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Abstract  

The paper introduces a new decision-making process which is used to compare the 

performance of a ship with either diesel electric hybrid propulsion or conventional propulsion 

systems. A case study was carried out to compare the performance of both propulsions from 

cost, environmental and risk perspectives. This paper also overviews the modern approaches 

of multi-criteria decision-making and highlights some of their shortcomings in particular the 

fact that these approaches often rely on different criteria such as financial, environmental or 

risk. This paper aims to overcome this shortcoming by enhancing the process of multi-criteria 

decision analysis. The key process in this research was to convert all incomparable values 

into monetary values, thereby enabling the impacts of each criterion to be compared and 

integrated in a straightforward manner. Results of the case study showed that the use of a 

hybrid propulsion system could reduce annual operational costs by $ 300,000 (2 % total cost) 

compared with a diesel electric system and almost $ 1 million (7 %) compared to a diesel 

*Revised Manuscript with No Changes Marked
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mechanical propulsion system. In order to investigate the optimal use of the hybrid 

propulsion system, various operational scenarios were identified and applied to the proposed 

decision-making process. The results showed that operating the ship in hybrid mode during 

manoeuvring and berthing is more desirable as the holistic cost can reduce in almost $ 1 

million. The advantages of the proposed decision making process was illustrated by 

comparing the results obtained from a conventional decision-making process using the 

analytical hierarchical method. It is believed that the research findings not only present 

general understanding of the possible advantages of hybrid propulsion for stakeholders, but 

provide them with an insight into the enhanced approach into the multi-criteria decision 

analysis. 

 

Keywords: Hybrid ship, Multi-criteria decision analysis, Hybrid propulsion, MCDA 
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List of symbols 

CE Energy cost 

CEC Cost for Economic impact 

CEI Cost for environmental impact 

CF,i Fixed cost at i 

CGWP Cost for tCO2e 

Ck Cost for emission substance, k 

CRI Cost of risk impact 

CRPN Cost of RPN value ‘1’ 

CT Total cost 

Cv,j Variable costs at substance, j 

EIGWP Total global warming potential of the system/product; 

EIk Environmental impact for potential, k. 

EFj Emission factor at emission substance, j 

EM Electricity margin (20%) 

EP Electricity price 

FCi  Fuel consumption at propulsion load, i  

FP Fuel price 

GWPj Global warming potential at emission substance, i 

RPNh RPN at hazard, h 

SM Sea margin (20%) 

SFOCi Specific oil consumption at propulsion load, i 

ti  Time spent at propulsion load, i 

EIFj,k     Environmental impact factor of emission, j, regarding a particular environmental impact indicator, k 

i Propulsion load 

j Emission substance 

k Environmental impact potential 

l Number of environmental impact indicator 

m Number of emission substance 

n Number of propulsion load 
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1. Introduction 

1.1. Overview of hybrid ships 

With an increasing demand to develop more efficient and cleaner ships, hybrid technology 

has drawn attention from the marine industry. Thanks to the breakthrough in battery 

technology which can improve the flexibility of selecting power sources, the last few years 

showed a number of developments in hybrid ships propulsion. 

MV Viking Lady, the world's first hybrid ship equipped with a 500 kWh battery system, was 

launched in 2013 [1]. A series of hybrid ships followed on from this; the new offshore supply 

vessel of MV Edda Ferd was constructed in 2013 which was the first large electric battery-

powered car ferry, MV Ampere, was delivered in 2015 [2]. For UK domestic services, three 

hybrid ro-ro passenger ferries, namely MV Lochinvar, MV Hallaig, and MV Catriona, were 

built between 2011 and 2016. They are currently in operation in Scotland [3]. 

Various industrial reports and academic research have showed that hybrid ships will 

contribute to greener shipping.  

Lindstad and Sandaas [4] investigated the environmental advantage of hybrid offshore 

support vessels with dynamic positioning system, compared with a conventional diesel 

electrical system. Ling-Chin and Roskilly [5] introduced a new life cycle assessment 

(LCA) approach in order to evaluate the performance of a hybrid ro-ro cargo vessel in 

terms of environmental impact, whereas Dedes et al. [6] investigated the economic impact 

of the hybrid system for slow speed ocean-going ships in terms of fuel saving. In addition, 

Wang et al. [7] adopted life cycle assessment (LCA) and life cycle cost analysis (LCCA) 

methods for a short route hybrid ferry and pointed out that  hybrid systems in collaboration 
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with main and auxiliary engines could contribute to a significant reduction in fuel 

consumption. 

Lan et al. [8] proposed a structured model for estimating the optimal size of hybrid 

propulsion systems consisting of photovoltaic (PV), diesel engine and battery systems for 

five voyage scenarios. 

Wen et al. [9] developed an interval method to determine the optimal size of an energy 

storage system (ESS) combined with a photovoltaic  power system. The results obtained 

from a wide range of engine loads were compared from economic and environmental 

perspectives. 

Diab et al. [10] compared onshore hybrid renewable systems with the equivalent sets of 

on-board systems, revealing that the combination of solar and battery systems can improve 

the efficiency of ship performance. 

Geertsma et al. [11] reviewed recent developments in propulsion, power supply systems 

and their control strategies while discussing opportunities and challenges for these systems 

and controls. Their findings illustrated that hybrid structures with advanced control 

strategies could reduce fuel consumption and emissions up to 10-35% with the 

enhancement of noise, maintainability, manoeuvrability and comfort. 

Geertsma et al. [12-13] introduced an electric drive model and integrated into the 

mechanical propulsion model introduced, whereas Veneri et al. [14] reviewed a number of 

naval applications from traditional to more innovative electric propulsion and generation 

architectures. 

Roskilly et al. [15] showed that significant reduction in both CO2 and NOx emissions 

could be achieved through the life cycle and cost analyses for hybrid propulsion systems. 

