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Abstract

Background: Cancer is one of the leading death causes globally with about 8.2 million deaths per year and an
increase in numbers in recent years. About 90% of cancer deaths do not occur due to primary tumors but due to
metastases, of which most are not clinically identifiable because of their relatively small size at primary diagnosis and
limited technical possibilities. However, therapeutic decisions are formed depending on the existence of metastases
and their properties. Therefore non-identified metastases might have huge influence in the treatment outcome. The
quantification of clinically visible and invisible metastases is important for the choice of an optimal treatment of the
individual patient as it could clarify the burden of non-identifiable tumors as well as the future behavior of the
cancerous disease.

Results: The mathematical model presented in this study gives insights in how this could be achieved, taking into
account different treatment possibilities and therefore being able to compare therapy schedules for individual patients
with different clinical parameters. The framework was tested on three patients with non-small cell lung cancer, one of
the deadliest types of cancer worldwide, and clinical history including platinum-based chemotherapy and PD-L1-
targeted immunotherapy. Results yield promising insights into the framework to establish methods to quantify effects
of different therapy methods and prognostic features for individual patients already at stage of primary diagnosis.
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Background
The vast majority of primary malignant lung tumors are
carcinomas, which contain two major subgroups: non-
small cell lung cancer (NSCLC) and small cell lung can-
cer (SCLC). The former group accounts for about 85%
of all lung cancers and is itself divided into the main
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subgroups of squamous cell carcinoma (SCC), adenocar-
cinoma (ADC) and large cell carcinoma [1, 2]. The mor-
phology of those subtypes is distinguished by immuno-
histological testing. The histology of patients whose mea-
surements have been used in this study (SCC, ADC
and adenosquamous carcinoma as combination of both)
shall be discussed briefly in the following, as they show
very different behavior in growth, metastatic seeding and
response to treatment.
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Adenocarcinoma
ADC is the most frequent type of lung cancer located
mainly in the lung periphery. Its histology is very het-
erogeneous but several markers have been established to
identify this type of lung cancer. TTF1 has been shown to
be expressed in about 80% of primary lung ADC [3]. In the
complementary 20% it is useful to examine the expression
of Napsin A that also proves the preparation to be part of
the primary ADC of the lung [4]. It has been shown that
mutations of KRAS correlate with worse prognosis and
worse response to chemotherapy [5–7]. Targeted thera-
pies of inhibitors of EGFR, EML4-ALK and ROS1 though
show better efficiency for alterations in the respective
genes, proteins and pathways [8–10]. The identification
for markers of successful treatment is current scientific
work [10].

Squamous cell carcinoma
SCC is the second-most common type of lung cancer
accounting for about 17% of lung cancer diagnoses. The
incidence of SCC is strongly associated with cigarette
smoking with a higher ratio for men than for women [11].
To distinguish SCC from SCLC immunohistochemical
analysis of the markers Chromogranin A, Synaptophysin
and CD56 is helpful. Molecular markers to identify dif-
ferentiations within the group of SCC are cytokeratins
such as CK5/6, CK14 and proteins such as p40 and p63.
Morphologically SCC shows cornification and/or intra-
cellular bridges and its proliferation rate is considered as
high compared to healthy tissue [12]. Adenosquamous
carcinoma (ASC) is considered a tumor that shows com-
ponents of both SCC and ADC. The survival prognosis
of patients with ASC is worse than those of SCC or ADC
alone [13].
Lung cancer in general is very likely to metastasize and

about 90% of cancer deaths do not occur due to the pri-
mary tumors but due to its metastases. Limited technical
possibilities are the reason why most metastases are not
identified at primary diagnosis [14–16]. Non-identified
metastases might still influence therapeutic outcomes as
decisions on treatment are also formed depending on the
existence of metastases and the corresponding properties
[14, 17–19]. The treatments of choice including metas-
tases as therapeutic targets are systemic therapies, such
as chemo- and immunotherapy. For non-altered genes,
proteins and pathways as presented before, usually an
immunotherapy based on targeting the PD-1 pathway
is administered directly (so-called First-Line therapy) or
subsequently to a prior platinum-based chemotherapy
(so-called Second-Line therapy) [20]. The details for those
mechanisms are discussed in the modeling section of this
study.

Mathematical model
Primary tumor growth
Different ways to estimate tumor growth have widely been
examined in various research works. Knowing the growth
of a tumor over time not only gives predictive power and
knowledge on the severeness of a cancerous disease but
also provides possibilities of treatment optimization. It
was found that for different tumors there is no ‘universal
growth law’ to describe the tumor growth in a reliable way
for clinical practice [21]. However, the Gompertz model,
originally introduced in [22] and firstly applied to tumor
measurements in [23], describes the tumor growth pro-
cess in an easy but astonishingly efficient way for human
tumors, in contrast to exponential growth describing
experimental tumors [24]. The advantage of the Gom-
pertz model is its initial exponential growth phase that
slows down by exponential decay of its parameter to reach
an asymptotical value for t → ∞. Let this asymptotical
value be denoted as K, interpreted as the tumor carry-
ing capacity and let x(t) denote the tumor size at time
t ≥ 0. Then x(t) t→∞−−−→ K by definition and by using
x0 > 0 as the initial tumor size the Gompertz model reads
dx(t)
dt = r exp(−at)x(t) with x(0) = x0. The parameters r

