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ABSTRACT

Telling cow from sheep is effortless for most animals, but requires much engineering for

computers. In this thesis, we seek to tease out basic principles that underlie many recent

advances in image recognition. First, we recast many methods into a common unsu-

pervised feature extraction framework based on an alternation of coding steps, which

encode the input by comparing it with a collection of reference patterns, and pooling

steps, which compute an aggregation statistic summarizing the codes within some re-

gion of interest of the image. Within that framework, we conduct extensive comparative

evaluations of many coding or pooling operators proposed in the literature. Our results

demonstrate a robust superiority of sparse coding (which decomposes an input as a linear

combination of a few visual words) and max pooling (which summarizes a set of inputs

by their maximum value). We also propose macrofeatures, which import into the popu-

lar spatial pyramid framework the joint encoding of nearby features commonly practiced

in neural networks, and obtain significantly improved image recognition performance.

Next, we analyze the statistical properties of max pooling that underlie its better perfor-

mance, through a simple theoretical model of feature activation. We then present results

of experiments that confirm many predictions of the model. Beyond the pooling oper-

ator itself, an important parameter is the set of pools over which the summary statistic

is computed. We propose locality in feature configuration space as a natural criterion

for devising better pools. Finally, we propose ways to make coding faster and more

powerful through fast convolutional feedforward architectures, and examine how to in-
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corporate supervision into feature extraction schemes. Overall, our experiments offer

insights into what makes current systems work so well, and state-of-the-art results on

several image recognition benchmarks.
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INTRODUCTION

What’s in a face? Judging by kids’ drawings, two dots for the eyes and one line for the

mouth, sometimes one more dot for the nose. In fact, one of the most popular systems

for face detection, that of Viola and Jones (Viola and Jones, 2004), uses Haar filters,

which are very simple patterns of black and white rectangles. Face detection now works

very well and in real time. Unfortunately, not everything is as simple. What’s in a rose?

Or a cat? Or any of the thousands of categories for which we have a generic name?

People and animals are very good at recognizing scenes and objects, but we see without

really knowing what it is that we see, and admire artists who do and can capture the

essence of a scene with a few well-chosen strokes.

0.1 Building an artificial vision system

Images are a collection of activations tied to a location, e.g., luminance value at different

pixels for a digital image, or retina activations in biological vision. These representa-

tions do not lend themselves well to semantic interpretation. Instead, the pixel activa-

tions have to be recombined into features which are more amenable to further analysis.

The craftsmanship involved in extracting these features has often progressed by trial

and error, and involves a lot of hand-coding. The engineering strategy is to rely on

domain knowledge and intuition, however imperfect. This is successful to some extent;

but the vast number of tasks to solve each requires their own specific solution, so this

approach may not scale up (Bengio and LeCun, 2007). Another strategy is then to
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turn to machine learning and devise suitable training criteria and optimization methods

to learn parameters automatically. Machine learning algorithms still require a lot of

engineering craft though: in particular, the architecture itself, which defines the set

of candidate functions, has to be chosen. Practitioners may resort to imitation of a

working model; e.g., animals have solved vision. Biologically-inspired models such as

the HMAX model (Serre et al., 2005) or more recent V1-like models (Pinto et al., 2008)

take this avenue. But knowing what the brain does is a hard task (Olshausen and Field,

2005), so is distinguishing the crucial from the anecdotal. Besides, airplanes were not

invented by copying birds.

These approaches are all valid, and often end up converging to similar solutions,

albeit with different motivations. For example, a sparse representation, i.e., a represen-

tation that uses only a few of many available basis functions, can be sought because it is

has statistical independence properties (Olshausen and Field, 1997), allows good signal

compression (Donoho, 2006), or yields more interpretable statistical models (Tibshirani

et al., 1997). An `1,2 group-sparsity penalty can be arrived at in an attempt to obtain

topographical feature maps (Hyvärinen and Hoyer, 2001) or for statistical model selec-

tion (Yuan and Lin, 2006).

0.2 Goals

This thesis attempts to unify several successful image recognition systems by looking

at the operations that they effectively implement, for whatever motivation. Our goal is

threefold:
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• Find common patterns in successful systems, and test how robust they are to new

combinations,

• Get a theoretical understanding of why some strategies work, beyond mere em-

pirical evidence,

• Leverage the gained insight to devise new models and provide useful guidelines

for future architectures.

A guiding thread is the success of sparse coding in vision. Sparse coding has ob-

tained very good results in many image applications such as image restoration (Mairal

et al., 2009b), denoising (Elad and Aharon, 2006), recognition (Boureau et al., 2010a;

Yang et al., 2009b), but it is still unclear what makes it work so well. Sparse coding in

image recognition architectures is often used in conjunction with a pooling operation,

that summarizes feature activation over an image region. A hypothesis to explain the

good performance of sparse coding is that it protects information from destruction by

the pooling step. Some characteristics of sparse coding may serve as starting point:

• Inputs are reconstructed as a linear combination of basis functions instead of just

a copy of one basis function;

• Most basis functions are rarely active across inputs;

• Basis functions tend to be active for inputs that are similar to one another.

The first trait differentiates sparse coding from hard or soft vector quantization, which

reconstructs an input as a single basis function. The second trait means that a pooling

operation that preserves more information for rare features will work well with sparse
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coding — and hard vector quantization as well. The third trait has as a consequence that

any operation that combines nonzero values of single basis functions will have similar

effects as if it had been applied conditioned on the inputs being similar. Thus, sparse

coding induces an implicit context dependency. The second and third traits are shared

with hard vector quantization.

In this thesis, we suggest in Chapter 3 that the first trait makes sparse coding gener-

ally more suited to representing images than vector quantization. We propose in Chap-

ter 4 that the second trait may explain the excellent performance of max pooling with

sparse coding and hard vector quantization, as observed in Chapter 3. The third trait mo-

tivates experiments in Chapter 5 which show improved performance when conditioning

pooling on context (i.e., activations of a basis function at two locations are pooled to-

gether only if the context given by the activation of all basis functions are similar at both

locations).

0.3 Contributions and organization of the thesis

The main contributions of this thesis can be summarized as follows:

• In Chapter 2, we recast much previous work into a common framework that uses

an alternation of coding and pooling modules, and propose in Chapter 3 an exten-

sive experimental evaluation of many combinations of modules within that frame-

work. In addition to known modules, we propose a new supervised coding module

in Chapter 7, and macrofeatures in Chapter 3 as a better way to combine one level

of feature extraction to the next.
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• One of the striking conclusions of that evaluation is that max pooling is robustly

superior to average pooling in combination with many modules. We propose ex-

planations for that superiority of max pooling in Chapter 4. We devise a simple

theoretical model of feature activations and test its predictions with new experi-

ments.

• We demonstrate in Chapter 5 that preserving locality in configuration space during

pooling is an important ingredient of the good performance of many new recent

algorithms.

• By combining these insights, we obtain state-of-the-art results on several image

recognition benchmark.

• In Chapter 6, we propose several ways to make our architecture faster without

losing too much performance. This is joint work with Marc’Aurelio Ranzato,

Koray Kavukcuoglu, Pierre Sermanet, Karol Gregor and Michaël Mathieu.

The thesis is organized as follows. Chapter 1 gives some background on feature ex-

traction. Chapter 2 proposes a common framework that unifies many feature extraction

schemes. Chapter 3 conducts extensive evaluations of multiple combinations of feature

extraction operators that have appeared in the literature and proposes macrofeatures,

that represent neighboring feature activations jointly. Chapter 4 proposes and tests the-

oretical justifications for the success of max pooling. Chapter 5 looks at the influence

of locality in configuration space when performing pooling. Chapter 6 examines ways

to makes sparse coding faster and convolutional. Chapter 7 introduces supervision into

architecture training. We then propose future work directions, and conclude. Most of
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the work presented in this thesis has been published in (Boureau et al., 2010a; Boureau

et al., 2010b; Boureau et al., 2011; Kavukcuoglu et al., 2010; Ranzato et al., 2007a;

Ranzato et al., 2007b; Ranzato et al., 2007c).
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1
RELATED WORK

This chapter proposes a brief overview of related work in image recognition.

1.1 Hand-crafted feature extraction models

The appearance of an image patch can be described in terms of the responses of a filter

bank, such as Gabor filters, wavelets, or steerable filters (Freeman et al., 1991; Simon-

celli et al., 1998). More recent descriptors combine filter responses to an aggregating

(or pooling) step. This makes them both discriminative and robust to common pertur-

bations of the input such as small translations. The scale-invariant feature transform

(SIFT) (Lowe, 2004) and Histograms of Gradients (HOG) (Dalal and Triggs, 2005)

descriptors use this strategy. In these methods, the dominant gradient orientations are

measured in a number of regions, and are pooled over a neighborhood, resulting in a

local histogram of orientations.

Bag-of-words methods have been successful in the field of text processing. In im-

age applications (Sivic and Zisserman, 2003), local image patches are usually assigned

an index in a codebook obtained without supervision, yielding representations that are

1) all-or-none, 2) extremely sparse, and 3) purely based on appearance. Bag-of-words

classification consists of 1) extracting local features located densely or sparsely at inter-

est points, 2) quantizing them as elements (codewords) from a dictionary (codebook),

3) accumulating codewords counts into normalized histograms, and 4) feeding the his-
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tograms to a classifier.

Despite its coarseness (all spatial information is discarded), this method has proven

surprisingly successful in visual object recognition tasks (Lazebnik et al., 2006). Re-

finements introduced at each step have resulted in state-of-the-art performance. This in-

cludes replacing generic features (e.g., Gabor functions, wavelets (Mallat, 1999), Lapla-

cian filters) by the more powerful handcrafted features described above (e.g., SIFT (Lowe,

1999), HOG (Dalal and Triggs, 2005)), retaining some amount of spatial information by

computing bags of words over cells of a coarse grid(Dalal and Triggs, 2005) or pyra-

mid (Lazebnik et al., 2006) instead of the whole image, and using sophisticated kernels

(e.g., histogram intersection, chi-squared, etc.) during classification (Lazebnik et al.,

2006; Zhang et al., 2007).

Successful kernels such as the pyramid match kernel (Grauman and Darrell, 2005)

and the histogram intersection kernel (Lazebnik et al., 2006) work by refining the mea-

sure of how well a region matches another one. However they still rely on the rather

crude match of vector quantization to assign an index to each word.

The spatial pyramid (Lazebnik et al., 2006) has emerged as a popular framework to

encapsulate more and more sophisticated feature extraction techniques (Boureau et al.,

2010a; Gao et al., 2010; Wang et al., 2010; Yang et al., 2009b; Yang et al., 2010; Zhou

et al., 2010). Many of the experiments described in this thesis are conducted within that

framework.
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1.2 Sparse coding

A code is sparse if most of its components are zero. Sparse modeling reconstructs an in-

put as a linear combination of few basis functions. The coefficients used for reconstruc-

tion constitute the sparse code. While sparse coding has been around for a long time,

it has become extremely popular in vision in recent years (e.g. (Mairal et al., 2009c;

Raina et al., 2007; Yang et al., 2009b; Gao et al., 2010; Wang et al., 2010; Wright et al.,

2009)).

Incorporating the sparse objective by directly penalizing the number of nonzero co-

efficients (i.e., using an `0 pseudo-norm penalty) leads to an NP-hard problem. To avoid

this issue, greedy algorithms such as orthogonal matching pursuit (OMP) (Mallat and

Zhang, 1993) can be used. Another option is to relax the `0 penalty into an `1 one, which

makes the optimization tractable and induces sparsity (Donoho, 2006).

The problem of finding a sparse decomposition of a signal is often coupled with

that of finding a suitable dictionary (or set of basis functions). Sparse coding can be

performed on a dictionary composed of random input samples or a standard basis func-

tion such as a discrete cosine transform (DCT) basis (Ahmed et al., 1974) or other

wavelets (Mallat, 1999), but decomposition over a learned dictionary has been shown

to perform much better for reconstruction tasks (Elad and Aharon, 2006). Dictionary

learning algorithms usually alternate between minimization over the code and over the

dictionary (Olshausen and Field, 1997; Elad and Aharon, 2006; Mairal et al., 2009a).

Sparse coding has a proven track record in signal processing applications (Chen

et al., 1999). Successful image applications include denoising (Elad and Aharon, 2006),
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classification (Mairal et al., 2009c; Raina et al., 2007), face recognition (Wright et al.,

2009), image super-resolution (Yang et al., 2008).

1.3 Trained deep architectures

Deep architectures extract representations with increasing levels of invariance and com-

plexity (Goodfellow et al., 2009), well-suited to artificial intelligence tasks requiring

highly non-linear features (Bengio, 2007). Training deep (multi-layer) architectures has

long seemed impossible because backpropagation (LeCun and Bengio, 1995; LeCun

et al., 1998b) of the gradient through the multiple layers was getting stuck in local min-

ima (Tesauro, 1992). One notable exception is convolutional networks (LeCun et al.,

1998a), which take advantage of the translation invariance of images by tying parame-

ters across all locations of the image. They have enjoyed enduring success in handwrit-

ten digit and object recognition.

Early attempts were supervised, namely, they used labels (e.g., digits or object cate-

gories) to train the architecture by backpropagating the gradients of a supervised classi-

fier making up the last layer of the architecture. Hinton et al. (Hinton and Salakhutdinov,

2006) have introduced a successful layer-by-layer unsupervised strategy to pretrain deep

architectures. Unsupervised training learns a good model of the input that allows recon-

struction or generation of input data; common applications include data compression,

denoising, and recovery of corrupted data. In (Hinton and Salakhutdinov, 2006), the

architecture is constructed as a stack of restricted Boltzmann machines (RBM) that are

trained in sequence to model the distribution of inputs; the output of each RBM layer is

the input of the next layer. The whole network is then trained (or “fine-tuned”) with a
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supervised algorithm. Supervised training of the whole network is successful when the

weights are initialized by layer-wise unsupervised pretraining.

Restricted Boltzmann machines (Hinton, 2002; Hinton et al., 2006) minimize an

approximation of the negative log likelihood of the data under the model. An RBM

is a binary stochastic symmetric machine defined by an energy function of the form:

E(Y, Z) = −ZTW TY − bTencZ − bTdecY , where Y is the input and Z is the code giv-

ing the hidden units activation, W is the weight matrix and benc and bdec give the bi-

ases of the hidden and visible units, respectively. This energy can be seen as a special

case of the encoder-decoder architecture that pertains to binary data vectors and code

vectors (Ranzato et al., 2007a). Training an RBM minimizes an approximation of the

negative log likelihood loss function, averaged over the training set, through a gradi-

ent descent procedure. Instead of estimating the gradient of the log partition function,

RBM training uses contrastive divergence (Hinton, 2002), which takes random samples

drawn over a limited region around the training samples. Sparse (Lee et al., 2007) and

convolutional (Lee et al., 2009) versions of RBMs have been proposed in the literature.

Sparse autoencoders (Ranzato et al., 2006; Ranzato et al., 2007c; Ranzato et al.,

2007b; Kavukcuoglu et al., 2008; Jarrett et al., 2009) train a feedforward non-linear en-

coder to produce a fast approximation of the sparse code. The basic idea is to include

three terms in the loss to minimize: (1) the error between the predicting code and the ac-

tual sparse code, (2) the error between the reconstruction obtained from the sparse code

and the input, and (3) a sparsity penalty over the sparse code. Training alternates be-

tween minimization over the code and the encoder and decoder weights. When training

has converged, the minimization to obtain the code becomes unnecessary and the pre-

11



dicted code is used directly. The models differ in how they induce sparsity (e.g., Ranzato

et al.(Ranzato et al., 2006) use a specific sparsifying function, most other models of this

type use an `1 penalty), how they prevent the weights from blowing up (symmetry of the

encoder and decoder weights is imposed in (Ranzato et al., 2007b), the decoder weights

are normalized in (Kavukcuoglu et al., 2008)), or what non-linearity they use — in fact,

the main conclusion of (Jarrett et al., 2009) is that choosing non-linearity and pooling

function is often more important than training the weights. These architectures have

obtained good results in image denoising (Ranzato et al., 2007a), image and handwriten

digit classification (Ranzato et al., 2007c; Ranzato et al., 2007b; Jarrett et al., 2009),

although their performance is still slightly below that of systems that incorporate some

handcrafted descriptors such as SIFT.

Other models used as building blocks of deep networks include semi-supervised

embedding models (Weston et al., 2008; Collobert and Weston, 2008), denoising au-

toencoders (Vincent et al., 2008).

In practice, most deep models used in a realistic context have three or fewer layers.

What makes them “deep”, then, is a built-in recursive quality: the procedure of adding

one layer could be repeated as many times as desired, producing potentially very deep

architectures. The spatial pyramid model presented in Sec. (1.1) is generally not viewed

as a deep architecture, being composed of heterogeneous modules (low-level descriptor

extractor, hard vector quantization and pyramidal pooling, classification via an SVM).

Nevertheless, the resulting architecture resembles many of the deep networks discussed

in this section, as argued in the next chapter. The most salient difference is rather that

training is replaced by hand-crafted feature extractors in the spatial pyramid.
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1.4 Pooling

Many of the computer vision architectures presented so far comprise a spatial pooling

step, which combines the responses of feature detectors obtained at nearby locations

into some statistic that summarizes the joint distribution of the features over some re-

gion of interest. The idea of feature pooling originates in Hubel and Wiesel’s seminal

work on complex cells in the visual cortex (Hubel and Wiesel, 1962), and is related to

Koenderink’s concept of locally orderless images (Koenderink and Van Doorn, 1999).

Pooling features over a local neighborhood creates invariance to small transformations

of the input. The pooling operation is typically a sum, an average, a max, or more rarely

some other commutative (i.e., independent of the order of the contributing features)

combination rule.

Fukushima’s neocognitron was an early biologically-inspired model that had lay-

ers of pooling units alternating with layers of coding units (Fukushima and Miyake,

1982). Other biologically-inspired models that use pooling include convolutional net-

works, which use average pooling (LeCun et al., 1990; LeCun et al., 1998a), or max

pooling (Ranzato et al., 2007b; Jarrett et al., 2009), the HMAX class of models, which

uses max pooling (Serre et al., 2005), and some models of the primary visual cortex

area V1 (Pinto et al., 2008), which use average pooling. Many popular methods for fea-

ture extraction also use pooling, including SIFT (Lowe, 2004), histograms of oriented

gradients (HOG) (Dalal and Triggs, 2005) and their variations.
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2
A RECURSIVE FRAMEWORK FOR

FEATURE EXTRACTION MODELS

Successful feature extraction algorithms (e.g., SIFT or HOG descriptors) are often used

as black boxes within more complicated systems, which obscures the many similarities

they share. In this chapter, we propose a unified framework for a generic feature extrac-

tion module, which accommodates many algorithms commonly used in modern vision

systems; we analyze a popular implementation of SIFT descriptors as an example. This

naturally leads to viewing image recognition architectures as stacks of feature extraction

layers; this chapter presents results which suggest that adding more layers is not useful.

2.1 Common steps of feature extraction

Finding good image features is critical in modern approaches to category-level image

classification. Many methods first extract low-level descriptors (e.g., Gabor filter re-

sponses, SIFT (Lowe, 2004) or HOG descriptors (Dalal and Triggs, 2005)) at interest

point locations, or nodes in a dense grid. We consider the problem of combining these

local features into a global image representation suited to recognition using a common

classifier such as a support vector machine. Since global features built upon low-level

ones typically remain close to image-level information without attempts at high-level,

structured image description (in terms of parts for example), we will refer to them as
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mid-level features.

Popular examples of mid-level features include bags of features (Sivic and Zisser-

man, 2003), spatial pyramids (Lazebnik et al., 2006), and the upper units of convolu-

tional networks (LeCun et al., 1998a) or deep belief networks (Hinton and Salakhut-

dinov, 2006; Ranzato et al., 2007b). Extracting these mid-level features involves a se-

quence of interchangeable modules similar to that identified by Winder and Brown for

local image descriptors (Winder and Brown, 2007). In this thesis, we focus on two types

of modules:

• Coding: Input features are locally transformed into representations that have some

desirable properties such as compactness, sparseness (i.e., most components are

0), or statistical independence. The code is typically a vector with binary (vector

quantization) or continuous (HOG, sparse coding) entries, obtained by decompos-

ing the original feature on some codebook, or dictionary.

• Spatial pooling: The codes associated with local image features are pooled over

some image neighborhood (e.g., the whole image for bags of features, a coarse

grid of cells for the HOG approach to pedestrian detection, or a coarse hierarchy

of cells for spatial pyramids). The codes within each cell are summarized by a

single “semi-local” feature vector, common examples being the average of the

codes (average pooling) or their maximum (max pooling).

Many low-level and mid-level feature extractors perform the same sequence of steps

and are instances of a generic feature extractor (see Fig. (2.1)), which combines non-

linear coding with spatial pooling; these two steps are reminiscent of simple and com-

plex cells in the mammalian visual cortex (see Fig. (2.2)). It could be argued that pooling
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Non-linear coding

Spatial pooling over a 

local region of interest

Concatenation of weighted representations 

of  neighboring regions of interest

(a) Common steps of feature extraction

2-sparse coding of edge orientation

Histogramming over 

4pix x 4pix neighborhoods

Gaussian weighting of 4x4 of the 

4pix x 4pix neighborhoods + concatenation

Image Pixels

(b) SIFT descriptors

Vector quantization

Histogramming over 

cells of a three-level pyramid

Weighting + concatenation

SIFT descriptors

(c) Spatial Pyramid

Figure 2.1: Many mid-level features are extracted using the same sequence of modules

as low-level descriptors. Top: generic feature extraction steps. Bottom, left: SIFT

descriptor extraction. Bottom, right: mid-level feature extraction in the spatial pyramid.
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Figure 2.2: Standard model of the V1 area of the mammalian visual cortex. Figure

from (Carandini, 2006).
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is merely a special type of coding; what distinguishes them in this framework is that the

coding step generally involves computing distances or dot-products of the input with a

collection of stored vectors of same dimension, which have been called in the literature

basis functions, templates, filters, codewords, atoms, centers, elements, or prototypes,

while pooling computes orderless statistics over a neighborhood and discards some of

the variation in the sample as irrelevant.