To reduce propulsion power loss, Zhao et al. [16] suggested an optimal power 

management for ship propulsion system concerning improving efficiency while reducing 
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emissions. Aneke and Wang [17] reviewed energy storage technologies applicable to the 

hybrid ships. Jeong et al. [18] illustrated the advantages of a hybrid ship by comparing its 

performance with equivalent ships with diesel-electric and diesel-mechanical propulsion 

systems. They also presented an enhanced framework to investigate the holistic cost and 

environmental impacts of marine vessels.  

In addition to the marine industry, several research carried out to introduce the importance 

of new incentives for replacing diesel vehicles with hybrid/electric vehicles. Palmer et al. 

[19] carried out a study to determine the total cost of ownership, which combines purchase 

and operating expenses, of hybrid and electric vehicles in the UK, US and Japan in order 

to identify the most economical choice of vehicle.  

With a remarkable advancement in hybrid-electric powertrain technology to automotive 

industry, some powertrain designs were suggested by researchers. Hutchinson et al. [20] 

evaluated architecture designs and empirical analysis of whole-life costing. Their findings 

showed that the value of hybrid powertrains would be dependent on the vehicle's 

application considering market conditions and manner of use.  

 

Despite the optimistic prospect of the hybrid ship, previous research has lacked systematic 

investigations into whether hybrid ships are a good choice over conventional ship propulsion 

types. Ship hybrid propulsion is a relatively new concept in the industry, consequently, there 

are still many unknowns in terms of optimal design and operational practices. This inspired 

this paper to investigate the holistic performance of hybrid ships. 
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1.2. Overview of multi-criteria decision-making processes 

Proper decision-making plays an important part in a successful business across many 

different industries. For a single criterion, the decision can be made simply by comparing the 

value of the criterion obtained from the base option with equivalent sets of alternatives. In 

real business where multiple criteria have to be considered, the added complexity of multi-

dimensionality has to be considered [21]. 

Over the years several multi-criteria decision analysis (MCDA) methods have been 

developed. In particular, Multi-Attribute Utility Theory (MAUT), Analytical Hierarchy 

Process (AHP) and Outranking are regarded as some of the most commonly used MCDA 

methods [22-29]. 

In addition to these, various enhanced approaches to MCDA have been recently introduced. 

Linkov and Seager [30] developed a concept of coupling MCDA that would account for 

environmental and risk impacts in relation to emerging threats in the medical industry. This 

approach integrated the impact of each category, enabling a base design to be compared with 

alternatives. They showed the coupling of the risk assessment with life cycle assessment 

could enhance the management of risk.  

Basurko and Mesbahi [31] presented an integrated quantitative approach for the holistic 

assessment of a number of marine technologies considering economic, environmental, and 

social sustainability. The analysis was carried out by means of standard life cycle assessment 

and economic assessment methods, coupled with a new method for evaluating the risk 

impact.  

Niekamp et al. [32] structured a framework for multi-criteria decision making in relation to 

the sustainability of asset management. With the proposed method, decision-makers can 

assign certain levels of weight to the scores on each criterion based on their own knowledge 
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or preference. This method was applied to a case study on evaluating the advantages and 

disadvantages of material alternatives, compared to the conventional carbon steel.  

In order to evaluate the optimal cost-effective measures for reducing marine pollution, Yuan 

and Ng [33] introduced a ranking algorithm that was later applied for ranking credible 

emission-reducing measures. Dong et al. [34] evaluated the optimal municipal waste 

management system in the viewpoint of energy efficiency, environmental friendliness and 

economic feasibility. On the other hand, the approach to weighing factors on various criteria 

has been extensively used; to investigate the optimal wind farm siting [35-36]; to optimize 

biomass briquette fuel system [37]; to investigate optimal siting and size of bioenergy 

facilities [38-39]; to apply environmental criteria to assess the performance of product 

suppliers [40-41]. 

 

1.3. Limitations of conventional MCDA 

In the conventional MCDA, the process of normalization and weighing factors may be an 

unwanted but a compulsory process in order to compare incomparable units across the 

indexes. The role of weighting factors is to compensate for the influence of uncertainties, 

which may be caused by consolidating complex information into a value-less number, on the 

results. 

After reviewing previous research, a number of drawbacks of conventional MCDA are 

identified. As an integration process across the impacts from multi-criteria decision, certain 

levels of weighting factors are given to each criterion as a form of ‘relative ratio’ based on 

user’s own knowledge or preference. The results of such analytic approach are destined to 

overly rely on what values are weighted on each criterion. Therefore, the over reliance on 

personal subjectivity may lead to a wrong conclusion, and/or diminish the reliability of 
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results. Therefore, the adequacy and inadequacy of weighting factors on particular criteria are 

still needed to be studied. 

Wang et al. [42] investigated the influence of factors weighted on different criteria on the 

MCDA for a sustainable energy selection, taking into account the multi-dimensional nature 

of sustainability goals in terms of complexity of socio-economic and biophysical systems. 

In addition, the key challenge to assign weighting factors for different categories based on the 

subjective information provided by stakeholders was addressed by a number of research [43-

46]. Since 1979 when Dawes [47] addressed that the results would be biased by weighing 

methods, the practice of giving equal weights to each category has been widely adopted as a 

stopgap. However, this practice is still subjected to the loss of information during the 

normalization process to converge different units into a compatible one. To make the analysis 

more reliable, an enhanced approach may be required. 

Wheelan [21] also addressed the disadvantage of normalizing any index since it consolidates 

lots of complex information into a single number. Regarding the process of weighing factors, 

there are a great number of ways to produce a different outcome. He described this by giving 

an example of car and driver’s ranking of three sports cars: the Porsche Cayman, the 

Chevrolet Corvette, and the Lotus Evora. Using a formula that includes twenty-one different 

variables, the company ranked the Porsche number one. However, it was pointed out that 

“exterior styling” counted for only four percent of the total score in the Car and Driver 

formula, which seemed ridiculously low for a sports car. On the other hand, when styling was 

given more weight in the overall ranging (25 %), the Lotus was turned out on top. Likewise, 

when the sticker price was weighted more heavily, the Chevy Corvetter was ranked number 

one. 

It shows that any criterion is highly sensitive to the weight given to each of those 

components. Conventional MCDA approach is technically and academically correct and yet 
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somewhat is not fully correct in terms of purpose to provide a reliable answer to the real 

world. 

