 1000 100% 75% 100% 100%
EPIGENOMICS 50 100% 100% 100% 100%
EPIGENOMICS 100 1001% 100% 100% 100%
EPIGENOMICS 200 100% 100% 100% 100%
EPIGENOMICS 500 100% 100% 100% 100%
EPIGENOMICS 1000 100% 50% 100% 75%
SIPHT 50 100% 100% 100% 100%
SIPHT 100 100% 100% 100% 100%
SIPHT 200 100% 100% 100% 100%
SIPHT 500 100% 100% 100% 100%
SIPHT 1000 100% 100% 100% 100%
LIGO 50 100% 100% 100% 100%
LIGO 100 100% 100% 100% 100%
LIGO 200 75% 100% 100% 100%
LIGO 500 75% 100% 75% 100%
LIGO 1000 75% 75% 100% 100%
Mean 93.00% 92.76% 98.00% 88.52%
Standard deviation 8.71 7.92 2.44 14.10

Table 4.8 presents the result of the ANOVA test comparing the four static algorithms. As
we can see in Table 4.8b, we have F statistical < F critical (also p-value > 0.05). We then
conclude that all the four algorithms REEWS, SCTTEWS, SMWSO and SMWSH have similar
performance in terms of success rate.

The above statistical analyzes show that the four algorithms REEWS, SCTTEWS, SMWSO,
and SMWSH have comparable performance in terms of success rate (customer satisfaction).
Moreover, our three energy-efficient algorithms don’t incur drawbacks in terms of success rate
(i.e. customer satisfaction) while we tried to satisfied the provider relatively to our bi-objective
algorithm presented in chapter 3.

However, we notice a drawback when we compare le performance of SMWSH in its dynamic
provisioning version against its static version (see Figures 4.5 and 4.7) .

In terms of energy efficiency

Because of the high influence of the workflow type and workload over the energy consumption,
the statistical tests have been conducted by workflow and workload in section 4.9. Table 4.9

Ph.D. Thesis: Energy-efficient Workflow Scheduling
with Budget and Deadline constraints in a Cloud Datacenter

123 J.E. Ndamlabin Mboula
2021, The University of Ngaoundere



4.9. Simulation Results and Analysis with ANOVA plus Tukey-Kramer post
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Table 4.8: ANOVA test result comparing the SR of the four static algorithms REEWS, SCTTEWS,
SMWSO and SMWSH

Group Count Sum Average Variance
REEWS 25 2325 93 183.33
SCTTEWS 25 2319 92.76 181.27
SMWSO 25 2450 98 47.92
SMWSH 25 2213 88.52 311.43

(a) Summary of input
Source of Variation SS df MS F statistical P-value F critical
Between Groups 1127.71 3 375.90 2.08 0.11 2.67
Within Groups 17374.8 96 180.99
Total 18502.51 99

(b) ANOVA test result

presents the summary of the energy efficiency ranking between the four algorithms REEWS,
SCTTEWS, SMWSO and SMWSH. From Table 4.9, we see that the REEWS algorithm is more
energy-efficient or as energy-efficient as our proposals only for the case of CYBERSHAKE (50,
100, 200, 500, and 1000). In all the other case, REEWS is always the less energy-efficient, and
our proposals that are more energy-efficient:

• For MONTAGE : SCTTEWS and SMWSH are similarly more energy-efficient for all five
workloads. SMWSO is as energy-efficient as SCTTEWS and SMWSH for MONTAGE
200, 500, and 1000, and second them for MONTAGE 50 and 100.

• For CYBERSHAKE : In the case of the workloads CYBERSHAKE 100, 200 and 500,
REEWS, SCTTEWS, and SMWSH are similarly more energy-efficient than SMWSO. In
the case of the workload CYBERSHAKE 50, REEWS and SMWSH are similarly more
energy-efficient, followed by SCTTEWS, and finally SMWSO. Lastly, for the case of the
workload CYBERSHAKE 1000, REEWS is more energy-efficient, followed by SCTTEWS
and SMWSH, and finally SMWSO.

• For EPIGENOMICS : In the case of the workloads EPIGENOMICS 100, 200 and 500,
SMWSO, SCTTEWS, and SMWSH are similarly more energy-efficient than REEWS.
In the case of the workload EPIGENOMICS 50, SMWSO and SCTTEWS are similarly
more energy-efficient, followed by SMWSH, and lastly REEWS. finally, for the case of the
workload EPIGENOMICS 1000, SMWSO is more energy-efficient, followed by REEWS,
then by SCTTEWS, and finally SMWSH.

• For SIPHT : In the case of the workloads SIPHT 100, 200, 500, and 1000, SMWSO,
SCTTEWS, and SMWSH are similarly more energy-efficient than REEWS. As for the
workload SIPHT 50, SMWSO is the more energy-efficient, followed by SCTTEWS and
SMWSH, and lastly REEWS.
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• For LIGO: In the case of the workloads LIGO 50, 100 and 200, SMWSO, SCTTEWS,
and SMWSH are similarly more energy-efficient than REEWS. In the case of the work-
load LIGO 500, SCTTEWS and SMWSH are similarly more energy-efficient, followed by
SMWSO, and lastly REEWS. finally, for the case of the workload LIGO 1000, SMWSO
is more energy-efficient, followed by SMWSH, then by SCTTEWS, and finally REEWS.

Table 4.9: Energy efficiency ranking between the four static algorithms REEWS, SCTTEWS, SMWSO
and SMWSH.

