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Abstract

The Fibonacci numbers are ubiquitous in nature and a basic object
of study in number theory. A fundamental question about the Fibonacci
numbers is: which of them are multiples of a given prime p? In particular,
we will see that either the p-th Fibonacci number, the one before it, or the
one after it, is a multiple of p. Along the way we will use the arithmetic
of finite fields, an essential tool in number theory, and perhaps even see
some analogies with differential equations and linear algebra.

1 Introduction

Consider the Fibonacci sequence, defined recursively by F0 = 0, F1 = 1 and
Fi = Fi−1 + Fi−2 for i ≥ 2.

Question 1.1. For a given positive integer N , which Fibonacci numbers are
divisible by N?

It is enough to consider the case where N is a power of a prime. A reasonable
approach to this problem is in two steps. First, find which Fi are divisible by
the prime number p. Then, investigate what power of p divides each Fi. In this
talk we will focus on the first step. So, we have the new question:

Question 1.2. For a given prime number p, which Fibonacci numbers are di-
visible by p?

2 Initial Examples and Periodicity

As a first example, consider the case p = 2. Which Fibonacci numbers are
divisible by 2? Inspecting the table we see that Fi is divisible by 2 if and only
if i is divisible by 3; we easily prove this by induction on i

Which Fibonacci numbers are divisible by 3?
Here we see that Fi is divisible by 3 if and only if i is divisible by 4. To

prove this we note that
Fi+8 ≡ Fi(mod 3),
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so the set of i with Fi divisible by 3 will be a union of congruence classes modulo
8. But now we can check that the classes that arise are 0 and 4 mod 8, so Fi is
divisible by 3 exactly when 4 divides i.

A priori, this argument showed only that that Fi is divisible by 3 for i in
some union of arithmetic progressions modulo 8; we had to check by hand to see
which progressions arise. It would be better to show directly that Fi is divisible
by 3 exactly when i is a multiple of some 4.

When p = 3 we can get a dirce the twisted periodicity relation

Fi+4 ≡ −Fi(mod 3).

This is enough to show that Fi is a multiple of 3 exactly when i is a multiple of
4.

How much of this can we generalize to all p? We restate the two arguments
above for general p.

Remark 2.1. Fix some p. Suppose we can find some b such that

Fb ≡ 0

and
Fb+1 ≡ 1(mod p).

Then by induction on i we can show that

Fb+i ≡ Fi(mod p),

so the Fibonacci sequence modulo p is periodic with period b.

Remark 2.2. Under the assumption of Remark 2.1, let a be the smallest positive
integer such that Fa is a multiple of p. (Such a exists by hypothesis). Then we
can prove by induction on i the twisted periodicity relation

Fa+i ≡ Fa+1Fi,

so in particular, Fa+i is a multiple of p if and only if Fi is a multiple of p. Thus
we see that Fi is a multiple of p exactly when i is a multiple of a.

The argument that Fa+i is a multiple of p if and only if Fi is a multiple of
p implicitly used the fact that Fa+1 is not a multiple of p. One can show that
Fa+1 is not a multiple of p by the following argument: if Fa and Fa+1 are both
multiples of p then, using the Fibonacci recurrence backwards, one finds that
Fi is a multiple of p for all i < a. But F1 = 1 is not a multiple of p, for any
prime p, a contradiction.

We are now ready to prove the following theorem.

Theorem 2.3. Let p be a prime. Then there exist integers ap and bp such
that the Fibonacci number Fi is a multiple of p if and only if i is a multiple of
ap, and the Fibonacci sequence modulo p is periodic with minimum period bp.
Furthermore, ap divides bp, and bp ≤ p2.
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Proof. Consider the ordered pairs

(Fi, Fi+1)

taken modulo p. There are only p2 such pairs possible, so eventually some pair
must repeat. That is, we must have

(Fi, Fi+1) = (Fj , Fj+1)

for some
0 ≤ i < j ≤ p2.

Now by reverse induction (that is, induction on k), we find that

Fj−k ≡ Fi−k

for k ≥ 0. In particular, taking k = i and k = i− 1, we have

Fj−i ≡ F0 ≡ 0

and
Fj−i+1 ≡ F1 ≡ 1.