 

1.4. Research motivation 

This paper was aimed to enhance the general understanding of the differential performance of 

three replaceable marine propulsion systems in the economic, environmental and risk aspects.  

The impact of one criterion is inherently expressed in a different format from the others, 

thereby the direct combination and/or straightforward comparison may not be possible. For 

instance, the basic unit of economic impact can be represented as monetary value, whereas 

those of environmental and risk impacts may be quantified to be the amount of air emissions 

and risk level respectively. 

In this context, the key lesson from the previous research is to pay attention to the disparity in 

the unit of analysis. In this regard, the focus of this paper was placed on developing an 

enhanced approach to the optimal decision-making for propulsion system selection. The 

primary idea of the proposed approach was to unify all the impact values as equivalent 

monetary values, thereby the negative effect of weighing factors on each criterion, 

influencing users’ preference on the final results, can be eliminated. This theory was applied 

to illustrate the performance of a hybrid ro-ro ferry, MV Catriona, in comparison with the 

conventional propulsion types: diesel electric (DE) and diesel mechanical (DM) systems. 

 

2. Description of proposed approach 

Taking into account the background and limitations of the conventional decision-making 

approaches,  
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Fig. 1 outlines the proposed decision-making framework in which economic, environmental 

and risk impacts are individually assessed. The impact levels of each criterion are, then, 

converted into monetary values in order to allow for direct comparison. The combination of 

all monetary values converted from the individual impacts finally represent the overall cost of 

a proposed design or product. 

A noticeable benefit of this approach is placed on eliminating the normalization process 

involving factor-weighing on each criterion. 

Instead, the combination of three monetary values obtained from different models simplifies 

the decision-making process and removes the need to make, often, biased assumptions. This 

process can be repeated with a number of models (1…M), their results can be directly 

compared and used to determine the most optimal one. 

In order to understand the relationship between the input parameters and the analysis outputs, 

this framework identifies several conceivable scenarios (1…N) and carries out sensitivity 

analysis across them. Comparing the results, optimal decision-making can be accomplished 

as well as allowing for the observation of general trends and/or patterns of the parametric 

influences on the final decision. 
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Fig. 1. Schematic of SHIPLYS LCT concept. 
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2.1. Economic impact assessment 

Fig. 2 illustrates the process of economic impact assessment (Task 1) tailored to the scope of 

the present research. It starts with data collection with which the energy consumption of 

subject models is estimated. It, then, moves into the process of cost estimation where Eq. (1) 

is used to calculate the energy expenses. 

 

Fig. 2. Outlines for Task 1 – economic impact assessment (estimating variable cost). 
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n

E i i i i

i=0

C = SFOC ×FC ×FP×SM+ EC ×EP×EM × t       (1) 

Given that the holistic cost of a ship is comprised of various costs during the life cycle of the 

ship, this paper has split the overall ship cost into two types; one is ‘fixed cost’ that is 

insensitive to the change in subject models while the other is ‘variable cost’ which is 

sensitive to model changes. Focusing on comparing the performance of a ship with a hybrid 

propulsion system as well as the same ship with two other conventional propulsion types, the 

category of variable cost, in this paper, can be defined as the capital and operational costs in 

respect to various propulsion systems, whereas all the other ship costs can be considered as 

the fixed cost. Finally, the economic impact of the proposed systems can be expressed as the 

combination of all fixed and variable costs as shown in Eq. (2). 

n m

EC F,i V,j

i=0 j=0

C = C × C            (2) 

 

 

2.2.  Environmental impact assessment 

Fig. 3 shows the process of Task 2, which concerns the environmental impact assessment. 

Considering that marine vessels have been attributed to a number of environmental impacts 

such as global warming, acidification, eutrophication, etc. Task 2 was designed to investigate 

the variation of environmental impact obtained from the different configurations of the 

propulsion systems: hybrid, DE and DM. Similar to Task 1, it begins with the collecting data 

on emission types, quantities and social costs. 
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Fig. 3. Outlines for Task 2 – environment impact assessment. 

As shown in Table 1, this process quantifies air emissions by means of an international 

guideline [48] of pollution factors associated with eight major emissions which are generally 

produced from the exhaust gas of diesel engines in accordance with fuel types. 

 

Table 1 Emission factors for top-down emissions from combustion of fuels [48]. 

Emissions substance GWP (tCO2e) Marine MGO emissions factor (g/g fuel) 

CO2 1 3.20600 

CH4 25 0.00006 

N2O 265 0.00015 

NOx × 0.08725 

CO 0.027 0.00277 
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NMVOC × 0.00308 

SOx × 0.00264 

PM25 × 0.00102 

 

EU emission reports [49-51] where 29 EU countries evaluated the practical costs of maritime 

emissions, such as CO2, NOx, SOx, NMVOC (non-methane volatile organic compound) and 

PM2.5 (particulate matters from exhaust), were referred to the cost estimation of those 

emissions. 

The quantities of CO2, CH4, CO and N2O are represented the degree of global warming 

potential (GWP) which can be calculated by using Eq. (3). 

n m

GWP i j j

i=1 j=1

EI = FC ×(EF×GWP )         (3) 

The Environmental impact for other types of emissions are integrated in the same way as 

shown in Eq. (4). 

n

k i ,

i=1 j=1

EI = FC ×(EF ×EIF )
m

j j k          (4) 

 

Hence, using Eq. (5), the environmental impacts, expressed as the combination of various 

emission types and quantities, can be converted into monetary values. 

l

EI GWP GWP k k

k=1

C =C ×EI + C ×EI                                     (5) 

 

2.3. Risk impact assessment 

Fig. 4 shows an overview of the proposed risk assessment which can be divided into two 

steps: 1) risk assessment 2) conversion of results into monetary value. 
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This process was structured primarily based on an approach of qualitative risk assessment by 

using failure mode effect criticality assessment (FMECA) with which the failure modes of a 

mechanical or electrical system are comprehensively identified. The frequencies, 

consequences and mitigation measures for individually-identified hazards throughout the 

FMECA are assessed using a combination of subjective and objective information. This 

modified process of risk assessment is, then, integrated with decision-making process. 