Workflow REEWS SCTTEWS SMWSO SMWSH
MONTAGE 50 4 1 3 1
MONTAGE 100 4 1 3 1
MONTAGE 200 4 1 1 1
MONTAGE 500 4 1 1 1
MONTAGE 1000 4 1 1 1
CYBERSHAKE 50 1 3 4 1
CYBERSHAKE 100 1 1 4 1
CYBERSHAKE 200 1 1 4 1
CYBERSHAKE 500 1 1 4 1
CYBERSHAKE 1000 1 2 4 2
EPIGENOMICS 50 4 1 1 3
EPIGENOMICS 100 4 1 1 1
EPIGENOMICS 200 4 1 1 1
EPIGENOMICS 500 4 1 1 1
EPIGENOMICS 1000 2 4 1 3
SIPHT 50 4 2 1 2
SIPHT 100 4 1 1 1
SIPHT 200 4 1 1 1
SIPHT 500 4 1 1 1
SIPHT 1000 4 1 1 1
LIGO 50 4 1 1 1
LIGO 100 4 1 1 1
LIGO 200 4 1 1 1
LIGO 500 4 1 3 1
LIGO 1000 4 2 1 2

The results prove the significant improvement of our proposal in terms of energy-saving,
mainly the SMWSO algorithm. We have advocated that:

• Homogeneity can produce better result if good instances are chosen for the execution of the
workflow. The performance the SMWSO algorithm compared to the one of the SMWSH
algorithm confirm our statement. In fact, the two algorithms are designed almost in the
same manner, apart from the variety of the types of resources used. While SMWSO uses
an unique instance dynamically determined (called optimal instance type) among the
available instance, SMWSH uses different instance determined as the scheduling process
goes on. From Table 4.9 we see that both algorithm are sometime more energy-efficient
that the other one, almost equitably. However, the different is not very significance when it
is SMWSH that is more energy-efficient as it is in the case of SMWSO. The Figure 4.18c
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(c) Total Energy consumption of SCTTEWS, SMWSO and SMWSH vs REEWS, for all the experiments.

Figure 4.18: Total Energy consumption of SCTTEWS, SMWSO and SMWSH vs REEWS.
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which presents the overall energy consumption of each of the algorithm demonstrates
it, as well as the values of the different ANOVA and post hoc Tukey-Kramer tests on
the energy efficiency (see the Tables 4.4, A.1, A.2, A.3, and A.4). Moreover, SMWSO
significantly outperforms the three other algorithms with a total energy-saving (for all
the experiments) of more than 50% (see Figure 4.18c).

• If a suitable number of VMs is determined, it can help not only to produce better results in
terms of success rate, but also upgrade the VM Utilization Maximization and the Energy
Consumption Minimization as well as the Workload Maximization. In our three multi-
objective algorithms, the optimal number of VMs technique is proposed as an answer to
that preoccupation and used to limit the number of VMs to use. The result show that
our three algorithms significantly outperform REEWS in terms of energy-saving in most
(80% of cases) of the types of workflow (apart one: Cybershake) and of the workload (see
Table 4.9, and Figures 4.18a and 4.18b).

Furthermore, SMWSO is more stable no matter the workload of the workflow (see Figure
4.18b).

After SMWSO, SMWSH and SCTTEWS are the more energy-efficient compared to REEWS.
From the ranking of Table 4.9 we see that SMWSH and SCTTEWS are equally more energy-
efficient each one than the other according to the type and the workload of the workflow.
However, SCTTEWS has a very poor energy-efficiency Epigenomics 1000 (see Figures 4.13a
and 4.18b). As Epigenomics is far more energy consumer then the four other types of workflow,
SMWSH scored a better energy-saving then SCTTEWS at overall (see Figure 4.18c).

Conclusion

In this chapter, we have proposed three multi-objective scheduling algorithms named Structure-
based Multi-objective Workflow Scheduling (SMWSO), Structure-based Multi-objective Work-
flow Scheduling with heterogeneous instance types (SMWSH), and Structure-based Cost-Time
trade-off and Energy-efficient Workflow Scheduling (SMWSH). The three algorithms aim at op-
timizing processing costs, makespan, and energy consumption, in the respect of the user-defined
budget and deadline.

These algorithms rely on new concepts, the optimal number of VMs along with the optimal
instance type helping to deal with the heterogeneous nature of cloud environments which is
an opportunity and at the same time a real issue in cloud environments. These techniques
aim at avoiding resource wastage by limiting the number of VMs to provision while giving
relatively good performances in terms of makespan, execution cost, and energy consumption
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minimization. The reduction of makespan contributes largely to the minimization of energy
consumption. However, the parallel pipelines merging and the employment of the DVFS on
non-critical paths have been used to further reduce the energy consumption.

While the SMWSO algorithm makes use of a unique VM instance type, which we called
optimal instance type, the two others use several instance types for the workflow execution.
However, the SCTTEWS algorithm employs the newly proposed technique, the Implicit Re-
quested Instance Types Range (IRITR) evaluation to determine a range of VMs instance types
that best suits the workflow execution. The IRITR evaluation helps to avoid overbidding as
well as underbidding that may lead to budget and deadline violations respectively.

Since the workflow execution time is unknown before the end, estimation must be done
in order to propose scheduling strategies. It is stated in the literature that there is no 100%
accurate execution time estimation. Therefore, it is worth to mention that our makespan
estimation still needs some investigation. However, it has been one major aspect of the optimal
instance type evaluation.

Comparative experimentations have been done through simulations against the state-of-the-
art algorithm REEWS, and the results presented and analysed based on ANOVA test along with
pairwise tests using Tukey-Kramer. The results of the experiments prove the out-performance
of our three proposals, SMWSO, SMWSH and SCTTEWS, in terms of energy-saving compared
to the REEWS algorithm in 80% of cases. When we look at details, SMWSO, SMWSH and
SCTTEWS scored almost equally the highest energy-saving for the different workflow and
workload.