The output feature vector is formed by concatenating with suitable weights the vec-

tors obtained for each pooling region, and can then be used as input to another layer of

feature extraction.

The same coding and pooling modules can be plugged into various architectures. For

example, average pooling is found in convolutional nets (LeCun et al., 1998a), bag-of-

features methods, and HOG descriptors; max pooling is found in convolutional nets (Lee

et al., 2009; Ranzato et al., 2007b), HMAX nets (Serre et al., 2005), and state-of-the-art

variants of the spatial pyramid model (Yang et al., 2009b).

2.2 SIFT descriptors are sparse encoders of orientations

Lowe et al.’s SIFT descriptors (Lowe, 2004) have become ubiquitous in computer vision

applications, and have indeed displayed superior performance in comparative studies

(e.g., (Mikolajczyk and Schmid, 2005)). But they are often used as a black-box feature

extractor, which may obscure the many common characteristics they share with most

unsupervised feature extractors. In this section, we examine a popular implementation

of SIFT, released as part of the spatial pyramid framework implementation, and show

that it performs a smooth 2-dimensional sparse encoding of orientations over a set of
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reference orientations.

We describe the default settings, used in the seminal spatial pyramid paper (Lazebnik

et al., 2006): each 128-dimensional descriptor covers an area of 16× 16 pixels, divided

into a grid of 4 × 4 cells, and uses 8 reference edge orientations. SIFT descriptor ex-

traction can be broken down into three steps: (1) sparse encoding into an 8-dimensional

feature vector at every point, (2) local pooling and subsampling of the codes, and (3)

concatenation and normalization.

2.2.1 Sparse encoding of edge orientations

At each point, a continuous edge-orientation value is first obtained by computing the ra-

tio of vertical and horizontal gradients, and extracting the corresponding oriented angle

(in radians). The cosine of the difference between this angle and a set of K = 8 evenly

spaced reference orientations is then computed, and the negative parts are truncated.

The resulting values are then raised to the power γ = 9.

While setting γ to 9 may seem arbitrary, we show here that this effectively pro-

duces a near perfect approximation of an exact 2-sparse encoding of the 1-dimensional

orientation x over a dictionary of K = 8 1-dimensional atoms:

dk =
2kπ

8
, 0 ≤ k ≤ 7,

α ∈ [0, 1]K ,αk 6= 0 iff dk ≤ x < dk+1,

x = dTα.

with the convention that d8 = d0. This solves the following constrained optimization
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Figure 2.3: Minimum of the summed squared error is reached for γ = 9.

problem:

argmin
α
‖x− dTα‖2, s.t.α ∈ [0, 1]K , ‖α‖0 ≤ 2

The minimum of the summed squared error between | cos(x−dk)|γ+ (where |t|+ denotes

the positive part of t, max(t, 0)) and the 2-sparse encoding of angles described above is

obtained for γ = 9, as shown in Fig. (2.3(b)). This widely used implementation of SIFT

descriptors is thus in practice a very good approximation of a simple intuitive sparse

coding scheme of orientations.

2.2.2 Forming the SIFT descriptors

The coding step described in Sec. (2.2.1) produces an 8-dimensional vector at each

location. This output can be viewed as a set of 8 images formed by the activations of
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each of the feature components, called feature maps. The pooling and subsampling step

consists in building histograms of orientations from these feature maps, using cells of

4 × 4 pixels over the entire image. The histograms can be aligned on the dominant

orientation to produce rotation-invariant SIFT descriptors, however this step is often

ommitted in image classification pipelines based on the spatial pyramid. A set of 4× 4

non-overlapping cells are used to form each SIFT descriptor, by concatenating the his-

tograms for each of the 16 cells and normalizing, yielding a descriptor of dimension

128 = 16 ∗ 8. Although the selection of non-overlapping cells corresponds to subsam-

pling by a factor of 4 within the context of each descriptor, the spatial dimensions of the

resulting SIFT descriptors maps depends on how finely spaced the descriptors are; e.g.,

extracting one SIFT at every pixel yields no subsampling, while spacing the descriptors

by 8 pixels (the default setting used in (Lazebnik et al., 2006)) yields a subsampling of

8.

2.3 Adding a third layer

Viewing low- and mid-level vision feature extractors as stackable layers suggests push-

ing the recursion further and building architectures with three or more layers. This

connects vision architectures to deep learning models (Bengio, 2007), which rely on

a core feature extraction layer (e.g., an RBM (Hinton and Salakhutdinov, 2006) or an

autoencoder (Ranzato et al., 2007c; Vincent et al., 2008)) that could potentially be repli-

cated numerous times. However, it is as yet unclear how to determine beforehand the

optimal number of layers. In this section, we investigate whether adding more layers

would yield any improvements.
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Architecture 1 2 1+2

K1 = 256, K2 = 1024 82.6± 0.5 75.4± 0.5 83.0± 0.6

K1 = 1024, K2 = 256 84.0± 0.4 68.6± 0.5 84.0± 0.5

K1 = 1024, K2 = 1024 83.9± 0.4

Table 2.1: Comparison between 2- and 3-level architectures on the Scenes database.

One mid-level layer is composed of a sparse coding module followed by a max pooling

module. K1 and K2 give the dictionary sizes of each mid-level layer. The second mid-

level layer performs much worse than the first one when used by itself, and barely affects

classification performance when used jointly with the first one.

The 15-Scenes recognition benchmark (Lazebnik et al., 2006) is used. It is com-

posed of fifteen scene categories, with 200 to 400 images each, and an average image

size of 300 × 250 pixels. Following the usual procedure (Lazebnik et al., 2006; Yang

et al., 2009b), we use 100 images per class for training and the rest for testing. The mod-

ules composing the baseline architecture are presented in detail in Sec. (3.1); briefly, the

architectures compared here comprise low-level layer that extracts dense SIFT descrip-

tors, followed by one or two mid-level feature extraction layers. The mid-level feature

extraction layer consists of a sparse coding and a max pooling module. When using a

second mid-level feature extraction layer, max pooling is performed over 2×2 neighbor-

hoods of the sparse feature maps. The output of the first, the second, or both mid-level

layers are used as input to the classifier, by replicating the max pooling layer to per-

form pyramidal pooling. Classification is performed using an SVM with an intersection

kernel histogram. Hyperparameters are selected by cross-validation using part of the
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training data.

Results are shown in Table (2.1). The second mid-level feature extraction layer

performs worse than the first mid-level feature extraction layer when used as sole input

to the classifier. When used together, the performance is not significantly different than

for the first layer alone. Therefore, a single mid-level feature layer is used on top of the

low-level feature layer in the remainder of this thesis.
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3
COMBINING LAYERS AND MODULES:

AN EXTENSIVE EMPIRICAL STUDY OF

CLASSIFICATION PERFORMANCE

Since the introduction of bags of features in computer vision (Sivic and Zisserman,

2003), much work has been devoted to improving the baseline performance of a bag-of-

words image classification pipeline, usually focusing on tweaking one particular module

(e.g., replacing hard vector quantization by soft vector quantization). The goal of this

chapter is to determine the relative importance of each module when they are used in

combination, and assess to what extent the better performance of a given module is ro-

bust to changes in the other modules. We also investigate how best to articulate the low-

level feature extraction layer to the mid-level layer, which leads us to propose macro-

features. Most of the research presented in this chapter has been published in (Boureau

et al., 2010a).

3.1 Coding and pooling modules

This section presents some coding and pooling modules proposed in the literature, and

discusses their properties.
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3.1.1 Notation

Let us first briefly introduce some notation used throughout this thesis. Let I denote an

input image. First, low-level descriptors xi (e.g., SIFT or HOG) are extracted densely at

N locations identified with their indices i = 1, . . . , N . Let f and g denote some coding

and pooling operators, respectively. M regions of interests are defined on the image

(e.g., the 21 = 4×4+2×2+1 cells of a three-level spatial pyramid), withNm denoting

the set of locations/indices within region m. The vector z representing the whole image

is obtained by sequentially coding, pooling over all regions, and concatenating:

αi = f(xi), i = 1, · · · , N (3.1)

hm = g
(
{αi}i∈Nm

)
, m = 1, · · · ,M (3.2)

zT = [hT
1 · · ·hT

M ]. (3.3)

The goal is to determine which operators f and g provide the best classification perfor-

mance using z as input to either a non-linear intersection kernel SVM (Lazebnik et al.,

2006), or a linear SVM.

3.1.2 Coding

Coding is performed at each location by applying some operator f chosen to ensure

that the resulting codes αi retain useful information (e.g., input data can be predicted

from them), while having some desirable properties (e.g., compactness). Here, we focus

on vector quantization and sparse coding, which both minimize some regularized error

between inputs and the reconstructions that can be obtained from the codes.
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Hard vector quantization (HVQ) is the coding step used in the original bag-of-features

framework (Sivic and Zisserman, 2003). f minimizes the distance to a codebook, usu-

ally learned by an unsupervised algorithm (e.g., K-means (Lloyd, 1982)). Each xi is

represented by a one-of-K encoding of its cluster assignment:

αi ∈ {0, 1}K ,αi,j = 1 iff j = argmin
k≤K

‖xi − dk‖22, (3.4)

where dk denotes the k-th codeword of the codebook. While hard vector quantization is

generally not called sparse coding, it is an extremely sparse code (only one component

is allowed to be active), where the nonzero coefficient has to be exactly 1:

αi = argmin
α∈{0,1}K

‖x−Dα‖22, s.t. ‖α‖0 = 1, (3.5)

where `0 denotes the number of nonzero coefficients (pseudo-norm) of α.

Bags of words have been developped in image processing to mimic indexation in

a dictionary as closely as possible: identity with a word of the dictionary is replaced

with a nearest-neighbor relationship. However, the match between an input patch and

the closest codeword is often crude: while texts truly use a finite and discrete corpus

of words, image patches present continuous, uncountable variations. Patches are also

often arbitrary (e.g., square patches sampled densely on a grid) and do not coincide

with meaningful features (e.g., objects or edges) unless preliminary segmentation is

performed. Instead, each patch may contain a number of objects, or parts of them.

Furthermore, words are rigid, non-scalable discrete units, while image features should

allow soft (imperfect) matches, and/or matches to a slightly transformed version of a
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codeword, since visual features are invariant to a number of transformations. These are

all challenges that soft vector quantization and sparse coding address.

Soft vector quantization uses a softmin to assign scores to codewords that reflect how

well they match the input vector:

αi,j =
exp (−β‖xi − dj‖22)∑K
k=1 exp (−β‖xi − dk‖22)

, (3.6)

where β is a parameter that controls the softness of the soft assignment (hard assignment

is the limit when β → ∞). This amounts to coding as in the E-step of the expectation-

maximization algorithm to learn a Gaussian mixture model, using codewords of the

dictionary as centers. This is also similar to to the soft category assignment performed

by a multiclass logistic regression classifier, and can be interpreted as a probabilistic

version of nearest neighbor search (e.g., see (Goldberger et al., 2004)). Replacing hard

matches with soft matches is better suited to cases where an input patch is close to

more than one codeword. Soft vector quantization has been shown to improve over hard

vector quantization (van Gemert et al., 2010).

However, soft vector quantization still attempts to match each patch to one codeword

(i.e., distances are computed between the input patch and each of the codewords, one at

a time).

Sparse coding (Olshausen and Field, 1997) explains input patches as a linear com-

bination of a small number of codewords. While the resulting code is also continuous,

the codewords explain the feature collaboratively, as illustrated in Fig. (3.1), instead of
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+ 1 + 1=  1 + 1 + 1 + 1 + 1 + 0.8 + 0.8

Figure 3.1: Top: filters learned by a sparse energy-based model trained on the MNIST

handwritten digit dataset. Bottom: sparse coding performs reconstruction collabora-

tively, so that several localized parts can be combined to reconstruct an input patch.

This is in contrast with vector quantization, where each codeword explains the input

patch by itself. Figure from (Ranzato et al., 2006)

competitively:

αi = argmin
α∈RK

‖xi −Dα‖22, s.t. ‖α‖0 ≤ λ, (3.7)

where D denotes the dictionary (codebook) of K atoms (codewords) , ‖α‖0 denotes the

number of nonzero components (`0 pseudo-norm) of α, and integer λ controls the spar-

sity. What is minimized here is a distance to subspaces instead of a distance to points,

and the point corresponding to the final code is generally not one of the codewords, but

a point of a subspace generated by a few of these.

The `0 constraint produces an NP-hard optimization problem and can be relaxed into

a tractable `1 constraint:

αi = argmin
α

Li(α,D) , ‖xi −Dα‖22 + λ‖α‖1, (3.8)

where ‖α‖1 denotes the `1 norm of α, λ is a parameter that controls the sparsity of α.

28



The interpretation in terms of number of nonzero components is lost. The dictionary can

be obtained by K-means, or for better performance, trained by minimizing the average

of Li(αi,D) over all samples, alternatively over D and the αi. This problem is not

jointly convex in D and α but is convex in each of those parameters when the other

is fixed. It is well known that the `1 penalty induces sparsity and makes the problem

tractable (e.g., (Lee et al., 2006; Donoho, 2006; Mairal et al., 2009a)). Sparse coding

has been shown to generally perform better than either hard or soft vector quantization

for image recognition (Boureau et al., 2010a; Yang et al., 2009b).

3.1.3 Pooling

A pooling operator takes the varying number of codes that are located within M possi-

bly overlapping regions of interest (e.g., the cells of a spatial pyramid), and summarizes

them as a single vector of fixed length. The representation for the global image is ob-

tained by concatenating the representations of each region of interest, possibly with a

suitable weight. We denote by Nm the set of locations/indices within region m. In this

thesis, we mainly consider the two pooling strategies of average and max pooling.

Average pooling simply computes the average of the codes over the region, and is the

pooling method used in the seminal bag-of-features framework (Sivic and Zisserman,

2003):

hm =
1

|Nm|
∑
i∈Nm

αi, (3.9)
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Note that averaging and using uniform weighting is equivalent (up to a constant mul-

tiplicator) to using histograms with weights inversely proportional to the area of the

pooling regions, as in (Lazebnik et al., 2006).

Max pooling computes the maximum of each component instead of its average:

hm,j = max
i∈Nm

αi,j, for j = 1, . . . , K. (3.10)

Yang et al. (Yang et al., 2009b) have obtained state-of-the-art results on several im-

age recognition benchmarks by using sparse coding and max pooling.

3.2 Interaction of coding and pooling modules

This section offers comprehensive comparisons of unsupervised coding schemes, testing

all combinations of coding and pooling modules presented in Sec. (3.1). Macrofeatures

will be introduced in Sec. (3.3), but some results are included in this section’s tables for

ease of comparison.

Experiments use the Caltech-101 (Fei-Fei et al., 2004) and Scenes datasets (Lazeb-

nik et al., 2006) as benchmarks. These datasets respectively comprise 101 object cate-

gories (plus a ”background” category) and fifteen scene categories. Following the usual

procedure (Lazebnik et al., 2006; Yang et al., 2009b), we use for each category either

15 training images and 15 testing images, or 30 training images and the rest for testing

(with a maximum of 50 test images) on the Caltech-101 dataset, and 100 training im-

ages and the rest for testing on the Scenes dataset. Experiments are conducted over 10

random splits of the data, and we report the mean average per-class accuracy and its stan-
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dard deviation. Hyperparameters of the model are selected by cross-validation within

the training set. The general architecture follows (Lazebnik et al., 2006). Low-level

descriptors xi are 128-dimensional SIFT descriptors (Lowe, 2004) of 16 × 16 patches.

The descriptors are extracted on a dense grid rather than at interest points, since this

procedure has been shown to yield superior scene classification (Fei-Fei and Perona,

2005). Pooling regions m comprise the cells of 4 × 4, 2 × 2 and 1 × 1 grids (forming

a three-level pyramid). We use the SPAMS toolbox (SPAMS, 2012) to compute sparse

codes. Dictionaries for hard and soft vector quantization are obtained with the K-means

algorithm, while dictionaries for sparse codes use `1-regularized reconstruction error

during training.

Results are presented in Table (3.1) and Table (3.2). We only show results using 30

training examples per category for the Caltech-101 dataset, since the conclusions are the

same when using 15 training examples. The ranking of performance when changing a

particular module (e.g., coding) presents a consistent pattern:

• Sparse coding improves over soft quantization, which improves over hard quanti-

zation;

• Max pooling almost always improves over average pooling, dramatically so when

using a linear SVM;

• The intersection kernel SVM performs similarly or better than the linear SVM.

In particular, the global feature obtained when using hard vector quantization with

max pooling achieves high accuracy with a linear classifier, while being binary, and

merely recording the presence or absence of each codeword in the pools. While much
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research has been devoted to devising the best possible coding module, our results show

that with linear classification, switching from average to max pooling increases accuracy

more than switching from hard quantization to sparse coding. These results could serve

as guidelines for the design of future architectures.

For comparison, previously published results obtained using one type of descriptors

on the same dataset are shown in Table (3.3). Note that better performance has been re-

ported with multiple descriptor types (e.g., methods using multiple kernel learning have

achieved 77.7%±0.3 (Gehler and Nowozin, 2009) and 78.0%±0.3 (VGG Results URL,

2012; Vedaldi et al., 2009) on Caltech-101 with 30 training examples), or subcategory

learning (83% on Caltech-101 (Todorovic and Ahuja, 2008)). The coding and pooling

module combinations used in (van Gemert et al., 2010; Yang et al., 2009b) are included

in our comparative evaluation (bold numbers in parentheses in Table (3.1), Table (3.2)

and Table (3.3)). Overall, our results confirm the experimental findings in these works,

except that we do not find superior performance for the linear SVM, compared to the in-

tersection kernel SVM, with sparse codes and max pooling, contrary to Yang et al. (Yang

et al., 2009b). Results of our reimplementation are similar to those in (Lazebnik et al.,

2006). The better performance than that reported by Van Gemert et al. (van Gemert

et al., 2010) or Yang et al. (Yang et al., 2009b) on the Scenes is not surprising since

their baseline accuracy for the method in (Lazebnik et al., 2006) is also lower, which

they attributed to implementation differences. Discrepancies with results from Yang et

al. (Yang et al., 2009b) may arise from their using a differentiable quadratic hinge loss

instead of the standard hinge loss in the SVM, and a different type of normalization for

SIFT descriptors.
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Average Pool Max Pool

Results with basic features, SIFT extracted each 8 pixels

Hard quantization, linear kernel 51.4± 0.9 [256] 64.3± 0.9 [256]

Hard quantization, intersection kernel 64.2± 1.0 [256] (1) 64.3± 0.9 [256]

Soft quantization, linear kernel 57.9± 1.5 [1024] 69.0± 0.8 [256]

Soft quantization, intersection kernel 66.1± 1.2 [512] (2) 70.6± 1.0 [1024]

Sparse codes, linear kernel 61.3± 1.3 [1024] 71.5± 1.1 [1024] (3)

Sparse codes, intersection kernel 70.3± 1.3 [1024] 71.8± 1.0 [1024] (4)

Results with macrofeatures and denser SIFT sampling

Hard quantization, linear kernel 55.6± 1.6 [256] 70.9± 1.0 [1024]

Hard quantization, intersection kernel 68.8± 1.4 [512] 70.9± 1.0 [1024]

Soft quantization, linear kernel 61.6± 1.6 [1024] 71.5± 1.0 [1024]

Soft quantization, intersection kernel 70.1± 1.3 [1024] 73.2± 1.0 [1024]

Sparse codes, linear kernel 65.7± 1.4 [1024] 75.1± 0.9 [1024]

Sparse codes, intersection kernel 73.7± 1.3 [1024] 75.7± 1.1 [1024]

Table 3.1: Average recognition rate on the Caltech-101 benchmark, using 30 training

examples, for various combinations of coding, pooling, and classifier types. The code-

book size shown inside brackets is the one that gives the best results among 256, 512 and

1024. Linear and histogram intersection kernels are identical when using hard quantiza-

tion with max pooling (since taking the minimum or the product is the same for binary

vectors), but results have been included for both to preserve the symmetry of the table.

Top: Results with the baseline SIFT sampling density of 8 pixels and standard features.

Bottom: Results with the set of parameters for SIFT sampling density and macrofeatures

giving the best performance for sparse coding.
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Average Pool Max Pool

Results with basic features, SIFT extracted each 8 pixels

Hard quantization, linear kernel 73.9± 0.9 [1024] 80.1± 0.6 [1024]

Hard quantization, intersection kernel 80.8± 0.4 [256] (1) 80.1± 0.6 [1024]

Soft quantization, linear kernel 75.6± 0.5 [1024] 81.4± 0.6 [1024]

Soft quantization, intersection kernel 81.2± 0.4 [1024] (2) 83.0± 0.7 [1024]

Sparse codes, linear kernel 76.9± 0.6 [1024] 83.1± 0.6 [1024] (3)

Sparse codes, intersection kernel 83.2± 0.4 [1024] 84.1± 0.5 [1024] (4)

Results with macrofeatures and denser SIFT sampling

Hard quantization, linear kernel 74.0± 0.5 [1024] 80.1± 0.5 [1024]

Hard quantization, intersection kernel 81.0± 0.5 [1024] 80.1± 0.5 [1024]

Soft quantization, linear kernel 76.4± 0.7 [1024] 81.5± 0.4 [1024]

Soft quantization, intersection kernel 81.8± 0.4 [1024] 83.0± 0.4 [1024]

Sparse codes, linear kernel 78.2± 0.7 [1024] 83.6± 0.4 [1024]

Sparse codes, intersection kernel 83.5± 0.4 [1024] 84.3± 0.5 [1024]

Table 3.2: Average recognition rate on the 15-Scenes benchmarks, using 100 training

examples, for various combinations of coding, pooling, and classifier types. The code-

book size shown inside brackets is the one that gives the best results among 256, 512 and

1024. Linear and histogram intersection kernels are identical when using hard quantiza-

tion with max pooling (since taking the minimum or the product is the same for binary

vectors), but results have been included for both to preserve the symmetry of the table.