 

 

Fig. 4. Outlines for Task 3 – risk impact assessment. 
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2.3.1. Risk assessment 

The first step of risk assessment is to identify potential hazards (equivalent to failure modes 

of subject systems), which is followed by the assessment of the risk levels of the identified 

hazards based on three standard risk indexes. 

 Occurrence (O) represents the probability of a hazard;  

 Severity (S) serves as the consequence of a hazard; 

 Mitigation (M) serves as the chance of the failure of detection before a hazard arise or 

the failure of the coverage by backup systems. 

The product of those indexes provides the risk level which is known as the risk priority 

number (RPN). Table 2 to Table 4 show the different scales used to measure O, S and M. 

Therefore, the RPN can be translated from the combination of O, S, and, D as shown in Eq. 

(6). 

 

RPN = O×S×D           (6) 

 

Table 2 Frequency scales [52]. 

Rank Probability of failures Human error occurrence Probability Linguistic Variable 

1 <1:20000 < every 5 years Unlikely 

2 1:20000 In 3-5 years Low FR 

3 1:10000 In 1-3 years 

4  1:2000  Per year Occasional F 

5  1:1000 In every 6 months 

6  1:200  In every 3 months 

7  1:100  Per months Repeated F 

8  1:20  Per week 

9  1:10  Every few days Inevitable 
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10  1:2  Per day 

 

Table 3 Consequence scale [52]. 

Severity of each effect of failure or error Effect Rank 

No reason to expect failure to have any effect on safety, health, environment or mission None 1 

Very minor effect on product or system performance to have any effect on safety or health. The system does 

not require repair. 

Very minor 2 

Minor effect on product or system performance to have any effect on safety or health. The system can 

require repair. 

Minor 3 

Very low effect on system performance. A failure is not serious enough to cause injury, property damage, or 

system damage, but can result in unscheduled maintenance or repair. 
Low 4 

Moderate effect on system performance. The system requires repair. A failure which may cause moderate 

injury, moderate property damage, or moderate system damage which will result in delay or loss of system 

availability or mission degradation. 100% of mission may need to be reworked or process delayed. 

Moderate 5 

System performance is degraded. Some safety functions may not operate. A failure causes injury, property 

damage, or system damage. Some portion of mission is lost. High delaying restoring function. 
Significant 6 

System performance is severely affected but functions (reduced level of safety performance). The system 

may not operate. Failure does not involve noncompliance with government regulations or standards. 

Major 7 

The system is inoperable with loss of primary function. Failure can involve hazardous outcomes and/or 

noncompliance with government regulations or standards. 

Extreme 8 

Failure involves hazardous outcomes and/or noncompliance with government regulations or standards. 

Potential safety, health or environmental issue. Failure will occur with a warning. 

Very 

extreme 

9 

Failure is hazardous and occurs without warning. It affects safe operation. A failure is serious enough to 

cause injury, property damage, or system damage. Failure will occur without warning. 

Serious 10 

 

Table 4 Mitigation scale [52]. 

Likelihood of detection of failure or error 

Degree of 

importance 

Probability of 

failure 

detection % 

Rank 

Current control(s) almost certainly will detect a potential failure mode/task error. 

Reliable controls are known with a similar process.  
Almost certain 0-5 1 

Very likely current control(s) will detect failure modes/task error. Controls are able to 

detect within the same machine/module (almost always preceded by a warning). 

Very high 5-15 2 

High chance the design control(s) will almost certainly detect a potential failure 

Mode/task error. Controls are able to detect within the same function area. 

High 15-25 3 
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Moderately high likelihood current control(s) will detect failure modes/task error. Moderately high 25-35 4 

Moderate chance that the design control will detect a potential failure mode/task 

error, 

or the defect will remain undetected until the system performance is affected. 

Moderately 35-45 5 

Low likelihood current control(s) will detect failure modes/task error (program or 

operator is not likely to detect a potential design weakness). 

Low 45-55 6 

Very low likelihood current control(s) will detect failure modes/task error (program 

or 

Operator will not to detect a potential design weakness). 

Very low 55-65 7 

Remote chance that the design control will detect a potential failure mode/task error, 

Or the defect will remain undetected until an inspection or test is carried out. 

Remote 75-85 8 

Defect most likely remains undetected (very remote chance that the design control 

will 

detect a potential cause/mechanism and subsequent failure modes) or the task will be 

performed in the presence of the defect 

Very remote 85-95 9 

System failures are not detected (design control will not and/or cannot detect a 

potential cause/mechanism and subsequent failure modes) or there is no design 

verification or the task will certainly be performed in the presence of the defect. 

Almost 

impossible 

90-100 10 

 

2.3.2. Conversion into monetary values 

 

 

Fig. 5. Principle for cost estimation in accordance with RPN. 

 

Fig. 5 illustrates the principle for converting the RPN into monetary value. The RPN is 

technically ranked between 1 and 1,000. In the proposed process, the RPN 1,000 is assumed 

to represent the worst accident case which may be equivalent to the total loss of the ship. 
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Hence, the cost value of the RPN 1,000 equals the total cost of the ship. With this theory, the 

unit value of RPN ‘1’ can be determined if the cost of RPN 1,000 is divided by 1,000. For 

example, if the cost of the total loss is $1 million equivalent to RPN 1,000, the value of RPN 

‘1’ turns out $1,000. Using Eq. (7), the risk impact can be converted into monetary value. 

 

O

RI h RPN

h=1

C = (RPN ×C )          (7) 

 

2.4. Optimal decision-making 

The overall costs for economic, environmental and risk impacts of the proposed system 

models are presented by means of Eq. (8). Different models and scenarios may result in 

different total costs. The optimal decision-making can be achieved by comparing those total 

costs across the concerned scenarios and models, thereby determining the model and scenario 

with the lowest total cost. As shown in Fig. 1, this process can be simply conducted with bar 

graphs where the staked costs associated with each impact represent the total costs of each 

model and scenario. 