Taking
bp = j − i

and using Remarks 2.1 and 2.2 above, we are done.

2.1 Computing the Periods

(In the talk I showed a table of values of ap and bp at this point.)
For small values of p, one sees that ap does not exceed p + 1, and it is a

factor of p, p− 1 or p+ 1. Also, bp is a factor of p2 − 1, except when p = 5. We
will prove these observations below.

3 Aside: A Formula for Fibonacci Numbers

Theorem 3.1. Suppose λ and µ are the two distinct roots of the equation

x2 = x+ 1

in any field F in which the equation has two distinct roots. Set

C =
1

µ− λ
.

Then (in the field F ) the Fibonacci numbers are given by the formula

Fi = C(µi − λi).
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We will present two proofs of this fact. For both proofs, let

Gi = C(µi − λi).

We want to prove that
Fi = Gi.

Proof. First proof: elementary, by induction.
We check the formula by hand for i = 0 and i = 1. Next, since

λ2 = λ+ 1,

we have
λi = λi−1 + λi−2.

and a similar result for µi.
But since Gi is a linear combination of λi and µi, we have

Gi = Gi−1 +Gi−2,

so by induction we have
Gi = Fi.

There is some linear algebra happening behind the scenes, as our second
proof will show.

Definition 3.2. A Fibonacci-type sequence is a sequence H0, H1, . . . of ‘num-
bers’ (or, elements of some field F ) such that

Hi = Hi−1 +Hi−2

for all i ≥ 2.
Let V denote the set of Fibonacci-type sequences (over the field F ).

Proposition 3.3. V is a two-dimensional vector space (over F ).

Proof. Easy.

Now we can return to the theorem.

Proof. Second proof: Vector spaces.
Note that λi and µi are two elements of the vector space V . They are

obviously independent (since λ 6= µ), so they form a basis for V . Thus the
Fibonacci sequence Fi is a linear combination of λi and µi, and it is now a
routine matter to determine the coefficients.
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Well, that was certainly more conceptual, but it still doesn’t explain where
the sequences λi and µi came from. We will now see that they are eigenvectors
for a translation operator.

First note the following trivial fact: if Hi is a Fibonacci-type sequence, then
the translated sequence (TH)i defined by

(TH)i = Hi+1

is also a Fibonacci-type sequence.
Now this T is a linear map from V to V , so we can study it using linear

algebra.
By the recurrence, we have

(TTH)i = (TH)i +Hi,

which is to say, we have
T 2 = T + 1.

It follows the eigenvalues of T must be roots λ and µ of the polynomial x2−x−1,
and by the way that T is diagonalizable, iėṫhat there is a basis of eigenvectors.
In fact, by choosing a basis for V and writing down a matrix for T , we can see
that x2 − x− 1 is also the characteristic polynomial for T , so λ and µ are both
eigenvalues, each with multiplicity one.

What are the eigenvectors of T? Take the eigenvalue λ, for example. We
need to find an H such that

TH = λH.

In other words, we want Hi+1 = λHi. Of course, up to scaling we must take
Hi = λi. Thus λi arises as an eigenvector for T , and similarly for µi.

Remark 3.4. All this is very similar to the theory of linear ordinary differential
equations of the type studied in calculus class, such as

f ′′(x)− f ′(x)− f(x) = 0.

For such equations there is a solution space V whose dimension equals the degree
of the equation. But instead of a single translation operator, we can translate
solutions by any real distance t, giving a family of translation operators Tt. Or
we can consider differentiation D, also as an operator on V .

The eigenvalues of D are easily read off the differential equation itself. (In
the above example,

D2 −D − 1 = 0

and the eigenvalues are exactly the λ and µ from above.) In calculus class we
show that the functions

eλx, eµx

form a basis for the solution space V . But even if we didn’t know the solution,
we could derive it from eigenvalue considerations, as in the third proof above.

5



We want to find an eigenvector of D for some eigenvalue, say ν. If f is such
an eigenvector, then f by definition satisfies the differential equation

f ′(x) = νf(x)

for all x. The eigenspace is thus one-dimensional, so Tt must act by a constant.
Let χ(ν, t) be the eigenvalue of Tt on this space. That is, if f satisfies the
equation above, then

f(x+ t) = χ(ν, t)f(x).