Top: Results with the baseline SIFT sampling density of 8 pixels and standard features.

Bottom: Results with the set of parameters for SIFT sampling density and macrofeatures

giving the best performance for sparse coding.
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Method C101, 15 tr. C101, 30 tr. Scenes

Nearest neighbor + spatial correspondence
65.0± 1.1 70.4 −

(Boiman et al., 2008)

Similarity-preserving sparse coding
− − 89.8± 0.5

(Gao et al., 2010)

Fast image search for learned metrics
61.0 69.6 −

(Jain et al., 2008)

(1) SP + hard quantization + kernel SVM
56.4 64.4± 0.8 81.4± 0.5

(Lazebnik et al., 2006)

(2) SP + soft quantization + kernel SVM
− 64.1± 1.2 76.7± 0.4

(van Gemert et al., 2010)

SP + locality-constrained linear codes
− 73.4 −

(Wang et al., 2010)

(3) SP + sparse codes + max pooling + linear SVM
67.0± 0.5 73.2± 0.5 80.3± 0.9

(Yang et al., 2009b)

(4) SP + sparse codes + max pooling + kernel SVM
60.4±1.0 − 77.7±0.7

(Yang et al., 2009b)

kNN-SVM
59.1± 0.6 66.2± 0.5 -

(Zhang et al., 2006)

SP + Gaussian mixture
− − 84.1± 0.5

(Zhou et al., 2008)

Table 3.3: Performance of several schemes using a single type of descriptors. Italics

indicate results published after our CVPR paper (Boureau et al., 2010a). Bold numbers

in parentheses preceding the method description indicate methods reimplemented here.

15tr., 30tr.: 15 and 30 training images per category, respectively. SP: spatial pyramid.
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3.3 Macrofeatures

In convolutional neural networks (e.g., (Lee et al., 2009; Ranzato et al., 2007b)), spa-

tial neighborhoods of low-level features are encoded jointly. On the other hand, code-

words in bag-of-features methods usually encode low-level features at a single location

(see Fig. (3.2)). We propose to adapt the joint encoding scheme to the spatial pyramid

framework.

Jointly encoding L descriptors in a local spatial neighborhood Li amounts to replac-

ing Eq. (3.1)) by:

αi = f([xT
i1
· · ·xT

iL
]T ), i1, · · · , iL ∈ Li. (3.11)

We call macrofeatures vectors that jointly encode a small neighborhood of SIFT

descriptors. The encoded neighborhoods are squares determined by two parameters:

the number of neighboring SIFT descriptors considered along each spatial dimension

(e.g., 2 × 2 square in Fig. (3.2)), and a macrofeature subsampling stride which gives

the number of pixels to skip between neighboring SIFT descriptors within the macro-

feature. This is distinct from the grid subsampling stride that controls how finely SIFT

descriptors are extracted over the input image. For example, a 3× 3 macrofeature with

a macrofeature subsampling stride of 6 pixels, and a grid subsampling stride of 3 pixels,

jointly encodes 9 descriptors, skipping every other SIFT descriptor along columns and

rows over a neighborhood of 6× 6 descriptors.

We have experimented with different macrofeature parameters, and denser sampling

of the underlying SIFT descriptor map (e.g., extracting SIFT every 4 pixels instead of

8 pixels as in the baseline of (Lazebnik et al., 2006)). We have tested grid subsam-
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Macrofeatures 2 x 2

Standard features 1 x 1

Coding

Coding

Spatial dim
SIFT dim

Input

Input

Dictionary size

Figure 3.2: Standard features encode the SIFT features at a single spatial point. Macro-

features jointly encode small spatial neighborhoods of SIFT features (i.e., the input of

the coding module is formed by concatenating nearby SIFT descriptors).
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pling strides ranging from 2 to 10, macrofeatures of side length 2 to 4 and subsampling

strides 1 to 4 times the base grid subsampling stride. When using sparse coding and

max pooling, the best parameters (selected by cross-validation within the training set)

for SIFT grid subsampling stride, and macrofeature side length and subsampling stride

are respectively of 4 pixels, 2 descriptors, and 16 pixels for the Caltech-101 dataset,

and 8 pixels, 2 descriptors, 8 pixels for the Scenes dataset. Our results (Table (3.1) and

Table (3.2), bottom) show that large improvements can be gained on the Caltech-101

benchmark, by merely sampling SIFT descriptors more finely, and jointly representing

nearby descriptors, yielding a classification accuracy of 75.7%, which to the best of our

knowledge outperformed all classification schemes using a single type of low-level de-

scriptor at the time of publication of our CVPR paper (Boureau et al., 2010a). However,

we have not found finer sampling and joint encoding to help recognition significantly

on the Scenes dataset. More comprehensive results for Caltech-101 when using sparse

coding, max pooling and a linear classifier are presented in Table (3.4) to show the

separate influence of each of these hyperparameters.

On the Scenes dataset, sampling features on a finer grid slightly damages perfor-

mance, with both max pooling, while using macrofeatures of size 2×2 seems to slightly

improve results (see Table (3.5) and Fig. (3.3)), but the differences in performance are

not significant.

3.4 Choosing the dictionary

Experiments in this section look at the influence of the dictionary, answering two ques-

tions: (1) are the relative performances of coding and pooling methods always the same
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Standard Feature1× 11

Grid subs. 2 3 4 6 8

RF 16 16 16 16 16

74.4± 0.9 74.5±1.1 73.8± 1.0 73.3± 1.0 71.5± 1.1

Grid subsampling 8

# descriptors 1×1 2×2 3×3 4×4 5×5

RF 16 24 32 40 48

71.5± 1.1 72.6± 1.0 73.3±1.1 73.2± 1.0 73.3± 1.0

Grid subsampling 4, 2×2 adjacent descriptors

Stride 4 8 12 16 20

RF 20 24 28 32 36

73.8± 0.8 74.4± 0.9 74.6± 1.0 75.1±0.9 74.7± 1.1

Grid subsampling 3

# descriptors 2×2 3×3 4×4 2×2 3×3

Stride 3 3 3 12 12

RF 19 22 25 28 40

73.6± 0.9 73.7± 0.7 74.0± 1.0 74.8±0.9 74.5± 1.2

Table 3.4: Mean accuracy on the Caltech 101 dataset, using 1024 codewords, max pool-

ing, linear classifier, and 30 training examples per category. # descriptors: number of

SIFT descriptors jointly encoded into one macrofeature. Grid subsampling: number of

pixels separating one macrofeature from the next. Stride (macrofeature subsampling

stride): number of pixels separating two SIFT descriptors used as input of a macro-

feature. RF (receptive field): side of the square spanned by a macrofeature, in pixels;

function of the other parameters.
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Grid resolution 4 6 8

Linear 81.8± 0.6 82.0± 0.6 83.1± 0.6

Intersect 82.4± 0.5 82.7± 0.6 84.1± 0.5

Table 3.5: Varying grid resolution on the Scenes dataset, with linear or intersection

kernels. Codebook size 1024.

1000 2000 3000 4000 5000
Dictionary size

 

1 feature = 1x1 sift

1 macrofeature = 2x2 sift

1 macrofeature = 3x3 sift

1000 2000 3000 4000 5000
Dictionary size

 

1 feature = 1x1 sift

1 macrofeature = 2x2 sift

1 macrofeature = 3x3 sift

Figure 3.3: Representing small 2× 2 neighborhoods of SIFT jointly by one sparse code

leads to slightly better results on the Scenes dataset than 1 × 1 or 3 × 3 neighborhoods,

with both linear (top) and intersection (bottom) kernels.
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regardless of dictionary size, and (2) does the superiority of sparse coding vanish if the

dictionary is not trained differently than for vector quantization?

3.4.1 Dictionary size

The codebook size does not have the same influence according to the type of feature used

(quantization or sparse coding). Fig. (3.4) plots recognition accuracy on the Caltech 101

dataset for several dictionary sizes, using average pooling. Hard and soft quantization

perform best for a fairly small dictionary size, while the performance stays stable or

increases slightly with sparse coding combined with average pooling.

Fig. (3.5) and Fig. (3.6) compare sparse coding combined with several types of pool-

ing and kernels, on the Scenes and Caltech 101 datasets, respectively. Recognition ac-

curacy increases more sharply with max pooling. On the Scenes dataset (Fig. (3.5)), a

larger range of dictionary sizes has been tested, showing that recognition accuracy drops

with average pooling when the dictionary gets too large (K > 1024).

3.4.2 How important is dictionary training?

It could be argued that sparse coding performs better than vector quantization because

the dictionary obtained with `1-regularized reconstruction error is better than the one

obtained with K-means. We have run experiments to compare hard and soft vector

quantization, and sparse coding, over the same K-means dictionary, as well as sparse

coding over a dictionary trained with a sparse coding penalty. For these experiments, a

grid has sometimes been used for pooling instead of a pyramid. Average pooling and an

intersection kernel are used.
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Hard quantization, Linear kernel
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Soft quantization, Linear kernel
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Figure 3.4: Recognition accuracy on the Caltech 101 database with 15 training examples

with average pooling on a 4× 4 grid. With vector quantization, the best performance is

obtained with a small dictionary. Performance stays stable with sparse codes when in-

creasing dictionary size. For all classifiers and dictionary sizes, sparse coding performs

best and hard quantization performs worst, with soft quantization in between. The in-

tersection kernel is clearly better than the linear kernel when average pooling is used.

The worst performance with an intersection kernel classifier (three top curves, dotted)

is better than the best performance with a linear classifier (three bottom curves, solid).
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Figure 3.5: Performance on the Scenes dataset using sparse codes. Each curve plots

performance against dictionary size for a specific combination of pooling (taking the

average or the max over the neighborhood) and classifier (SVM with linear or intersec-

tion kernel). 1) Performance of the max pooling (dotted lines) is consistently higher

than average pooling (solid lines), but the gap is much less significant with intersection

kernel (closed symbols) than with linear kernel (open symbols). Slope is steeper with

the max/linear combination than if either the pooling or the kernel type is changed. 2)

Intersection kernel (closed symbols) performs generally better than linear kernels (open

symbols), especially with average pooling (solid lines) or with small dictionary sizes.

This is contrary to Yang’s results (Yang et al., 2009b) where intersection kernels (bot-

tom, closed diamond) perform noticeably worse than linear kernels (top, open diamond).
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Figure 3.6: Performance on the Caltech 101 dataset using sparse codes and 30 training

images per class. Each curve plots performance against dictionary size for a specific

combination of pooling (taking the average or the max over the neighborhood) and clas-

sifier (SVM with linear or intersection kernel). 1) Performance of the max pooling (dot-

ted lines) is consistently higher than average pooling (solid lines), but the gap is much

less significant with intersection kernel (closed symbols) than with linear kernel (open

symbols). Slope is steeper with the max/linear combination than if either the pooling or

the kernel type is changed. 2) Intersection kernel (closed symbols) performs generally

better than linear kernels (open symbols), especially with average pooling (solid lines)

or with small dictionary sizes. This is contrary to Yang et al’s results (Yang et al., 2009b)

where intersection kernels (not shown in this plot) perform noticeably worse than linear

kernels.
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Results shown in Table (3.6) and Table (3.7) show that sparse coding performs better

than hard or soft vector quantization when the same dictionary is used for all coding

types. Compared to hard vector quantization, most of the improvement is due to sparse

coding itself, with the better dictionary improving performance less substantially.

Coding 15 tr. 30 tr.

Hard vector quantization 55.9 63.8

Soft vector quantization 57.9 65.6

Sparse coding

on k-mean centers 60.7 66.2

on learned dictionary 61.7 68.1

Table 3.6: Recognition accuracy on the Caltech-101 dataset, 4x4 grid, dictionary of size

K = 200, average pooling, intersection kernel, using 15 or 30 training images per class.

More extensive experiments conducted by Coates and Ng (Coates and Ng, 2011) on

other benchmarks compare dictionaries composed of atoms with random values, ran-

domly selected training patches, or optimized to minimize the same loss as during cod-

ing. The conclusion is also that optimizing the dictionary does not contribute as much

to performance as choosing a better coding algorithm.

3.5 Conclusion

By deconstructing the mid-level coding step of a well-accepted recognition architec-

ture, it appears that any parameter in the architecture can contribute to recognition per-
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Coding 4x4 grid 4x4 pyramid

Hard vector quantization 79.1 80.9± 0.2

Soft vector quantization 79.8 81.5± 0.5

Sparse coding

on k-mean centers 80.4 81.9± 0.6

on learned dictionary 81.0 82.3± 0.4

Table 3.7: Recognition accuracy on the Scenes dataset, dictionary of size K = 200,

using either a 4× 4 grid or a 4× 4 pyramid, average pooling, intersection kernel.

formance; in particular, surprisingly large performance increases can be obtained by

merely sampling the low-level descriptor map more finely, and representing neighboring

descriptors jointly. Conversely, the choice of the dictionary does not appear as critical as

the choice of the coding and pooling operators. Some of our findings are robust to many

changes in surrounding modules: sparse coding outperforms soft vector quantization,

which outperforms hard vector quantization; max pooling always performs better than

average pooling in our settings.
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4
COMPARING MAX AND AVERAGE

POOLING

One of the most striking results of our comparative evaluation in the previous chapter

is that the superiority of max pooling over average pooling generalizes to many com-

binations of coding schemes and classifiers. Several authors have already stressed the

efficiency of max pooling (Jarrett et al., 2009; Yang et al., 2009b), but they have not

given theoretical explanations to their findings. In this chapter, we study max and aver-

age pooling in more detail theoretically and experimentally. The work presented in this

chapter has been published in (Boureau et al., 2010a) and (Boureau et al., 2010b).

4.1 Introduction

In general terms, the objective of pooling is to transform the joint feature representation

into a new, more usable one that preserves important information while discarding irrel-

evant detail, the crux of the matter being to determine what falls in which category. For

example, the assumption underlying the computation of a histogram is that the average

feature activation matters, but exact spatial localization does not. Achieving invariance

to changes in position or lighting conditions, robustness to clutter, and compactness of

representation, are all common goals of pooling.

The success of the spatial pyramid model (Lazebnik et al., 2006), which obtains

47



large increases in performance by performing pooling over the cells of a spatial pyra-

mid rather than over the whole image as in plain bag-of-features models (Zhang et al.,

2007), illustrates the importance of the spatial structure of pooling neighborhoods. Per-

haps more intriguing is the dramatic influence of the way pooling is performed once a

given region of interest has been chosen. Thus, Jarrett et al. (Jarrett et al., 2009) have

shown that pooling type matters more than careful unsupervised pretraining of features

for classification problems with little training data, obtaining good results with random

features when appropriate pooling is used. Yang et al. (Yang et al., 2009b) report much

better classification performance on several object or scene classification benchmarks

when using the maximum value of a feature rather than its average to summarize its ac-

tivity over a region of interest. But no theoretical justification of these findings is given.

In the previous chapter, we have shown that using max pooling on hard-vector quan-

tized features (which produces a binary vector that records the presence of a feature in

the pool) in a spatial pyramid brings the performance of linear classification to the level

of that obtained by Lazebnik et al. (Lazebnik et al., 2006) with an intersection kernel,

even though the resulting feature is binary. However, it remains unclear why max pool-

ing performs well in a large variety of settings, and indeed whether similar or different

factors come into play in each case.

This chapter attempts to fill the gap and conducts a thorough theoretical investiga-

tion of pooling. We compare different pooling operations in a categorization context,

and examine how the behavior of the corresponding statistics may translate into easier

or harder subsequent classification. We provide experiments in the context of visual

object recognition, but the analysis applies to all tasks which incorporate some form
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of pooling (e.g., text processing from which the bag-of-features method was originally

adapted). The main contributions of this chapter are (1) an extensive analytical study

of the discriminative powers of different pooling operations, (2) the discrimination of

several factors affecting pooling performance, including smoothing and sparsity of the

features, (3) the unification of several popular pooling types as belonging to a single

continuum.

4.2 Pooling as extracting a statistic

The pyramid match kernel (Grauman and Darrell, 2005) and the spatial pyramid (Lazeb-

nik et al., 2006) have been formulated as better ways to look for correspondances be-

tween images, by allowing matches at varying degrees of granularity in feature space

(pyramid match kernel), or by taking some coarse spatial information into account to

allow two features to match (spatial pyramid). In that view, pooling is relaxing match-

ing constraints to make correspondances more robust to small deformations. Looking

for correspondances is still a fertile area of research, and recent work following this di-

rection has obtained state-of-the-art results in object recognition, at some computational

cost (Duchenne et al., 2011).

But pooling also extracts a statistic over a given sample. If the goal is to discriminate

between two classes, the class-conditional statistics extracted should be different. For

example, if the local features are distributed according to Gaussians of different means

for each class, then the average should be discriminative. On the other hand, if two

Gaussian samples only differ through their variance, then the average is not discrimina-

tive, but max is: for a Gaussian distribution, a classical result is that the expectation of
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the max over P samples from a distribution of variance σ2 grows asymptotically (when

P → ∞) like
√
2σ2 log(P ). Thus, the separation of the maxima over two Gaussian

samples increases indefinitely with sample size if their standard deviations are different

(albeit at a slow rate). Another way to discriminate between Gaussian distributions is

to take the average of the absolute value, the positive part, or the square (or any even

power) of the local features; e.g., for a Gaussian of mean µ, E(|x − µ|) = σ
√
2/π.

Thus, the average becomes discriminative if a suitable non-linearity is applied first. This

type of considerations may explain the crucial importance of taking the absolute value

or positive part of the features before average pooling, in the experiments of Jarrett et

al. (Jarrett et al., 2009), even though the feature distributions cannot be assumed to be

Gaussian.

The statistic may also have dependencies on the sample size, which is usually in-

fluenced by the spatial size of the pooling neighborhood (e.g., the smaller cells of a

spatial pyramid compared to the whole image). It is intuitively clear that the maximum

of a sample often increases with the sample size, while the average does not change

(the estimate of the average usually has larger variance with a small sample size, but

the expected average is the same). Thus, there may be a purely statistical component to

the improvement seen with max pooling when using pyramids instead of plain bags of

features. Max pooling differs from average pooling in two important ways:

• the maximum over a pool of smaller cardinality is not merely an estimator of the

maximum over a larger pool;

• the variance of the maximum is not generally inversely proportional to pool car-

dinality, so that summing over several estimates (one for each smaller pool) can
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Caltech 101 15 Scenes

Pyramid 1× 1 2× 2 1× 1 2× 2

Avg, random 31.7± 1.0 29.5± 0.5 71.0± 0.8 69.4± 0.8

Avg, spatial 43.2± 1.4 73.2± 0.7

Max, random 26.2± 0.7 33.1± 0.9 69.5± 0.6 72.8± 0.3

Max, spatial 50.7± 0.8 77.2± 0.6

Table 4.1: Classification accuracy for different sets of pools and pooling operators. Spa-

tial: the pools are cells of a spatial pyramid. Random: features have been randomly

scrambled before pooling, effectively removing all spatial information.

provide a smoother output than if pooling had merely been performed over the

merged smaller pools.

The next sections are devoted to more detailed modeling, but a simple experiment

can demonstrate this effect. We compare three types of pooling procedures: standard

whole-image and two-level pyramid pooling, and random two-level pyramid pooling,

where local features are randomly permuted before being pooled, with a new random

permutation being picked for each image: all spatial information is removed, but the

pools have a smaller number of samples in the finer cells of the pyramid.

This experiment shares most settings with those in the previous chapter, using SIFT

features extracted densely every 8 pixels, and encoded by hard quantization over a code-

book of size 256 for Caltech-101, 1024 for the Scenes. The pooled features are concate-

nated and classified with a linear SVM, trained on 30 and 100 examples per category for

Caltech-101 and the Scenes, respectively.
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Results are shown in Table (4.1). Predictably, keeping spatial information improves

performance in all cases. But with max pooling, a substantial part of the increase in

accuracy seen when using a two-level pyramid instead of a plain bag of features is still

present when locations are randomly shuffled. Conversely, the performance of average

pooling tends to deteriorate with the pyramid, since the added smaller, random pools

only contribute noisier, redundant information.

4.3 Modeling pooling

Consider a two-class categorization problem. Intuitively, classification is easier if the

distributions from which points of the two classes are drawn have no overlap. In fact, if

the distributions are simply shifted versions of one another (e.g., two Gaussian distribu-

tions with same variance), linear separability increases monotonically with the magni-

tude of the shift (e.g., with the distance between the means of two Gaussian distributions

of same variance) (Bruckstein and Cover, 1985). In this section, we examine how the

choice of the pooling operator affects the separability of the resulting distributions. Let

us start with a caveat. Several distributions are at play here: the distributions we are try-

ing to separate for classification are distributions of multi-dimensional feature vectors

representing one image, obtained after pooling and concatenating — the components

of each of these feature vectors are obtained by estimating parameters on ‘lower-level’

distributions, e.g., distributions of local feature vectors within a pooling cell of a given

image, as discussed in the previous section.

We separately look at binary and continuous codes.

52



4.3.1 Pooling binary features

This section deals with pooling over binary codes (e.g., one-of-K codes obtained by

vector quantization in bag-of-features models).

Model

Let us examine the contribution of a single feature in a bag-of-features representation

— i.e., if the unpooled data is a P ×K matrix of one-of-K codes taken at P locations,

we extract a single P -dimensional column v of 0s and 1s, indicating the absence or

presence of the feature at each location. Using the notation from Sec. (3.1.1), the αi

would be K-dimensional rows from that matrix, with a single 1 per row.

For simplicity, we model the P components of v as i.i.d. Bernoulli random vari-

ables. The independence assumption is clearly false since nearby image features are

strongly correlated, but the analysis of this simple model nonetheless yields useful pre-

dictions that can be verified empirically. The vector v is reduced by a pooling opera-

tor g to a single scalar g(v) — which would be one component of the K-dimensional

representation using all features, e.g., one bin in a histogram. With the notation from

Sec. (3.1.1): g(v) = hm,j = g
(
{αi,j}i∈Nm

)
and P = |Nm|, if the contribution of fea-

ture j in pool m is being examined. We consider two pooling operators: average pooling

ga(v) =
1
P

∑P
i=1 vi, and max pooling gm(v) = maxi vi.