 

T EC EV RIC = C + C + C           (8) 
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3. Case study 

3.1. Selection of three system models (1…M=3) 

The selected hybrid ro-ro ferry, MV Catriona, has been engaged in the coastal service 

between the route of Claonaig - Lochranza, Scotland, UK since its initial delivery in 

September 2016. It was equipped with two lithium-ion batteries (350 kW each) and 

integrated with the diesel electric propulsion systems. Basic details of the ship  are 

summarized in Table 5. 

 

Table 5 General characteristics of MV Catriona [3].  

 

Tonnage: 135 DWT 

Length: 43.5 m (143 ft) 

Beam: 12.2 m (40 ft) 

Draught: 1.73 m (5 ft 8 in) 

Installed power: 

For hybrid system: 3 × 360kW generators + 2 × Lithium Ion batteries 350 kW each 

(actual) 

For DE system : 2 × 360 kW G/E (alternative) 

For DM system: 2 × 450 kW M/E and 1 × 50 kW G/E (alternative) 

Propulsion: Voith 16 R5 EC/90-1 Units 

Speed: 9 knots 

Capacity: 150 passengers; 23 cars 
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Route: Claonaig - Lochranza, UK 

Fuel type Marine gas oil (MGO) 

 

Having the hybrid concept, the case ship was designed to be operated either by electricity 

from diesel driven generators or lithium-ion batteries. It could also utilize both power sources 

simultaneously. In short, the case ship runs in three variant modes: the diesel mode, the 

battery mode and the hybrid mode. 

 

 

Fig. 6. Drawing for MV Catrina (System model 1) [3]. 

 

Fig. 6 shows a diagram of the electrical load distribution for the case ship. In the diesel mode, 

the electrical power from the diesel generators is transmitted to the main switchboard. The 
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power is distributed where needed; in particular, it is mainly used to drive the propulsion 

motors via variable speed drives. In the battery mode, the on-board batteries substitute the 

role of the diesel generators as the electric energy stored in the batteries is directly supplied to 

the variable speed drives. 

In the hybrid mode, both the battery and the diesel generator systems are connected together 

to supply the propulsion power in order to share the propulsion loads.  

Based on the proposed voyage and associated engine loads described in Table 6, the energy 

consumption of the case ship was estimated. In the table, the proposed power loads for the 

alternative ships with DE and DM systems were also described. 

 

Table 6 General characteristics of MV Catriona [3]. 

Service route Claonaig  - Lochranza 

Operation profile Transit Manoeuvring At Slip 

One voyage (minute) 40 4 16-46 

Average daily voyage (minute) 360 36 224 

Power demand (kW) for hybrid 

and DE / DM 

322 / 291 144 / 130 87 / 78 

System 

model no. 

Propulsion type Operational practice 

1 

Hybrid  

(current practice) 

72 % 

1 G/E + 2 

batteries 

(20%) 

40 % 1 G/E 24 % 1 G/E 

Hybrid (optional) 45 % 2 G/E  0 % 2 batteries 0 % 2 batteries  

 2 DE 45 % 2 G/E 40 % 1 G/E 24 % 1 G/E 

 3 DM  32 % 2 M/E +1 14 % 2 M/E 9 % 2 M/E 
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G/E +1 G/E +1 G/E 

 

 

Since the working load of diesel engines is unlikely to exceed the 75 % of the total load for 

safety reasons, it was found that the hybrid ships could take an advantage from running a 

single engine during transit, while the DE ship required two generators during the same 

period. As well as two main generators for propulsion, the ship with the DM required an 

additional generator to cover electrical service loads. 

 

Fig. 7. Estimated ship load profile in the proposed voyage (for one-month operation). 

 

Fig. 7 shows the estimation of shipload profile in the planned voyage (for the six-month 

operation), with which the energy consumptions were estimated. To investigate the adequacy 

of this estimation, the calculation results were compared with the actual on-board records of 

energy consumption. Fig. 8 plots the daily energy consumption of MV Catriona during the 

six month period between October 2016 and March 2017. 
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Fig. 8. Daily energy consumption of MV Catriona. 

 

It was found that the ship operators normally used the hybrid mode during daily operations; 

the batteries supplied of 20 % of the total ship demand while the diesel generators accounted 

for the remainder. The on-board batteries were re-charged overnight for a period of 11 hours 

from the shore supply. 
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Fig. 9. Operational mode for six-month operation. 

 

In Fig. 9, although the hybrid operation was routinely, the diesel mode was occasionally used 

particularly during bad weather. Some voyage schedules had to be cancelled due to adverse 

weather conditions or maintenance purposes. Given this operational data, the case ship was 

assumed to be operated 313 days in a year. 

The fuel consumption was measured as 95,123 litres and the battery consumption was 60,170 

kWh during six months of normal operation. The fuel consumption calculated from the 

analytical model based on Eq. (1) was 91,042 litres (97.0 % of the actual record) and the 

battery consumption was 57,500 kWh (95.5 % of the actual record). Therefore, it can be 

perceived that disparity level between the actual record and analytical calculation is small. 
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3.2. Selection of three operational scenarios (1…N=3) 

The case ship has been in regular use since its delivery. However, it is possible that the routes 

and the operational conditions will change in the future, which will have an influence on 

energy consumption.  

 

3.2.1. Current operational practice (Scenario 1) 

The first scenario was set up on the basis of the actual operating practice in order to compare 

the performance of the hybrid ship with those of the DE and DM ships. The assumptions used 

are outlined below. 

 Marine gas oil (MGO) was used for operating diesel engines and the fuel cost was $ 

479.5 per metric tonne (assessed on 6
th

 Sep. 2017 [53]). 

 Electricity cost was $ 0.08 / kWh at night time charge [54]. 

 UK-based environmental impact costs: GWP for $ 24/tCO2e, NOx for $ 4,602/tonne, 

SOx for $ 7,788/tonne, PM25 for $ 71,626/tonne, and NMVOC for $ 1,298/tonne. 

 Costs of total loss (equivalent to RPN 1000) were $ 12,187,000 for the hybrid, $ 

12,014,940 for the DE and $ 12,000,000 for the DM. 