and a can be interpreted as the initial exponential growth
rate and its decay factor, respectively. Assuming the ‘one
renegade cell’ theory, i.e. assuming the cancer’s origin to
be one mutated cell, we have x0 = 1 [14, 25]. We can
also directly formulate the Gompertz equation depend-
ing on the tumor carrying capacity K (computation can
be found in the appendix): another possible formulation
of the Gompertz growth law is to use K = exp(r/a) for
x0 = 1, such that the system reads

dx(t)
dt

= a ln(K/x(t))x(t)

x(0) = 1
(1)

For further analysis, the value of K will be fixed to an
amount of 1012 cells known from observations [26]. These
ordinary differential equations (ODEs) for the Gompertz
growth can be solved to derive analytical solutions for
x0 = 1:

x(t) = exp
( r
a

(1 − exp(−at))
)

= K1−exp(−at) (2)

We can compute the age of a tumor T, which is the time a
tumor of size x0 = 1 needs to grow to size x(T), by solving
Eq. (2) for time as a function depending on size x. Let T(x)
be this function, then
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T(x) = −1
a
ln

(
1 − a

r
ln (x)

)
= −1

a
ln

(
1 − ln (x)

ln (K)

)

(3)

The clinical characterization of the tumor volume dou-
bling time (TVDT) originally introduced for exponential
tumor growth [27] can also be applied to the Gompertz
growth law. The TVDT is defined as the time a tumor of
size x > 1 takes to grow to size 2x and can be estimated
clinically [28]. Using Eq. (3) one receives

TVDT(x) = T(2x) − T(x)

= −1
a
ln

(
a ln (2x)

a ln (x) − r
− r

a ln (x) − r

)

= −1
a

(
ln

(
1 − ln (2x)

ln (K)

)
− ln

(
1 − ln (x)

ln (K)

))
.

(4)

Therapy dynamics: chemotherapy
As there are close to no measurements of untreated
tumors in humans, a comparison of model formulations
to clinical measurements is only possible when including
the corresponding therapy dynamics into the model. The
general principle of chemotherapeutic agents is formed
of cytostatic and/or cytotoxic effects on different path-
ways of cells, in the ideal case solely on cancerous ones
or with minimal side effects on healthy cells [29, 30]. As
adverse effects in chemotherapy application are usually
very common, many different combination therapies of
classical drugs and newer targeted therapy methods have
been used as a standard of care for different cancerous
diseases [30]. Still, the common theory behind the quan-
titative effects of chemotherapy is originally formed by
the so-called ‘log cell kill’ theory [31, 32]. It states that
an applied chemotherapy dose kills a constant fraction of
tumor cells independent of the actual tumor size during a
certain fixed amount of time. Experimental regimes have
shown this behavior in mice as long as the mentioned
exponential growth has been identified, in stark contrast
to human cancer settings [33]. For human tumors, it
was suggested that the chemotherapy exhibits effects in
tumor regression proportional to the growth rate of an
untreated tumor of this size and that the tumor size also
depends on the integrated drug effect during the course of
actual treatment [34, 35]. This allows for an explanation
of refractory effects termed as ‘kinetic resistance’ that are
widely observed in clinical chemotherapy applications on
tumors reaching a small size [24]. This kinetic resistance
is an important driver of therapy outcome.
To account for these refractory effects in a simpler way

we introduce the dynamics of chemotherapy as follows.
Let 1Ci(t) denote the characteristic function returning a
logical value that indicates the application of a chemother-

apeutic drug Ci at time t ≥ 0. This idea put into a
mathematical formulation yields

1Ci (t) =
{
0, if chemotherapy is not applied
1, if chemotherapy is applied

at t ≥ 0 using pharmaceutical i.

(5)

Further assume that on days without chemotherapy, the
concentration of chemo-therapeutic drugs within the
body and thus their effect is negligible. This is realis-
tic for chemotherapeutic drugs, as the half-life of these
pharmaceuticals is relatively small and lies in ranges of
several hours. By this definition 1Ci(t) has a finite amount
of jump discontinuities if both the application time of
chemotherapeutic drugs and the amount of applications
of the respective drug is measurable but finite. Let μi(t)
denote the fractional effect of chemotherapy administra-
tion of drug i on the tumor size. The refractory effect of
drug administration can be expressed based on an idea of
[36] as a change dμi(t)

dt reducing the effects in a constant
fraction μ∗

i ≥ 0 when the drug is applied, accounting for a
fraction of the tumor to show resistance towards the drug,
using μi(0) = μi,0 ≥ 0.

dμi(t)
dt

=
{
0 , if 1Ci(t) = 0
−μ∗

i μi(t) , if 1Ci(t) = 1 (6)

Taking these effects for drug application into account for
the growth dynamics of a tumor one has1 (We neglect
the tumor’s growth rate in the case of active treatment as
the application time of a chemotherapeutic drug is rather
short and they feature half-lives of just a few hours):

dx(t)
dt

=
{
a ln(K/x(t))x(t) , if 1Ci(t) = 0
−μi(t)x(t) , if 1Ci(t) = 1. (7)

This approach considers the emergence of resistance
towards treatment with respect to the already approved
therapeutic windows of the applied drugs. The choice of
μ∗
i therefore suggests the emergence to only be propor-

tional to the application times of the chemotherapeutic
drug. In theory, the approach could be extended to have
the emergence to depend also on the administered dose,
i.e. the fraction μ∗

i is a function of the given dose per
time. Deviations from the approved dosages are not in this
work’s focus.

