

Supplement of

Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys

Daniel McGrath et al.

Correspondence to: Daniel McGrath (daniel.mcgrath@colostate.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1 Supplementary Material

- 2 Table S1. Observed density and calculated radar velocity at Gulkana and Wolverine glaciers.
- 3 Density uncertainty is the standard deviation of all density observations collected that year,
- 4 density velocity error is uncertainty introduced by uncertainty in density observations. Probe
- 5 velocity uncertainty is the standard error of the least-squares regression line.
- 6

Gulkana	Density [kg m ⁻³]	Density Velocity	Probe velocity	Mean Velocity				
		[m ns ⁻¹]	[m ns ⁻¹]	[m ns ⁻¹]				
2013	365 ± 37	0.229 ± 0.005	0.216 ± 0.003	0.223 ± 0.003				
2014	380 ± 29	0.227 ± 0.004	0.215 ± 0.003	0.221 ± 0.003				
2015	328 ± 13	0.235 ± 0.002	0.228 ± 0.009	0.231 ± 0.005				
2016	370 ± 27	0.229 ± 0.004	0.194 ± 0.005	0.211 ± 0.003				
2017	366 ± 8	0.229 ± 0.001	0.227 ± 0.002	0.228 ± 0.001				
Mean	362 ± 11	0.230 ± 0.002	0.216 ± 0.002	0.223 ± 0.001				
Wolverine								
2013	446 ± 23	0.218 ± 0.003	0.193 ± 0.003	0.207 ± 0.002				
2014	445 ± 43	0.218 ± 0.006	0.210 ± 0.002	0.214 ± 0.003				
2015	414 ± 14	0.222 ± 0.002	0.235 ± 0.002	0.229 ± 0.001				
2016	456 ± 6	0.216 ± 0.001	0.229 ± 0.003	0.223 ± 0.002				
2017	438 ± 12	0.219 ± 0.002	0.217 ± 0.002	0.218 ± 0.001				
Mean	440 ± 10	0.219 ± 0.001	0.217 ± 0.001	0.218 ± 0.001				

- 7
- 8 9
- 10

Method	2013	2014	2015	2016	2017
Gulkana <i>B</i> _w [m w.e.]					
MVR	1.38	1.44	0.96	1.31	0.65
Regression Tree	1.38	1.44	0.95	1.32	0.65
Z - CL only	1.40	1.38	0.81	1.27	0.65
Z - All	1.37	1.45	0.94	1.28	0.64
Site-Index	1.30	1.31	0.77	1.07	0.57
Profile	1.44	1.45	0.97	1.36	0.64
Mean	1.38	1.41	0.90	1.27	0.63
Wolverine <i>B_w</i> [m w.e.]					
MVR	2.83	2.17	2.70	3.56	2.14
Regression Tree	2.84	2.06	2.55	3.47	2.04
Z - CL only	2.31	1.87	2.36	3.37	1.77
Z - All	2.58	1.97	2.51	3.44	1.95
Site-Index	2.24	1.74	2.37	3.38	1.70
Profile	2.30	1.79	2.49	3.54	1.89
Mean	2.52	1.93	2.50	3.46	1.91

Table S2. Glacier-wide average B_w from different approaches across study interval.

49 Figure S1. GPR surveys (a,c,e,g,h) and MVR model residuals (b,d,f,h,j) for Gulkana Glacier for

50 2013-2017.

55 Figure S2. GPR surveys (a,c,e,g,h) and MVR model residuals (b,d,f,h,j) for Wolverine Glacier

56 for 2013-2017.

61 Figure S3. DEM-derived terrain parameters for Wolverine Glacier.

67 Figure S4. DEM-derived terrain parameters for Gulkana Glacier.

- 73 Figure S5. Example of training (black lines) and test (red lines) datasets for the 100 iteration loop
- 74 for Gulkana. This same procedure was applied to both glaciers and all years.