The results also proved that at overall, SMWSO is more than 50% the more energy-saving
algorithm, followed by SMWSH, and then SCTTEWS. As for the success rate, even though
SMWSO scored at overall the highest success rate, statistical tests proved that their is no
significant difference between the four algorithms in terms of user satisfaction.

From all the above, we can say that the usage of the optimal number of VMs along with the
optimal instance type, the IRITR evaluation, the task duplication, and the pipelines merging
and slacking are relevant techniques for cost, makespan, and energy consumption reduction.

Resources homogeneity via the ”optimal instance type” technique helped producing better
results. Also suitable number of VMs determined by the ”optimal number of VMs” helped
producing better results. Those techniques have been designed using the structural properties
of workflow and user requirements. Therefore, our hypotheses have been clearly validated by
the outcome of our work.
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Conclusion

C loud computing has made the vision of IT resources as utility one step closer to reality.
As a result, cloud data centers are expected to grow and accumulate a greater fraction of the
world’s IT resources. RightScale [110] in their 2015 report stated that there is a significant
headroom for more enterprise workloads to move to the cloud. 68% of enterprises run less
than a fifth of their application portfolios in the cloud while 55% of them has built a significant
portion of their existing application portfolios with cloud-friendly architectures. Just recently
in 2020, Flexera [9] reported that public cloud adoption continues to accelerate, with nearly
half of enterprise workloads and data in public clouds. In this context, the energy efficient
management of data center resources is a crucial problem in terms of operating costs, return
of investment (ROI) and CO2 emissions. Inefficient and time-consuming processes remain one
issue to handle in order to maximize the ROI of both cloud providers and cloud users [25].

This thesis is focused on the problem of scheduling the execution of scientific workflows on
cloud data center resources. This problem is known to be NP-hard, specifically when we must
effectively respect the multiple and contradictories constraints of users and cloud providers.

The main objective of this thesis was to propose scheduling strategies for the execution
of scientific workflows in cloud computing data center in order to effectively reduce energy
consumption, execution costs, and execution time. The set constraints of the scheduling were
the respect of the user-defined budget and deadline. The expected effectiveness of the scheduling
strategies should be independent of the type of workflow.

To this end, we have proposed consecutively five workflow scheduling algorithms relying on
techniques based on the structural properties of workflows that we designed. The effective-
ness of our proposals was analysed through comparatives simulations against state-of-the-art
algorithms.

We firstly proposed a scheduling algorithm aiming at minimizing execution cost and exe-
cution time, with respect to the user-defined budget and deadline. The consideration was the
execution of a single workflow on the resources of a cloud data center with a static VMs pro-
visioning strategy. The algorithm, named Cost-Time Trade-off efficient Workflow Scheduling
(CTTWS), consists of four main steps. The four steps are: task selection, Implicit Requested
Instance Types Range (IRITR) evaluation, spare budget evaluation, and VM selection. The
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IRITR evaluation which is a novel scheduling concept, aims at determining a range of VMs
instance types that best suits the workflow execution, in order to avoid overbidding and un-
derbidding that may lead to budget and deadline violation respectively. The IRITR evaluation
relies on an analysis of the structure of the workflow and on the user-defined budget and dead-
line. Regarding the VM selection, we have used a fine grain trade-off function. Simulations
results proved the effectiveness of our approach compared to a state-of-art algorithm, especially
when there is a large variety of instance types. The results further highlight the importance of
the IRITR. However, static provisioning though important for simplicity and a quick investiga-
tion is not suitable for cloud environments. Furthermore, we have realized that the algorithm
has poor performance when it comes to a specific type of workflow.

Our second algorithm, the Cost-Time Trade-off efficient Workflow Scheduling with Dynamic
provisioning (CTTWSDP) has been proposed to improve the CTTWS algorithm. CTTWSDP
improves CTTWS in two main ways. Firstly, by proposing an improved Implicit Requested
Instance Types Range (IRITR) evaluation. And secondly by using a dynamic VMs provisioning
strategy with a limited number of leased VMs. The IRITR improvement as well as the limitation
of the VMs in the dynamic provisioning rely on the determination of a limited number of VMs
to use for the execution of the workflow. That number is the average of the number of tasks in
the different levels of the workflow going from the root tasks to the exit tasks. The results of
simulations prove the effectiveness of the proposal and highlight the improvement of CTTWSDP
over CTTWS. Moreover, our algorithm achieves an average success rate higher from 17.09%
to 44.80% when compared to three state-of-the-art algorithms. An analysis of the standard
deviation of the success rate gives a standard deviation of 2.42 for CTTWSDP, which is smaller
than the ones obtained by the other algorithms from 13.35 to 35.69. ANOVA along with post
hoc Tukey-Kramer tests have proved that CTTWSDP is significantly more effective in terms
of success rate (satisfaction of both user-defined budget and deadline).

Finally, we proposed three algorithms aiming at optimizing processing costs, makespan, and
energy consumption, under user-defined budget and deadline constraints. The three algorithms
are named: Structure-based Cost-Time trade-off and Energy efficient Workflow Scheduling
(SCTTEWS), Structure-based Multi-objective Workflow Scheduling with an Optimal instance
type (SMWSO), and Structure-based Multi-objective Workflow Scheduling with Heterogeneous
instance types (SMWSH). The three algorithms rely on some structure-based techniques that
we designed. Among these techniques we have the determination of an optimal number of VMs
along with an optimal type of VM. Because of the precedence constraint between the tasks, it
is not possible to have more tasks simultaneously in execution than the maximum number of
tasks in a level. The optimal number of VMs is determined as a conditional function of the
average, maximum, and the standard deviation of the number of tasks in the different levels of
the workflow. That number is bounded by the average and the maximum number of tasks in the
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levels. For the optimal type of VM, we determined the fastest instance type which can respect
both the deadline and the budget of the user, according to a proposed makespan estimation.
Other techniques are entry task duplication which helps in the reduction of the execution cost
and time, and the parallel pipelines grouping and merging which uses the DVFS technique to
reduce the energy consumption.