Distribution separability

Given two classes C1 and C2, we examine the separation of conditional distributions

p(gm|C1) and p(gm|C2), and p(ga|C1) and p(ga|C2). While separability based jointly on

k features does not require separability for each individual feature, increased separability
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of each marginal feature distribution generally leads to better joint separability. Viewing

separability as a signal-to-noise problem, better separability can be achieved by either

increasing the distance between the means of the two class-conditional distributions, or

reducing their standard deviation.

We first consider average pooling. The sum over P i.i.d. Bernoulli variables of

mean ξ follows a binomial distribution B(P, ξ). Consequently, the distribution of ga

is a scaled-down version of the binomial distribution, with mean µa = ξ, and variance

σ2
a = ξ(1− ξ)/P . The expected value of ga is independent of sample size P , and the

variance decreases like 1/P ; therefore the separation ratio of means’ difference over

standard deviation decreases monotonically like 1/
√
P . Thus, it is always better to take

into account all available samples of a given spatial pool in the computation of the

average.

Max pooling is slightly less straightforward, so we examine means’ separation and

variance separately in the next two sections.

Means’ separation of max-pooled features

gm is a Bernoulli variable of mean µm = 1 − (1 − ξ)P and variance σ2
m = (1 − (1 −

ξ)P )(1− ξ)P . The mean increases monotonically from 0 to 1 with sample size P . Let φ

denote the separation of class-conditional expectations of max-pooled features,

φ(P ) , |E(gm|C1)− E(gm|C2)| = |(1− ξ2)
P − (1− ξ1)

P |, (4.1)

where ξ1 , P(vi = 1|C1) and ξ2 , P(vi = 1|C2). We abuse notation by using φ to

refer both to the function defined on sample cardinality P and its extension to R. It is
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easy to show that φ is increasing between 0 and

PM ,
∣∣∣∣log( log(1− ξ2)

log(1− ξ1)

)
/log

(
1− ξ1
1− ξ2

)∣∣∣∣ , (4.2)

and decreasing between PM and∞, with lim0 φ = lim∞ φ = 0.

Noting that φ(1) = |ξ1 − ξ2| is the distance between the class-conditional expecta-

tions of average-pooled features, there exists a range of pooling cardinalities for which

the distance is greater with max pooling than average pooling if and only if PM > 1.

Assuming ξ1 > ξ2, without loss of generality, it is easy to show1 that:

PM ≤ 1⇒ ξ1 > 1− 1/e > 0.63. (4.3)

ξ1 > 0.63 means that the feature is selected to represent more than half the patches

on average, which in practice does not happen in usual bag-of-features contexts, where

codebooks comprise more than a hundred codewords.

Variance of max-pooled features

The variance of the max-pooled feature is σ2
m = (1 − (1 − ξ)P )(1 − ξ)P . A simple

analysis of the continuous extension of this function to real numbers shows that it has

limit 0 at 0 and ∞, and is increasing then decreasing, reaching its maximum of 0.5 at

log(2)/| log(1− ξ)|. The increase of the variance can play against the better separation

of the expectations of the max-pooled feature activation, when parameter values ξ1 and

ξ2 are too close for the two classes. Several regimes for the variation of means separation

and standard deviations are shown in Fig. (4.1).

1PROOF: Let χ(x) , x log(x), x ∈ R. PM ≤ 1 ⇔ χ(1 − ξ1) > χ(1 − ξ2). Since 1 − ξ1 < 1 − ξ2,

and χ is decreasing on [0, 1/e] and increasing on [1/e, 1], it follows that PM ≤ 1⇒ ξ1 > 1− 1/e.
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Figure 4.1: φ(P ) = |(1− ξ1)P − (1− ξ2)P |, σ1 and σ2 denote the distance between the expec-

tations of the max-pooled features of mean activation ξ1 and ξ2, and their standard deviations,

respectively. ψmax = φ/(σ1 + σ2) and ψavg = |ξ1 − ξ2|.
√
P/(

√
ξ1.(1− ξ1) +

√
ξ2.(1− ξ2))

give a measure of separability for max and average pooling. φ reaches its peak at smaller cardi-

nalities than ψmax. (a) When features have relatively large activations, the peak of separability

is obtained for small cardinalities (b) With sparser feature activations, the range of the peak is

much larger (note the change of scale in the x axis). (c) When one feature is much sparser than

the other, ψmax can be larger than ψavg for some cardinalities (shaded area). Best viewed in

color.
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Conclusions and predictions

Our simplified analysis leads to several predictions:

• Max pooling is particularly well suited to the separation of features that are very

sparse (i.e., have a very low probability of being active)

• Using all available samples to perform the pooling may not be optimal

• The optimal pooling cardinality should increase with dictionary size

The first point can be formalized by observing that the characteristic pooling cardi-

nality |1/log(1− ξ)| (≈ 1/ξ in the case ξ � 1), scales the transition to the asymptotic

regime (low variance, high probability of activation): the maximum of the variance is

reached at P = log(2)/| log(1− ξ)|, and:

P(gm(v) = 1) > λ⇔ P >
log(1− λ)

log(1− ξ)
. (4.4)

Consequently, the range of cardinalities for which max pooling achieves good separation

between two classes doubles if the probability of activation of the feature for both classes

is divided by two. A particularly favorable regime is ξ2 � ξ1 � 1 — that is, a feature

which is rare, but relatively much more frequent in one of the two classes; in that case,

both classes reach their asymptotic regime for very different sample cardinalities (1/ξ1

and 1/ξ2).

The increase of optimal pooling cardinality with dictionary size is related to the link

underlined above between the sparsity of the features (defined here as the probability of

them being 0) and the discriminative power of max-pooling, since the expected feature
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activations sum to one in the general bag-of-features setting (exactly one feature is acti-

vated at each location), resulting in a mean expected activation of 1/K with a K-word

codebook. Thus, K gives an order of magnitude for the characteristic cardinality scale

of the transition to the asymptotic regime, for a large enough codebook.

The experiments in Sec. (4.2) have shown that better performance can be obtained

by using smaller pooling cardinalities. In the random pyramid setting, the performance

of max pooling is intermediate between that obtained with whole-image and spatial

pyramid pooling, while the classification using average pooling becomes worse than

with whole-image pooling. A number of concurrent factors could explain the increased

accuracy: (1) smaller pooling cardinality, (2) smoothing over multiple estimates (one

per finer cell of the pyramid), (3) estimation of two distinct features (the maximum over

the full and partial cardinalities, respectively). The more comprehensive experiments

presented in the next section resolve this ambiguity by isolating each factor.

4.3.2 Experiments with binary features

We test our conjectures by running experiments on the Scenes (Lazebnik et al., 2006)

and Caltech-101 (Fei-Fei et al., 2004) datasets, which respectively comprise 101 object

categories (plus a ”background” category) and fifteen scene categories. In all experi-

ments, the features being pooled are local codes representing 16 × 16 SIFT descriptors

that have been densely extracted using the parameters yielding the best accuracy in the

previous chapter (every 8 pixels for the Scenes and every 4 pixels for Caltech-101). The

codes jointly represent 2×2 neighborhoods of SIFT descriptors, with macrofeature sub-

sampling stride of 8 and 16 pixels for the Scenes and Caltech-101, respectively. Features
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are pooled over the whole image using either average or max pooling. In this chapter,

classification is performed with a one-versus-one support vector machine (SVM) using

a linear kernel, except when otherwise stated. 100 and 30 training images per class are

used for the Scenes and Caltech-101 datasets, respectively, and the rest for testing, fol-

lowing the usual experimental setup. We report the average per-class recognition rate,

averaged over 10 random splits of training and testing images.

Optimal pooling cardinality

We first test whether recognition can indeed improve for some codebook sizes when

max pooling is performed over samples of smaller cardinality, as predicted by our anal-

ysis. Recognition performance is compared using either average or max pooling, with

various combinations of codebook sizes and pooling cardinalities. We use whole-image

rather than pyramid or grid pooling, since having several cells of same cardinality pro-

vides some smoothing that is hard to quantify. Results are presented in Fig. (4.2) and

Fig. (4.3), and show that:

• Recognition performance of average-pooled features (Average in the figures) in-

creases with pooling cardinality for all codebook sizes, as expected

• performance also increases with max pooling (1 estimate in the figures) when the

codebook size is large

• noticeable improvements appear at intermediate cardinalities for the smaller code-

book sizes (compare top blue, solid curves to bottom ones), as predicted by our

analysis.
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Figure 4.2: Influence of pooling cardinality and smoothing on performance, on the Caltech-

101 dataset. 1 estimate: max computed over a single pool. Empirical: empirical average of

max-pooled features over several subsamples (not plotted for smaller sizes, when it reaches the

expectation) Expectation: theoretical expectation of the maximum over P samples 1− (1− ξ)P ,

computed from the empirical average ξ. Average: estimate of the average computed over a single

pool. Best viewed in color.
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Figure 4.3: Influence of pooling cardinality and smoothing on performance, on the Scenes

dataset. 1 estimate: max computed over a single pool. Empirical: empirical average of max-

pooled features over several subsamples (not plotted for smaller sizes, when it reaches the ex-

pectation) Expectation: theoretical expectation of the maximum over P samples 1 − (1 − ξ)P ,

computed from the empirical average ξ. Average: estimate of the average computed over a single

pool. Best viewed in color.
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Next, we examine whether better recognition can be achieved when using a smoother

estimate of the expected max-pooled feature activation. We consider two ways of refin-

ing the estimate. First, if only a fraction of all samples is used, a smoother estimate

can be obtained by replacing the single max by an empirical average of the max over

different subsamples. Average pooling is the limit case as pool cardinality decreases.

The second approach directly applies the formula for the expectation of the maximum

(1− (1− ξ)P , using the same notation as before) to the empirical mean computed using

all samples. This has the benefit of removing the constraint that P be smaller than the

number of available samples, in addition to being computationally very simple. Results

using these two smoothing strategies are plotted in Fig. (4.2) and Fig. (4.3) under labels

Empirical and Expectation, respectively.

Several conclusions can be drawn:

• Smoothing the estimate of the max-pooled features always helps, especially at

smaller pooling cardinalities.

• The best performance is then obtained with pooling cardinalities smaller than the

full cardinality in all our experiments.

• As predicted, the maximum of the curve shifts towards larger cardinality as code-

book size increases.

• The best estimate of the max-pooled feature is the expectation computed from the

empirical mean, 1−(1−ξ)P . P here simply becomes the parameter of a nonlinear

function applied to the mean.
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• In all cases tested, using this nonlinear function with the optimal P outperforms

both average and max pooling.

Combining multiple pooling cardinalities

The maximum over a pool of smaller cardinality is not merely an estimator of the maxi-

mum over a large pool; therefore, using different pool cardinalities (e.g., using a spatial

pyramid instead of a grid) may provide a more powerful feature, independently of the

difference in spatial structure. Using a codebook of size 256, we compare recognition

rates using jointly either one, two, or three different pooling cardinalities, with average

pooling, max pooling with a single estimate per pooling cardinality, or max pooling

smoothed by using the theoretical expectation. Results presented in Table (4.2) show

that combining cardinalities does improve performance with max pooling — i.e., results

are better for Joint than for all present cardinalities by themselves (One) — but only if

the estimate has not been smoothed — i.e., when using the smooth estimate SM, the best

cardinality by itself (One) is better than Joint. Thus, the simultaneous presence of mul-

tiple cardinalities does not seem to provide any benefit beyond that of an approximate

smoothing.

Practical consequences

In papers using a spatial pyramid (Lazebnik et al., 2006; Yang et al., 2009b), there is a

coupling between the pooling cardinality and other parameters of the experiment: the

pooling cardinality is the density at which the underlying low-level feature representa-

tion have been extracted (e.g., SIFT features computed every 8 pixels in (Lazebnik et al.,

2006)) multiplied by the spatial area of each spatial pool. While using all available sam-
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Smallest cardinality 1024 512 256

Caltech 101 Avg, One 32.4± 1.1 31.3± 1.0 28.6± 1.1

Avg, Joint 31.9± 1.2 32.1± 1.2

Max, One 31.7± 1.4 32.7± 1.3 30.4± 2.3

Max, Joint 34.4± 0.7 35.8± 0.9

SM, One 37.9± 0.6 40.5± 0.7 42.0± 1.4

SM, Joint 39.4± 1.3 40.6± 0.8

15 Scenes Avg, One 69.8± 0.7 68.7± 0.8 66.3± 0.7

Avg, Joint 69.6± 0.7 69.2± 1.0

Max, One 63.5± 0.6 64.8± 0.7 64.3± 0.4

Max, Joint 65.4± 0.6 67.1± 0.6

SM, One 67.2± 0.8 70.4± 0.7 72.6± 0.7

SM, Joint 69.2± 0.7 70.7± 0.7

Table 4.2: Classification results with whole-image pooling over binary codes (k = 256).

One indicates that features are pooled using a single cardinality, Joint that the larger

cardinalities are also used. SM: smooth maximum (1− (1− ξ)P ).
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Codebook size 256 512 1024

Caltech 101 Max 67.5± 1.0 69.2± 1.1 71.0± 0.8

SM 68.6± 0.9 70.0± 1.2 71.8± 0.8

15 Scenes Max 77.9± 0.7 79.4± 0.5 80.2± 0.4

SM 78.2± 0.4 79.9± 0.5 80.5± 0.6

Table 4.3: Recognition accuracy with 3-level pyramid pooling over binary codes. One-

vs-all classification has been used in this experiment. Max: max pooling using all sam-

ples. SM: smooth maximum (expected value of the maximum computed from the aver-

age 1 − (1 − ξ)P ), using a pooling cardinality of P = 256 for codebook sizes 256 and

512, P = 512 for codebook size 1024.

ples is optimal for average pooling, this is usually not the case with max pooling over

binary features, particularly when the size of the codebook is small. Instead, the pooling

cardinality for max pooling should be adapted to the dictionary size, and the remaining

samples should be used to smooth the estimate. Another, simpler way to achieve similar

or better performance is to apply to the average-pooled feature the nonlinear transforma-

tion corresponding to the expectation of the maximum, (i.e., 1−(1−ξ)P , using the same

notation as before); in addition, the parameter P is then no longer limited by the number

of available samples in a pool, which may be important for very large codebooks. Our

experiments using binary features in a three-level pyramid show that this transformation

yields improvement over max pooling for all codebook sizes (Table (4.3)). The increase

in accuracy is small, however the difference is consistently positive when looking at

experimental runs individually instead of the difference in the averages over ten runs.
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4.3.3 Pooling continuous sparse codes

Sparse codes have proven useful in many image applications such as image compression

and deblurring. Combined with max pooling, they have led to state-of-the-art image

recognition performance with a linear classifier (Yang et al., 2009b; Boureau et al.,

2010a). However, the analysis developed for binary features in the previous section does

not apply, and the underlying causes for this good performance seem to be different.

Influence of pooling cardinality

In the case of binary features, and when no smoothing is performed, we have seen above

that there is an optimal pooling cardinality, which increases with the sparsity of the

features. Smoothing the features displaces that optimum towards smaller cardinalities.

In this section, we perform the same analysis for continuous features, and show that (1) it

is always better to use all samples for max pooling when no smoothing is performed, (2)

however the increase in signal-to-noise ratio (between means’ separation and standard

deviation) does not match the noise reduction obtained by averaging over all samples.

Model

Let P denote cardinality of the pool. Exponential distribution (or Laplace distributions

for feature values that may be negative) are often preferred to Gaussian distributions

to model visual feature responses because they are highly kurtotic. In particular, they

are a better model for sparse codes. Assume the distribution of the value of a feature

for each patch is an exponential distribution with mean 1/λ and variance 1/λ2. The

corresponding cumulative distribution function is 1− e−λx. The cumulative distribution

function of the max-pooled feature is (1− e−λx)P . The mean and variance of the distri-
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bution of the max-pooled feature can be shown2 to be respectively µm = H(P )/λ and

σ2
m = 1/λ2

∑P
l=1 1/l(2H(l) − H(P )), where H(k) =

∑k
i=1 1/i denotes the harmonic

series. Thus, for all P , µ1/µ2 = σ1/σ2 = λ1/λ2, and the distributions will be better sep-

arated if the scaling factor of the mean is bigger than the scaling factor of the standard

deviations, i.e., H(P ) >
√∑P

l=1 1/l(2H(l)−H(P )), which is true for all P . Further-

more, since H(P ) = log(P ) + γ + o(1) when P → ∞ (where γ is Euler’s constant),

it can be shown that
∑P

l=1 1/l(2H(l) − H(P )) = log(P ) + O(1), so that the distance

between the means grows faster (like log(P )) than the standard deviation, which grows

like
√

log(P ). Two conclusions can be drawn from this: (1) when no smoothing is per-

formed, larger cardinalities provide a better signal-to-noise ratio, but (2) this ratio grows

slower than when simply using the additional samples to smooth the estimate (1/
√
P

2PROOF:

• MEAN: The cumulative distribution function of the max-pooled feature is F (x) , (1 −

exp(−λx))P . Hence,

µm =

∫ ∞

0

[1− F (x)]dx =

∫ ∞

0

1− (1− exp(−λx))P dx.

Changing variable to u = (1− exp(−λx)) :

µm =
1

λ

∫ 1

0

1− uP

1− u
du =

1

λ
f(P ),

where f1(P ) ,
∫ 1

0
1−uP

1−u du. We have:

f1(0) = 0; ∀P ≥ 1, f1(P )− f1(P − 1) =

∫ 1

0

uP−1du =
1

P
.

Hence, µm = 1/λ
∑P

j=1 1/j = H(P )/λ.

• VARIANCE: see appendix.
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assuming independent samples, although in reality smoothing is less favorable since the

independence assumption is clearly false in images).

4.3.4 Experiments with sparse features

We perform the same experiments as in the previous section to test the influence of

codebook size and pooling cardinalities, using continuous sparse codes instead of binary

codes.

Results are presented in Fig. (4.4) and Fig. (4.5). As expected from our analysis, us-

ing larger pooling cardinalities is always better with continuous codes when no smooth-

ing is performed (blue solid curve): no bump is observed even with smaller dictionaries.

Max pooling performs better than average pooling on the Caltech dataset (Fig. (4.4));

this is not predicted by the analysis using our very simple model. On the Scenes dataset

(Fig. (4.5)), max pooling and average pooling perform equally well when the largest

dictionary size tested (1024) is used. Slightly smoothing the estimate of max pooling by

using a smaller sample cardinality results in a small improvement in performance; since

the grid (or pyramid) pooling structure performs some smoothing (by providing several

estimates for the sample cardinalities of the finer levels), this may explain part of the

better performance of max pooling compared to average pooling with grid and pyramid

smoothing, even though average pooling may perform as well when a single estimate is

given.

Combining pooling cardinalities

Our analysis predicts that combining several cardinalities should not result in drastically

improved performance. Results in Table (4.4) indeed show very limited or no improve-
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Figure 4.4: Influence of pooling cardinality and smoothing on performance, on the Caltech-101

dataset. 1 estimate: maximum computed over a single pool. Empirical: empirical average of

max-pooled features over several subsamples of smaller cardinality. Average: estimate of the

average computed over a single pool. Best viewed in color.
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Figure 4.5: Influence of pooling cardinality and smoothing on performance, on the Scenes

dataset. 1 estimate: maximum computed over a single pool. Empirical: empirical average of

max-pooled features over several subsamples of smaller cardinality. Average: estimate of the

average computed over a single pool. Best viewed in color.
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Smallest cardinality 1024 512 256

Caltech 101 Avg, One 35.4± 1.7 33.7± 1.6 32.0± 0.9

Avg, Joint 35.1± 1.4 34.6± 1.2

Max, One 38.4± 1.0 36.5± 1.5 33.2± 0.8

Max, Joint 38.4± 1.8 37.5± 1.8

15 Scenes Avg, One 72.9± 0.7 71.5± 0.8 69.2± 0.7

Avg, Joint 72.6± 0.7 71.9± 0.7

Max, One 69.7± 0.8 68.6± 0.9 67.0± 0.6

Max, Joint 69.2± 2.0 70.3± 0.4

Table 4.4: Classification results with whole-image pooling over sparse codes (k = 256).

One indicates that features are pooled using a single cardinality, Joint that the larger

cardinalities are also used. Here, using several cardinalities does not increase accuracy

with either average or max pooling.

ment when pooling cardinalities are combined.

4.4 Mixture distribution and clutter model

Our simple model does not account for the better discrimination sometimes achieved

by max pooling for continuous sparse codes with large dictionaries. In practice, the

ideal case of all data points coming from one of two classes is rarely encountered. We

briefly present how max pooling may also help in a slightly more realistic case. When

doing visual recognition, patches that are highly specific to a class are found alongside
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generic patches that contribute little discrimination information. These can be back-

ground patches, or plain patches that are pervasive in all classes. The fraction of infor-

mative patches may vary widely between images, making statistical inference harder.

With the same notation as before, consider a binary linear classification task over

cluttered images. Pooling is performed over the whole image, so that the pooled feature

h is the global image representation. Linear classification requires distributions of h

over examples from positive and negative classes (henceforth denoted by + and −) to

be well separated.

We model the distribution of image patches of a given class as a mixture of two

distributions (Minka, 2001): patches are taken from the actual class distribution (fore-

ground) with probability (1 − w), and from a clutter distribution (background) with

probability w, with clutter patches being present in both classes (+ or −). Crucially, we

model the amount of clutter w as varying between images (while being fixed for a given

image).

There are then two sources of variance for the distribution p(h): the intrinsic vari-

ance caused by sampling from a finite pool for each image (which causes the actual

value of h over foreground patches to deviate from its expectation), and the variance of

w (which causes the expectation of h itself to fluctuate from image to image depending

on their clutter level). If the pool cardinality N is large, average pooling is robust to

intrinsic foreground variability, since the variance of the average decreases like 1/N.

This is usually not the case with max pooling, where the variance can increase with pool

cardinality depending on the foreground distribution.

