
UTH_CCB System for Adverse Drug Reaction Extraction from Drug 

Labels at TAC-ADR 2017

 

Abstract 

This paper describes the end-to-end sys-

tem developed by the University of Texas 

Health Science Center at Houston, Center 

for Computational Biomedicine 

(UTHeath-CCB) team for the 2017 TAC 

track on “Adverse Drug Reaction Extrac-

tion from Drug Labels”. Our system pri-

marily uses machine learning and deep 

learning based approaches and it achieved 

competitive results on all four tasks in the 

challenge. The highest scores of our sys-

tem on the test set are: 82.48% (micro-F1), 

49.00% (micro-F1), 82.19% (macro-F1) 

and 85.33% (macro-F1) for tasks 1, 2, 3, 

and 4 respectively.  

1 Introduction 

    Knowledge bases containing drugs and their 

adverse reactions are important for clinical re-

search and practice. However, much of the drug 

and its adverse drug reaction (ADR) information 

are only available in narrative formats, such as 

drug labels and biomedical literature. Manual cu-

ration of these textual resources is often costly 

and time-consuming, making it difficult to keep 

the information up-to-date. Many text-mining 

tools such as CD-REST1, SPLICER2 have been 

developed to automatically extract information 

about drugs, ADRs, and the relations among them 

from text. Further, other studies describing sys-

tems that extract drug and ADR information from 

social media3 and electronic health records also 

exist.4, 5  
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    In 2017, the Text Analysis Conference orga-

nized a shared task entitled “Adverse Drug Reac-

tion Extraction from Drug Labels”, which aimed 

to examine current text mining methods on ex-

tracting ADR information from drug labels and 

normalizing them to concepts in MedDRA. The 

shared task consisted of 4 sub-tasks: 1) Task 1 – 

Extract mentions of AdverseReactions and modi-

fier concepts (i.e., Severity, Factor, DrugClass, 

Negation, and Animal); 2) Task 2 – Identify the 

relations between AdverseReactions and their 

modifier concepts (i.e., Negated, Hypothetical, 

and Effect); 3) Task 3 – Identify posi-

tive AdverseReaction mentions in the labels; and 

4) Task 4 – Map recognized posi-

tive AdverseReaction to MedDRA PT(s) and 

LLT(s). In this paper, we describe our approaches 

and results for all the four tasks. 

2 Methods 

2.1 Datasets and pre-processing 

    For this track, the organizers prepared three 

datasets: 1) a training set of 101 annotated drug 

labels; 2) a development set of 2,208 un-

annotated drug labels; and 3) a test set of 99 an-

notated drug labels, which were selected from 

the un-annotated development data set. We de-

veloped our models and optimized their parame-

ters using the training set.  

    We used the CLAMP (Clinical Language An-

notation, Modeling, and Processing) Toolkit6 for 

pre-processing of drug label documents, includ-

ing sentence boundary detection, tokenization, 

and POS tagging. We also utilized CLAMP APIs 

for entity recognition and normalization. 
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2.2 Task 1&2 – Extract AdverseReactions, 

Related Concept Mentions, and their 

Relations 

    Task 1 is a typical named entity recognition 

(NER) task, and Task 2 is a typical relation extrac-

tion task. However, the one caveat is that, for Task 

1, a mention of a modifier concept is to be ex-

tracted only if the modifier concept is associated 

with at least one AdverseReaction. When a modi-

fier concept such as Animal, DrugClass, Nega-

tion, etc, is not associated with 

an AdverseReaction, it is not annotated in the 

gold standard. This meant that we could not di-

rectly train a machine learning-based NER mod-

el for detecting all modifiers, since all modifiers 

are not annotated. This also brings challenges to 

the conventional relation extraction approach 

that requires entity recognition first before gen-

erating candidate relation pairs for training. 