	Subset 1	0	Subset 2		Subset 3	0	Subset 4	0	Subset 5	0	Subset 6	0.	Subset 7		Subset 8	0	Subset 9	0	Subset 10
200	€ <u>/</u> }	200 400	57 Jan	200 400	et a	200 400	54 *	200 400	Et an	200 400	€# ¥\$	200 400	€# } *	200 400		200 400	₩¥	200 400	₩¥
0	200 400 600 800 Subset 11	000	200 400 600 800 Subset 12	0.00	200 400 600 800 Subset 13	0000	200 400 600 800 Subset 14	000	200 400 600 800 Subset 15	0	200 400 600 800 Subset 16	0.00	200 400 600 800 Subset 17	000	200 400 600 800 Subset 18	0	200 400 600 800 Subset 19	000	200 400 600 800 Subset 20
200 400	£1.	200 400	St Mar	200 400	er in	200 400		200 400	۶Ľ	200 400	€ <u>/</u> }	200 400	Et the	200 400	€Z ¥	200 400	100 M	200 400	52 MA
600	200 400 600 800 Subset 21	600	200 400 600 800 Subset 22	600	200 400 600 800 Subset 23	600	200 400 600 800 Subset 24	600	200 400 600 800 Subset 25	600	200 400 600 800 Subset 26	600	200 400 600 800 Subset 27	600	200 400 600 800 Subset 28	600	200 400 600 800 Subset 29	600	200 400 600 800 Subset 30
200 400 600	€¢.¥s	200 400 600	52 AN	200 400 600	€Z MA	200 400 600	€¢ ¥∽	200 400 600	₩¥	200 400 600	€¢.¥^	200 400 600		200 400 600	St An	200 400 600	\$ <u>7</u>	200 400 600	\$2.¥
	200 400 600 800 Subset 31		200 400 600 800 Subset 32		200 400 600 800 Subset 33		200 400 600 800 Subset 34		200 400 600 800 Subset 35		200 400 600 800 Subset 36		200 400 600 800 Subset 37		200 400 600 800 Subset 38		200 400 600 800 Subset 39		200 400 600 800 Subset 40
0 200 400		0 200 400		0 200 400		0 200 400		0 200 400	€ <u>/</u> ¥∽	0 200 400									
000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800
0	Subset 41	0	Subset 42	0	Subset 43	0	Subset 44	0	Subset 45	0	Subset 46	0	Subset 47	0	Subset 48	0	Subset 49	0	Subset 50
200 400 600	1	200 400 600	1	200 400 600		200 400 600	€ <u>/</u>	200 400 600	₩ ¥	200 400 600	₩ ¥	200 400 600	₩.	200 400 600		200 400 600	1	200 400 600	₩.¥
	200 400 600 800 Subset 51		200 400 600 800 Subset 52		200 400 600 800 Subset 53		200 400 600 800 Subset 54		200 400 600 800 Subset 55		200 400 600 800 Subset 56		200 400 600 800 Subset 57		200 400 600 800 Subset 58		200 400 600 800 Subset 59		200 400 600 800 Subset 60
0 200 400 600	€ <u>7</u> }%	0 200 400 600	52 JA	0 200 400 600	€ <u>7</u>	0 200 400 600	€# } *	0 200 400 600	€¢¥S	0 200 400 600	₩¥	0 200 400 600	€# ¥\$\$	0 200 400 600	₩¥	0 200 400 600	52 ¥5	0 200 400 600	s h
0	200 400 600 800 Subset 61	0	200 400 600 800 Subset 62		200 400 600 800 Subset 63	0	200 400 600 800 Subset 64	0	200 400 600 800 Subset 65	0	200 400 600 800 Subset 66	0.	200 400 600 800 Subset 67		200 400 600 800 Subset 68	0	200 400 600 800 Subset 69	0	200 400 600 800 Subset 70
200 400	€#_ } *	200 400	\$2. \$	200 400	₩¥\$	200 400	€ <u>7</u> }*	200 400	€ <u>7</u> }*	200 400	€# } *	200 400	₩¥	200 400	₩¥	200 400	€# } *	200 400	₩¥
600 0	200 400 600 800 Subset 71	600 0	200 400 600 800 Subset 72	600	200 400 600 800 Subset 73	600 0	200 400 600 800 Subset 74	600	200 400 600 800 Subset 75	600	200 400 600 800 Subset 76	600	200 400 600 800 Subset 77	600	200 400 600 800 Subset 78	600	200 400 600 800 Subset 79	600	200 400 600 800 Subset 80
200 400 600	₩ ₩	200 400 600	₩ ₩	200 400 600	54 M	200 400 600	€# }	200 400 600	€# ¥	200 400 600	52 MA	200 400 600	€# ¥	200 400 600	€# }	200 400 600	€# ¥S	200 400 600	
	200 400 600 800 Subset 81		200 400 600 800 Subset 82		200 400 600 800 Subset 83		200 400 600 800 Subset 84		200 400 600 800 Subset 85		200 400 600 800 Subset 86		200 400 600 800 Subset 87		200 400 600 800 Subset 88		200 400 600 800 Subset 89		200 400 600 800 Subset 90
0 200 400	₩ ₩	0 200 400	\$\$ \$	0 200 400	er ys	0 200 400	€# ¥\$\$	0 200 400	₩¥	0 200 400	₩¥	0 200 400	61 M	0 200 400	10 km	0 200 400	₩¥	0 200 400	52 MA
300	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	000	200 400 600 800	600	200 400 600 800	000	200 400 600 800
0	Subset 91	0	Subset 92	0	Subset 93	0	Subset 94	0	Subset 95	0	Subset 96	0	Subset 97	0	Subset 98	0	Subset 99	0	Subset 100
200 400 600	€⊈ ¥S	200 400 600	*	200 400 600	€⊈ ¥	200 400 600		200 400 600	€¢ ¥×	200 400 600	5	200 400 600	St and a state	200 400 600	St An	200 400 600	₩ X	200 400 600	€# ¥\$
	200 400 600 800		200 400 600 800		200 400 600 800		200 400 600 800		200 400 600 800		200 400 600 800		200 400 600 800		200 400 600 800		200 400 600 800		200 400 600 800

89 Figure S6. Average wind rose from *in situ* weather station for (a) Wolverine and (b) Gulkana

90 over the five-year study period.

- 91
- 92

- 119 Figure S7. Distributed normalized SWE fields for Gulkana glacier from MVR (a,c,e,g,i) and
- regression tree model (b,d,f,h,j) for 2013-2017.

- 125 Figure S8. Distributed normalized SWE fields for Wolverine glacier MVR (a,c,e,g,i) and
- regression tree model (b,d,f,h,j) for 2013-2017.

- 132 Figure S9. Median out-of-bag predictor importance estimates from the regression trees for (a)

133 Gulkana and (b) Wolverine glaciers.

- 145 Figure S10. Photograph of the off-glacier terrain near Wolverine Glacier showing significantly
- 146 greater spatial variability in SWE. Photograph was taken in April 2017.
- 147

148 149

150 Figure S11. Photograph of Wolverine Glacier's lower icefall in May 2014 showing exposed ice.