However, if the amount of clutter w has a high variance, it causes the distribution of
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the average over the image to spread, since the expectation of h for each image depends

on w. Even if the foreground distributions are well separated, variance in the amount of

clutter creates overlap between the mixture distributions if the mean of the background

distribution is much lower than that of the foreground distributions. Conversely, max

pooling can be robust to clutter if the mean of the background distribution is sufficiently

low. This is illustrated in Fig. (4.6), where we have plotted the empirical distributions

of the average of 10 pooled features sharing the same parameters. Simulations are run

using 1000 images of each class, composed of N = 500 patches. For each image, the

clutter level w is drawn from a truncated normal distribution with either low (top) or

high (bottom) variance. Local feature values at each patch are drawn from a mixture

of exponential distributions, with a lower mean for background patches than foreground

patches of either class. When the clutter has high variance (Fig. (4.6), bottom), distribu-

tions remain well separated with max pooling, but have significant overlap with average

pooling.

We now refine our analysis in two cases: sparse codes and vector quantized codes.

Sparse codes.

In the case of a positive decomposition over a dictionary, as before, we model the distri-

bution of the value of feature j for each patch by an exponential distribution with mean

µj , variance µ2
j , and density f(x) = 1/µj exp(−x/µj).

The corresponding cumulative distribution function is F (x) = 1 − exp(−x/µj).

The cumulative distribution function of the max-pooled feature with a pool of size P is

F P (x) = (1− exp(−x/µj))
P . Clutter patches are sampled from a distribution of mean

µb. Let Pf and Pb denote respectively the number of foreground and background patches,
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Figure 4.6: Empirical probability densities of x = 1
K

∑K
j=1 hj , simulated for two classes

classes of images forming pools of cardinality N = 500. The local features are drawn

from one of three exponential distributions. When the clutter is homogeneous across

images (top), the distributions are well separated for average pooling and max pool-

ing. When the clutter level has higher variance (bottom), the max pooling distributions

(dashed lines) are still well separated while the average pooling distributions (solid lines)

start overlapping.
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P = Pf +Pb. Assuming Pf and Pb are large, Taylor expansions of the cumulative distri-

bution functions of the maxima yield that 95% of the probability mass of the maximum

over the background patches will be below 95% of the probability mass of the maxi-

mum over the foreground patches provided that Pb < | log(0.95)| (Pf/| log(0.05)|)µj/µb .

In a binary discrimination task between two comparatively similar classes, if an im-

age is cluttered by many background patches, with µb � µ+
j and µb � µ−

j , max-

pooling can be relatively immune to background patches, while average-pooling can

create overlap between the distributions (see Fig. (4.6)). For example, if µb < 2µj

and Pf = 500, having fewer than Pb < 1400 background patches virtually guarantees

that the clutter will have no influence on the value of the maximum. Conversely, if

Pb < Pf/59 ≤ | log(0.95)|/| log(0.05)|Pf , clutter will have little influence for µb up to

µj . Thus, max-pooling creates immunity to two different types of clutter: ubiquitous

with low feature activation, and infrequent with higher activation.

Vector quantization.

We model binary patch codes for a given feature as before, as i.i.d. Bernoulli random

variables of mean ξ. The distribution of the average-pooled feature also has mean ξ, and

its variance decreases like 1/P. The maximum is a Bernoulli variable of mean 1− (1−

ξ)P and variance (1− (1− ξ)P )(1− ξ)P . Thus, it is 1 with probability 0.95 if:

P ≥ log(0.05)/log(1− ξ) ≈ | log(0.05)|/ξ, and 0 with probability 0.95 if:

P ≤ log(0.95)/log(1− ξ) ≈ | log(0.95)|/ξ, for ξ � 1. The separability of classes

depends on sample cardinality P. There exists a sample cardinality P for which the

maximum over class + is 0 with probability 0.95, while the maximum over class − is 1

75



with probability 0.95, if:

ξ−

ξ+
>

log(0.05)

log(0.95)
, e.g. if

ξ−

ξ+
> 59.

Since
∑

j ξ = 1 in the context of vector quantization, ξ becomes very small on average

if the codebook is very large. For ξ � 1, the characteristic scale of the transition from

0 to 1 is 1/ξ, hence the pooling cardinality range corresponding to easily separable

distributions can be quite large if the mean over foreground patches from one class is

much higher than both the mean over foreground patches from the other class and the

mean over background patches.

4.5 Transition from average to max pooling

The previous sections have shown that depending on the data and features, either max or

average pooling may perform best. The optimal pooling type for a given classification

problem may be neither max nor average pooling, but something in between; in fact,

we have shown that it is often better to take the max over a fraction of all available

feature points, rather than over the whole sample. This can be viewed as an intermediate

position in a parametrization from average pooling to max pooling over a sample of

fixed size, where the parameter is the number of feature points over which the max is

computed: the expected value of the max computed over one feature is the average,

while the max computed over the whole sample is obviously the real max.

This is only one of several possible parametrizations that continuously transition

from average to max pooling. The P -norm of a vector (more accurately, a version

of it normalized by the number of samples N ) is another well-known one: fP (v) =
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(
1
N

∑N
i=1 v

P
i

) 1
P
, which gives the average for P = 1 and the max for P → ∞. This

parametrization accommodates `2-norm pooling, which is also square-root pooling when

features are binary (for P = 2), and absolute value pooling (for P = 1), both of which

have been used in the literature (e.g., (Yang et al., 2009b)). In our experiments, `2-

pooling appears to be the best choice for P -norm pooling.

A third parametrization is the sum of samples weighted by a softmax function:∑
i exp(βxi)/

∑
j exp(βxj)xi. This gives average pooling for β = 0 and max pooling

for β → ∞. Finally, a fourth parametrization is 1
β
log 1

N

∑
i exp(βxi), which gives the

average for β → 0 and the max for β → ∞. As with the P -norm, the result only

depends on the empirical feature activation mean in the case of binary vectors; thus,

these functions can be applied to an already obtained average pool.

Fig. (4.7) plots the recognition rate obtained on the Scenes dataset using sparse codes

and each of the four parametrizations mentioned. Instead of using the expectation of the

maximum for exponential distributions, we have used the expectation of the maximum

of binary codes (1 − (1 − ξ)P ), applied to the average, as we have observed that it

works well; we refer to this function as the expectation of the maximum (maxExp in

Fig. (4.7)), although it does not converge to the maximum when P →∞ for continuous

codes. Both this parametrization and the P -norm perform better than the two other

pooling functions tested, which present a marked dip in performance for intermediate

values.

Fig. (4.8) shows the expected value of pooled features according to our model for

binary features, for the same parametrizations. Separation is always better achieved

when features are rare (top row) than when they are often active (bottom row).
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Figure 4.7: Recognition rate obtained on the scenes dataset using several pooling functions that

perform a continuous transition from average to max pooling when varying parameter P (see

text). Best viewed in color.
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Figure 4.8: Several continuous parametrizations from average to max. For all parametrizations,

separation can be increased when average feature activation is small (upper row), but the trans-

formation is not very useful with larger activations. The legend gives the values of ξ used for

plotting.

4.6 Conclusion

This chapter has shown that the ability of the pooled feature to discriminate between

classes crucially depends on the statistics of the local features to be pooled, and the

composition of the sample over which pooling is performed. If the pooling step is

fixed, then some coding steps may be more suited to the particular type of information

crushing exerted by the pooling step. In particular, max pooling has good discrimination

properties when the features being pooled are rare. This may partly explain why sparse

features are well-suited to max pooling.
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5
LOCALITY IN CONFIGURATION SPACE

The previous chapter has looked at how best to represent the information within a given

pool, taking the sample within a pool as fixed. This chapter now turns to the choice of the

pools themselves. Previous work has shown that simply making the pools more spatially

restricted (e.g., the cells of a grid instead of the whole image) makes the representation

more powerful. Here, we look at the effect of restricting pooling to vectors that are

similar to one another; i.e., taking into account locality in configuration space to draw the

neighborhoods. The research presented in this chapter has been published in (Boureau

et al., 2011).

5.1 Introduction

Much recent work in image recognition has underscored the importance of locality con-

straints for extracting good image representations. Methods that incorporate some way

of taking locality into account define the state of the art on many challenging image clas-

sification benchmarks such as Pascal VOC, Caltech-101, Caltech-256, and 15-Scenes (Gao

et al., 2010; Wang et al., 2010; Yang et al., 2010; Yu et al., 2009; Zhou et al., 2010).

While the pooling operations are often performed over local spatial neighborhoods,

the neighborhoods may contain feature vectors that are very heterogeneous, possibly

leading to the loss of a large amount of information about the distribution of features, as

illustrated in Fig. (5.1). Restricting the pooling to feature vectors that are similar in the
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multidimensional input space (or nearby) (Jégou et al., 2010; Zhou et al., 2010) remedies

this problem. Considering similar inputs for smoothing noisy data over a homogeneous

sample reduces noise without throwing out the signal, and has long been recognized

useful in the image processing and denoising communities (Buades et al., 2005; Dabov

et al., 2006). This trick has been successfully incorporated to denoising methods using

sparse coding (Mairal et al., 2009b). It is interesting to note that considerations of

locality often pull coding and pooling in opposite directions: they make coding smoother

(neighbors are used to regularize coding so that noise is harder to represent) and pooling

more restrictive (only neighbors are used so that the signal does not get averaged out).

This can be viewed as an attempt to distribute smoothing more evenly between coding

and pooling.

Authors of locality-preserving methods have often attributed their good results to the

fact that the encoding uses only dictionary atoms that resemble the input (Wang et al.,

2010; Yu et al., 2009), or viewed them as a trick to learn huge specialized dictionaries,

whose computational cost would be prohibitive with standard sparse coding (Yang et al.,

2010). The locality that matters in these methods is stated to be locality between inputs

and atoms, not preservation of locality across inputs so that similar inputs have similar

codes. However, the triangle inequality implies that locality across inputs is always

somewhat preserved if codes use atoms that are close to inputs, but the reverse is not true.

Thus, focusing on similarity between inputs and atoms may underestimate the influence

of the preservation of locality. We argue that more local pooling may be one factor in

the success of methods that incorporate locality constraints into the training criterion of

the codebook for sparse coding (Gao et al., 2010; Wang et al., 2010; Yu et al., 2009),
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Figure 5.1: Cartoon representation of a distribution of descriptors that has a high curva-

ture and is invariant to the spatial location in the image, with two feature components

(top). The middle and bottom figures show the samples projected across space in the

2D feature space. Due to the curvature of the surface, global pooling (middle) loses

most of the information contained in the descriptors; the red cross (average pooling of

the samples) is far away from the lower-dimensional surface on which the samples lie.

Clustering the samples and performing pooling inside each cluster preserves information

since the surface is locally flat (bottom).
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or directly cluster the input data to learn one local dictionary per cluster (Wang et al.,

2010; Yang et al., 2010). The question we attempt to answer in this chapter is whether it

is possible to leverage locality in the descriptor space once the descriptors have already

been encoded. We argue that if the coding step has not been designed in such a way that

the pooling operation preserves as much information as possible about the distribution

of features, then the pooling step itself should become more selective.

The contributions of this work are threefold. First, we show how several recent fea-

ture extracting methods can be viewed in a unified perspective as preventing pooling

from losing too much relevant information. Second, we demonstrate empirically that

restricting pools to codes that are nearby not only in (2D) image space but also in de-

scriptor space, boosts the performance even with relatively small dictionaries, yielding

state-of-the-art performance or better on several benchmarks, without resorting to more

complicated and expensive coding methods, or having to learn new dictionaries. Third,

we propose some promising extensions.

5.2 Pooling more locally across the input space

We propose to streamline the approach in (Yang et al., 2010), which requires learning

one different dictionary per cluster, and show that simply making the pooling step more

selective can substantially enhance the performance of small dictionaries, and beat the

state of the art on some object recognition benchmarks when large dictionaries are used,

without requiring additional learning beyond obtaining an additional clustering code-

book with K-means. Comparing the performance of our system with that obtained with

individual dictionaries allows us to quantify the relative contributions of more selective

83



pooling and more specialized, overcomplete dictionaries.

To clarify how our local pooling scheme differs from the usual local spatial pooling,

an image feature can be viewed as a couple z = (x,y), where y ∈ R2 denotes a pixel

location, and x ∈ Rd is a vector, or configuration, encoding the local image structure at

y (e.g., a SIFT descriptor, with d = 128). A feature set Z is associated with each image,

its size potentially varying from one picture to the next.

Spatial pooling considers a fixed – that is, predetermined and image-independent –

set of M possibly overlapping image regions (spatial bins) Y1 to YM . To these, we add

a fixed set of P (multi-dimensional) bins X1 to XP in the configuration space. In this

work, the spatial bins are the cells in a spatial pyramid, and the configuration space bins

are the Voronoi cells of clusters obtained using K-means.

Denoting by g the pooling operator (average or max in the previous section), the

pooled feature is obtained as:

h(m,p) = g(i∈Ym,j∈Xp)(α(i,j)). (5.1)

Bags of features can be viewed as a special case of this in two ways: either by

considering the 1-of-K encoding presented above, followed by global pooling in the

configuration space (P = 1), or with a simplistic encoding that maps all inputs to 1,

but does fine configuration space binning (P = K). Accordingly, the feature extraction

in this chapter can be viewed either as extending the sparse coding spatial pyramid by

making configuration space pooling local, or as extending the hard-vector-quantized

spatial pyramid by replacing the simplistic code by sparse coding: descriptors are first

decomposed by sparse coding over a dictionary of size K; the same descriptors are also

clustered over a K-means dictionary of size P ; finally, pooling of the sparse codes is
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then performed separately for each cluster (as in aggregated coding (Jégou et al., 2010)

– see Sec. (5.3) –, but with sparse codes), yielding a feature of size K × P × S if there

are S spatial bins.

While this does not apply to max pooling, local pooling can be viewed as implement-

ing local bilinear classification when using average pooling and linear classification: the

pooling operator and the classifier may be swapped, and classification of local features

then involves computing βT
xyWα, where βxy is a (S × P )- dimensional binary vector

that selects a subset of classifiers corresponding to the configuration space and spatial

bins, and W is a (S ×P )×K matrix containing one K-dimensional local classifier per

row.

5.3 Related work about locality in feature space

We start our review of previous work with a caveat about word choice. There exists an

unfortunate divergence in the vocabulary used by different communities when it comes

to naming methods leveraging neighborhood relationships in feature space: what is called

”non-local” in work in the vein of signal processing (Buades et al., 2005; Mairal et al.,

2009b) bears a close relationship to ”local” fitting and density estimation (Gao et al.,

2010; Saul and Roweis, 2003; Wang et al., 2010; Yu et al., 2009). Thus, non-local

means (Buades et al., 2005) and locally-linear embedding (Saul and Roweis, 2003) ac-

tually perform the same type of initial grouping of input data by minimal Euclidean

distance. This discrepancy stems from the implicit understanding of ”local” as either

”spatially local”, or ”local in translation-invariant configuration space”.
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5.3.1 Preserving neighborhood relationships during coding

Previous work has shown the effectiveness of preserving configuration space locality

during coding, so that similar inputs lead to similar codes. This can be done by ex-

plicitly penalizing codes that differ for neighbors. The DrLIM system of siamese net-

works in (Hadsell et al., 2006), and neighborhood component analysis (Goldberger et al.,

2004), learn a mapping that varies smoothly with some property of the input by min-

imizing a cost which encourages similar inputs to have similar codes (similarity can

be defined arbitrarily, as locality in input space, or sharing the same illumination, ori-

entation, etc.) Exploiting image self-similarities has also been used successfully for

denoising (Buades et al., 2005; Dabov et al., 2006; Mairal et al., 2009b).

Locality constraints imposed on the coding step have been adapted to classification

tasks with good results. Laplacian sparse coding (Gao et al., 2010) uses a modified

sparse coding step in the spatial pyramid framework. A similarity matrix of input SIFT

descriptors is obtained by computing their intersection kernel, and used in an added term

to the sparse coding cost. The penalty to pay for the discrepancy between a pair of codes

is proportional to the similarity of the corresponding inputs. This method obtains state-

of-the-art results on several object recognition benchmarks. Locality-constrained linear

coding (Wang et al., 2010) (LLC) projects each descriptor on the space formed by its k

nearest neighbors (k is small, e.g., k = 5). This procedure corresponds to performing

the first two steps of the locally linear embedding algorithm (Saul and Roweis, 2003)

(LLE), except that the neighbors are selected among the atoms of a dictionary rather

than actual descriptors, and the weights are used as features instead of being mere tools

to learn an embedding.
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Sparse coding methods incorporating a locality constraint share the property of in-

directly limiting activation of a given component of the vectors representing descriptors

to a certain region of the configuration space. This may play a role in their good perfor-

mance. For example, in LLC coding, the component corresponding to a given dictionary

atom will be non-zero only if that atom is one of the k nearest neighbors of the descrip-

tor being encoded; the non-zero values aggregated during pooling then only come from

these similar descriptors. Several approaches have implemented this strategy directly

during the pooling step, and are presented in the next section.

5.3.2 Letting only neighbors vote during pooling

Pooling involves extracting an ensemble statistic from a potentially large group of in-

puts. However, pooling too drastically can damage performance, as shown in the spatial

domain by the better performance of spatial pyramid pooling (Lazebnik et al., 2006)

compared to whole-image pooling.

Different groups have converged to a procedure involving preclustering of the input

to create independent bins over which to pool the data. In fact, dividing the feature

space into bins to compute correspondences has been proposed earlier by the pyramid

match kernel approach (Grauman and Darrell, 2005). However, newer work does not

tile the feature space evenly, relying instead on unsupervised clustering techniques to

adaptively produce the bins.

The methods described here all perform an initial (hard or soft) clustering to partition

the training data according to appearance, as in the usual bag-of-words framework, but

then assigning a vector to each cluster instead of a scalar. The representation is then a
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“super-vector” that concatenates these vectors instead of being a vector that concatenates

scalars.

Aggregated coding (Jégou et al., 2010) and super-vector coding (Zhou et al., 2010)

both compute, for each cluster, the average difference between the inputs in the cluster,

and its centroid: (1) SIFT descriptors xi are extracted at regions of interest, (2) visual

words ck are learned over the whole data by K-means, (3) descriptors of each image are

clustered, (4) for each cluster Ck, the sum
∑

x∈Ck
(x − ck) is computed, (5) the image

descriptor is obtained by concatenating the representations for each cluster.

If the centroids were computed using only the descriptors in a query image, the rep-

resentation would be all zeros, because the centroids in K-means are also obtained by

averaging the descriptors in each cluster. Instead, the centroids are computed using de-

scriptors from the whole data, implicitly representing a “baseline image” against which

each query image is compared. Thus, encoding relatively to the cluster centroid removes

potentially complex but non-discriminative information. This representation performs

very well on retrieval (Jégou et al., 2010) and image classification (Zhou et al., 2010)

(Pascal VOC2009) benchmarks.

Another related method (Yang et al., 2010) that obtains high accuracy on the Pas-

cal datasets combines the preclustering step of aggregated and super-vector coding, with

sparse decomposition over individual local dictionaries learned inside each cluster. Both

approaches using preclustering for image classification (Yang et al., 2010; Zhou et al.,

2010) have only reported results using gigantic global descriptors for each image. In-

deed, the high results obtained in (Yang et al., 2010) are attributed to the possibility of

learning a very large overcomplete dictionary (more than 250,000 atoms) which would
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be computationally infeasible without preclustering, but can be done by assembling a

thousand or more smaller local dictionaries. The experiments presented in the next sec-

tion seek to isolate the effect of local pooling that is inherent in this scheme.

5.4 Experiments

We perform experiments on three image recognition datasets: 15-Scenes (Lazebnik et al.,

2006), Caltech-101 (Fei-Fei et al., 2004) and Caltech-256 (Griffin et al., 2007). All

features are extracted from grayscale images. Large images are resized to fit inside a

300 × 300 box. SIFT descriptors are extracted densely over the image, and encoded

into sparse vectors using the SPAMS toolbox (SPAMS, 2012). We adopt the denser

2 × 2 macrofeatures of Chapter 3, extracted every 4 pixels, for the Caltech-256 and

Caltech-101 databases, and every 8 pixels for the Scenes, except for some experiments

on Caltech-256 where standard features extracted every 8 pixels are used for faster pro-

cessing. The sparse codes are pooled inside the cells of a three-level pyramid (4×4, 2×2

and 1 × 1 grids); max pooling is used for all experiments except those in Sec. (5.4.2),

which compare it to other pooling schemes. We apply an `1.5 normalization to each

vector, since it has shown slightly better performance than no normalization in our ex-

periments (by contrast, normalizing by `1 or `2 norms worsens performance). One-

versus-all classification is performed by training one linear SVM for each class using

LIBSVM (Chang and Lin, 2001), and then taking the highest score to assign a label

to the input. When local pooling in the configuration space is used (P ≥ 1), cluster-

ing is performed using the K-means algorithm to obtain cluster centers. Following the

usual practice (Griffin et al., 2007; Lazebnik et al., 2006; Wang et al., 2010), we use
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30 training images on the Caltech-101 and Caltech-256 datasets, 100 training images

on the Scenes dataset; the remaining images are used for testing, with a maximum of

50 and 20 test images for Caltech-101 and Caltech-256, respectively. Experiments are

run ten times on ten random splits of training and testing data, and the reported result is

the mean accuracy and standard deviation of these runs. Hyperparameters of the model

(such as the regularization parameter of the SVM or the λ parameter of sparse cod-

ing) are selected by cross-validation within the training set. Patterns of results are very

similar for all three datasets, so results are shown only on Caltech-101 for some of the

experiments; more complete numerical results on all three datasets can be found in the

Appendix.

5.4.1 Pooling locally in configuration space yields state-of-the-art

performance

Experiments presented in Table (5.1) and Table (5.2) compare the performance of sparse

coding with a variety of configuration space pooling schemes, with a list of published

results of methods using grayscale images and a single type of descriptor. Local pool-

ing always improves results, except on the Scenes for a dictionary of size K = 1024.