What are these constants χ(ν, t)? By composing two translations, we find
that

χ(ν, s+ t) = χ(ν, s)χ(ν, t).

Comparing solutions to different differential equations (or, as the physicists
would say, scaling the x-axis), we can also show that

χ(ν, t) = χ(1, νt).

Thus, all these constants χ(ν, t) are in fact determined from the one function
e(t) := χ(1, t), which satisfies e(s+ t) = e(s) + e(t). Of course, this e is just the
natural exponential function.

4 Return to the Periods

Suppose our prime p is such that the polynomial x2 − x − 1 has two distinct
roots λ and µ in the finite field Fp. (For example, if we take p = 11, then 4 and
8 are two distinct roots.) By the theorem above, we can recover the Fibonacci
numbers modulo p from the powers of λ and µ.

For example, modulo 11, the powers of 4 are given by

1, 4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 4, 5, . . .

and the powers of 8 are given by

1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8, 9, . . . .

Now if we take λ = 4, µ = 8, then (working in the field of integers modulo 11)

C =
1

µ− λ
=

1

4
= 3,

and taking three times the difference of the two sequences we recover the Fi-
bonacci sequence modulo 11.

Note that the powers of 4 here are periodic with period 5, and the powers of
8 are periodic with period 10. We now apply the following well-known theorem
of Fermat.
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Theorem 4.1. (Fermat’s Little Theorem): For any a not divisible by a prime
p, we have

ap−1 ≡ 1(mod p).

That is, the powers of a, modulo p, are periodic with period dividing p− 1.

Thus, we see immediately that the Fibonacci numbers are periodic with
period dividing p − 1, provided our quadratic equation has two distinct roots
modulo p. For which primes p can we find these two roots? Another classic
theorem, this one due to Gauss, gives the answer.

Theorem 4.2. (Gauss’s Quadratic Reciprocity): The polynomial x2−x−1 has
two distinct roots modulo p if and only if p is congruent to 1 or 4 modulo 5.

(The first few such primes are 11, 19, 29, 31. In general half of all primes
have this property.)

Thus we have proved:

Theorem 4.3. If p is a prime congruent to 1 or 4 modulo 5, then both ap and
bp divide p− 1. In particular, Fp−1 is divisible by p.

If p is congruent to 2 or 3 modulo 5, then we have the following result.

Theorem 4.4. If p is a prime congruent to 2 or 3 modulo 5, then ap divides
p+ 1 and bp divides p2 − 1. Thus, Fp+1 is divisible by p.

Proof. In this case we know by Quadratic Reciprocity that the polynomial x2−
x− 1 has no roots in Fp, so we see easily that

Fp[x]/(x2 − x− 1)

is a field of order p2 in which the polynomial has two roots. (In fact, there is
only one such field, customarily denoted Fp2 , but we will make no use of this
fact.) Call the two roots λ and µ. All calculations below occur in this field.

We claim that
λp = µ and µp = λ.

First we show that λp is a root of x2 − x − 1. Indeed, by the Binomial
Theorem in characteristic p, we have

λ2p = (λ+ 1)2 = λp + 1.

Thus λp is either λ or µ. But the equation xp = x can have at most p roots in
our field. We already know that the elements of Fp are roots of this equation,
and there are p of them. So, since λ is not an element of Fp, it is not a root of
xp = x. Thus we have λp 6= λ, so λp = µ.

A similar argument shows that µp = λ.
Now it follows that

λp+1 = λµ = µp+1,
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so by our formula for the Fibonacci numbers, we have that

Fp+1 ≡ 0(mod p).

The assertion about bp follows from the fact that for any nonzero x in a field
of order p2, we have

xp
2−1 = 1.

This is a consequence of Lagrange’s Theorem in group theory.

Combining the two theorems above (and the fact that F5 = 5), we have
proved the advertised result.

Theorem 4.5. Let p be a prime number. Then one of the three Fibonacci
numbers Fp−1, Fp and Fp+1 is a multiple of p.
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