Therapy dynamics: immunotherapy
The growth of tumors and their metastatic spread is not
only determined by cell characteristics but also influenced
by the immune system [37]. Immunologic approaches
have become an inherent part in tumor therapy within
the past decades and contribute to the antitumoral
activity of the immune system [38, 39]. In general, an

1The log cell kill hypothesis could be modeled by having μi ≥ 0 constant and
independent of time, i.e. dμi

dt = 0.
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immunotherapeutic treatment can be divided into four
major subgroups: the active non-specific immunother-
apy (treatment e.g. via cytokines), the active specific
immunotherapy (vaccines), the passive immunotherapy
(monoclonal antibodies) and approaches to block immune
escape mechanisms (e.g. CTLA-4) [40]. In the following,
we will focus on the application of certain immune check-
point inhibitors, that usually limit the activation of the
immune system. Tumor cells canmanipulate and dysregu-
late immune checkpoints to modify the T-cell activity and
suppress an immune response [41, 42].
The PD-1-pathway as a specific immune checkpoint can

regulate the T-cell activity in the effector phase of the
immune response. Usually, the activation of PD-1 serves
as a downregulation of T-cell activity in the peripheral
tissue to prevent collateral damage during an immune
response [42, 43]. However, cancer cells can manipulate
the PD-1-pathway by expressing the PD-1-Ligands PD-L1
and PD-L2. Those ligands bind on the T-cell’s PD-1 recep-
tor and inactivate the T-cell to block the immune response
towards the tumor cells [41, 42, 44, 45].
PD-L1 is widely expressed in many different cancer

types in varying amounts which has made it an attractive
target for novel treatment approaches [46]. Anti-PD-1 and
Anti-PD-L1 antibodies have become standard treatments
for different cancer types in the last few years showing sig-
nificant clinical benefits in patients with advanced stages
of cancer [47]. An overview over the currently approved
therapeutics is given in Table 1.
As those antibodies show half-lives much higher than

those of the chemotherapeutic drugs modeled before, we
have taken into account pharmacokinetic effects. Let ci(t)
denote the concentration of drug i at time t ≥ 0 mea-
sured in [amount of molecules per body volume]. Assume
this volume to be constant for any individual patient due
to missing data. The concentration’s dynamic at a given
time point t of an immunotherapeutic pharmaceutical i
is assumed to depend on the state of therapy. While the
drug is applied, administration of a dose di measured in
[mg per body volume per time] increases the concentra-
tion depending on the molar massMi of the drug and the

Avogadro constant NA. The clearance depends on the
drug’s half-life t1/2i and takes place throughout the whole
time course. The pharmacokinetic equation therefore
reads

ċi(t) =

⎧⎪⎪⎨
⎪⎪⎩

−
(

ln(2)
t1/2i

)
ci(t) , if 1Ii(t) = 0

−
(

ln(2)
t1/2i

)
ci(t) + NA

Mi
di , if 1Ii(t) = 1

(8)

The characteristic function of immunotherapy is analo-
gous to Eq. (5) used for chemotherapy and reads

1Ii (t) =
{
0, if immunotherapy is not applied
1, if immunotherapy is applied

at t ≥ 0 using pharmaceuticali.

(9)

The immunotherapeutic drug is applied in cycles of a
certain length l (cf. Table 1). This means that after one
application of a daily dose, the time to the next applica-
tion will be l time units, e.g. measured in days. To simplify
model analysis the quasi steady state assumption may be
applied to determine the steady state drug concentration
that the simulation will periodically meet. Let this value
be denoted as csti . The applied mean drug dose over the
whole application time d̃i can be computed as the appli-
cation time related mean value di

l . Then the steady state
value csti can be computed as

csti = NA
Mi

d̃i
t1/2i
ln(2)

. (10)

The quantitative effects of immunotherapy are not
yet clearly resolved [48–50]. We therefore assume the
immunotherapeutic drugs to show a behavior of a Hill-
Langmuir equation with first order Hill coefficient in its
efficiency towards cancer cells, using c50i as the drug con-
centration necessary to show half of the efficiency. The
parameter χ describes the per time amount of cancer cells
destroyed by the direct application of one single molecule.
The amount of cancer cells is still denoted by x(t), the
pure growth dynamic stays as a Gompertz equation in the