On the Caltech-256 benchmark, our performance of 41.7% accuracy with 30 training

examples is similar to the best reported result of 41.2% that we are aware of (for meth-

ods using a single type of descriptors over grayscale), obtained by locality-constrained

linear codes (Wang et al., 2010), using three scales of SIFT descriptors and a dictionary

of size K = 4096.
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Caltech 30 tr. Scenes

K = 256, Pre, P = 1 70.5± 0.8 78.8± 0.6

P = 16 74.0± 1.0 81.5± 0.8

P = 64 75.0± 0.8 81.1± 0.5

P = 128 75.5± 0.8 81.0± 0.3

P = 1 + 16 74.2± 1.1 81.5± 0.8

P = 1 + 64 75.6± 0.6 81.9± 0.7

K = 256, Post, P = 16 75.1± 0.8 80.9± 0.6

P = 64 76.4± 0.8 81.1± 0.6

P = 128 76.7± 0.8 81.1± 0.5

K = 1024, Pre, P = 1 75.6± 0.9 82.7± 0.7

P = 16 76.3± 1.1 82.7± 0.9

P = 64 76.2± 0.8 81.4± 0.7

P = 1 + 16 76.9± 1.0 83.3± 1.0

P = 1 + 64 77.3± 0.6 83.1± 0.7

K = 1024, Post, P = 16 77.0± 0.8 82.9± 0.6

P = 64 77.1± 0.7 82.4± 0.7

Table 5.1: Results on Caltech-101 (30 training samples per class) and 15-scenes, given

as a function of whether clustering is performed before (Pre) or after (Post) the encoding,

K: dictionary size, and P : number of configuration space bins. Results within one

standard deviation of the best results are all shown in bold.
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Accuracy

Boiman et al. (Boiman et al., 2008) 37.0

Gao et al. (Gao et al., 2010) (K = 1024) 35.7± 0.1

Kim et al. (Kim and Grauman, 2010) 36.3

van Gemert et al. (van Gemert et al., 2010) (K = 128) 27.2± 0.5

Wang et al. (Wang et al., 2010) (K = 4096) 41.2

Yang et al. (Yang et al., 2009b) (K = 1024) 34.0± 0.4

K = 256, Pre, P = 1 32.3± 0.8

P = 16 38.0± 0.5

P = 64 39.2± 0.5

P = 128 39.7± 0.6

K = 256, Post, P = 16 36.9± 0.7

P = 64 39.6± 0.5

P = 128 40.3± 0.6

K = 1024, Pre, P = 1 38.1± 0.6

P = 16 41.6± 0.6

P = 64 41.7± 0.8

K = 1024, Post, P = 16 40.4± 0.6

Table 5.2: Recognition accuracy on Caltech 256, 30 training examples, for several meth-

ods using a single descriptor over grayscale. For our method, results are shown as a

function of whether clustering is performed before (Pre) or after (Post) the encoding,

K: dictionary size, and P : number of configuration space bins.
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Using pyramids in configuration space

We examine whether it is advantageous to combine fine and coarse clustering, in a way

reminiscent of the levels of the spatial pyramid. With large dictionaries, local pooling

in the configuration space does not always perform better than standard global pooling

(see Table (5.1) and Table (5.2)). However, combining levels of different coarseness

gives performance better than or similar to that of the best individual level, as has been

observed with the spatial pyramid (Lazebnik et al., 2006).

This significantly improves performance on the Caltech-101 dataset. To the best of

our knowledge, our performance of 77.3% on the Caltech-101 benchmark, was above

all previously published results for a single descriptor type using grayscale images at

the time of publication of our paper (Boureau et al., 2011) – although better perfor-

mance has been reported with color images (e.g., 78.5%± 0.4 with a saliency-based ap-

proach (Kanan and Cottrell, 2010)), multiple descriptor types (e.g., methods using mul-

tiple kernel learning have achieved 77.7%± 0.3 (Gehler and Nowozin, 2009), 78.0%±

0.3 (VGG Results URL, 2012; Vedaldi et al., 2009) and 84.3% (Yang et al., 2009a)

on Caltech-101 with 30 training examples), or subcategory learning (83% on Caltech-

101 (Todorovic and Ahuja, 2008)). On the Scenes benchmark, preclustering does im-

prove results for small dictionaries (K ≤ 256, see Appendix), but not for larger ones

(K = 1024). While our method outperforms the Laplacian sparse coding approach (Gao

et al., 2010) on the Caltech 256 dataset, our performance is much below that of Lapla-

cian sparse coding on the Scenes database.
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Figure 5.2: Recognition accuracy on Caltech-101. Left: Clustering after the encoding

generally performs better; for both schemes, binning too finely in configuration space

(large P ) hurts performance. Right: the best performance is obtained with max pooling

and uniform weighting. Max pooling consistently outperforms average pooling for all

weighting schemes. With average pooling, weighting by the square root of the cluster

weight performs best. P = 16 configuration space bins are used. Results on the Caltech-

256 and Scenes datasets show similar patterns. Best viewed in color.

Pre- vs. post-clustering

One advantage of using the same dictionary for all features is that the clustering can

be performed after the encoding. The instability of sparse coding could cause features

similar in descriptor space to be mapped to dissimilar codes, which would then be pooled

together. This does not happen if clustering is performed on the codes themselves.

While pre-clustering may perform better for few clusters, post-clustering yields better
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results when enough clusters are used (P ≥ 64); a dictionary of size K = 1024 reaches

77.1 ± 0.7 accuracy on Caltech-101 with P = 64 bins (to be compared to 76.2 ± 0.8

when clustering before coding), while a dictionary of size K = 256 yields 76.7 ± 0.8

with P = 128 bins (to be compared to 75.5 ± 0.8 with preclustering). Fig. (5.2(a))

also shows that performance drops for larger P , irrespective of whether the clustering is

performed before or after the encoding.

5.4.2 Gaining a finer understanding of local configuration space pool-

ing

In this section, we investigate how much local configuration space pooling can enhance

the performance of small dictionaries, how it compares to learning one local dictio-

nary per configuration bins, and what pooling and weighting schemes work best in our

pipeline.

Local pooling boosts small dictionaries

Fig. (5.3(a)) shows results for various assignments of components between atoms (K)

and centroids (P ). Pooling more locally in configuration space (P > 1) can consider-

ably boost the performance of small dictionaries.

Unsurprisingly, larger dictionaries consistently beat smaller ones combined with pool-

ing using local configuration bins, at same total number of components; this can be seen

from the downwards slope of the gray dashed lines in Fig. (5.3(a)) linking data points

at constant K ∗ P . However, if P is allowed to grow more, small dictionaries can out-

perform larger ones. This leads to good performance with a small dictionary; e.g., a
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Figure 5.3: Recognition accuracy on Caltech-101. Left: pooling locally in finer config-

uration space bins can boost the performance of small dictionaries. Dotted gray lines

indicate constant product of dictionary size × number of configuration bins. Right: a

substantial part of the improvement observed when using multiple local dictionaries can

be achieved without changing the encoding, by pooling locally in configuration space.

P = 4 configuration space bins are used. Best viewed in color.

dictionary of just K = 64 atoms coupled with a preclustering along P = 64 centroids

achieves 73.0± 0.6% on Caltech-101.

Comparison with cluster-specific dictionaries

In addition to learning richer, more local dictionaries, learning one dictionary per cluster

as done in (Wang et al., 2010; Yang et al., 2010) inherently leads to more local pooling.

Experiments in this section seek to disentangle these effects. As shown in Fig. (5.3(b)),

more than half of the improvement compared to no preclustering is usually due to the
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separate clustering rather than more specific dictionaries. The smaller the dictionary,

the larger the proportion of the improvement due to clustering. This may be due to the

fact that smaller dictionaries do not have enough atoms to implicitly link activation of

an atom to cluster membership during coding, leaving more of that task to the explicit

local configuration space pooling than when large dictionaries are used.

Pooling operator and cluster weighting

When concatenating the vectors corresponding to each pool, it is not clear whether they

should be weighted according to the prominence of the cluster, measured as the ratio

Ni/N of the number Ni of inputs falling into cluster i, over the total number N of inputs.

Denoting by wi the weight for cluster i, we compare three weighting schemes: identical

weight (wi = 1), a weight proportional to the square root of the ratio (wi =
√

Ni/N )

as proposed by Zhou et al. (Zhou et al., 2010), or the ratio itself (wi = Ni/N ).

As shown in Fig. (5.2(b)), the weighting scheme assigning the same weight to each

cluster performs better when max pooling is used, except for very small dictionaries.

When average pooling is used, the best weighting scheme is the square root weighting,

which empirically validates the choice in (Zhou et al., 2010), but performance is below

that of max pooling. Based on these results, max pooling with identical weighting for

all clusters has been used for all other experiments in the chapter.

5.5 Conclusion

While there is no question that making coding more stable and more specific is advan-

tageous, the simple procedure of clustering the data in order to make pooling local in
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configuration space is a powerful tool for image recognition. The main conclusions of

this work are that (1) more local configuration space pooling in itself boosts perfor-

mance, dramatically so with smaller dictionaries; (2) it is advantageous to use pyramids

rather than grids, analogously to spatial pooling; (3) with enough configuration space

bins, better performance may be obtained when the clustering is performed just before

the pooling step, rather than before the coding step; (4) performance drops if too many

bins are added.
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6
MAKING CODING REAL-TIME AND

CONVOLUTIONAL

As seen in the previous chapters, `1-regularized sparse coding is a powerful method

for image applications. However, its computational cost remains too high for real-time

applications. This chapter presents several viable alternatives that have offered signifi-

cant speed-up without leading to dramatic loss of performance. Another shortcoming of

sparse coding is that dictionaries are trained over isolated patches, but coding is then per-

formed like a convolution (i.e., as a sliding window). We present convolutional sparse

coding training methods that are more suited to the redundancy of a sliding window

setting. Some of the research presented in this chapter has been published in (Ranzato

et al., 2007a; Ranzato et al., 2007c; Ranzato et al., 2007b; Kavukcuoglu et al., 2010).

6.1 Introduction

The architectures explored in this thesis that obtain the best performance rely on solving

an `1-regularized optimization. Several efficient algorithms have been devised for this

problem. Homotopy methods such as the LARS algorithm (Efron et al., 2004) give a

set of solutions along the regularization path (i.e., for a range of sparsity penalties), and

can be very fast when implemented well, if the solution is sufficently sparse. Coordi-

nate descent is fast in practice, as recently rediscovered (Friedman et al., 2007; Li and
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Osher, 2009; Friedman et al., 2010). Accelerated gradient methods (Beck and Teboulle,

2009) offer additional speed-ups. However sparse coding is still too slow for real-time

applications.

One strategy is to get rid of the `1 regularization and obtain sparse codes in a dif-

ferent way, for example with greedy solutions to the `0 sparse coding problem such as

orthogonal matching pursuit (OMP) (Mallat and Zhang, 1993), or by using a simple

thresholding criterion over the dot-products of the input with the dictionary elements.

Experiments with these techniques are shown in Sec. (6.2). Another option is to turn to

methods that have been known to work well in real-time settings, namely, neural net-

work architectures, and find some way to encourage them to produce sparse activations.

In Sec. (6.3), we incorporate one layer of a feedforward encoder to replace the sparse

coding module in the spatial pyramid framework.

Another problem of many unsupervised training modules is that training and infer-

ence are performed at the patch level. In most applications of sparse coding to image

analysis (Aharon et al., 2005; Mairal et al., 2009a), the system is trained on single im-

age patches whose dimensions match those of the filters. Inference is performed on all

(overlapping) patches independently, which produces a highly redundant representation

for the whole image, ignoring the fact that the filters are used in a convolutional fashion.

Learning will produce a dictionary of filters that are essentially shifted versions of each

other over the patch, so as to be able to reconstruct each patch in isolation. Note that this

is not a problem for SIFT descriptors, since the detection of orientation is designed to be

centered in SIFT. We present convolutional versions of unsupervised training algorithms

in Sec. (6.3.1) for convolutional RBMs, and Sec. (6.4) for sparse feedforward encoders.
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6.2 Sparse coding modules without `1

`1 and `0 regularizations have different but complementary strengths and weaknesses. `0

produces sparse solutions with an obvious relationship between the regularization coeffi-

cient and the sparsity of the solution, and greedy `0 approximations such as OMP (Mallat

and Zhang, 1993) perform well. On the downside, the codes produced are very unstable,

and not as good for training a dictionary. `1 regularization produces good dictionaries,

but induces a shrinkage of the solution. Combining both `0 and `1 can give the best of

both worlds; denoising methods based on sparse coding thus obtain their best results

when training a dictionary with an `1 penalty, then using it to reconstruct the patches

with an `0 penalty (Mairal et al., 2009b). We do the same here, and report results using

`0 greedy optimization over a dictionary trained with an `1 penalty.

A cruder way to obtain sparse coefficients is to simply compute dot-products of the

input with the dictionary atoms, and apply a threshold. The resulting code cannot be

used to produce good reconstructions, but the sparse representation may be used for

other tasks such as classification.

We have compared these alternatives to `1-regularized inference, on the Caltech-

101 and Scenes datasets. Results are presented in Table (6.1), and include experiments

with feedforward encoders discussed in the next section for ease of comparison. Both

greedy inference using an `0 penalty and thresholded dot-products lose some accuracy

compared to inference with the `1 penalty, but they are much faster.

Recent work on other datasets has shown that simple thresholding schemes can out-

perform sparse coding in some cases (Coates et al., 2011; Coates and Ng, 2011).
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15 tr. 30 tr.

`1-regularized, K = 512 63.5± 0.8 70.3± 1.0

RBM, K = 768 51.8± 1.2 59.3± 0.9

K=1024

`1-regularized 64.7± 1.0 71.5± 1.1

Trained encoder 62.5± 1.4 69.6± 1.0

Thresholded dot-product with sparse dictionary 62.1± 1.5 69.5± 1.0

`0-regularized 62.3± 0.9 69.9± 1.0

Table 6.1: Recognition accuracy on the Caltech-101 dataset, for `1-regularized sparse

coding and several fast alternatives: OMP (`0-regularized), thresholded dot-products,

feedforward encoders trained to reconstruct sparse codes, restricted Boltzmann ma-

chines (RBMs). All results are obtained with standard features extracted every 8 pixels,

with a 4 × 4 pyramid, max pooling, linear kernel, using 15 or 30 training images per

class, K : dictionary size.

6.3 Single-layer feedforward unsupervised feature extrac-

tion modules

We present several trainable feedforward non-linear encoder modules that can produce

a fast approximation of the sparse code.
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K = 1024, linear kernel

`1-regularized 83.1± 0.6

`0-regularized 82.3± 0.5

Thresholded dot-product with sparse dictionary 80.6± 0.4

Trained encoder and decoder 77.6± 0.7

RBM 70.9± 0.8

K = 1024, intersection kernel

`1-regularized 84.1± 0.5

`0-regularized 82.8± 0.6

RBM 76.3± 0.7

K = 2048, linear kernel

`1-regularized 83.6± 0.5

`0-regularized 83.2± 0.5

K = 4096, linear kernel

`1-regularized 83.8± 0.5

thresholded dot-product with sparse dictionary 81.6± 0.3

Table 6.2: Recognition accuracy on the Scenes dataset, for `1-regularized sparse cod-

ing and several fast alternatives: OMP (`0-regularized), thresholded dot-products, feed-

forward encoders trained to reconstruct sparse codes, restricted Boltzmann machines

(RBMs). All results are obtained with standard features extracted every 8 pixels, with a

4× 4 pyramid, max pooling using 100 training images per class,
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6.3.1 Restricted Boltzmann machines (RBMs)

RBMs have been introduced in Sec. (1.3).

Adding a sparsity penalty to RBMs. Lee et al. have proposed adding a sparsity

penalty to the RBM loss function, and have obtained second-layer units sharing many

properties with neurons of the V2 area (Lee et al., 2007).

To illustrate the effect of that sparsity penalty, we have trained filters on 21 × 21

patches of the Caltech-101 dataset, varying both the number of units and the weight of

the sparsity penalty. Learned filters are shown in Fig. (6.1) and Fig. (6.2). The edges get

longer when the sparsity term is weighted more; looking at filters during training, we

also observed that the edges emerged faster. The smaller the number of hidden units, the

higher the sparsity penalty has to be pushed to produce edges. Training a sufficiently

overcomplete set of units in an RBM produces stroke detectors even without a sparsity

penalty. A more extensive set of filter images can be found in the Appendix.

Using RBMs to replace the sparse coding module. Using the SIFT descriptor maps

as inputs, we have used sparse RBMs to replace the sparse coding modules in our ex-

periments. Results are shown in Table (6.1). In these experiments, the performance of

RBMs is not competitive with other approaches.

Convolutional extension. Many of RBM filters trained on patches are merely trans-

lated verisons of each other (Fig. (6.1) and Fig. (6.2)). This is wasteful for the same ar-

guments as with patch-based sparse coding if the RBM filters are then used in a sliding-

window setting. In a dataset with a strong bias for vertical and horizontal image struc-
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(a) 256 units, sparsity penalty=0 (b) 256 units, sparsity penalty=1

(c) 256 units, sparsity penalty=5 (d) 256 units, sparsity penalty=25

Figure 6.1: 256 RBM hidden units trained with increasingly weighted sparsity penalty

over 21× 21 patches of the Caltech-101 dataset.
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(a) 512 units, sparsity penalty=0

(b) 512 units, sparsity penalty=1

Figure 6.2: 512 RBM hidden units trained with increasingly weighted sparsity penalty

over 21× 21 patches of the Caltech-101 dataset.
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tures, the machine will even learn a collection of vertical bars at all positions rather than

adding an oblique filter, since training does not incorporate all the information that will

be available from neighboring patches during utilisation.

We briefly present here some results using convolutional training for RBMs. Since

that work, research showing promising applications of convolutional RBMs for recog-

nition has been published (Lee et al., 2009). Convolutional training can be conducted

in a way similar as with sparse autoencoders, by using larger patches during training.

Denote by P the length of the larger patch used to explain a central patch of size p× p.

We take P = 3p − 2, so as to cover all hidden units that would be connected to any

visible unit of the central patch of interest.

The convolutional training algorithm is then the same as the standard RBM training

one with the following alterations:

1. The visible and hidden units are connected as they would be when running a

patch-based RBM in a sliding window

2. Hidden unit activations are computed conditioned on the visible activations of the

larger patch of length P

3. When computing the products vihj for a pair of visible unit i and hidden unit j to

update the weights, only take into account the visible units of the central smaller

patch vi.

We train these convolutional RBMs on stills from a video clip. The training data con-

sists of patches of frames from a National Geographic video downloaded from YouTube.

The 3200 360× 480 frames of the movie are spatially downsampled to 72× 96 pixels.
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Figure 6.3: 25 8x8 filters extracted from stills from a video clip. They all have either

different orientation or phase

Random patches are extracted and whitened to obtain patches of size 22× 22. We train

25 8×8 RBM filter from these patches. Learned filters are shown in Fig. (6.3). A varied

set of orientations are obtained.

We have also trained convolutional RBMs over spatio-temporal patches from videos

to obtain 25 hidden units connected to 8 × 8 × 5 visible units. An example application

of these units is to upsample the frames of a movie, as shown in Fig. (6.4), where

a YouTube video of a cat in a tub has been upsampled using the spatiotemporal units

trained on the unrelated National Geographic video clip with higher sampling rate. Each

5-frame sequence is obtained from an input of frames 1 and 5.

6.3.2 Sparse autoencoders

Feedforward sparse coding by approximating sparse codes

Feedforward architectures used to predict sparse codes (Kavukcuoglu et al., 2008; Ran-

zato et al., 2007b; Jarrett et al., 2009) usually infer a sparse code during training that

needs to be close to the code predicted by the encoder; hence it is not the optimal re-
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Figure 6.4: Upsampling a video. Frames 1 and 5 of each sequence are input; the machine

bridges the gap between them.
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Coding 15 tr. 30 tr.

Hard vector quantization 55.9 63.8

Soft vector quantization 57.9 65.6

Sparse coding

on k-mean centers 60.7 66.2

on learned dictionary 61.7 68.1

feedforward encoder 60.5 68.0

Table 6.3: Recognition accuracy on the Caltech-101 dataset, 4x4 grid, dictionary of size

K = 200, average pooling, intersection kernel, using 15 or 30 training images per class.

constructive sparse code. We adopt the same idea of learning a predictor, but train it

directly to predict the sparse codes obtained from the dictionaries trained for a purely

`1-regularized reconstruction loss.

Denoting the representation of input xi by zi, and the logistic function by σ(t) =

1
1+e−t , a weight matrix W ∈ RK×M and a gain vector g ∈ RK are obtained by mini-

mizing the squared difference with inferred sparse codes:

(D∗,α∗
1, . . . ,α

∗
N) = argmin

D,α1,...,αN

1

N

N∑
i=1

‖xi −Dαi‖22 + λ‖αi‖1, (6.1)

(W∗,g∗) = argmin
W,g

1

N

N∑
i=1

‖diag(g)σ(Wxi)−α∗
i ‖22, (6.2)

zi = diag(g∗)σ(W∗xi). (6.3)

Using this encoder, results can be as good as with the inferred sparse code when

the dictionary is small, as shown in Table (6.3). However, performance is again below
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sparse codes for larger dictionaries, and even below the simple thresholded dot-product

with the sparse dictionary on the Scenes dataset (see Table (6.1) and Table (6.2)).

6.4 Making training convolutional

As argued in the introduction of this chapter, patch-based training does not take into

account the redundancy inherent to convolutional schemes. To make sparse coding con-

volutional, we apply it to the entire image at once, and view the dictionary as a convo-

lutional filter bank:

L(x, z,D) = 1

2
||x−

K∑
k=1

Dk ∗ zk||22 + |z|1, (6.4)

where Dk is an s× s 2D filter kernel, x is a w × h image (instead of an s× s patch), zk

is a 2D feature map of dimension (w+s−1)× (h+s−1), and “∗” denotes the discrete

convolution operator.