The SCTTEWS extends the CTTWSDP algorithm by handling the minimization of energy
consumption in addition to the minimization of the execution cost and time. SCTTEWS
improves the IRITR evaluation by using the optimal number of VMs instead of the average
number of tasks in the levels like CTTWSDP. SCTTEWS also improve the trade-off function
by adding weights to the two trade-off factors of the function. The weights are dynamically
determined based on the structure of the workflow. In addition, SCTTEWS uses the entry task
duplication and the parallel pipelines grouping and merging.

SMWSO makes use of one unique instance type for all the VMs created. It uses the deter-
mination of the optimal number of VMs and the determination of the optimal instance type.
For the prioritization of the tasks, it uses a modified version of the up rank proposed by HEFT
[82]. In addition, SMWSO uses the entry task duplication and the parallel pipelines grouping
and merging.

SMWSH as for it behave almost like SMWSO, apart in the determination of the selection
of the VM to uses for the execution of each task. Instead of using a homogeneous type for the
VMs, makes use of different types of VMs. It employ a deadline distribution technique to share
to user-define deadline among the tasks of the workflow. And for each task, according to its
priority, determines the VM among the already created VMs, or the type of VMs which can
end faster and in the respect of the sub-deadline of the task.

Comparative simulations have been made against the state-of-the-art algorithm Reliabil-
ity and Energy Efficient Workflow scheduling (REEWS) using the five most spread workflow
with five different workload for each. REEWS aim at minimizing energy consumption and
maximizing the reliability of the system in the respect of the user-specified deadline.

Statistical tests using ANOVA along with Tukey-Kramer proved the significant out-performance
of our three proposals in terms of energy-saving compared to REEWS, for 80% of work-
flow/workload scenarios. SMWSO, SMWSH and SCTTEWS scored almost equally the highest
energy-saving for the different workflow and workload. However, SMWSO is at overall the
more energy-saving algorithm with a total energy consumption that is more than 50% less than
the one of the other, followed by SMWSH, and then SCTTEWS. In terms of user satisfaction
(success rate), SMWSO scored at overall the highest performance, followed by REEWS. The
SCTTEWS algorithm as for it realized good performance compared to SMWSH. Moreover, our
three energy-efficient algorithms proved to be more effective than our bi-objective algorithm
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CTTWSDP. However, statistical tests proved that there is no significant difference between the
four algorithms SMWSO, SMWSH, SCTTEWS and REEWS in terms of success rate.

We have advocated that homogeneity can produce better result if good instances are chosen
for the execution of the workflow. The performance the these algorithm confirm our statement.
Also we had further advocated that if a suitable number of VMs is determined, it can help
not only to produce better results, but also upgrade the VM Utilization Maximization and the
Energy Consumption Minimization as well as the Workload Maximization. All these hypotheses
have been clearly validated by the outcome of our work.

Perspectives for future works

Despite the substantial contributions of this thesis on minimizing energy consumption in the
cloud as well as that of the executing cost and time of workflows, there are a number of open
research challenges that must be addressed in order to improve the quality of our works.

Therefore in our future works, we will focus on the following:

• Scheduling of multiple concurrent workflows: In cloud environment, the workload is ex-
pected to arrive continuously, and workflows must be handled as soon as they arrive due
to the QoS constraints defined by the users [68]. This implies dealing with the arrival
of multiple workflows at real-time. Furthermore, the deadline constraint requirements
and the dependencies between workflow tasks mean that unused time slots cannot be
fully eliminated [41]. Some studies show that the execution of a single workflow on a set
of processors leads to a wastage of resources because of the degree of parallelism [111].
As the provider might charge for all processors during the execution time, it is evidence
that resources are being wasted because of the multiplicity of idle time slots when con-
sidering a single workflow [111]. The problem of scheduling multiple workflows in cloud
environments is relatively recent [111, 111], and there is a need for more investigations.

• Addressing the uncertainty nature of cloud environments using Machine Learning: cloud
environments are very dynamics due to performance variability. The virtualization, back-
bone of clouds is the primary source of the performance variability [34, 112]. Another
source is the variation of the workload arriving towards cloud data centers. It is therefore
very important to consider the uncertainty nature of cloud environments to have more
realistic and mature solutions. For instance, the provisioning of a VM is subject to a cre-
ation delay. Mao and Humphrey studied VM startup time in 2012 by considering three
cloud providers (Amazon EC2, Windows Azure, and Rackspace) [103] and reported that
the average provisioning delay of a VM was 97. In 2016, Jones et al. [113] presented a
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study that shows that three different cloud management frameworks (OpenStack, Open-
Nebula, and Eucalyptus) produced VM provisioning delays between 12 to 120 seconds.
Network resources are also subjected to performance variation, with studies reporting a
data transfer time variation of 19% in Amazon EC2 [114].

• Using hybrid heuristic/Meta-heuristic approaches adapted dynamic and uncertainty nature
of cloud: Even though meta-heuristics approaches are more suitable for dealing with NP-
hard problem, heuristics are preferable in cloud environment because of the dynamicity
and uncertainty nature of cloud environments. However, it has been advocated to use
hybrid solutions to take advantage of the strengths of both meta-heuristics and heuristics
[3]. It has also been advised [31, 81] to work on the optimization of search time known
to be long in meta-heuristic approaches, and design scalable approaches in order to deal
with the challenges specific to cloud environments. We intend therefore to investigate on
the design of hybrid solution to enhance the quality of our algorithms.