Table 1 Monoclonal antibodies

Antibody Type Year of approval (FDA) Molar MassMi [kDa] Approved Dosages Half-life t1/2i [d] Sources

Atezolizumab humanized 2016 145 1200mg q3w 27 [70, 71]

Avelumab human 2017 143 800mg q2w 6.1 [72, 73]

Durvalumab human 2017 146 10mg/kg q2w 18 [74, 75]

Nivolumab human 2014 146 240mg q2w or 480mg q4w 26.7 [76, 77]

Pembrolizumab humanized 2014 146 200mg q3w or 400mg q6w 22 [78, 79]

Cemiplimab human 2018 144 350mg q3w 19.4 [80, 81]

Currently approved monoclonal antibodies used as immunotherapeutics targeting the PD-1 pathway. The application cycle length l used in the model is determined from
the dosage, e.g. the expression “q3w” reads “every three weeks”, thus l = 3
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type of Eq. (1). The overall growth dynamic of cancer cells
under immunotherapy therefore can be formulated as

dx(t)
dt

= ax(t) ln
(

K
x(t)

)
− χ

ci(t)x(t)
c50i + ci(t)

. (11)

Metastatis growth and spread
Metastases and their treatment’s consequences are the
strongest contributor to cancer-related deaths [51]. They
form by cancer cells leaving the primary tumor mass
and moving to distant sites within the human body via
the blood and lymphatic vessels [14]. After extravasa-
tion out of the vessels into surrounding tissues those
metastatic cells construct tumoral microenvironments
and micrometastases to perform angiogenesis and pro-
liferation [52]. The daughter tumors resulting from this
so-called colonization are referred to as metastases [14].
Even though only a minority of such metastatic cells sur-
vives the travel through the body as of immune system
reactions and other defense mechanisms, a diagnosis of
metastases is directly linked to significantly lowered sur-
vival times [51, 53]. The crucial point is that, even when
primary diagnosis has found only a few metastases in a
patient’s body, there are usually hundreds or thousands of
micrometastases widely spread over numerous tissues in
the body [15, 16]. Their detection is very challenging if not
even impossible with current techniques [14]. The total
metastatic burden in a patient’s body does not only influ-
ence treatment options, its appraisal is of high importance
for the outcome as well [17, 54].
Mathematically, the approaches on improving the

understanding of cancer metastasis and estimating their
development have been numerous, while population for-
mulations have been a minority amongst them. Originally
introduced by [55], a function ρ(x, t) formulated in a
transport equation interprets as size-structured density
of metastases. The function value ρ(x, t) gives the den-
sity of tumors of size x ≥ 1 at time t ≥ 0 measured
in number of cells. The primary tumor dynamics can be
introduced in this population approach with an initial
condition ρ(1, 0) = 1 and ρ(x, 0) = 0 ∀x > 1 corre-
sponding to the cancer’s origin to be one single mutated
cell as introduced earlier. Using the individual tumor’s
growth rate g(x, t) as stated above for either treatment (a
joint treatment is clinically not applicable) and the natu-
ral growth g(x, t) = a ln (K/x(t)) x(t) in absence of any
treatment, the following dynamics are further assumed:

∂ρ(x, t)
∂t

+ ∂g(x, t)ρ(x, t)
∂x

= 0 (12)

and a boundary condition to introduce newly formed
metastases of cell size one

g(1, t)ρ(1, t) =
∫ ∞

1
β(x̃, t)ρ(x̃, t)dx̃ (13)

Here we integrate over x̃ to clarify that it is all sizes
within the distribution that we consider in the boundary
condition, not only the tumor size x that is denoted in
the transport equation. The dissemination rate β(x̃, t) :=
mx̃α describes the steps of the metastatic cascade nec-
essary to take place for successful metastasis formation
[15]. It is measured in the amount of formed metastases
per unit time, as m denotes the colonization coefficient
and α describes the fractional dimension of the tumor.
For a tumor of spheroid shape, this parameter equals
2/3 as fraction of surface by volume. Another possible
interpretation focuses on the probability of tumor cells
to metastasize: for α = 0 the dissemination rate turns
out to be a constant cell pool (e.g. stem cells) whereas
α = 1 indicates equal probability for all tumor cells to
metastasize. Values 0 < α < 1 are seen as the geomet-
ric disposition of cells potentially metastasizing, while the
parameter m can be interpreted as the per day per cell
probability for tumor cells to overcome every single step of
the metastatic cascade [56]. By construction, it is assumed
that all metastases show the same growth and seeding
behavior as the primary tumor [57]. This includes the
equal carrying capacity K for each individual metastasis.
To include the previously formulated tumor growth

and therapy methods, one introduces formulations on the
stepwise time course depending on therapy-free growth
or therapy effects on the respective tumor with help of the
Eqs. (1), (7) and (8). This now can be used for the rate
g(x, t) in Eq. (12) depending on the given desired ther-
apy schedule. As those need to be defined previously and
patient-individually, it is pure simulation to compare ther-
apy outcomes of different schedules. Comparisons with
clinical data can be found in the following section.
Of further interest are the number of metastases, be

them visible or not yet detectable with imaging tech-
niques. The cumulative size distribution of visible tumors
is the number of tumors larger than a certain size thresh-
old svis that depends on the resolution of the clinically
used techniques. The quantity reads