Engine maintenance intervals, replaceable items, and associated costs were estimated in 

accordance with the manufacture’s information (MAN Diesel). With regard to this, the 

engine maintenance costs were evaluated at $ 4.4 /h for a 360 kW engine while $5.4 /h for a 

450 kW engine and the results were plotted in Fig. 10. 
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Fig. 10. Engine operation hours vs maintenance costs. 

 

Table 7 compares the economic and environmental impacts across the hybrid, DE and DM 

systems, showing that hybrid system would be relatively more advantageous in terms of 

environmental impact than the other two systems. The DE system turned out the most 

optimistic in terms of the economic impact. 

 

Table 7 Results of economic and environmental impact assessment. 

  Hybrid DE DM 

Economic impact 

Ship price $12,215,140.00  $12,014,940.00  $12,000,000.00  

Energy price $1,430,984.68  $1,104,531.63  $1,164,972.20  

engine $364,988.00  $592,328.00  $882,290.00  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

maintenance costs 

Total $14,011,112.68  $13,711,799.63  $14,047,262.20  

Environmental impact (life time) 

GWP $519,446.97 $559,860.51 $590,496.38 

NOx $2,351,094.65 $2,534,012.37 $2,672,674.89 

SOx $120,389.31 $129,755.73 $136,856.04 

PM25 $427,788.33 $461,070.73 $486,300.77 

NMVOC $23,409.03 $25,230.28 $26,610.90 

Total $3,442,128.30 $3,709,929.62 $3,912,938.97 

 

The risk impact assessment was carried out with the system drawings as presented through 

Fig. 6 for the hybrid, Fig. 11 for the DE and Fig. 12 for the DM. Results are displayed in 

Table 8 to10. 

 

Table 8 Results of risk assessment for Hybrid propulsion system. 

No Hazard FI CI MI RPN Costs Safety guards 

1 

No.1 Battery bank fails 

during normal operation 
1 2 1 4 $48,860.56  

Switch to No.2 Battery bank or Switch to DE mode. 

May need to repair the failure part. 

2 

No.2 Battery bank fails 

during normal operation 

1 2 1 4 $48,860.56  

Switch to No.1 Battery bank or Switch to DE mode. 

May need to repair the failure part. 

3 

No.1 Motor Fails during 

normal operation 
2 6 2 24 $293,163.36  

No.2 motor is only used for propulsion. Urgently need 

to repair the failure part. 

4 

No.2 Motor Fails during 

normal operation 
2 6 2 24 $293,163.36  

No.1 motor is only used for propulsion. Urgently need 

to repair the failure part. 

5 

No.1 DC Variable speed 

drives fails during normal 

operation 

1 6 2 12 $146,581.68  
No.2 motor is only used for propulsion (No.1 motor is 

out of control) Urgently need to repair the failure part. 

6 

No.2 DC Variable speed 

drives fails during normal 

operation 

1 6 2 12 $146,581.68  
No.1 motor is only used for propulsion (No.2 motor is 

out of control) Urgently need to repair the failure part. 
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7 AFT battery charger fails  1 1 1 1 $12,215.14  

FWD battery charger can be used. May need to repair 

the failure part. 

8 FWD battery charger fails 1 1 1 1 $12,215.14  

AFT battery charger can be used. May need to repair 

the failure part. 

9 No.1 G/E fails 2 2 1 2 $24,430.28  No.2 & 3 G/E can be used. Hybrid can be still useful.  

10 No.2 G/E fails 2 2 1 2 $24,430.28  No.1 & 3 G/E can be used. Hybrid can be still useful.  

11 No.3 G/E fails 2 2 1 2 $24,430.28  No.1 & 2 G/E can be used. Hybrid can be still useful.  

  Total $1,074,932.32    

 

Fig. 11. Drawing for DE propulsion system (System model 2) [3]. 

 

Table 9 Results of risk assessment for DE propulsion system. 

No Hazard FI CI MI RPN Costs Remark 
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1 

No.1 Motor Fails during normal 

operation 

2 6 2 24 $288,358.56  

No.2 motor is only used for propulsion. 

Urgently need to repair the failure part. 

2 

No.2 Motor Fails during normal 

operation 

2 6 2 24 $288,358.56  

No.1 motor is only used for propulsion. 

Urgently need to repair the failure part. 

3 

No.1 DC Variable speed drives fails 

during normal operation 
1 6 2 12 $144,179.28  

No.2 motor is only used for propulsion 

(No.1 motor is out of control) Urgently 

need to repair the failure part. 

4 

No.2 DC Variable speed drives fails 

during normal operation 

1 6 2 12 $144,179.28  

No.1 motor is only used for propulsion 

(No.2 motor is out of control) Urgently 

need to repair the failure part. 

5 No.1 G/E fails 2 4 2 16 $192,239.04  

No.2 & 3 G/E can be used. Ship speed may 

need to be reduced. May need to repair the 

failure part. 

6 No.2 G/E fails 2 4 2 16 $192,239.04  

No.1 & 3 G/E can be used. Ship speed may 

need to be reduced. May need to repair the 

failure part. 

7 No.3 G/E fails 2 4 2 16 $192,239.04  

No.1 & 2 G/E can be used. Ship speed may 

need to be reduced. May need to repair the 

failure part. 

  Total $1,441,792.80    

 

 

 

Fig. 12. Drawing for DM propulsion system (System model 3) [3]. 

 

Table 10 Results of risk assessment for DM propulsion system. 

No Hazard FI CI MI RPN Costs Remark 
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1 No.1 Main Engine fails 2 7 2 28 $336,000.00  

No.2 Main engine is only used for 

propulsion. Urgently need to repair the 

failure part. 

2 No.2 Main Engine fails 2 7 2 28 $336,000.00  

No.1 Main engine is only used for 

propulsion. Urgently need to repair the 

failure part. 

3 No.1 G/E fails 2 5 2 20 $240,000.00  No.2 G/E back up can be used 

4 No2 G/E fails 2 5 2 20 $240,000.00  No.1 G/E back up can be used. 

5 No.1 propulsion shaft failure 2 7 2 28 $336,000.00  

No.2 Main engine is only used for 

propulsion. Urgently need to repair the 

failure part. 