• Reliability and Fault-tolerant management: during workflow execution it is necessary to
insure reliability and fault-tolerant. The uncertain nature of the cloud as well as material
deficiency or computation imprecision may lead to failure. Therefore, it is essential to
pay attention to reliability and fault-tolerant while managing cloud resources.

• Internet of Things (IoT) / Edge computing Workflows: One of the top cloud-edge com-
puting opportunities is edge analytics, which allows data analysis and decision making
closer to where the data is generated such as IoT devices, edge and gateways while the
cloud is still responsible for the overall service life cycle management, service scheduling,
data storage or warehousing, and more comprehensive service or data analysis such as big
data analytics. The key benefits of edge analytics are reduced latency and increased se-
curity of the analytics, and hence, quick business decision making and so on [115]. While
they are a good opportunity for business and scientific advancement, IoT/Cloud-edge
computing obviously brings many technical challenges to cloud providers, especially in
support of heterogeneous computing, network instability and security on the edge.

• Adaptation of our algorithms for usage in production environments: we have validated
the performance of our algorithms through simulation, which is known as an acceptable
approach. However, we plan to integrate and execute our proposed algorithms in existing
workflow management systems such as the Cloudbus Toolkit [116], and cloud solutions
like OpenStack3.

3OpenStack is a cloud operating system that controls large pools of compute, storage, and networking
resources throughout a data center, all managed and provisioned through APIs. https://www.openstack.org/
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CHAPTER

A
Appendix A

A.1 Analysis of the optimal number of VMs over execu-
tion cost, execution time, and energy consumption,
when executing a workflow

(a) Cost per number of VMs leased

(b) Makespan per number of VMs leased

(c) Energy per number of VMs leased

Figure A.1: Cost, Makespan and Energy per number of VMs leased for CyberShake 1000.

A.2 ANOVA test along with Tukey-Kramer pairwise tests
comparing the Energy Consumption of SCTTEWS,
SMWSO and SMWSH vs REEWS for CYBERSHAKE,
EPIGENOMICS, SIPHT, and LIGO
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A. Appendix A

(a) Cost per number of VMs leased

(b) Makespan per number of VMs leased

(c) Energy per number of VMs leased

Figure A.2: Cost, Makespan and Energy per number of VMs leased for Epigenomics 1000.

(a) Cost per number of VMs leased

(b) Makespan per number of VMs leased

(c) Energy per number of VMs leased

Figure A.3: Cost, Makespan and Energy per number of VMs leased for Sipht 1000.
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A.2. ANOVA test along with Tukey-Kramer pairwise tests comparing the
Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for
CYBERSHAKE, EPIGENOMICS, SIPHT, and LIGO

(a) Cost per number of VMs leased

(b) Makespan per number of VMs leased

(c) Energy per number of VMs leased

Figure A.4: Cost, Makespan and Energy per number of VMs leased for Inspiral 1000.
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Table A.1: ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs
REEWS for CYBERSHAKE 50, 100, 200, 500 and 10000

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 317.05 19.81 11.69 Between Groups 695.81 3 231.94 20.04 4.05E-09 2.76 SMWSO vs SCTTEWS 3.43 3.43 3.18 YES
SCTTEWS 16 262.11 16.38 33.88 Within Groups 694.27 60 11.57 SMWSO vs SMWSH 7.20 7.20 3.18 YES
SMWSH 16 201.76 12.61 1.35E-29 Total 1390.08 63 SMWSO vs REEWS 8.38 8.38 3.18 YES
REEWS 16 183 11.44 0.71 SCTTEWS vs SMWSH 3.77 3.77 3.18 YES

SCTTEWS vs REEWS 4.94 4.94 3.18 YES
SMWSH vs REEWS 1.17 1.17 3.18 NO

Algorithm Ranking in terms of Energy saving : SMWSO � 4 | SCTTEWS � 3 | SMWSH � 1 | REEWS � 1
(a) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for CYBERSHAKE 50

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 824.99 51.56 80.97 Between Groups 6902.88 3 2300.96 108.37 3.44E-24 2.76 SMWSO vs SCTTEWS 23.27 23.27 4.30 YES
SCTTEWS 16 452.59 28.29 2.29E-05 Within Groups 1273.88 60 21.23 SMWSO vs SMWSH 23.27 23.27 4.30 YES
SMWSH 16 452.59 28.29 2.29E-05 Total 8176.76 63 SMWSO vs REEWS 25.20 25.20 4.30 YES
REEWS 16 421.84 26.36 3.95 SCTTEWS vs SMWSH 0 0 4.30 NO

SCTTEWS vs REEWS 1.92 1.92 4.30 NO
SMWSH vs REEWS 1.92 1.92 4.30 NO

Algorithm Ranking in terms of Energy saving : SMWSO � 4 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 1
(b) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for CYBERSHAKE 100

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 1228.98 76.81125 544.51 Between Groups 7856.26 3 2618.75 17.81 2.20E-08 2.76 SMWSO vs SCTTEWS 24.39 24.39 11.33 YES
SCTTEWS 16 838.65 52.415625 0.04 Within Groups 8821.89 60 147.03 SMWSO vs SMWSH 24.31 24.31 11.33 YES
SMWSH 16 840.08 52.505 9.63E-3 Total 16678.15 63 SMWSO vs REEWS 27.53 27.53 11.33 YES
REEWS 16 788.5 49.28125 43.56 SCTTEWS vs SMWSH -0.09 0.09 11.33 NO