Nvis(t) =
∫ ∞

svis
ρ(x̃, t)dx̃ (14)

whereas the total tumor burden (the sum of metastases
and the primary tumor) can be defined as

N0(t) =
∫ ∞

0
ρ(x̃, t)dx̃. (15)

Materials &methods
Clinical data
The patient data examined in the following contain
patients with non-small cell lung cancer (NSCLC) and
were collected from volumetric measurements of primary
tumors and metastases of patients with adenocarcinoma
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and adenosquamous carcinoma with different histologies
(see Table 2 for details). All patients were routinely treated
in the Clinic of Pneumology, Thoracic Oncology, Sleep
and Respiratory Critical Care of the Klinikverbund Allgäu
in Germany. Data use was approved by the ethic com-
mission of BLAEK (Ethik-Kommission der Bayerischen
Landesärztekammer), reference number 19021. The vol-
umetric measurements originate from routinely acquired
CT slices and computations of the secondary appraisal
environment syngo.CT Lung Computer Aided Detection
(CAD) workflow of Siemens Healthineers, provided in
the syngo.Via VB40 framework. Prototype versions of this
Lung CAD system provided a sensitivity of about 87% for
detecting lung nodules also identified by three out of four
radiologists as well as a sensitivity of about 89% for detect-
ing lung nodules identified in radiologist’s consensus [58].
More modern versions trained on higher amounts of data
and improved underlying detection algorithms have been
estimated to show a sensitivity of correctly identifying
lung nodules at a rate of about 97% [59]. The false positive-
rate in these examinations has shown to range between
3.0 and 2.8 per examination on average for 75% and 100%
consensus of radiologists respectively [58] as well as 3.7
and 1.9 per examination on average when searching for all
nodules or nodules of sizes larger than 50 mm3 respec-
tively [59]. Those volumetric data were rescaled into mea-
surements [amount of cells] by using the conversion rule
10−3ml = 1mm3 = 106 cells [60].

Results
Model implementation and fitting
The volumetric measurements contain time course
dynamics of the tumors identified by syngo.CT. As it is
in general not distinguishable purely from clinical obser-
vations whether re-seeding occurs between the primary
tumor and its metastases, we employed Iwata’s model-
ing approach [55] introduced in Eqs. (12) and (13) and

calculated the total tumor burden at the respective CT
examination date. In this way, the possibility of re-seeding
is accounted for to combine the modeling framework
results to clinical data. Also, it is not only single cells that
may disseminate in the metastatic process but also cell
packages that might form new metastases. In the mod-
eling framework, these cell packages are distinguished
into their individual cells. To meet these calculations,
the implementation of the model was performed with
a discretization using a method of solving the PDE on
its characteristics in MATLAB� including the primary
tumor dynamics into the density via the initial condition
ρ(1, 0) = 1 and ρ(x, 0) = 0 ∀x > 1. In the discretized
form, this condition satisfies the assumption of one single
existing primary tumor of size one cell at reference time
t = 0. Depending on the therapy schedule, the growth
function g(x, t) had the form of Eq. (1) for no treatment,
the form of Eq. (7) for the time interval of chemotherapeu-
tic treatment and the form of Eq. (11) for the time interval
of immunotherapeutic treatment. The immunotherapeu-
tic treatment’s drug concentrations were solved step-wise
using the pre-defined ode45-framework of MATLAB�

on a daily concentration amount. The ode45 frame-
work is based on an explicit Runge-Kutta (4,5) formula
[61–63]. The parameters necessary to describe the metas-
tases’ time course were fitted from the calculated total
tumor burden model output of Eq. (14) using the pre-
definedMATLAB�-framework fmincon [64] using care-
fully chosen applications of switches between the sqp
and interior-point algorithms on different initial param-
eter space values minimizing least squares towards the
total tumor burden data points. Diverse starting points
in reasonable parameter intervals were chosen and bio-
logically relevant fitting results were identified. The stan-
dard errors have been computed as the square root of
the diagonal entries of the inverse of the resulting Hes-
sian matrices. As clinical history was different for every

Table 2 Patient-specific clinical parameters

Patient KE-01 KE-02 KE-03

Sex F M M

Histology Adenosquamous Carcinoma Adenocarcinoma Adenocarcinoma

Molecular Pathology EGFR-, PD-L1 5, CK7+, TTF1+, EGFR-, ALK-, KRAS-, BRAF-, EGFR-, ALK-, KRAS-,