6 No.2 propulsion shaft failure 2 7 2 28 $336,000.00  

No.1 Main engine is only used for 

propulsion. Urgently need to repair the 

failure part. 

  Total $1,824,000.00    

 

 

For the verification work, the adequacy of the estimated costs in relation to the individual 

failure mode, expressed as the RPN, was investigated by the operator of the case ship, 

Caledonian MacBrayne Ltd., the. Judging from their long operational history and estimates of 

system repair and maintenance, it was agreed that the estimated costs for the individual risks 

had been placed on reasonably acceptable levels. 
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Fig. 13. Analysis results based on initial (actual) scenario. 

 

The overall results for the initial scenario, as shown in Fig. 13, were expressed in monetary 

values; the hybrid ship was estimated at $18,163,185.30, while DE was at $18,271,194.06 

and DM was at $18,901,911.17 respectively.  

It was shown that the ship with the hybrid system would be the most desirable option in 

showing that the total cost of this model was lowest; Despite relatively higher economic 

impact, the hybrid system outperformed the other two systems overall. In the opposite way, 

the DM system was shown to be less desirable than the others. 
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3.2.2. Optimization of hybrid mode (Scenario 2) 

As discussed earlier, the current practice of the propulsion load distribution was 80 % for 

G/Es and 20 % for batteries during the transit mode, while the batteries were switched off 

during the manoeuvring and berthing modes.  

This paper proposed an alternative scenario where the battery mode would be operated during 

manoeuvring and berthing, while two diesel generators would run in parallel during transit. 

The difference in results between the initial and alternative scenarios was presented in Fig. 

14. It pointed out that the alternatively-proposed scenario regarding the battery usage was 

slightly better off than the initial practice, revealing that the economic and environmental 

impacts were, to some extent, reduced by selecting this modified scenario. 

 

 

 

Fig. 14. Analysis results, compared to optimal scenarios. 
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3.2.3. Varying service routes (Scenario 3) 

The current study focused on a hybrid ship engaged in the UK coastal areas, hence the prices 

of emissions were guided by the UK market prices. However, as shown in Table 11, the wide 

range of emission prices across the EU nations suggests that the service area of the hybrid 

ship may also have an influence on the outcome of decision-making. The level of the change 

in the environmental impact according to different geometrical areas was investigated for two 

scenarios - one with the highest emission costs and the other with the lowest. 

 

Table 11 Prices of emissions in accordance with EU nations [51]. 

    

PM25 (exhaust) 

  

 

NOx NMVOC SO2 urban outside CO2 

Austria $10,266.00 $2,006.00 $9,794.00 $489,700.00 $32,804.00 - 

Belgium $6,136.00 $2,950.00 $12,980.00 $498,196.00 $43,070.00 - 

Bulgaria $2,124.00 $236.00 $1,180.00 $50,740.00 $5,192.00 - 

Cyprus $590.00 $354.00 $2,360.00 $287,566.00 $9,676.00 - 

Czech Republic $8,614.00 $1,180.00 $9,440.00 $298,068.00 $29,618.00 - 

Denmark $5,192.00 $826.00 $6,136.00 $456,424.00 $21,476.00 $26.00 

Estonia $944.00 $118.00 $2,124.00 $157,412.00 $10,620.00 - 

Finland $944.00 $236.00 $2,124.00 $397,778.00 $13,216.00 $65.00 

France $9,086.00 $1,652.00 $9,440.00 $462,796.00 $37,052.00 $25.00 

Germany $11,328.00 $2,006.00 $12,980.00 $453,710.00 $35,400.00 - 

Greece $944.00 $354.00 $1,652.00 $293,466.00 $16,520.00 - 

Hungary $6,372.00 $1,062.00 $5,664.00 $240,484.00 $24,662.00 - 

Ireland $4,484.00 $826.00 $5,664.00 $461,380.00 $19,352.00 $22.00 

Italy $6,726.00 $1,298.00 $7,198.00 $438,488.00 $31,978.00 - 

Latvia $1,652.00 $236.00 $2,360.00 $136,526.00 $10,148.00 - 

Lithuania $2,124.00 $236.00 $2,832.00 $168,858.00 $13,452.00 - 

Luxembourg $10,266.00 $3,186.00 $11,564.00 $792,370.00 $45,194.00 - 

Malta $826.00 $472.00 $2,596.00 $289,572.00 $9,676.00 - 

Netherlands $7,788.00 $2,242.00 $15,340.00 $498,550.00 $38,940.00 - 
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Norway $2,360.00 $354.00 $2,950.00 $365,328.00 $14,160.00 $52.00 

Poland $4,602.00 $708.00 $6,608.00 $205,910.00 $24,662.00 - 

Portugal $1,534.00 $590.00 $4,130.00 $306,210.00 $18,172.00 $7.00 

Romania $2,596.00 $472.00 $2,360.00 $34,456.00 $3,540.00 - 

Slovakia $6,136.00 $826.00 $5,782.00 $229,156.00 $24,780.00 - 

Slovenia $7,906.00 $1,652.00 $7,316.00 $310,222.00 $25,724.00 $19.00 

Spain $3,068.00 $472.00 $5,074.00 $353,528.00 $19,470.00 - 

Sweden $2,596.00 $354.00 $3,304.00 $416,068.00 $16,166.00 $131.00 

Switzerland $10,856.00 $2,124.00 $10,384.00 $524,864.00 $34,692.00 $86.00 

United Kingdom $4,602.00 $1,298.00 $7,788.00 $459,138.00 $28,674.00 $24.00 

*Where maximum emission prices are highlighted with red while minimum prices are with green. 

 

 

Fig. 15. Results with maximum EI cost scenario. 
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Fig. 16. Results with minimum EI cost scenario. 

 

Fig. 15 and Fig. 16 summarize the influence of different environmental impacts on the total 

costs. The results indicate that the hybrid propulsion system was more advantageous than the 

other two options. The benefits were even more pronounced when the costs of environmental 

impact were highest. 