SCTTEWS vs REEWS 3.13 3.13 11.33 NO
SMWSH vs REEWS 3.22 3.22 11.33 NO

Algorithm Ranking in terms of Energy saving : SMWSO � 4 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 1
(c) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for CYBERSHAKE 200

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 4358.45 272.40 6975.37 Between Groups 178764.77 3 59588.26 31.80 1.97E-12 2.76 SMWSO vs SCTTEWS 113.35 113.35 40.44 YES
SCTTEWS 16 2544.83 159.05 68.87 Within Groups 112411.28 60 1873.52 SMWSO vs SMWSH 108.30 108.30 40.44 YES
SMWSH 16 2625.71 164.11 11.06 Total 291176.04 63 SMWSO vs REEWS 136.83 136.83 40.44 YES
REEWS 16 2169.12 135.57 438.78 SCTTEWS vs SMWSH -5.05 5.05 40.44 NO

SCTTEWS vs REEWS 23.48 23.48 40.44 NO
SMWSH vs REEWS 28.56 28.56 40.44 NO

Algorithm Ranking in terms of Energy saving : SMWSO � 4 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 1
(d) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for CYBERSHAKE 500

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 9447.19 590.45 32801.12 Between Groups 732070.59 3 244023.53 27.79 2.16E-11 2.76 SMWSO vs SCTTEWS 177.94 177.94 87.55 YES
SCTTEWS 16 6600.18 412.51 239.27 Within Groups 526887.62 60 8781.46 SMWSO vs SMWSH 146.85 146.85 87.55 YES
SMWSH 16 7097.64 443.60 151.72 Total 1258958.21 63 SMWSO vs REEWS 300.41 300.41 87.55 YES
REEWS 16 4640.66 290.04 1933.73 SCTTEWS vs SMWSH -31.09 31.09 87.55 NO

SCTTEWS vs REEWS 122.47 122.47 87.55 YES
SMWSH vs REEWS 153.56 153.56 87.55 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 4 | SCTTEWS � 2 | SMWSH � 2 | REEWS � 1
(e) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for CYBERSHAKE 1000
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Table A.2: ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs
REEWS for EPIGENOMICS 50, 100, 200, 500 and 10000

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 7737.44 483.59 1.38E-26 Between Groups 4248249.48 3 1416083.16 67.82 2.92E-19 2.76 SMWSO vs SCTTEWS -242.65 242.65 135 YES
SCTTEWS 16 11619.79 726.24 44156.36 Within Groups 1252813.72 60 20880.23 SMWSO vs SMWSH 109.65 109.65 135 NO
SMWSH 16 5983.04 373.94 1.38E-26 Total 5501063.204 63 SMWSO vs REEWS -561.39 561.39 135 YES
REEWS 16 16719.67 1044.98 39364.55 SCTTEWS vs SMWSH 352.30 352.30 135 YES

SCTTEWS vs REEWS -318.74 318.74 135 YES
SMWSH vs REEWS -671.04 671.04 135 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 4 | SMWSH � 3 | REEWS � 4
(a) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for EPIGENOMICS 50

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 31319.04 1957.44 2.20E-25 Between Groups 78328911.37 3 26109637.12 82.01 3.33E-21 2.76 SMWSO vs SCTTEWS 23.27 23.27 527.16 NO
SCTTEWS 16 31521.44 1970.09 0 Within Groups 19102676.96 60 318377.95 SMWSO vs SMWSH 23.27 23.27 527.16 NO
SMWSH 16 31521.44 1970.09 0 Total 97431588.33 63 SMWSO vs REEWS -2563.28 2563.28 527.16 YES
REEWS 16 72331.6 4520.725 1273511.80 SCTTEWS vs SMWSH 0 0 527.16 NO

SCTTEWS vs REEWS -2550.63 2550.63 527.16 YES
SMWSH vs REEWS -2550.63 2550.63 527.16 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(b) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for EPIGENOMICS 100

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 78973.92 4935.87 0 Between Groups 311951119.1 3 103983706.4 105.86 6.23E-24 2.76 SMWSO vs SCTTEWS 300.04 300.04 925.95 NO
SCTTEWS 16 74173.28 4635.83 8.82E-25 Within Groups 58935874.28 60 982264.57 SMWSO vs SMWSH 300.04 300.04 925.95 NO
SMWSH 16 74173.28 4635.83 8.82E-25 Total 370886993.4 63 SMWSO vs REEWS 27.53 27.53 925.95 YES
REEWS 16 157225.76 9826.61 3929058.29 SCTTEWS vs SMWSH 0 0 925.95 NO

SCTTEWS vs REEWS -5190.78 5190.78 925.95 YES
SMWSH vs REEWS -5190.78 5190.78 925.95 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(c) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for EPIGENOMICS 200

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 293251.68 18328.23 1.41E-23 Between Groups 32530842419 3 10843614140 55.483 2.67E-17 2.76 SMWSO vs SCTTEWS 7694.36 7694.36 13061 NO
SCTTEWS 16 170141.92 10633.87 3.53E-24 Within Groups 11726125336 60 195435422.3 SMWSO vs SMWSH 7050.08 7050.08 13061 NO
SMWSH 16 180450.4 11278.15 1.41E-23 Total 44256967756 63 SMWSO vs REEWS -46682.82 46682.82 13061 YES
REEWS 16 1040176.84 65011.05 781741689.1 SCTTEWS vs SMWSH -644.28 644.28 13061 NO

SCTTEWS vs REEWS -54377.18 54377.18 13061 YES
SMWSH vs REEWS -53732.90 53732.90 13061 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(d) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for EPIGENOMICS 500