Since we did not have annotations for modifiers 

that are not associated with any of AdverseRea-

tions, we would miss negative examples of rela-

tions that are required to train an effective rela-

tion classifier.  

To address the above issues, we propose a 

cascaded sequence labeling approach that can 

address Task 1&2 at the same time. Figure 1 

shows the architecture of our approach on Task 

1&2. It cascades two sequential labeling 

systems. The first sequence labeling system 

recognizes all AdverseReaction mentions in one 

sentence, just like a typical NER system. The 

second sequence labeler extracts mentions of 

modifier concepts that are associated with an 

AdverseReaction, and classifies the type of the 

relation between the modifier concept and the 

AdverseReaction. Note that this labeler identifies 

both the modifier concepts and their relations to 

AdverseReaction in one-step.  

 O             T-ADR         O       O      O         O-ADR                    O                O 

severe  neutropenia  and  Grade 4  thrombocytopenia    can          occur 

   O             O-ADR         O       O      O         T-ADR                    O                O 
severe  neutropenia  and  Grade 4  thrombocytopenia    can          occur 

   B-Severity      O        O         O      O                 O           B-Factor      O O           O             O  B-Severity I-Severity        O        B-Factor     O 

severe  neutropenia  and  Grade 4  thrombocytopenia    can          occur 

   O             B-ADR         O       O      O         B-ADR               O                O 
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Figure 1. Main architecture of our approach. T-ADR: Target AderverseReaction, O-ADR: Non-target AdeverseReaction 
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    This one-step approach is done by a new 

transformation schema. Given a sentence and 

AdverseReactions in the sentence that is identi-

fied by the first sequence labeler, we generate a 

sample of labeled sequence for each AdverseRe-

action mention in the sentence. That is, if more 

than one AdverseReaction mention is identified 

in a sentence, we generate multiple labeled se-

quence samples. For instance, in Figure 1, the 

sentence has two AdverseReaction mentions pre-

dicted by the first labeler, “neutropenia” and 

“thrombocytopenia”. Thus, we generate two la-

beled sentence samples using each AdverseReac-

tion mention as target (i.e., one with ‘neutro-

penia’ as target AdverseReaction, and another 

with ‘thrombocytopenia’ as target AdverseReac-

tion). For each sample, we only label the men-

tions of modifier concepts that are associated 

with the target AdverseReaction using B or I to-

gether with the modifier type. For example, in 

the sample generated for “neutropenia”, only 

“severe” and “can” are labeled as modifiers. 

Other modifiers like “Grade 4” which are not as-

sociated with “neutropenia”, will not be annotat-

ed as a modifier. Then, we provide the position 

information of the target AdverseReaction men-

tion to the second sequential labeler during the 

training and prediction.  

Commonly, a named entity mention is a 

continuous string of text, such as “grade 3”. In 

contrast, a discontinuous mention is represented 

in a discontinuous string of text. For instance, 

the phrase “grade 3 and 4” contains a continuous 

mention of type Severity, “grade 3”, and a 

discontinuous mention of type Severity, “grade 

… 4”. Since about 7% of the mentions in the 

gold standard training set are discontinuous, we 

propose a method that uses “fabricated” 

continuous mentions and rule-based splitting, to 

handle such discontinuous mentions. 

    Figure 2 shows the method. The method is 

composed of three steps. First, before training a 

seqeunce labeler, discontinuous mentions are 

merged with overlapped mentions to generate 

“fabricated” continuou mentions. For example, 

for the phrase “grade 3 and 4”, the continuous 

mention “grade 3” and the discontinuous 

mention “grade ... 4” are merged into a single 

fabricated continuous mention “grade 3 and 4”. 