 

3.3. Comparison with conventional MCDA process 

In order to prove the merit of the proposed approach, this section compares the results 

obtained from the proposed method to those from conventional MCDA using the analytic 

hierarchy process (AHP). Fig. 17 shows the general concept of the AHP applicable to the 
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purposed case studies. In this process, the impact of risk assessment remains in the form of 

RPNs, whilst those of economic assessment and environmental assessment are expressed in 

monetary value. To allow comparison of the different units the first step requires a 

normalization process where the values grouped in each criterion are compared to one 

another and converted into relative ratios (%). For example, if environmental impact for A1 

model is 600 K GBP, for A2 model is 811 K GBP and for A3 model is 1,140 K GBP, the 

normalized ratio will be 24 % 31% and 45 %.  

In order to reflect the decision-makers’ priority, the analytic hierarchy process (AHP) was 

applied for scoring & weighting factors.  In the final step of this process, numerical priorities 

are assigned for each impact criteria. Through the AHP technique, a numerical weight or 

priority is derived for each impact criteria. Therefore, this number finally represents the level 

of importance on each impact criteria, concerned by decision-makers.  
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Fig. 17. Conventional MCDA using AHP method [46][55].  

 

 

 

 

Fig. 18. Comparison of the results obtained from both the proposed method and conventional AHP method. 

 

Fig. 18 presents the summary of the results obtained from the conventional AHP method. The 

underlying distinction between the proposed method and the conventional one was the unit of 

comparison: “cost (monetary value)” for the proposed method while “percentage” for the 

conventional one. In addition, conventional method required the extra process of scoring & 
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weighing factors. Fig. 18 a) shows the results when the equal weighing factor was applied to 

each criterion, whilst Fig. 18 b) presents the results when the cost impact was three times 

more favourable than the other two impacts. Likewise, Fig. 18 c) shows the analytic results 

when environmental impact was regarded three times more important than the other two 

impacts. Lastly, Fig. 18 d) reveals the results when risk impact was three times more 

important than the other two impacts. 

A comparison of these figures reveals significant variations across the results. It was 

perceived that this problem had occurred because of in inter-dependency among the impact 

values and the subjective (maybe arbitrary) approach to scoring & weighting factors on the 

criteria. Also, the percentage used as an analytic unit is somewhat inconclusive because it 

does not provide a clear insight into the value of this number. 

On the other hand, the proposed method independently analysed the criteria values and 

converted them into monetary values which provided a clear perception of the overall cost 

associated with their decision. 

 

4. Discussion  

This paper presents an enhanced multi-criteria decision analysis (MCDA) to evaluate the 

performance of a hybrid ship compared with that of an equivalent ship with conventional 

propulsion systems. The enhanced MCDA adopted for this study converts incomparable units 

into monetary values, so that the impacts of each criterion can be compared. 

The novelty of this research was centered at integrating the cost, environmental and risk 

perspectives without the loss of information, consequently finding the economic advantages 

of the hybrid propulsion system.  
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It is generally accepted that DM propulsion systems are more efficient than DE propulsion 

system largely because the DE system is subject to electrical loss during the process of 

transmitting electricity generated from the diesel generator to the consumer. However, the 

investigation into the performance of the short route ferry in this paper revealed that the 

optimal operation of the hybrid system - the combination between the DE and the battery 

systems - would provide higher propulsion efficiency than the DM system.  

It was also found that the process of the optimal scenario selection was an effective  way to 

examine the impact of ship operational practices and emission prices on the final results. 

Based on the results, not only were optimal decisions achieved, but also general trends of 

parametric effects on the final trend were observed. 

This paper has shown the subjectivity of the conventional MCDA process where stakeholder 

preferences may lead to a wrong conclusion. It is believed that the enhanced process will 

contribute to improving the reliability of MCDA, providing a simpler and more 

straightforward decision-making process. 

The use of systematic decision-making process is still far limited in the marine industry. On 

the other hand, with a growing concern on the marine pollution, a series of stringent 

environmental regulations have been introduced in both international and local manners. To 

comply with them, the marine industry strives to develop rule-compliant technologies and 

systems; for example, to curb the SOx emission, three options - using marine gas oil (MGO); 

installation of scrubber system and using liquefied natural gas (LNG) - were introduced.  

Since a number of new and efficient systems and products are available for the ship 

operators, owners and stakeholders, proper decision making is an essential element for the 

marine industry which is striving to find ways to survive in severe market competitions.  

Given this, it is believed that the enhanced process will contribute to a better understanding of 

the value of a particular system from multiple perspectives, providing a simple and reliable 
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decision-making process. Therefore, it is entirely conceivable that a good decision-making 

process will provide insight to reduce design and production costs, thereby to produce 

reliable ships. Nevertheless, the application of the proposed MCDA framework is not 

necessarily limited to the hybrid ships or marine systems. The method can be applied to any 

other products and technologies across a wide range of industries where good decision-

making is important. 

 

5. Conclusions 

1) The drawbacks of the conventional normalization and weighting factor process of 

conventional MCDA were identified; any criterion is highly sensitive to the weight 

given to each of those components, thereby it has the potential to mislead the 

conclusion. 

2) The effectiveness of the enhanced MCDA was demonstrated in a way that the 

integration of the unit of analysis could improve the reliability of outcomes by 

eliminating the conventional normalization and weighting factor process, thereby 

reducing the subjectivity of decision makers. 

3) The new principle of converting qualitative risk values (RPN number) into the 

quantitative monetary values was shown practicable and particularly effective in the 

enhanced MCDA. 

4) The case study with the enhanced MCDA approach has shown that the performance 

of the hybrid system in terms of aspects: economy, environment, and risk. Research 

findings to support the performance of the hybrid system can be summarized as below; 

 Relatively higher initial costs of the hybrid system were compensated by the cost 

reduction in energy consumption and engine maintenance.  
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 The hybrid system was found to contribute to cleaner shipping as using less fuel 

leads directly to lower emissions. 

 The hybrid system was shown to enhance the safety and reliability of the 

propulsion system. 
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