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 726268 45391.75 0 Between Groups 1.39E+11 3 46513617351 335.50 1.95E-37 2.76 SMWSO vs SCTTEWS -123526.73 123526.73 11000.71 YES
SCTTEWS 16 2702695.68 168918.48 0 Within Groups 8318470011 60 138641166.8 SMWSO vs SMWSH -91384.95 91384.95 11000.71 YES
SMWSH 16 2188427.2 136776.7 9.03E-22 Total 1.48E+11 63 SMWSO vs REEWS -45639.33 45639.33 11000.71 YES
REEWS 16 1456497.32 91031.08 554564667.4 SCTTEWS vs SMWSH 32141.78 32141.78 11000.71 YES

SCTTEWS vs REEWS 77887.40 77887.40 11000.71 YES
SMWSH vs REEWS 45745.61 45745.61 11000.71 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 4 | SMWSH � 3 | REEWS � 2
(e) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for EPIGENOMICS 1000
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Table A.3: ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs
REEWS for SIPHT 50, 100, 200, 500 and 10000

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 1694.08 105.88 0.17 Between Groups 351861.89 3 117287.30 308.23 2.13E-36 2.76 SMWSO vs SCTTEWS -22.71 22.71 18.22 YES
SCTTEWS 16 2057.4 128.59 55.42 Within Groups 22831.32 60 380.52 SMWSO vs SMWSH -25.89 25.89 18.22 YES
SMWSH 16 2108.41 131.77 2.62E-05 Total 374693.12 63 SMWSO vs REEWS -185.88 185.88 18.22 YES
REEWS 16 4668.12 291.76 1466.49 SCTTEWS vs SMWSH -3.19 3.19 18.22 NO

SCTTEWS vs REEWS -163.17 163.17 18.22 YES
SMWSH vs REEWS -159.98 159.98 18.22 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 2 | SMWSH � 2 | REEWS � 4
(a) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for SIPHT 50

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 4367.86 272.99 1194.02 Between Groups 2089679.05 3 696559.68 76.14 1.95E-20 2.76 SMWSO vs SCTTEWS -22.15 22.15 89.36 NO
SCTTEWS 16 4722.25 295.14 1.12 Within Groups 548871.87 60 9147.86 SMWSO vs SMWSH -27.26 27.26 89.36 NO
SMWSH 16 4804 300.25 0 Total 2638550.92 63 SMWSO vs REEWS -433.10 433.10 89.36 YES
REEWS 16 11297.44 706.09 35396.31 SCTTEWS vs SMWSH -5.11 5.11 89.36 NO

SCTTEWS vs REEWS -410.95 410.95 89.36 YES
SMWSH vs REEWS -405.84 405.84 89.36 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(b) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for SIPHT 100

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 6817.35 426.08 1145.59 Between Groups 10902391.98 3 3634130.66 109.81 2.47E-24 2.76 SMWSO vs SCTTEWS -54.30 54.30 169.96 NO
SCTTEWS 16 7686.21 480.39 1.38 Within Groups 1985611.60 60 33093.53 SMWSO vs SMWSH -62.01 62.01 169.96 NO
SMWSH 16 7809.51 488.09 2.62E-05 Total 12888003.58 63 SMWSO vs REEWS -990.34 990.34 169.96 YES
REEWS 16 22662.82 1416.423 131227.13 SCTTEWS vs SMWSH -7.71 7.71 169.96 NO

SCTTEWS vs REEWS -936.04 936.04 169.96 YES
SMWSH vs REEWS -928.33 928.33 169.96 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(c) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for SIPHT 200

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 22340.5 1396.28 1068.52 Between Groups 112113902.3 3 37371300.77 122.33 1.57E-25 2.76 SMWSO vs SCTTEWS -47.50 47.50 516.39 NO
SCTTEWS 16 23100.45 1443.78 26.91 Within Groups 18329898.94 60 305498.31 SMWSO vs SMWSH -54.54 54.54 516.39 NO
SMWSH 16 23213.23 1450.83 1.81 Total 130443801.2 63 SMWSO vs REEWS -3090.23 3090.23 516.39 YES
REEWS 16 71784.24 4486.51 1220896.02 SCTTEWS vs SMWSH -7.05 7.05 516.39 NO

SCTTEWS vs REEWS -3042.74 3042.74 516.39 YES
SMWSH vs REEWS -3035.69 3035.69 516.39 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(d) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for SIPHT 500

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 46201.01 2887.56 5375.25 Between Groups 831086879.3 3 277028959.8 43.11 5.54E-15 2.76 SMWSO vs SCTTEWS 14.60 14.60 2368.22 NO
SCTTEWS 16 45967.34 2872.96 94.77 Within Groups 385518117 60 6425301.95 SMWSO vs SMWSH 12.02 12.02 2368.22 NO
SMWSH 16 46008.65 2875.54 27.57 Total 1216604996 63 SMWSO vs REEWS -8313.21 8313.21 2368.22 YES
REEWS 16 179212.34 11200.77 25695710.21 SCTTEWS vs SMWSH -2.58 2.58 2368.22 NO

SCTTEWS vs REEWS -8327.81 8327.81 2368.22 YES
SMWSH vs REEWS -8325.23 8325.23 2368.22 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(e) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for SIPHT 1000
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Table A.4: ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs
REEWS for LIGO 50, 100, 200, 500 and 10000