p63+, Chromogr-, Syn- PD-L1 50, Ros1- BRAF- PD-L1 5

TNM Classification cT4 cN2 cM1b cT1b pN3 M1a cT4 cN3 cM0

ECOG-PS 1 0 0

Size of PT at primary diagnosis [ml] 240.74 14.27 71.75

The three patients with NSCLC examined in this study were routinely treated with a prior Cisplatin/Pemetrexed Chemotherapy and/or 1L/2L immunotherapy
(Pembrolizumab or Nivolumab), see “Results” section 4 for further details. The molecular pathology features diverse histological testing of tumor markers as follows: EGFR:
Epidermal Growth Factor Receptor, PD-L1: Programmed Death Ligand 1, CK7: Cytokeratin 7, TTF1: Thyroid Transcription Factor 1, p63: Tumor Protein 63, Chromogr:
Chromogranin A, Syn: Synaptophysin, ALK : EML4-ALK fusion protein, KRAS: Kirsten Rat Sarcoma, BRAF: rapid accelerated fibrosarcoma (B-Type), Ros1: rather often translocated
in sarcoma. The sign “+” or “-” indicates a positive respective negative test result for those gene translocations and upregulations. The connection of mentioned markers to
the diagnosis of tumor histology is explained in the first section
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single patient, this had to be established individually for
any patient.

Individual parameters
The fit calculations have led to parameter values pre-
sented in Table 3. The therapeutic time course, the treat-
ment schedules of the patients and the model predictions
on the total tumor burden resulting from themodel imple-
mentation can be found in Fig. 1 with the corresponding
computed immunotherapeutic drug concentrations under
application (cf. Eq. (8)).

Findings
Similarly as argued by [56] our estimated proliferation
rates a yield corresponding tumor cell cycle lengths of
ln(2)
a hours, i.e. those lengths are indirectly estimated to

lie between 93.1 and 100.8 hours. These values are real-
istically close to cycle lengths of observed values between
two to four days [65]. Also, tumor volume doubling
times in the range of the calculated values (cf. Table 3)
have been reported clinically [28]. The chosen Gom-
pertz equation is therefore considered appropriate for the
patient’s growth dynamics. After successful estimation of
the underlying parameters from the available data, the

model is able to reconstruct the time course of clinical his-
tory of the patients, that is, the underlying seeding and
growth dynamics of the primary tumors and correspond-
ing metastases that have been diagnosed throughout the
treatment of the patients.
The model advantage is to determine the individual

tumor dynamics under time course and therapy applica-
tion by examining the metastatic density at fixed time
points. The resulting simulations are shown in Figs. 2,
3 and 4. The computations conclude that at the time of
primary diagnosis the patients theoretically had 185, 45
and 119 tumors includingmicrometastases while themea-
surement data acquired in routine treatment showed 8, 8
and 12 (visible) metastases respectively. The total tumor
burden volumes at primary diagnosis could be calculated
correctly, as shown in Fig. 1. Clinical distinction of sin-
gle metastases is not entirely possible, as different seeded
metastases could have grown together to form one sin-
gle clinically traceable metastasis. Therefore the focus on
the total metastatic mass as clinical measurement was
chosen for this approach and explains deviations of the
measurements from the densities of the simulation.
The presented model framework does not only show

the possibility to retrace the clinical history of patients

Table 3 Patient-specific model parameters

Patient KE-01 KE-02 KE-03

Parameter Explanation Origin

K Environmental carrying capacity [cells] 1012 1012 1012 fixed, [26]

a Growth rate [1/day] 7.284 · 10−3 6.877 · 10−3 6.984 · 10−3 fitted

(1.041 · 10−3) (3.734 · 10−3) (0.611 · 10−3)

m Colonization coefficient [1/cell 1/day] 1.635 · 10−7 1.984 · 10−7 2.738 · 10−7 fitted

(0.157 · 10−7) (3.816 · 10−7) (0.490 · 10−7)

α Fractal dimension of tumor cells able to metastasize [-] 2/3 2/3 2/3 fixed, [55]

Chemotherapeutic drug in use CisPT/Pemet. (1L) - CisPT/Pemet. (1L) Data

μ0 Initial chemotherapy efficiency [-] 0.237 (1.000) - 0.081 (0.917) fitted

μ∗ Refractory effect under chemotherapy application [-] 0.132 (1.000) - 0.132 (1.321) fitted

Immunotherapeutic drug in use Pembr. (2L) Nivol. (1L) Pembr. (2L) Data

χ Immunotherapeutic effect under application [1/day] 0.067 (0.096) 0.499 (0.078) 0.088 (0.011) fitted

c50i Drug concentration of immunotherapeutic drug 1.012 · 1016 1.010 · 1016 1.009 · 1016 fitted

for half-maximal response [molecules per volume] (0.142 · 1016) (0.089 · 1016) (0.020 · 1016)
csti Drug concentration of immunotherapeutic drug 1.41 · 1018 2.77 · 1018 1.41 · 1018 estimated,

in serum steady state [molecules per volume] cf. Eq. (10)

T Age of primary tumor at diagnosis [d] 407.1 272.2 336.5 estimated,

cf. Eq. (3)

TVDT Tumor volume doubling time at diagnosis [d] 91.6 25.9 43.7 estimated,

cf. Eq. (4)