Second, a sequence labeler is trained on a 

training set that contains both fabricated 

continuous mentions and original continuous 

mentions. In the prediction time, the sequence 

labeler will predict only continuous mentions for 

both original and fabricated mentions. Lastly, 

regular expression rules and dictionary-based 

rules are employed to detect fabricated 

continuous mentions and split them into 

continuous and/or discontinuous mentions. The 

rules are developed based on the observation on 

the training dataset. Given mentions predicted by 

the sequence labeler, any mention that has more 

than 4 tokens and contain any of ‘and’, ‘or’, ‘/’,  

‘,’, or ‘(’, is regarded as a fabricated continuous 

mention, and thus processed by the regular 

expresson rules or the dictionary-based rules to 

be split into continuous and discontinuous 

mentions.  

 

Figure 2. Method for discontinuous mention handling. 

    The regular expression rules use regex groups. 

For instance, to split “grade 3 and 4”, we use the 

following regular expression rule: 

 ((grade|stage)\s+\d)\s*(?:and|or|\-|\/)\s*(\d)  →1|2+3 

    Using the above rule, the text string matched 

to the first regex group (i.e. “grade 3”) will be 

identified as a continuous mention, and the text 

strings matched to the second and the third regex 



groups (i.e., “grade” and “4”, respectively) will 

be combined into a discontinuous mention (i.e., 

“grade … 4”).  

    The dictionary-based rules use a dictionary of 

common phrase pairs, such as ‘<infections, 

viral>’, ‘<infections, protozoal>’, and ‘<increase 

in, AST>’. When there are two non-overlapping 

phrases in a fabricated continuous mention that 

matches a pair in the dictionary, the phrases are 

identified as a discontinuous mention. For 

example, from a fabricated continuous mention 

“viral, or protozoal infections”, “viral … 

infections” is identified as a discontinuous 

mention along with a continuous mention 

“protozoal infections”. 

    For sequence labeling, we use the LSTM-

CRF7 recurrent neural network as the method. 

The default LSTM-CRF is augmented with an 

additional embedding layer, to incorporate 

dictionary matching results produced from 

dictionaries of MedDRA terms and common 

modifiers. For the initial values of word 

embeddings, we employ Word2vec8 and trained 

word embedings on the training and the 

development set. 

2.3 Task 3 – Identify Positive AdverseReac-

tions   

    Task 3 is to identify all the positive AdverseRe-

action mentions in the drug labels. To perform 

this task, we filter out negative AdverseReactions 

based on heuristic rules. An AdverseReaction 

mention is negative if one of the following two 

conditions hold: 1) the AdverseReaction is negat-

ed; 2) the AdverseReaction is related by a Hypo-

thetical relation to a DrugClass or Animal. The 

remaining AdverseReactions are selected as posi-

tive AdverseReactions. 

2.4 Task 4 – Normalize AdverseReactions  

to MedDRA PT(s) and LLT(s) 

Task 4 is to normalize each positive Ad-

verseReaction mention to an entry in MedDRA 

v18.1. We use a learning to rank technique to 

perform the normalization task. Formally, for a 

given mention �, we select the best MedDRA 

term �∗ with the highest-ranking score from the 

repository. 

 

�∗ = arg	max
�

�T ∙ Φ(�, �) 

where Φ(�, �) is the matching features between 

the mention � and a candidate MedDRA term �, 

and � is the corresponding feature weights. 

    More specifically, we first employ the BM25 

model provided by Lucene to retrieve the top 10 

candidate MedDRA terms for an AdverseReaction 

mention. Then, for each pair of an AdverseReac-

tion mention and a candidate MedDRA term, we 

calculate three scores as matching features: BM25 

ranking score, Jaccard similarity score and trans-

lation-based ranking score9. Finally, we employ 

the linear RankSVM10, one of the widely-used 

methods for learning to rank, to assign a final 

ranking score to each candidate MedDRA term. 

The top ranked MedDRA term for each Ad-

verseReaction mention is then chosen as the 

MedDRA normalization for the mention.  

2.5 Submissions and Evaluation 

    We submitted three different runs:  

• Run 1: We discarded all discontinuous Ad-

verseReaction mentions in both training and 

prediction stages, to get a higher precision 

on task 1. 