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 719.68 44.98 2.15E-28 Between Groups 169219.22 3 56406.41 84.30 1.72E-21 2.76 SMWSO vs SCTTEWS -0.21 0.21 24.17 NO
SCTTEWS 16 723.04 45.19 2.15E-28 Within Groups 40148.58 60 669.14 SMWSO vs SMWSH -0.21 0.21 24.17 NO
SMWSH 16 723.04 45.19 2.15E-28 Total 209367.80 63 SMWSO vs REEWS -118.89 118.89 24.17 YES
REEWS 16 2621.92 163.87 2676.57 SCTTEWS vs SMWSH 0 0 24.17 NO

SCTTEWS vs REEWS -118.68 118.68 24.17 YES
SMWSH vs REEWS -118.68 118.68 24.17 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(a) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for LIGO 50

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 2029.12 126.82 1.9387E-27 Between Groups 1085935.98 3 361978.66 77.47 1.29E-20 2.76 SMWSO vs SCTTEWS -35.26 35.26 63.86 NO
SCTTEWS 16 2593.28 162.08 8.61646E-28 Within Groups 280334.00 60 4672.23 SMWSO vs SMWSH -35.26 35.26 63.86 NO
SMWSH 16 2593.28 162.08 8.61646E-28 Total 1366269.99 63 SMWSO vs REEWS -322.49 322.49 63.86 YES
REEWS 16 7188.92 449.31 18688.93 SCTTEWS vs SMWSH 0 0 63.86 NO

SCTTEWS vs REEWS -287.23 287.23 63.86 YES
SMWSH vs REEWS -287.23 287.23 63.86 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(b) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for LIGO 100

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 4736.64 296.04 0 Between Groups 5901070.49 3 1967023.50 70.33 1.26E-19 2.76 SMWSO vs SCTTEWS -80.25 80.25 156.25 NO
SCTTEWS 16 6020.64 376.29 0 Within Groups 1678196.63 60 27969.94 SMWSO vs SMWSH -68.91 68.91 156.25 NO
SMWSH 16 5839.2 364.95 1.38E-26 Total 7579267.123 63 SMWSO vs REEWS -747.38 747.38 156.25 YES
REEWS 16 16694.68 1043.4175 111879.77 SCTTEWS vs SMWSH 11.34 11.34 156.25 NO

SCTTEWS vs REEWS -667.13 667.13 156.25 YES
SMWSH vs REEWS -678.47 678.47 156.25 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(c) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for LIGO 200

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 29398.4 1837.4 2.20E-25 Between Groups 61729354.04 3 20576451.35 45.53 1.81E-15 2.76 SMWSO vs SCTTEWS 663.6 663.6 628.05 YES
SCTTEWS 16 18780.8 1173.8 5.51E-26 Within Groups 27114203.59 60 451903.39 SMWSO vs SMWSH 856.53 856.53 628.05 YES
SMWSH 16 15693.92 980.87 1.24E-25 Total 88843557.63 63 SMWSO vs REEWS -1639.4 1639.4 628.05 YES
REEWS 16 55628.8 3476.8 1807613.57 SCTTEWS vs SMWSH 192.93 192.93 628.05 NO

SCTTEWS vs REEWS -2303 2303 628.05 YES
SMWSH vs REEWS -2495.93 2495.93 628.05 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 3 | SCTTEWS � 1 | SMWSH � 1 | REEWS � 4
(d) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for LIGO 500

ANOVA input summary ANOVA test result Tukey-Kramer pairwise between the four algorithms
Group Count Sum Average Variance Source of Variation SS df MS F stat P-value F crit Comparison Diff Abs. Diff Q crit Is Sig?
SMWSO 16 20234.08 1264.63 2.20E-25 Between Groups 130108073.4 3 43369357.79 112.89 1.23E-24 2.76 SMWSO vs SCTTEWS -1204.96 1204.96 579.09 YES
SCTTEWS 16 39513.44 2469.59 0 Within Groups 23051034.81 60 384183.91 SMWSO vs SMWSH -1204.96 1204.96 579.09 YES
SMWSH 16 39513.44 2469.59 0 Total 153159108.2 63 SMWSO vs REEWS -3893.89 3893.89 579.09 YES
REEWS 16 82536.4 5158.52 1536735.65 SCTTEWS vs SMWSH 0 0 579.09 NO

SCTTEWS vs REEWS -2688.93 2688.93 579.09 YES
SMWSH vs REEWS -2688.93 2688.93 579.09 YES

Algorithm Ranking in terms of Energy saving : SMWSO � 1 | SCTTEWS � 2 | SMWSH � 2 | REEWS � 4
(e) ANOVA test along with Tukey-Kramer pairwise tests comparing the Energy Consumption of SCTTEWS, SMWSO and SMWSH vs REEWS for LIGO 1000
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B.1 Scientific Publications

In this section, scientific publications of NDAMLABIN MBOULA Jean Etienne are provided.

B.1.1 Scientific publications related to this thesis

The following publications are directly related to the content of this thesis:

[1]- J. E. Ndamlabin Mboula, V. C. Kamla, and C. Tayou Djamegni: Cost-time trade-off
efficient workflow scheduling in cloud. Simulation Modelling Practice and Theory 103 (2020):
102107. Elsevier.

[2]- J. E. Ndamlabin Mboula, V. C. Kamla, and C. Tayou Djamegni: Dynamic provision-
ing with structure inspired selection and limitation of VMs based cost-time efficient workflow
scheduling in the cloud. Cluster Computing 24 (2021): 2697-2721, Springer.

B.1.2 Other publications

The following publication is not directly related to the content of this thesis:

[3]- V. C. Kamla, J. E. Ndamlabin Mboula, J. S. Wouansi, and C. Tayou Djamegni: Grid’s
Acquaintance-Based Multiagent Model of Distributed Meta-Scheduling. In Signal-Image Tech-
nology & Internet-Based Systems (SITIS), 2016 12th International Conference on (pp. 295-301).
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