CisPT/Pemet. = Combination therapy of Cisplatinum and Pemetrexed. Pembr. = Pembrolizumab. Nivol. = Nivolumab. (1L) = First-line therapy. (2L) = Second-line therapy. The
values in brackets indicate the corresponding standard errors
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Fig. 1 Patient dynamics: total tumor burden and immunotherapeutic drug concentration. The model outputs for tumor burden under therapy
compared with therapy-free simulations and data (left column) as well as model output for immunotherapeutic drug concentration (right column)
for the three patients (with respective rows) evaluated in this study. The respective clinical detection limit svis was determined as the minimum
volume data point of this patient’s total treatment

but also to predict the outcome of a vast variety of differ-
ent hypothetic treatment regimes on primary tumor and
metastases on an individual patient level given the above
stated assumptions. The model output for the metastases’
dynamics are referred to in Figs. 2, 3 and 4 compared
to the what-if scenario of untreated tumors showing the
same dynamics. Figures 5, 6 and 7 show the time course
of metastatic densities compared to acquired data points
from all three patients.
Interestingly the model was able to reconstruct param-

eter values that are reasonable when taking into account
the underlying biological factors. It was shown that
for tumors expressing higher amounts of PD-L1, their

proliferation and malignancy is also increased [66]. This
is supported by a lower estimated tumor volume dou-
bling time of patient KE-02 compared to the two other
patients, as the patient also shows a higher PD-L1 score. A
fourth patient KE-04 (data not shown) treated with tyro-
sine kinase inhibitors has been fitted to the same model,
to check the model’s predictive power for differing drug
action mechanisms. The extracted growth rate a for this
patient was larger than of those patients presented in the
study at hand. This is easily explained by patient KE-
04’s EGFR-del9 mutation, as this features drastically larger
tumor proliferation. The three patients presented before
do not show this mutation. The model was therefore
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Fig. 2 Patient KE-03. The model output for primary tumor and metastasis dynamics on an individual level under therapy compared with
therapy-free simulations and data (left) as well as model output for the tumor size distribution at day 315 after primary tumor initiation, which is the
patients primary diagnosis (right). Cf. Table 1 for the patients clinical parameters. For better readability, we have plotted the dynamics for the largest
metastases only. The corresponding total mass depending on time including the non-plotted metastases is shown in Fig. 1

Fig. 3 Patient KE-01. The model output for tumor dynamics on an individual level under therapy compared with therapy-free simulations and data
(left) as well as model output for the tumor size distribution at day 407 after primary tumor initiation, which is the patients primary diagnosis (right).
Cf. Table 1 for the patients clinical parameters. For better readability, we have plotted the dynamics for the largest metastases only. The
corresponding total mass depending on time including the non-plotted metastases is shown in Fig. 1

Fig. 4 Patient KE-02. The model output for tumor dynamics on an individual level under therapy compared with therapy-free simulations and data
(left) as well as model output for the tumor size distribution at day 272 after primary tumor initiation, which is the patients primary diagnosis (right).
Cf. Table 1 for the patients clinical parameters. For better readability, we have plotted the dynamics for the largest metastases only. The
corresponding total mass depending on time including the non-plotted metastases is shown in Fig. 1
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Fig. 5 Patient KE-02. Tumor size distributions for the examinations with CT material following primary diagnosis after 55 (upper left), 111 (upper
right) and 202 (lower) days. The model output distributions are compared to the data points of the corresponding days

successful to quantify effects of certain clinical parameters
on tumor growth and metastatic density as well as treat-
ment outcomes for different immunotherapeutic agents.
Assuming the parameters to behave equally for differing
treatment regimens, the model framework can be used to
determine outcomes of adjusted dosages (cf. Fig. 8 and the
“Discussion” section).

Discussion
The study presents a novel modeling framework describ-
ing individual patient-based densities of tumors in
metastatic cancerous diseases. The framework is based
on systems of ordinary and partial differential equations
including the dynamics of therapeutic schedules of
chemo- and immunotherapy. The model was tested
on measurement series of three different patients with
NSCLC to acquire model parameters via fitting. These
parameters and their relationsmight contribute to a better
understanding of the disease outcome for different diag-
nostics and their behavior under therapy. The study at
hand is of course not explaining these relations solely rely-
ing on three patient measurement series but uses them to
prove functioning of the concept.
The model was fitted for patients with metastases in

the lung assuming the growth kinetics of metastases to be

identical to the one of their primary tumor. It is observed
that the growth parameters of primary NSCLC stay iden-
tical even for its brain metastases [56], but no general
rule has been established yet to confirm this hypothe-
sis. If this hypothesis was falsified the model could also
be used for metastases that show different growth kinet-
ics than their primary tumor. This could be done by
introducing different metastatic densities ρi for i different
groups of metastases sharing the same growth kinet-
ics and formulating the presented approach for each ρi
individually.
The model accuracy was chosen appropriately to the

available and acquired data, the framework returned
parameter relations of the different patients that were also
observed in clinical settings. The differing drug dosage
assumed by us is solely focusing on antitumoral effects,
not on adverse or toxic effects on the patient. By relying on
drug administrations in permitted regimens it is secured
that the given dosages lie within approved therapeutic
windows. Further modeling needs to take into account the
patients’ performance to draw solid clinical conclusions.
This could potentially allow to examine deviations from
pregiven standardized therapy plans.
Widely performed treatments base on the goal of