Convolutional Sparse Coding has been proposed before (Zeiler et al., 2010), but in

a setting that does not allow real-time processing. To make convolutional sparse coding

faster, train a feedforward, non-linear encoder module to produce a fast approximation

of the sparse code, similar to (Ranzato et al., 2007b; Kavukcuoglu et al., 2009). The

new energy function includes a code prediction error term:

L(x, z,D,W ) =
1

2
||x−

K∑
k=1

Dk ∗ zk||22 +
K∑
k=1

||zk − f(W k ∗ x)||22 + |z|1, (6.5)

where z∗ = argminz L(x, z,D,W ) and W k is an encoding convolution kernel of size

s × s, and f is a point-wise non-linear function. Two important questions are the form

of the non-linear function f , and the optimization method to find z∗.
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Figure 6.5: Left: A dictionary with 128 elements, learned with patch based sparse cod-

ing model. Right: A dictionary with 128 elements, learned with convolutional sparse

coding model. The dictionary learned with the convolutional model spans the orienta-

tion space much more uniformly. In addition it can be seen that the diversity of filters

obtained by convolutional sparse model is much richer compared to patch based one.

6.5 Algorithms and method

In this section, we analyze the benefits of convolutional sparse coding for object recog-

nition systems, and propose convolutional extensions to the coordinate descent sparse

coding (CoD) (Li and Osher, 2009) algorithm and the dictionary learning procedure.

6.5.1 Learning convolutional dictionaries

The convolution of a signal with a given kernel can be represented as a matrix-vector

product by constructing a special Toeplitz-structured matrix for each dictionary element

and concatenating all such matrices to form a new dictionary. Decomposition can then

be done with a standard sparse coding algorithm. Unfortunately, the size of the dictio-

nary then depends on the size of the input signal. This argues for a formulation based on
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convolutions. In this work, we use the coordinate descent sparse coding algorithm (Li

and Osher, 2009) as a starting point and generalize it using convolution operations. Two

important issues arise when learning convolutional dictionaries: 1. The boundary ef-

fects due to convolutions need to be properly handled. 2. The derivative of Eq. (6.4)

should be computed efficiently. Since the loss is not jointly convex in D and z, but is

convex in each variable when the other one is kept fixed, sparse dictionaries are usually

learned by an approach similar to block coordinate descent, which alternatively mini-

mizes over z and D (e.g., see (Olshausen and Field, 1997; Mairal et al., 2009a; Ranzato

et al., 2007b)). One can use either batch (Aharon et al., 2005) (by accumulating deriva-

tives over many samples) or online updates (Mairal et al., 2009a; Zeiler et al., 2010;

Kavukcuoglu et al., 2009) (updating the dictionary after each sample). In this work, we

use a stochastic online procedure for updating the dictionary elements.

The updates to the dictionary elements, calculated from Eq. (6.4), are sensitive to

the boundary effects introduced by the convolution operator. The code units that are

at the boundary might grow much larger compared to the middle elements, since the

outermost boundaries of the reconstruction take contributions from only a single code

unit, compared to the middle ones that combine s × s units. Therefore the reconstruc-

tion error, and correspondingly the derivatives, grow proportionally larger. One way to

properly handle this situation is to apply a mask on the derivatives of the reconstruction

error with respect to z: DT ∗ (x−D∗ z) is replaced by DT ∗ (mask(x)−D∗ z), where

mask is a term-by-term multiplier that either puts zeros or gradually scales down the

boundaries.

The second important point in training convolutional dictionaries is the computa-
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Algorithm 1 Convolutional extension to coordinate descent sparse coding(Li and Osher,

2009). A subscript index (set) of a matrix represent a particular element. For slicing the

4D tensor S we adopt the MATLAB notation for simplicity of notation.
function ConvCoD(x,D, α)

Set: S = DT ∗ D

Initialize: z = 0; β = DT ∗mask(x)

Require: hα : smooth thresholding function.

repeat

z̄ = hα(β)

(k, p, q) = argmaxi,m,n |zimn−z̄imn| (k : dictionary index, (p.q) : location index)

bi = βkpq

β = β + (zkpq − z̄kpq)× align(S(:, k, :, :), (p, q))

zkpq = z̄kpq, βkpq = bi

until change in z is below a threshold

end function

tion of the S = DT ∗ D operator. In algorithms such as coordinate descent (Li and

Osher, 2009), accelerated proximal methods (Beck and Teboulle, 2009), and matching

pursuit (Mallat and Zhang, 1993), it is advantageous to store the similarity matrix (S)

explicitly and use a single column at a time for updating the corresponding component

of code z. For convolutional modeling, the same approach can be used with some ad-

ditional care: instead of being the dot-product of dictionary atoms i and j, each term

has to be expanded as “full” convolution of two dictionary elements (i, j), producing a

(2s− 1)× (2s− 1) matrix. One can think about the resulting matrix as a 4D tensor of
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size K ×K × (2s− 1)× (2s− 1). The overall learning procedure is simple stochastic

(online) gradient descent over dictionary D:

∀xi ∈ X training set : z∗ = argmin
z
L(xi, z,D), D ← D − η

∂L(xi, z∗,D)
∂D

(6.6)

The columns of D are normalized after each iteration. A convolutional dictionary

with 128 elements trained on images from Berkeley dataset (Martin et al., 2001) is

shown in Fig. (6.5).

6.5.2 Learning an efficient encoder

In (Ranzato et al., 2007b), (Jarrett et al., 2009) and (Gregor and LeCun, 2010) a feed-

forward regressor was trained for fast approximate inference. In this work, we extend

their encoder module training to convolutional domain and also propose a new encoder

function that approximates sparse codes more closely. The encoder used in (Jarrett et al.,

2009) is a simple feedforward function which can also be seen as a small convolutional

neural network: z̃ = gk × tanh(x ∗W k) (k = 1..K). This function has been shown to

produce good features for object recognition (Jarrett et al., 2009), however it does not

include a shrinkage operator, thus its ability to produce sparse representations is very

limited. Therefore, we propose a different encoding function with a shrinkage operator.

The standard soft thresholding operator has the nice property of producing exact zeros

around the origin, however for a very wide region, the derivatives are also zero. To train

a filter bank that is applied to the input before the shrinkage operator, we propose to use

an encoder with a smooth shrinkage operator z̃ = shβk,bk(x∗W k) where k = 1..K and
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Figure 6.6: Left: Smooth shrinkage function. Parameters β and b control the smooth-

ness and location of the kink of the function. As β → ∞ it converges more closely to

soft thresholding operator. Center: Total loss as a function of number of iterations. The

vertical dotted line marks the iteration number when diagonal hessian approximation

was updated. It is clear that for both encoder functions, hessian update improves the

convergence significantly. Right: 128 convolutional filters (W ) learned in the encoder

using smooth shrinkage function. The decoder of this system is shown in Fig. (6.5).

:

shβk,bk(s) = sign(s)× 1/βk log(exp(βk × bk) + exp(βk × |s|)− 1)− bk (6.7)

Note that each βk and bk is a singleton per each feature map k. The shape of the smooth

shrinkage operator is given in Fig. (6.6) for several different values of β and b. β controls

the smoothness of the kink of shrinkage operator and b controls the location of the kink.

The function is guaranteed to pass through the origin and is antisymmetric. The partial

derivatives ∂sh
∂β

and ∂sh
∂b

can be easily written and these parameters can be learned from

data.

Updating the parameters of the encoding function is performed by minimizing Eq. (6.5).
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Figure 6.7: Cumulative histogram of angles between dictionary item pairs. The mini-

mum angle with convolutional training is 40 degrees.

The additional cost term penalizes the squared distance between optimal code z and pre-

diction z̃. In a sense, training the encoder module is similar to training a ConvNet. To

aid faster convergence, we use stochastic diagonal Levenberg-Marquardt method (Le-

Cun et al., 1998b) to calculate a positive diagonal approximation to the hessian. We

update the hessian approximation every 10000 samples and the effect of hessian up-

dates on the total loss is shown in Fig. (6.6). It can be seen that especially for the tanh

encoder function, the effect of using second order information on the convergence is
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significant.

6.5.3 Patch-based vs. convolutional sparse modeling

Natural images, sounds, and more generally, signals that display translation invariance

in any dimension, are better represented using convolutional dictionaries. The convolu-

tion operator enables the system to model local structures that appear anywhere in the

signal. For example, if k×k image patches are sampled from a set of natural images, an

edge at a given orientation may appear at any location, forcing local models to allocate

multiple dictionary elements to represent a single underlying orientation. By contrast,

a convolutional model only needs to record the oriented structure once, since dictio-

nary elements can be used at all locations. Fig. (6.5) shows atoms from patch-based

and convolutional dictionaries comprising the same number of elements. The convolu-

tional dictionary does not waste resources modeling similar filter structure at multiple

locations. Instead, it models more orientations, frequencies, and different structures

including center-surround filters, double center-surround filters, and corner structures

at various angles. Dictionary atoms are more dissimilar, as measured by their angle

(Fig. (6.7)).

In this work, we present two encoder architectures, 1. steepest descent sparse coding

with tanh encoding function using gk×tanh(x∗W k), 2. convolutional CoD sparse cod-

ing with shrink encoding function using shβ,b(x ∗W k). The time required for training

the first system is much higher than for the second system. However, the performance

of the encoding functions are almost identical.
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6.5.4 Multi-stage architecture

Our convolutional encoder can be used to replace patch-based sparse coding modules

used in multi-stage object recognition architectures such as the one proposed in (Jarrett

et al., 2009). Building on previous findings in that paper, for each stage, the encoder

is followed by absolute value rectification, contrast normalization and average subsam-

pling. Absolute Value Rectification is a simple pointwise absolute value function ap-

plied on the output of the encoder. Contrast Normalization is the same operation used

for pre-processing the images. This type of operation has been shown to reduce the de-

pendencies between components (Schwartz and Simoncelli, 2001; Lyu and Simoncelli,

2008) (feature maps in our case). When used in between layers, the mean and stan-

dard deviation is calculated across all feature maps with a 9× 9 neighborhood in spatial

dimensions. The last operation, average pooling is simply a spatial pooling operation

that is applied on each feature map independently. A complete stage is illustrated in

Fig. (6.8).

One or more additional stages can be stacked on top of the first one. Each stage then

takes the output of its preceding stage as input and processes it using the same series of

operations with different architectural parameters like size and connections. When the

input to a stage is a series of feature maps, each output feature map is formed by the

summation of multiple filters.

In the next sections, we present experiments showing that using convolutionally trained

encoders in this architecture lead to better object recognition performance.
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6.6 Experiments

We closely follow the architecture proposed in (Jarrett et al., 2009) for object recognition

experiments. As stated above, in our experiments, we use two different systems: 1.

Steepest descent sparse coding with tanh encoder: SDtanh. 2. Coordinate descent

sparse coding with shrink encoder: CDshrink. In the following, we give details of the

unsupervised training and supervised recognition experiments.

6.6.1 Object recognition using the Caltech-101 dataset

We again use the Caltech-101 dataset (Fei-Fei et al., 2004). We process the images in

the dataset as follows: 1. Each image is converted to gray-scale and resized so that the

largest edge is 151. 2. Images are contrast normalized to obtain locally zero mean and

unit standard deviation input using a 9 × 9 neighborhood. 3. The short side of each

image is zero padded to 143 pixels. We report the results in Table (6.4) and Table (6.5).

All results in these tables are obtained using 30 training images per class and 5 different

splits of the data. We use the background class during training and testing.

Architecture : We use the unsupervised trained encoders in a multi-stage system

identical to the one proposed in (Jarrett et al., 2009). At first layer 64 features are

extracted from the input image, followed by a second layers that produces 256 features.

Second layer features are connected to fist layer features through a sparse connection

table to break the symmetry and to decrease the number of parameters.

Unsupervised Training : The input to unsupervised training consists of contrast

normalized gray-scale images (Pinto et al., 2008) obtained from the Berkeley segmen-

120



Figure 6.8: Architecture of one stage of feature extraction.

tation dataset (Martin et al., 2001). Contrast normalization consists of processing each

feature map value by removing the mean and dividing by the standard deviation calcu-

lated around 9× 9 region centered at that value over all feature maps.

First Layer: We have trained both systems using 64 dictionary elements. Each

dictionary item is a 9× 9 convolution kernel. The resulting system to be solved is a 64

times overcomplete sparse coding problem. Both systems are trained for 10 different

sparsity values ranging between 0.1 and 3.0.

Second Layer: Using the 64 feature maps output from the first layer encoder on

Berkeley images, we train a second layer convolutional sparse coding. At the second

layer, the number of feature maps is 256 and each feature map is connected to 16 ran-

domly selected input features out of 64. Thus, we aim to learn 4096 convolutional

kernels at the second layer. To the best of our knowledge, none of the previous convo-

lutional RBM (Lee et al., 2009) and sparse coding (Zeiler et al., 2010) methods have

learned such a large number of dictionary elements. Our aim is motivated by the fact
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that using such large number of elements and using a linear classifier (Jarrett et al.,

2009) reports recognition results similar to (Lee et al., 2009) and (Zeiler et al., 2010). In

both of these studies a more powerful Pyramid Match Kernel SVM classifier (Lazebnik

et al., 2006) is used to match the same level of performance.

Logistic Regression Classifier

SDtanh CDshrink PSD (Jarrett et al., 2009)

U 57.1± 0.6% 57.3± 0.5% 52.2%

Table 6.4: Comparing SDtanh encoder to CDshrink encoder on Caltech 101 dataset

using a single stage architecture. Each system is trained using 64 convolutional filters.

The recognition accuracy results shown are very similar for both systems.

One Stage System: We train 64 convolutional unsupervised features using both

SDtanh and CDshrink methods. We use the encoder function obtained from this training

followed by absolute value rectification, contrast normalization and average pooling.

The convolutional filters used are 9× 9. The average pooling is applied over a 10× 10

area with 5 pixel stride. The output of first layer is then 64 × 26 × 26 and fed into a

logistic regression classifier, or used as lower level of a standard spatial pyramid pipeline

(hard vector quantization, pooling over a 4× 4 pyramid (Lazebnik et al., 2006)), instead

of the SIFT descriptor layer.

Two Stage System: We train 4096 convolutional filters with SDtanh method using

64 input feature maps from first stage to produce 256 feature maps. The second layer

features are also 9× 9, producing 256× 18× 18 features. After applying absolute value

rectification, contrast normalization and average pooling (on a 6× 6 area with stride 4),
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the output features are 256×4×4 (4096) dimensional. We only use multinomial logistic

regression classifier after the second layer feature extraction stage.

We denote unsupervised trained one stage systems with U , two stage unsupervised

trained systems with UU .

Logistic Regression Classifier

PSD (Jarrett et al., 2009) (UU) 63.7

SDtanh (UU) 65.3± 0.9%

PMK-SVM (Lazebnik et al., 2006) Classifier:

Hard quantization + multiscale pooling

+ intersection kernel SVM

SIFT (Lazebnik et al., 2006) 64.6± 0.7%

RBM (Lee et al., 2009) 66.4± 0.5%

DN (Zeiler et al., 2010) 66.9± 1.1%

SDtanh (U) 65.7± 0.7%

Table 6.5: Recognition accuracy on Caltech 101 dataset using a variety of different

feature representations using two stage systems and two different classifiers.

Comparing our U system using both SDtanh and CDshrink (57.1% and 57.3%) with

the 52.2% reported in (Jarrett et al., 2009), we see that convolutional training results in

significant improvement. With two layers of purely unsupervised features (UU , 65.3%),

we even achieve the same performance as the patch-based model of Jarrett et al. (Jarrett

et al., 2009) after supervised fine-tuning (63.7%). We get 65.7% with a spatial pyra-

mid on top of our single-layer U system (with 256 codewords jointly encoding 2 × 2
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neighborhoods of our features by hard quantization, then max pooling in each cell of the

pyramid, with a linear SVM, as proposed in Chapter 3.

Our experiments have shown that sparse features achieve superior recognition per-

formance compared to features obtained using a dictionary trained by a patch-based

procedure as shown in Table (6.5).
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7
SUPERVISED TRAINING

All methods used in experiments so far have been unsupervised, with supervised in-

formation being available only for training the classifier layer: adaptive parameters are

trained by minimizing a regularized reconstruction error, without any information about

a label. While this ensures that the weights are adapted to the statistics of the data,

they are not optimized for the classification task. This chapter incorporates supervision

into the architectures discussed and presents experimental results showing the superior-

ity of discriminatively trained parameters. The work presented here has been published

in (Boureau et al., 2010a; Kavukcuoglu et al., 2010).

7.1 Supervised training in deep networks

Early deep neural networks for recognition (LeCun et al., 1998a) were trained in a purely

supervised manner, by backpropagating the gradient of the unsupervised loss through all

layers of the network. The recent innovation has been to use unsupervised training to

initialize the weights, so that supervised training does not get trapped in local minima as

with random initialization (Tesauro, 1992). But the final training is usually supervised.

This section compares the performance of unsupervised weights (i.e., supervised

training is confined to the top classifier layer), to performance of “fine-tuned” weights

(i.e., the supervised gradient is propagated down lower layers as well), using the convo-

lutional sparse coding architectures presented in Sec. (6.4). The experimental settings
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are identical. We compare single and two-stage architectures of convolutional sparse

coding with non-convolutional versions, with a logistic regression classifier or a spatial

pyramid pipeline (using the trained features to replace the SIFT descriptor layer).

Logistic Regression Classifier

SDtanh CDshrink PSD (Jarrett et al., 2009)

U 57.1± 0.6% 57.3± 0.5% 52.2%

U+ 57.6± 0.4% 56.4± 0.5% 54.2%

Table 7.1: Comparing SDtanh encoder to CDshrink encoder on Caltech 101 dataset

using a single stage architecture. Each system is trained using 64 convolutional filters.

The recognition accuracy results shown are very similar for both systems.

Results are presented in Table (7.1) and Table (7.2). We denote unsupervised trained

one stage systems with U , two stage unsupervised trained systems with UU and “+”

signals that supervised training has been performed. Several points can be made:

• Supervised finetuning usually improves performance; but two layers of purely

unsupervised features (UU , 65.3%) outperform the patch-based model of Jarrett

et al. (Jarrett et al., 2009) after supervised fine-tuning (63.7%), even though the

models are extremely similar. This shows that finding a better region of parameter

space thanks to well-designed unsupervised training may be more important than

minimizing the true loss of interest.

• Supervised fine-tuning (U+U+) allows our network to match or perform very close

to (66.3%) similar models (Lee et al., 2009; Zeiler et al., 2010) with two layers
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Logistic Regression Classifier

PSD (Jarrett et al., 2009) (UU) 63.7

PSD (Jarrett et al., 2009) (U+U+) 65.5

SDtanh (UU) 65.3± 0.9%

SDtanh (U+U+) 66.3± 1.5%

PMK-SVM (Lazebnik et al., 2006) Classifier:

Hard quantization + multiscale pooling

+ intersection kernel SVM

SIFT (Lazebnik et al., 2006) 64.6± 0.7%

RBM (Lee et al., 2009) 66.4± 0.5%

DN (Zeiler et al., 2010) 66.9± 1.1%

SDtanh (U) 65.7± 0.7%

Table 7.2: Recognition accuracy on Caltech 101 dataset using a variety of different

feature representations using two stage systems and two different classifiers.

of convolutional feature extraction, even though these models use the a spatial

pyramid pipeline (denoted PMK-SVM here) instead of the more basic logistic re-

gression we have used. The spatial pyramid framework comprises a codeword

extraction step and an SVM, thus effectively adding one layer to the system.

• The improvement of convolutional vs. patch-based training is larger when using

feature extractors trained in a purely unsupervised way, than when unsupervised

training is followed by a supervised training phase. Recalling that the supervised

tuning is a convolutional procedure, this last training step might have the addi-
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tional benefit of decreasing the redundancy between patch-based dictionary ele-

ments. On the other hand, this contribution would be minor for dictionaries which

have already been trained convolutionally in the unsupervised stage.

7.2 Discriminative dictionaries for sparse coding

We now leave feedforward architectures to go back to variants of bag-of-feature meth-

ods.

7.2.1 Previous work

Lazebnik and Raginsky (Lazebnik and Raginsky, 2008) incorporate discriminative in-

formation by minimizing the loss of mutual information between features and labels

during the quantization step. The method is demonstrated on toy datasets and then used

to replace the codebook quantization scheme in a bag-of-features image classifier. This

requires computing the conditional distribution of labels and marginal distribution of

features. While this is tractable in toy examples where X is low-dimensional, this is

clearly not the case for image applications, where the distribution has to be conditioned

on the joint feature space, which is very high-dimensional. Therefore, in real image

applications in (Lazebnik and Raginsky, 2008), the information loss minimization is

conducted with distributions conditioned over patches instead of images, each patch be-

ing assigned the label of the whole image from which it has been extracted. However,

individual patches may contain no discriminative information. For example, in a binary

classification case with classes a and b, where the input space consists of two patches
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with a single binary feature, with all instances of class a being either (0, 0) or (1, 1) with

equal probability, while all instances of class b are (0, 1), the conditional distribution

P (X|Y = a) and P (X|Y = b) are the same (with X denoting the single binary feature

in any patch). Thus, the individual binary features contain no discriminative informa-

tion. Conversely, the 2-dimensional bag-of-features representation (X1, X2) is discrim-

inative because conditional distributions P ((X1, X2)|Y = a) and P ((X1, X2)|Y = b)

are different.