• Run 2: We merged all discontinuous men-

tions into continuous ones. We first identi-

fied all the continuous mentions and then 

split them back into discontinuous ones with 

rules as described in Section 2.2. 

• Run 3: We combined the outputs of Run 1 

and Run 2. All continuous AdverseReactions 

mentions and their modifier concepts from 

Run 1, and all discontinuous AdverseReac-

tions mentions and their modifier concepts 

from Run 2 were merged into Run 3. 

    The evaluation metrics include Precision (P), 

Recall (R) and F1-measure (F1). Micro-averaged 

F1 is used as the primary metric for Task 1 and 2 

and macro-averaged F1 is used as the primary 

metric for Task 3 and 4. For more details, please 

refer to the task description paper or the task 

website†. 

                                                      
† https://bionlp.nlm.nih.gov/tac2017adversereactions/ 



3 Results and Discussion 

Table 1. The performances of the three runs of our 

system on Task 1(*: Primary metric). 

#Run  P R F1 

1 
+type 83.78 79.74 81.71* 

-type 83.83 79.79 81.76   

2 
+type 80.22 84.40 82.26* 

-type 80.25 84.42 82.28 

3 
+type 82.54 82.42 82.48* 

-type 82.59 82.48 82.54   

Table 2. The performances of the three runs of our 

system on Task 2(*: Primary metric). 

#Run  P R F1 

1 

Full(+type) 51.67 44.45 47.79* 

Full(-type) 52.20 44.91 48.28 

Binary(+type) 55.51 50.86 53.09 

Binary(-type) 55.99 51.30 53.55 

2 

Full(+type) 46.24 48.32 47.26* 

Full(-type) 46.57 48.66 47.59 

Binary(+type) 50.19 56.73 53.26 

Binary(-type) 50.52 57.10 53.61 

3 

Full(+type) 50.24 47.82 49.00* 

Full(-type) 50.72 48.28 49.47 

Binary(+type) 53.92 54.49 54.21 

Binary(-type) 54.36 54.93 54.64   

    Table 1 and 2 show the overall performance of 

the three runs of our system on Task 1 and 2, re-

spectively. As we expected, Run1 achieved the 

highest precision on both tasks. Run 2 achieved 

the highest recall since the system recognize dis-

continuous AdverseReactions. Run 3 achieved 

the highest F1. 
Table 3. The performances of the three runs of our 

system on Task 3(*: Primary metric). 

#Run  P R F1 

1 
Micro- 82.83 81.76 82.29 

Macro- 82.61 81.88 81.65* 

2 
Micro- 79.68 85.57 82.52 

Macro- 78.77 85.62 81.39* 

3 
Micro- 80.97 84.87 82.87 

Macro- 80.69 85.05 82.19* 

Table 4. The performances of the three runs of our 

system on Task 4(*: Primary metric). 

#Run  P R F1 

1 
Micro- 85.00 87.75 86.35 

Macro- 84.04 86.67 84.79* 

2 
Micro- 82.42 90.78 86.40 

Macro- 80.83 89.90 84.53* 

3 
Micro- 84.17 89.84 86.91 

Macro- 83.02 89.06 85.33* 

    Table 3 and 4 show the overall performance of 

three runs of our system on task 3 and 4, respec-

tively. Run 3 achieved the highest F1. Although 

the performance on relation classification (Task 

2) was not high, we still got high performances 

on Task 3 and Task 4. These results also demon-

strate the effectiveness of the end-to-end system 

we developed. 

4 Conclusion and Future Work  

    In this paper, we describe our participation in 

the TAC 2017 ADR challenge – “Adverse Drug 

Reaction Extraction from Drug Labels”. Our sys-

tem took part in all the four sub-tasks. Our re-

sults show that it is feasible to extract adverse 

drug reactions from drug labels using machine-

learning methods with high performance. 
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