increasing the patients’ overall survival. For this, it might
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Fig. 6 Patient KE-01. Tumor size distributions for the examinations with CT material following primary diagnosis after 114 (upper left), 156 (upper
right), 218 (lower left) and 285 (lower right) days. The model output distributions are compared to the data points of the corresponding days

be helpful to consider the concept of early tumor shrink-
age [48]. There are discussions whether higher doses
of Nivolumab in shorter application intervals could be
applied in the initial therapy stage to achieve this early
tumor shrinkage by faster reaching the drug serum steady
state and thus providing better responses [67, 68]. The
tumor size distributions shown in Fig. 8 for patient KE-02
confirm this approach quantitatively. Another aspect is to
optimize the dosage of Nivolumab, as it has been shown

that low-dose Nivolumab could have comparable efficacy
on cancer patients due to its flat dose-response relation-
ship [50]. The flat relationship is mapped by the val-
ues of c50i , the drug concentrations yielding half-maximal
response, that are by far lower than the body concentra-
tion steady states of the drugs when applied (cf. Table 3).
Computations for patient KE-02 have shown that a half
dosage yields half the steady state concentration value csti
but reaching it after the same amount of administration

Fig. 7 Patient KE-03. Tumor size distributions for the examinations with CT material following primary diagnosis after 88 (left) and 152 (right) days.
The model output distributions are compared to the data points of the corresponding days
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Fig. 8 Patient KE-02. The model output for immunotherapeutic drug concentration under therapy for the approved 240mg q2w regimen (upper
left) compared with immunotherapeutic drug concentration in a deviating regimen starting with the doubled dose (480mg) for the initial therapy
cycle and subsequent 240mg q2w treatment (upper right). The doubled-dose-regimen shows better response than the standard schedule. The data
points are the same as shown in Fig. 4, while the doubled-dose-regimen shows an improvement in reducing the metastatic mass by about 0.4%

cycles. A doubled dose in the very initial administration
cycle would reach this steady state already from the onset
of the treatment (cf. Fig. 8). The lowest dose showing suffi-
cient antitumoral effects is yet to be determined and could
be optimized using this framework.
Further, it has been shown that immunotherapeutic

drugs provide survival benefits to patients irrespective to
their PD-L1 score with reasons for these effects unknown
[69]. Data analysis in terms of the presented model frame-
work might give insights into clinical factors and patient
characteristics that are responsible for these effects.
The fitted model parameters lie within reasonable inter-

vals and are in ranges of the same order of magnitude
for the presented measurements. Their accuracy could be
improved withmore data points within a longitudinal data
set. Simulations based on these parameters show that the
amount of the total tumor burden is mainly depending
on the primary tumor and early formed metastases. The
late disseminated metastases are of less importance in the
therapy setting and might not contribute to the treatment
outcome or the patient’s death [57]. This is also supported
by clinical observations [26].
Certain important datapoints such as precise amount,

position and size of identified tumors necessary for the
calibration of the predictive framework have been gen-
erated by CAD algorithms commercially available using
routinely acquired images. The preprocessing for the pre-
sented modeling approach included running these algo-
rithms on the raw data sets, extracting resulting data-
points and transferring them for model calibration. In the
clinics, the preprocessing is not done routinely. In the
future, the preprocessing could be automated, allowing
the model to be used in a more comprehensive way. The
possibility to generate volumetric data is solely an issue
of processing power, as existing clinically manufactured
images are vastly available from routine diagnostics.

Conclusions
This is, to authors’ knowledge, the first model to dis-
tinguish different therapy schedules in a mathematical
model taking the dynamics of metastases into account.
The model could give a foundation to establish mathe-
matical models and predictive power into personalized
medicine. To this day clinicians form therapy decisions
based on the clinical history of the individual patient,
his current status and a prediction based on imper-
sonal/general study populations applying commonly used
statistical methods. This framework allows to model and
quantify customized and personalized estimates for future
tumor development and long-term behavior under differ-
ent treatment regimens even before making therapeutic
decisions. In the future this could assist clinicians to gen-
erate and directly compare quantifiable therapy impacts
and their outcomes allowing a qualified and quantified
decision meeting personalized needs for future individual
treatments.
The framework is very practical as it is based on deter-

ministic equations and aminimum of parameters allowing
it to be computable by any personal computer. Its practi-
cability could be extended and implementation into daily
clinical use could be simplified by automating preprocess-
ing as mentioned earlier. The future significance of this
model is attributed to its practical implementation and
relevance in the field of personalized medicine promising
comprehensive use.
Future work will focus on the evaluation of a larger

patient database, the extension of the framework at hand
to different medication regimens as well as the follow-up
fitting of measurement series to improve the knowledge
about modality and behavior of the model parameters and
how to determine their ranges by histologies of primary
diagnosis. Further, we expect future work to reduce the
standard errors of the model parameters and to increase
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reliability of the model outputs by fitting on a density level
instead of total tumor burden.
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