Similarly, other discriminative approaches ((Mairal et al., 2009c), (Bach and Har-

chaoui, 2008)) require local patch labels. Winn et al. (Winn et al., 2005) avoid this

problem by maximizing the probability of assigning the correct label to the bag of words

instead of the individual words. Furthermore, they also solve the potential problem of

the lack of spatial correspondance between regions and meaningful codewords by ob-

taining the regions by hand segmentation, or defining them a posteriori as the ones that

show the most clear-cut classification performance. They start with a large dictionary

of several thousands atoms obtained by k-means, and prune it iteratively by fusing two

codewords (i.e., summing their contributions into the same histogram bin) if they do not

contribute to discrimination. But quantization still requires distances to all the original

codewords to be computed. We propose to learn directly a discriminative codebook in-

stead of tweaking a huge codebook a posteriori, that is adapted to global image statistics

instead of being trained on labelled patches.
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7.2.2 Supervised sparse coding

With the same notation as in Chapter 3, let us consider the extraction of a global image

representation by sparse coding and average pooling over the whole image I:

x̂T
i = [xT

i1
· · ·xT

iL
], i1, · · · , iL ∈ Li, (7.1)

αi = argmin
α

L(α,D) , 1

2
‖x̂i −Dα‖22 + λ‖α‖1, (7.2)

h =
1

|I|
∑
i∈I

αi, (7.3)

z = h. (7.4)

Consider a binary classification problem. Let z(n) denote the global image represen-

tation for the n-th training image, and yn ∈ {−1, 1} the image label. A linear classifier

is trained by minimizing with respect to parameter θ the regularized logistic cost:

Cs =
1

N

N∑
n=1

log
(
1 + e−ynθT z(n)

)
+ λr‖θ‖22, (7.5)

where λr denotes a regularization parameter. We use logistic regression because its

level of performance is typically similar to that of linear SVMs but unlike SVMs, its

loss function is differentiable. We want to minimize the supervised cost Cs with respect

to D to obtain a more discriminative dictionary. Using the chain rule, we obtain:

∂Cs

∂Djk

= − 1

N

N∑
n=1

yn
(
1− σ(ynθ.z

(n))
)
θT

∂z(n)

∂Djk

(7.6)

∂z(n)

∂Djk

=
1

|I(n)|
∑
i∈I(n)

∂α
(n)
i

∂Djk

, (7.7)
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where σ denotes the sigmoid function σ(x) = 1/(1 + exp(−x)). We need to compute

the gradient∇D(αi). Since the αi minimize Eq. (7.2)), they verify:

α = (Dα
TDα)

−1(Dα
T x̂− λsign(α)), (7.8)

where we have dropped subscript i to limit notation clutter, and Dα denotes the columns

corresponding to the active set of α (i.e., the few columns of D used in the decompo-

sition of the input). Note that this formula cannot be used to compute α, since parts of

the right-hand side of the equation depend on α itself, but it can be used to compute a

gradient once α is known. When perturbations of the dictionary are small, the active set

of α often stays the same (since the correlation between the atoms of the dictionary and

the input vector varies continuously with the dictionary). Assuming that it is constant,

we can compute the gradient of the active coefficients with respect to the active columns

of D (setting it to 0 elsewhere):

∂α̃k

∂(Dα)ij
= biAkj − α̃jCki, (7.9)

A , (Dα
TDα)

−1, (7.10)

b , x̂−Dα, (7.11)

C , ADα
T , (7.12)

where α̃k denotes the k-th non-zero component of α.

We train the discriminative dictionary by stochastic gradient descent (Bottou, 1998;

LeCun et al., 1998b). Recomputing the sparse decompositions αi at each location of a

training image at each iteration is costly. To speed-up the computation while remaining

closer to global image statistics than with individual patches, we approximate z(n) by
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Unsup Discr Unsup Discr

Linear 83.6± 0.4 84.9± 0.3 84.2± 0.3 85.6± 0.2

Intersect 84.3± 0.5 84.7± 0.4 84.6± 0.4 85.1± 0.5

Table 7.3: Results of learning discriminative dictionaries on the Scenes dataset, for dic-

tionaries of size 1024 (left) and 2048 (right), with 2×2 macrofeatures and grid resolution

of 8 pixels,

pooling over a random sample of ten locations of the image. Furthermore, we update

only a random subset of coordinates at each iteration, since computation of the gradient

is costly. We then test the dictionary with max pooling and a three-layer spatial pyramid,

using either a linear or intersection kernel SVM.

We compare performance of dictionaries of sizes 1024 and 2048 on the Scenes dataset,

encoding 2×2 neighborhoods of SIFT. Results (Table (7.3)) show that discriminative

dictionaries perform significantly better than unsupervised dictionaries. A discrimina-

tive dictionary of 2048 codewords achieves 85.6% correct recognition performance, which

to the best of our knowledge was the highest published classification accuracy on that

dataset for a single feature type at the date of publication of our CVPR paper (Boureau

et al., 2010a). Discriminative training of dictionaries with our method on the Caltech-

101 dataset has yielded only very little improvement, probably due to the scarcity of

training data.
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7.3 Conclusion

Supervision usually improves accuracy, however the improvement over the initial pa-

rameters obtained with unsupervised training may seem disappointing, compared to the

dramatic improvement of switching to a better unsupervised scheme. This is in line with

the results from Chapter 3 that the actual dictionary used often matters less than the type

of coding.
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FUTURE WORK

Preserving closeness relationships in the input, including supervision, and speeding up

coding, have all been important themes in this thesis. Here, we briefly revisit these ideas

to propose a natural research direction that would tie them all together.

7.4 Learning to predict active sets

The model used in Chapter 5 assigns a neighborhood (e.g., the region around a K-means

prototype) to an input; pooling is then performed separately for each neighborhood.

In Chapter 5, we have mainly presented this procedure as a more refined type of

pooling, but it can also be viewed as an expansive coding step that produces extremely

sparse codes. This is true of any type of pooling step that considers more than one

pooling region: the “tags” that constitute the addressing information for the compact

code (e.g., spatial cell, cluster index) can serve to retrieve either a pool, or a subset

of coordinates in a larger sparse code (with pooling then operating on the entire set of

codes).

In the setting of Chapter 5, the expanded coding step (sparse coding over the dic-

tionary + expansion into larger-dimensional space) can be constructed as a sparse cod-

ing step over a much larger dictionary, where a core subset of codewords (the true un-

derlying dictionary) is replicated P times, if there are P configuration bins. The pre-

clustering step assigns a reduced active set that depends on the configuration bin the

input has fallen into.
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This view naturally leads to a more general setting, where:

• the codewords are not constrains to be identical from one active set to another,

• the active sets are allowed to overlap and have different sizes,

• the assignment to an active set is performed by any type of classifier, not neces-

sarily a K-means classifier.

The generalized model is illustrated in Fig. (7.1). This opens several avenues: using

soft assignments, the classifier can be trained to favor active sets that produce the best

code (where the “goodness” of the code is measured by the `1-regularized loss that is

minimized during coding), or in a supervised or semi-supervised way with label infor-

mation. A coarse-to-fine strategy can be followed, where a coarse decomposition over

a small dictionary is first performed, and is used as additional input to the classifier to

expand the authorized active set for a finer decomposition; the process can be iterated.

This would limit the number of matrix multiplications that have to be performed and po-

tentially allow for gigantic dictionaries to be used very fast, in a spirit similar to (Szlam

et al., 2012).

7.5 Connection to structured sparse coding

The coarse-to-fine strategy described above can also be viewed as endowing a dictionary

with hierarchical structure. Recent work in structured sparsity (Jenatton et al., 2010)

creates a constraint structure where some atoms can be used only if a parent atom is

used. The optimization is done jointly, but a greedy algorithm using this structure would
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Figure 7.1: Architecture generalizing the model in Chapter 5. The input is first passed

to a classifier that predicts a latent class. Each class is associated with a reduced active

set of a large dictionary. Coding is then restricted to that active set.
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be very similar to the scheme we have outlined: the pattern of activation of the parent

atoms is fed to a classifier which decides what children nodes can be used.

Aggregated coding (Jégou et al., 2010) and super-vector coding (Zhou et al., 2010)

can also be viewed as realizing this kind of greedy structured sparse coding, over a

hybrid dictionary that is composed of P K-means centroids (as parent nodes), and P ∗

128 other atoms which are P replications of the canonical basis of the 128-dimensional

input space.

A dictionary adapted to this inference could be trained by specifying active sets at

the beginning of training (e.g., by assigning them randomly to hidden classes), much

like in previous work using group sparsity or structured sparsity penalties (Hyvärinen

and Hoyer, 2001; Kavukcuoglu et al., 2009; Jenatton et al., 2010; Gregor et al., 2011).
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CONCLUSION

Throughout this thesis, we have teased apart components of common image recogni-

tion systems to gain a better understanding of what makes them work. The generic

feature extraction module we have proposed in Chapter 2 crucially pairs a coding and a

pooling module, and much of our work has attempted to show that the best performing

systems use pairs that complement each other. One example is that rarity of activation

of a feature is a strength when combined with the statistical properties of max pool-

ing, as observed in Chapter 3 and analyzed in Chapter 4. Another example is that a

refined pooling module can compensate for a coarser coding step, and vice-versa, as

seen in Chapter 5. An intriguing question is whether this close partnership extends to

the classification kernel; e.g., applying an extremal kernel such as the intersection ker-

nel could have similar effects as using extremal pooling like max pooling. We have

proposed macrofeatures in Chapter 3, and shown that a small adjustment in the articula-

tion between the low-level and mid-level layers of feature extraction can lead to reliable

performance gains. We have conducted an extensive evaluation of unsupervised and su-

pervised coding modules, combined with several pooling modules and classifier types,

in Chapter 3, Chapter 6 and Chapter 7, and have proposed several ways to speed up cod-

ing without sacrificing too much recognition accuracy, in Chapter 6. We have presented

architectures that are trained convolutionally and perform better than those trained on

patches in Chapter 6.

Several outstanding questions would be interesting to pursue. First, it is unclear why
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fully trained architectures, while competitive, still cannot outperform more engineered

systems. Second, we have examined many aspects of pooling, but not considered the

best way to pool across basis functions; knowing what basis functions go together would

probably be a very important source of robustness to perturbations. Third, the view of

pooling as a statistic extractor would suggest many other types of pooling operators to

compare: higher moments such as variance, skewness, kurtosis, or quantile statistics

could better characterize the statistics of feature activations over a pool. Feature ex-

traction may still sometimes seem more like a craft than a science, but answering these

questions would take us a bit further towards understanding why our models work, and

how to make them work better.
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APPENDIX

7.6 Proofs for the statistics of max pooling with an ex-

ponential distribution

Assume the distribution of the value of a feature for each patch is an exponential dis-

tribution with mean 1/λ and variance 1/λ2. The corresponding cumulative distribution

function is 1 − e−λx. The cumulative distribution function of the max-pooled feature

is (1 − e−λx)P . Then the mean and the variance of the distribution of the max-pooled

feature are: µm = H(P )/λ and σ2
m = 1/λ2

∑P
l=1 1/l(2H(l) − H(P )), respectively,

whereH(k) =
∑k

i=1 1/i denotes the harmonic series.

PROOF:

• MEAN: The cumulative distribution function of the max-pooled feature is:

F (x) , (1− exp(−λx))P . (7.13)

Hence,

µm =

∫ ∞

0

[1− F (x)]dx =

∫ ∞

0

1− (1− exp(−λx))Pdx. (7.14)

Changing variable to u = (1− exp(−λx)) :

µm =
1

λ

∫ 1

0

1− uP

1− u
du =

1

λ
f(P ), (7.15)
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where f1(P ) ,
∫ 1

0
1−uP

1−u
du. We have:

f1(0) = 0;∀P ≥ 1, f1(P )− f1(P − 1) =

∫ 1

0

uP−1du =
1

P
. (7.16)

Hence, µm = 1/λ
∑P

j=1 1/j = H(P )/λ.

• VARIANCE: σ2
m = E[X2]− µ2

m;

E[X2] = 2

∫ ∞

0

x[1− F (x)]dx (7.17)

= 2

∫ ∞

0

x.(1− (1− exp(−λx))P )dx (7.18)

=
2

λ2

∫ 1

0

1− uP

1− u
(− log(1− u))du, (7.19)

(7.20)

with the same change of variables as before. Hence:

f2(P )− f2(P − 1) , λ2

2

(
E[X2]P − E[X2]P−1

)
=

∫ 1

0

uP−1(− log(1− u))du.

(7.21)

Integrating by parts with 1− uP yields:

f2(P )− f2(P − 1) =
1

P

∫ 1

0

1− uP

1− u
du (7.22)

=
H(P )

P
. (7.23)

Hence:

σ2
m =

1

λ2

P∑
l=1

1

l
(2H(l)−H(P )) (7.24)
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7.7 Additional experimental results

7.7.1 Dependency on the regularization hyperparameter of the SVM

Experiments here show results as a function of the regularization (C) hyperparameter of

the SVM classifier. As can be seen in Fig. (7.2), performance is stable on a wide range

of regularization hyperparameters, but choosing a wrong C can be severely damaging..
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Figure 7.2: Recognition accuracy, Caltech 101 dataset, 15 training examples, sparse

coding, max pooling, linear classifier, standard features, when varying the C regulariza-

tion hyperparameter of the SVM.
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7.7.2 Additional results for Chapter 3

Fig. (7.3) shows the same results as Fig. (3.6), but using 15 training images per class

instead of 30.
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Figure 7.3: Recognition accuracy, Caltech 101 dataset, 15 training examples, with

sparse codes and different combinations of pooling and kernels. Dotted lines: max

pooling. Solid lines: average pooling. Closed symbols, blue: intersection kernel. Open

symbols, red: linear kernel. Green: Yang et al.’s results (Yang et al., 2009b).
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Caltech-101 p = 1 p = 4 p = 16 p = 64

k = 4 28.0± 0.7 38.5± 1.0 53.9± 1.0 62.8± 0.8

k = 16 53.1± 1.0 58.3± 1.1 63.2± 1.0 68.6± 1.0

k = 64 62.8± 1.0 66.7± 1.1 69.7± 0.8 73.0± 0.6

Scenes p = 1 p = 4 p = 16 p = 64

k = 4 40.6± 0.7 56.6± 0.7 64.5± 0.6 70.1± 0.8

k = 16 63.3± 0.8 69.3± 0.7 74.0± 0.6 76.0± 0.6

k = 64 72.6± 0.6 76.6± 1.0 78.9± 0.5 79.2± 0.5

Caltech-256 p = 1 p = 4 p = 16 p = 64

k = 4 6.9± 0.3 11.7± 0.4 17.4± 0.3 21.0± 0.3

k = 16 16.5± 0.3 20.9± 0.4 24.8± 0.3 26.5± 0.3

k = 64 23.0± 0.3 26.5± 0.3 29.8± 0.3 −

Table 7.4: Recognition accuracy for smaller dictionaries, as a function of K: size of

the codebook for sparse coding, and P : number of clusters for pooling. Precluster-

ing needs larger final global image representations to outperform richer dictionaries.

Macrofeatures used for Caltech-101 and Scenes with image resizing, standard features

with full-size images for Caltech-256.

7.7.3 Additional results for Chapter 5

This section contains numerical results of experiments plotted in the chapter, and results

from the Caltech-256 and Scenes datasets.
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p 1 4 16

k = 256 32.9± 0.4 34.5± 0.5 38.0± 0.6

k = 1024 39.7± 0.3 39.2± 0.5 40.8± 0.6

k = 256 32.3± 0.8 34.9± 0.5 38.0± 0.5

k = 1024 38.1± 0.6 39.8± 0.7 41.6± 0.6

Table 7.5: Recognition accuracy on Caltech 256, 30 training examples, as a function of

K: size of the codebook for sparse coding, and P : number of clusters extracted on the

input data. Macrofeatures extracted every 4 pixels. Top two rows: no resizing of the

image. Bottom two rows: resized so that maximal dimension is ≤ 300 pixels.

C101 k = 4 k = 16 k = 64 k = 256 k = 1024

Single 38.5± 1.0 58.3± 1.1 66.7± 1.1 72.6± 1.0 76.0± 1.2

Sep 45.9± 1.1 60.0± 1.0 68.2± 1.3 73.4± 0.9 76.7± 1.0

Scenes k = 4 k = 16 k = 64 k = 256 k = 1024

Single 56.6± 0.7 69.3± 0.7 76.6± 1.0 81.7± 0.5 83.5± 0.8

Sep 61.5± 0.5 70.6± 0.8 78.2± 0.7 81.8± 0.7 83.7± 0.8

Table 7.6: Recognition accuracy on Caltech-101 and Scenes, according to whether a

separate dictionary is learned for each of P = 4 clusters. Single: shared dictionary.

Sep: one dictionary per cluster. Dictionary size K.

145



Caltech 30 tr. Scenes

Pre, P = 1 70.5± 0.8 79.2± 0.7

P = 4 72.6± 1.0 81.7± 0.5

P = 16 74.0± 1.0 82.0± 0.7

P = 64 75.0± 0.8 81.4± 0.4

P = 128 75.5± 0.8 81.0± 0.3

P = 256 75.1± 1.0 −

P = 512 74.5± 0.7 −

P = 1024 73.8± 0.8 −

P = 1 + 16 74.2± 1.1 81.5± 0.8

P = 1 + 64 75.6± 0.6 81.9± 0.7

Post, P = 4 72.4± 1.2 79.6± 0.8

P = 16 75.1± 0.8 80.9± 0.6

P = 64 76.4± 0.8 81.1± 0.6

P = 128 76.7± 0.8 81.1± 0.5

P = 256 75.9± 0.8 −

P = 512 75.2± 0.8 −

P = 1024 74.2± 0.6 −

Table 7.7: Accuracy on Caltech-101 and Scenes as a function of whether clustering is

performed before (Pre) or after (Post) the encoding, for a dictionary size K = 256. P :

number of configuration space bins.
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Caltech 30 tr. Scenes

Pre, P = 1 75.6± 0.9 82.7± 0.7

P = 4 76.0± 1.2 83.5± 0.8

P = 16 76.3± 1.1 82.8± 0.8

P = 64 76.2± 0.8 81.8± 0.7

P = 128 − 80.9± 0.7

P = 1 + 16 76.9± 1.0 83.3± 1.0

P = 1 + 64 77.3± 0.6 83.1± 0.7

Post, P = 4 75.8± 1.5. 82.9± 0.6

P = 16 77.0± 0.8 82.9± 0.5

P = 64 77.1± 0.7 82.4± 0.7

P = 128 76.9± 0.5 82.0± 0.7

P = 256 75.7± 0.8 −

Table 7.8: Accuracy on Caltech-101 and Scenes as a function of whether clustering is

performed before (Pre) or after (Post) the encoding, for a dictionary size K = 1024. P :

number of configuration space bins.
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wi k = 4 k = 16 k = 64 k = 256

Caltech-101, average pooling

1 44.9± 0.8 54.8± 0.8 60.7± 0.9 64.1± 0.9√
ni/n 49.7± 0.9 56.6± 0.8 62.3± 1.1 65.7± 1.2

ni/n 44.6± 0.8 51.5± 0.9 58.1± 1.2 62.8± 1.3

Scenes, average pooling

1 56.4± 0.6 66.3± 1.0 72.0± 0.6 74.5± 0.6√
ni/n 62.6± 0.8 68.5± 0.8 72.4± 0.4 74.6± 0.8

ni/n 60.9± 1.1 65.7± 0.8 70.2± 0.4 72.5± 0.9

Caltech-256, average pooling

1 12.6± 0.2 17.9± 0.3 19.9± 0.4 −√
ni/n 16.8± 0.4 20.4± 0.4 21.9± 0.3 −

ni/n 14.8± 0.3 17.8± 0.4 20.2± 0.3 −

Table 7.9: Recognition accuracy on Caltech-101, Scenes, and Caltech-256, for different

cluster weighting schemes, with average pooling, for P = 16 clusters, and dictionary

size K. Macrofeatures on resized images are used for Caltech-101 and Scenes, standard

features on full-size images for Caltech-256.
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wi k = 4 k = 16 k = 64 k = 256

Caltech-101, max pooling

1 53.9± 1.0 63.2± 1.0 69.7± 0.8 74.0± 1.0√
ni/n 53.9± 1.2 61.6± 0.6 66.7± 0.8 70.9± 1.0

ni/n 47.0± 1.1 54.9± 1.1 60.9± 0.8 65.5± 0.9

Scenes, max pooling

1 64.5± 0.6 74.0± 0.6 78.9± 0.5 81.5± 0.8√
ni/n 66.1± 1.0 72.7± 0.8 77.2± 0.6 79.5± 0.9

ni/n 63.4± 0.9 69.2± 0.7 74.2± 0.8 76.9± 0.8

Caltech-256, max pooling

1 17.4± 0.3 24.8± 0.3 29.8± 0.3 −√
ni/n 19.3± 0.4 24.5± 0.3 28.2± 0.3 −

ni/n 16.4± 0.3 20.7± 0.2 24.0± 0.3 −

Table 7.10: Recognition accuracy on Caltech-101, Scenes, and Caltech-256, for differ-

ent cluster weighting schemes, with max pooling, for P = 16 clusters, and dictionary

size K. Macrofeatures on resized images are used for Caltech-101 and Scenes, standard

features on full-size images for Caltech-256.
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(a) 96 units, sparsity penalty=0 (b) 96 units, sparsity penalty=1

(c) 96 units, sparsity penalty=5 (d) 96 units, sparsity penalty=25

Figure 7.4: 96 RBM hidden units trained with increasingly weighted sparsity penalty

over 21× 21 patches of the Caltech-101 dataset.

7.7.4 Additional filter images for Sec. (6.3.1)

Fig. (7.4), Fig. (7.5), Fig. (7.6) and Fig. (7.7) show 96, 256, and 512 RBM hidden units,

trained over 21 × 21 patches of the Caltech-101 dataset, with increasingly weighted

sparsity.
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(a) 256 units, sparsity penalty=0 (b) 256 units, sparsity penalty=1

(c) 256 units, sparsity penalty=5 (d) 256 units, sparsity penalty=25

Figure 7.5: 256 RBM hidden units trained with increasingly weighted sparsity penalty

over 21× 21 patches of the Caltech-101 dataset.
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(a) 512 units, sparsity penalty=0

(b) 512 units, sparsity penalty=1

Figure 7.6: 512 RBM hidden units trained with increasingly weighted sparsity penalty

over 21× 21 patches of the Caltech-101 dataset.
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(a) 512 units, sparsity penalty=5

(b) 512 units, sparsity penalty=25

Figure 7.7: 512 RBM hidden units trained with increasingly weighted sparsity penalty

over 21× 21 patches of the Caltech-101 dataset.
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